1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Christian König 24 */ 25 26 /* Pooling of allocated pages is necessary because changing the caching 27 * attributes on x86 of the linear mapping requires a costly cross CPU TLB 28 * invalidate for those addresses. 29 * 30 * Additional to that allocations from the DMA coherent API are pooled as well 31 * cause they are rather slow compared to alloc_pages+map. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/debugfs.h> 37 #include <linux/highmem.h> 38 #include <linux/sched/mm.h> 39 40 #ifdef CONFIG_X86 41 #include <asm/set_memory.h> 42 #endif 43 44 #include <drm/ttm/ttm_pool.h> 45 #include <drm/ttm/ttm_tt.h> 46 #include <drm/ttm/ttm_bo.h> 47 48 #include "ttm_module.h" 49 50 /** 51 * struct ttm_pool_dma - Helper object for coherent DMA mappings 52 * 53 * @addr: original DMA address returned for the mapping 54 * @vaddr: original vaddr return for the mapping and order in the lower bits 55 */ 56 struct ttm_pool_dma { 57 dma_addr_t addr; 58 unsigned long vaddr; 59 }; 60 61 static unsigned long page_pool_size; 62 63 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool"); 64 module_param(page_pool_size, ulong, 0644); 65 66 static atomic_long_t allocated_pages; 67 68 static struct ttm_pool_type global_write_combined[MAX_ORDER + 1]; 69 static struct ttm_pool_type global_uncached[MAX_ORDER + 1]; 70 71 static struct ttm_pool_type global_dma32_write_combined[MAX_ORDER + 1]; 72 static struct ttm_pool_type global_dma32_uncached[MAX_ORDER + 1]; 73 74 static spinlock_t shrinker_lock; 75 static struct list_head shrinker_list; 76 static struct shrinker *mm_shrinker; 77 static DECLARE_RWSEM(pool_shrink_rwsem); 78 79 /* Allocate pages of size 1 << order with the given gfp_flags */ 80 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags, 81 unsigned int order) 82 { 83 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 84 struct ttm_pool_dma *dma; 85 struct page *p; 86 void *vaddr; 87 88 /* Don't set the __GFP_COMP flag for higher order allocations. 89 * Mapping pages directly into an userspace process and calling 90 * put_page() on a TTM allocated page is illegal. 91 */ 92 if (order) 93 gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | 94 __GFP_KSWAPD_RECLAIM; 95 96 if (!pool->use_dma_alloc) { 97 p = alloc_pages_node(pool->nid, gfp_flags, order); 98 if (p) 99 p->private = order; 100 return p; 101 } 102 103 dma = kmalloc(sizeof(*dma), GFP_KERNEL); 104 if (!dma) 105 return NULL; 106 107 if (order) 108 attr |= DMA_ATTR_NO_WARN; 109 110 vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE, 111 &dma->addr, gfp_flags, attr); 112 if (!vaddr) 113 goto error_free; 114 115 /* TODO: This is an illegal abuse of the DMA API, but we need to rework 116 * TTM page fault handling and extend the DMA API to clean this up. 117 */ 118 if (is_vmalloc_addr(vaddr)) 119 p = vmalloc_to_page(vaddr); 120 else 121 p = virt_to_page(vaddr); 122 123 dma->vaddr = (unsigned long)vaddr | order; 124 p->private = (unsigned long)dma; 125 return p; 126 127 error_free: 128 kfree(dma); 129 return NULL; 130 } 131 132 /* Reset the caching and pages of size 1 << order */ 133 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching, 134 unsigned int order, struct page *p) 135 { 136 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 137 struct ttm_pool_dma *dma; 138 void *vaddr; 139 140 #ifdef CONFIG_X86 141 /* We don't care that set_pages_wb is inefficient here. This is only 142 * used when we have to shrink and CPU overhead is irrelevant then. 143 */ 144 if (caching != ttm_cached && !PageHighMem(p)) 145 set_pages_wb(p, 1 << order); 146 #endif 147 148 if (!pool || !pool->use_dma_alloc) { 149 __free_pages(p, order); 150 return; 151 } 152 153 if (order) 154 attr |= DMA_ATTR_NO_WARN; 155 156 dma = (void *)p->private; 157 vaddr = (void *)(dma->vaddr & PAGE_MASK); 158 dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr, 159 attr); 160 kfree(dma); 161 } 162 163 /* Apply a new caching to an array of pages */ 164 static int ttm_pool_apply_caching(struct page **first, struct page **last, 165 enum ttm_caching caching) 166 { 167 #ifdef CONFIG_X86 168 unsigned int num_pages = last - first; 169 170 if (!num_pages) 171 return 0; 172 173 switch (caching) { 174 case ttm_cached: 175 break; 176 case ttm_write_combined: 177 return set_pages_array_wc(first, num_pages); 178 case ttm_uncached: 179 return set_pages_array_uc(first, num_pages); 180 } 181 #endif 182 return 0; 183 } 184 185 /* Map pages of 1 << order size and fill the DMA address array */ 186 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order, 187 struct page *p, dma_addr_t **dma_addr) 188 { 189 dma_addr_t addr; 190 unsigned int i; 191 192 if (pool->use_dma_alloc) { 193 struct ttm_pool_dma *dma = (void *)p->private; 194 195 addr = dma->addr; 196 } else { 197 size_t size = (1ULL << order) * PAGE_SIZE; 198 199 addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL); 200 if (dma_mapping_error(pool->dev, addr)) 201 return -EFAULT; 202 } 203 204 for (i = 1 << order; i ; --i) { 205 *(*dma_addr)++ = addr; 206 addr += PAGE_SIZE; 207 } 208 209 return 0; 210 } 211 212 /* Unmap pages of 1 << order size */ 213 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr, 214 unsigned int num_pages) 215 { 216 /* Unmapped while freeing the page */ 217 if (pool->use_dma_alloc) 218 return; 219 220 dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT, 221 DMA_BIDIRECTIONAL); 222 } 223 224 /* Give pages into a specific pool_type */ 225 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p) 226 { 227 unsigned int i, num_pages = 1 << pt->order; 228 229 for (i = 0; i < num_pages; ++i) { 230 if (PageHighMem(p)) 231 clear_highpage(p + i); 232 else 233 clear_page(page_address(p + i)); 234 } 235 236 spin_lock(&pt->lock); 237 list_add(&p->lru, &pt->pages); 238 spin_unlock(&pt->lock); 239 atomic_long_add(1 << pt->order, &allocated_pages); 240 } 241 242 /* Take pages from a specific pool_type, return NULL when nothing available */ 243 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt) 244 { 245 struct page *p; 246 247 spin_lock(&pt->lock); 248 p = list_first_entry_or_null(&pt->pages, typeof(*p), lru); 249 if (p) { 250 atomic_long_sub(1 << pt->order, &allocated_pages); 251 list_del(&p->lru); 252 } 253 spin_unlock(&pt->lock); 254 255 return p; 256 } 257 258 /* Initialize and add a pool type to the global shrinker list */ 259 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool, 260 enum ttm_caching caching, unsigned int order) 261 { 262 pt->pool = pool; 263 pt->caching = caching; 264 pt->order = order; 265 spin_lock_init(&pt->lock); 266 INIT_LIST_HEAD(&pt->pages); 267 268 spin_lock(&shrinker_lock); 269 list_add_tail(&pt->shrinker_list, &shrinker_list); 270 spin_unlock(&shrinker_lock); 271 } 272 273 /* Remove a pool_type from the global shrinker list and free all pages */ 274 static void ttm_pool_type_fini(struct ttm_pool_type *pt) 275 { 276 struct page *p; 277 278 spin_lock(&shrinker_lock); 279 list_del(&pt->shrinker_list); 280 spin_unlock(&shrinker_lock); 281 282 while ((p = ttm_pool_type_take(pt))) 283 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 284 } 285 286 /* Return the pool_type to use for the given caching and order */ 287 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool, 288 enum ttm_caching caching, 289 unsigned int order) 290 { 291 if (pool->use_dma_alloc || pool->nid != NUMA_NO_NODE) 292 return &pool->caching[caching].orders[order]; 293 294 #ifdef CONFIG_X86 295 switch (caching) { 296 case ttm_write_combined: 297 if (pool->use_dma32) 298 return &global_dma32_write_combined[order]; 299 300 return &global_write_combined[order]; 301 case ttm_uncached: 302 if (pool->use_dma32) 303 return &global_dma32_uncached[order]; 304 305 return &global_uncached[order]; 306 default: 307 break; 308 } 309 #endif 310 311 return NULL; 312 } 313 314 /* Free pages using the global shrinker list */ 315 static unsigned int ttm_pool_shrink(void) 316 { 317 struct ttm_pool_type *pt; 318 unsigned int num_pages; 319 struct page *p; 320 321 down_read(&pool_shrink_rwsem); 322 spin_lock(&shrinker_lock); 323 pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list); 324 list_move_tail(&pt->shrinker_list, &shrinker_list); 325 spin_unlock(&shrinker_lock); 326 327 p = ttm_pool_type_take(pt); 328 if (p) { 329 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 330 num_pages = 1 << pt->order; 331 } else { 332 num_pages = 0; 333 } 334 up_read(&pool_shrink_rwsem); 335 336 return num_pages; 337 } 338 339 /* Return the allocation order based for a page */ 340 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p) 341 { 342 if (pool->use_dma_alloc) { 343 struct ttm_pool_dma *dma = (void *)p->private; 344 345 return dma->vaddr & ~PAGE_MASK; 346 } 347 348 return p->private; 349 } 350 351 /* Called when we got a page, either from a pool or newly allocated */ 352 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order, 353 struct page *p, dma_addr_t **dma_addr, 354 unsigned long *num_pages, 355 struct page ***pages) 356 { 357 unsigned int i; 358 int r; 359 360 if (*dma_addr) { 361 r = ttm_pool_map(pool, order, p, dma_addr); 362 if (r) 363 return r; 364 } 365 366 *num_pages -= 1 << order; 367 for (i = 1 << order; i; --i, ++(*pages), ++p) 368 **pages = p; 369 370 return 0; 371 } 372 373 /** 374 * ttm_pool_free_range() - Free a range of TTM pages 375 * @pool: The pool used for allocating. 376 * @tt: The struct ttm_tt holding the page pointers. 377 * @caching: The page caching mode used by the range. 378 * @start_page: index for first page to free. 379 * @end_page: index for last page to free + 1. 380 * 381 * During allocation the ttm_tt page-vector may be populated with ranges of 382 * pages with different attributes if allocation hit an error without being 383 * able to completely fulfill the allocation. This function can be used 384 * to free these individual ranges. 385 */ 386 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt, 387 enum ttm_caching caching, 388 pgoff_t start_page, pgoff_t end_page) 389 { 390 struct page **pages = tt->pages; 391 unsigned int order; 392 pgoff_t i, nr; 393 394 for (i = start_page; i < end_page; i += nr, pages += nr) { 395 struct ttm_pool_type *pt = NULL; 396 397 order = ttm_pool_page_order(pool, *pages); 398 nr = (1UL << order); 399 if (tt->dma_address) 400 ttm_pool_unmap(pool, tt->dma_address[i], nr); 401 402 pt = ttm_pool_select_type(pool, caching, order); 403 if (pt) 404 ttm_pool_type_give(pt, *pages); 405 else 406 ttm_pool_free_page(pool, caching, order, *pages); 407 } 408 } 409 410 /** 411 * ttm_pool_alloc - Fill a ttm_tt object 412 * 413 * @pool: ttm_pool to use 414 * @tt: ttm_tt object to fill 415 * @ctx: operation context 416 * 417 * Fill the ttm_tt object with pages and also make sure to DMA map them when 418 * necessary. 419 * 420 * Returns: 0 on successe, negative error code otherwise. 421 */ 422 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 423 struct ttm_operation_ctx *ctx) 424 { 425 pgoff_t num_pages = tt->num_pages; 426 dma_addr_t *dma_addr = tt->dma_address; 427 struct page **caching = tt->pages; 428 struct page **pages = tt->pages; 429 enum ttm_caching page_caching; 430 gfp_t gfp_flags = GFP_USER; 431 pgoff_t caching_divide; 432 unsigned int order; 433 struct page *p; 434 int r; 435 436 WARN_ON(!num_pages || ttm_tt_is_populated(tt)); 437 WARN_ON(dma_addr && !pool->dev); 438 439 if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC) 440 gfp_flags |= __GFP_ZERO; 441 442 if (ctx->gfp_retry_mayfail) 443 gfp_flags |= __GFP_RETRY_MAYFAIL; 444 445 if (pool->use_dma32) 446 gfp_flags |= GFP_DMA32; 447 else 448 gfp_flags |= GFP_HIGHUSER; 449 450 for (order = min_t(unsigned int, MAX_ORDER, __fls(num_pages)); 451 num_pages; 452 order = min_t(unsigned int, order, __fls(num_pages))) { 453 struct ttm_pool_type *pt; 454 455 page_caching = tt->caching; 456 pt = ttm_pool_select_type(pool, tt->caching, order); 457 p = pt ? ttm_pool_type_take(pt) : NULL; 458 if (p) { 459 r = ttm_pool_apply_caching(caching, pages, 460 tt->caching); 461 if (r) 462 goto error_free_page; 463 464 caching = pages; 465 do { 466 r = ttm_pool_page_allocated(pool, order, p, 467 &dma_addr, 468 &num_pages, 469 &pages); 470 if (r) 471 goto error_free_page; 472 473 caching = pages; 474 if (num_pages < (1 << order)) 475 break; 476 477 p = ttm_pool_type_take(pt); 478 } while (p); 479 } 480 481 page_caching = ttm_cached; 482 while (num_pages >= (1 << order) && 483 (p = ttm_pool_alloc_page(pool, gfp_flags, order))) { 484 485 if (PageHighMem(p)) { 486 r = ttm_pool_apply_caching(caching, pages, 487 tt->caching); 488 if (r) 489 goto error_free_page; 490 caching = pages; 491 } 492 r = ttm_pool_page_allocated(pool, order, p, &dma_addr, 493 &num_pages, &pages); 494 if (r) 495 goto error_free_page; 496 if (PageHighMem(p)) 497 caching = pages; 498 } 499 500 if (!p) { 501 if (order) { 502 --order; 503 continue; 504 } 505 r = -ENOMEM; 506 goto error_free_all; 507 } 508 } 509 510 r = ttm_pool_apply_caching(caching, pages, tt->caching); 511 if (r) 512 goto error_free_all; 513 514 return 0; 515 516 error_free_page: 517 ttm_pool_free_page(pool, page_caching, order, p); 518 519 error_free_all: 520 num_pages = tt->num_pages - num_pages; 521 caching_divide = caching - tt->pages; 522 ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide); 523 ttm_pool_free_range(pool, tt, ttm_cached, caching_divide, num_pages); 524 525 return r; 526 } 527 EXPORT_SYMBOL(ttm_pool_alloc); 528 529 /** 530 * ttm_pool_free - Free the backing pages from a ttm_tt object 531 * 532 * @pool: Pool to give pages back to. 533 * @tt: ttm_tt object to unpopulate 534 * 535 * Give the packing pages back to a pool or free them 536 */ 537 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt) 538 { 539 ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages); 540 541 while (atomic_long_read(&allocated_pages) > page_pool_size) 542 ttm_pool_shrink(); 543 } 544 EXPORT_SYMBOL(ttm_pool_free); 545 546 /** 547 * ttm_pool_init - Initialize a pool 548 * 549 * @pool: the pool to initialize 550 * @dev: device for DMA allocations and mappings 551 * @nid: NUMA node to use for allocations 552 * @use_dma_alloc: true if coherent DMA alloc should be used 553 * @use_dma32: true if GFP_DMA32 should be used 554 * 555 * Initialize the pool and its pool types. 556 */ 557 void ttm_pool_init(struct ttm_pool *pool, struct device *dev, 558 int nid, bool use_dma_alloc, bool use_dma32) 559 { 560 unsigned int i, j; 561 562 WARN_ON(!dev && use_dma_alloc); 563 564 pool->dev = dev; 565 pool->nid = nid; 566 pool->use_dma_alloc = use_dma_alloc; 567 pool->use_dma32 = use_dma32; 568 569 if (use_dma_alloc || nid != NUMA_NO_NODE) { 570 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) 571 for (j = 0; j <= MAX_ORDER; ++j) 572 ttm_pool_type_init(&pool->caching[i].orders[j], 573 pool, i, j); 574 } 575 } 576 EXPORT_SYMBOL(ttm_pool_init); 577 578 /** 579 * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete. 580 * 581 * This is useful to guarantee that all shrinker invocations have seen an 582 * update, before freeing memory, similar to rcu. 583 */ 584 static void ttm_pool_synchronize_shrinkers(void) 585 { 586 down_write(&pool_shrink_rwsem); 587 up_write(&pool_shrink_rwsem); 588 } 589 590 /** 591 * ttm_pool_fini - Cleanup a pool 592 * 593 * @pool: the pool to clean up 594 * 595 * Free all pages in the pool and unregister the types from the global 596 * shrinker. 597 */ 598 void ttm_pool_fini(struct ttm_pool *pool) 599 { 600 unsigned int i, j; 601 602 if (pool->use_dma_alloc || pool->nid != NUMA_NO_NODE) { 603 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) 604 for (j = 0; j <= MAX_ORDER; ++j) 605 ttm_pool_type_fini(&pool->caching[i].orders[j]); 606 } 607 608 /* We removed the pool types from the LRU, but we need to also make sure 609 * that no shrinker is concurrently freeing pages from the pool. 610 */ 611 ttm_pool_synchronize_shrinkers(); 612 } 613 EXPORT_SYMBOL(ttm_pool_fini); 614 615 /* As long as pages are available make sure to release at least one */ 616 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink, 617 struct shrink_control *sc) 618 { 619 unsigned long num_freed = 0; 620 621 do 622 num_freed += ttm_pool_shrink(); 623 while (!num_freed && atomic_long_read(&allocated_pages)); 624 625 return num_freed; 626 } 627 628 /* Return the number of pages available or SHRINK_EMPTY if we have none */ 629 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink, 630 struct shrink_control *sc) 631 { 632 unsigned long num_pages = atomic_long_read(&allocated_pages); 633 634 return num_pages ? num_pages : SHRINK_EMPTY; 635 } 636 637 #ifdef CONFIG_DEBUG_FS 638 /* Count the number of pages available in a pool_type */ 639 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt) 640 { 641 unsigned int count = 0; 642 struct page *p; 643 644 spin_lock(&pt->lock); 645 /* Only used for debugfs, the overhead doesn't matter */ 646 list_for_each_entry(p, &pt->pages, lru) 647 ++count; 648 spin_unlock(&pt->lock); 649 650 return count; 651 } 652 653 /* Print a nice header for the order */ 654 static void ttm_pool_debugfs_header(struct seq_file *m) 655 { 656 unsigned int i; 657 658 seq_puts(m, "\t "); 659 for (i = 0; i <= MAX_ORDER; ++i) 660 seq_printf(m, " ---%2u---", i); 661 seq_puts(m, "\n"); 662 } 663 664 /* Dump information about the different pool types */ 665 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt, 666 struct seq_file *m) 667 { 668 unsigned int i; 669 670 for (i = 0; i <= MAX_ORDER; ++i) 671 seq_printf(m, " %8u", ttm_pool_type_count(&pt[i])); 672 seq_puts(m, "\n"); 673 } 674 675 /* Dump the total amount of allocated pages */ 676 static void ttm_pool_debugfs_footer(struct seq_file *m) 677 { 678 seq_printf(m, "\ntotal\t: %8lu of %8lu\n", 679 atomic_long_read(&allocated_pages), page_pool_size); 680 } 681 682 /* Dump the information for the global pools */ 683 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data) 684 { 685 ttm_pool_debugfs_header(m); 686 687 spin_lock(&shrinker_lock); 688 seq_puts(m, "wc\t:"); 689 ttm_pool_debugfs_orders(global_write_combined, m); 690 seq_puts(m, "uc\t:"); 691 ttm_pool_debugfs_orders(global_uncached, m); 692 seq_puts(m, "wc 32\t:"); 693 ttm_pool_debugfs_orders(global_dma32_write_combined, m); 694 seq_puts(m, "uc 32\t:"); 695 ttm_pool_debugfs_orders(global_dma32_uncached, m); 696 spin_unlock(&shrinker_lock); 697 698 ttm_pool_debugfs_footer(m); 699 700 return 0; 701 } 702 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals); 703 704 /** 705 * ttm_pool_debugfs - Debugfs dump function for a pool 706 * 707 * @pool: the pool to dump the information for 708 * @m: seq_file to dump to 709 * 710 * Make a debugfs dump with the per pool and global information. 711 */ 712 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m) 713 { 714 unsigned int i; 715 716 if (!pool->use_dma_alloc) { 717 seq_puts(m, "unused\n"); 718 return 0; 719 } 720 721 ttm_pool_debugfs_header(m); 722 723 spin_lock(&shrinker_lock); 724 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 725 seq_puts(m, "DMA "); 726 switch (i) { 727 case ttm_cached: 728 seq_puts(m, "\t:"); 729 break; 730 case ttm_write_combined: 731 seq_puts(m, "wc\t:"); 732 break; 733 case ttm_uncached: 734 seq_puts(m, "uc\t:"); 735 break; 736 } 737 ttm_pool_debugfs_orders(pool->caching[i].orders, m); 738 } 739 spin_unlock(&shrinker_lock); 740 741 ttm_pool_debugfs_footer(m); 742 return 0; 743 } 744 EXPORT_SYMBOL(ttm_pool_debugfs); 745 746 /* Test the shrinker functions and dump the result */ 747 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data) 748 { 749 struct shrink_control sc = { .gfp_mask = GFP_NOFS }; 750 751 fs_reclaim_acquire(GFP_KERNEL); 752 seq_printf(m, "%lu/%lu\n", ttm_pool_shrinker_count(mm_shrinker, &sc), 753 ttm_pool_shrinker_scan(mm_shrinker, &sc)); 754 fs_reclaim_release(GFP_KERNEL); 755 756 return 0; 757 } 758 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink); 759 760 #endif 761 762 /** 763 * ttm_pool_mgr_init - Initialize globals 764 * 765 * @num_pages: default number of pages 766 * 767 * Initialize the global locks and lists for the MM shrinker. 768 */ 769 int ttm_pool_mgr_init(unsigned long num_pages) 770 { 771 unsigned int i; 772 773 if (!page_pool_size) 774 page_pool_size = num_pages; 775 776 spin_lock_init(&shrinker_lock); 777 INIT_LIST_HEAD(&shrinker_list); 778 779 for (i = 0; i <= MAX_ORDER; ++i) { 780 ttm_pool_type_init(&global_write_combined[i], NULL, 781 ttm_write_combined, i); 782 ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i); 783 784 ttm_pool_type_init(&global_dma32_write_combined[i], NULL, 785 ttm_write_combined, i); 786 ttm_pool_type_init(&global_dma32_uncached[i], NULL, 787 ttm_uncached, i); 788 } 789 790 #ifdef CONFIG_DEBUG_FS 791 debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL, 792 &ttm_pool_debugfs_globals_fops); 793 debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL, 794 &ttm_pool_debugfs_shrink_fops); 795 #endif 796 797 mm_shrinker = shrinker_alloc(0, "drm-ttm_pool"); 798 if (!mm_shrinker) 799 return -ENOMEM; 800 801 mm_shrinker->count_objects = ttm_pool_shrinker_count; 802 mm_shrinker->scan_objects = ttm_pool_shrinker_scan; 803 mm_shrinker->seeks = 1; 804 805 shrinker_register(mm_shrinker); 806 807 return 0; 808 } 809 810 /** 811 * ttm_pool_mgr_fini - Finalize globals 812 * 813 * Cleanup the global pools and unregister the MM shrinker. 814 */ 815 void ttm_pool_mgr_fini(void) 816 { 817 unsigned int i; 818 819 for (i = 0; i <= MAX_ORDER; ++i) { 820 ttm_pool_type_fini(&global_write_combined[i]); 821 ttm_pool_type_fini(&global_uncached[i]); 822 823 ttm_pool_type_fini(&global_dma32_write_combined[i]); 824 ttm_pool_type_fini(&global_dma32_uncached[i]); 825 } 826 827 shrinker_free(mm_shrinker); 828 WARN_ON(!list_empty(&shrinker_list)); 829 } 830