xref: /linux/drivers/gpu/drm/ttm/ttm_pool.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Christian König
24  */
25 
26 /* Pooling of allocated pages is necessary because changing the caching
27  * attributes on x86 of the linear mapping requires a costly cross CPU TLB
28  * invalidate for those addresses.
29  *
30  * Additional to that allocations from the DMA coherent API are pooled as well
31  * cause they are rather slow compared to alloc_pages+map.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/dma-mapping.h>
36 
37 #ifdef CONFIG_X86
38 #include <asm/set_memory.h>
39 #endif
40 
41 #include <drm/ttm/ttm_pool.h>
42 #include <drm/ttm/ttm_bo_driver.h>
43 #include <drm/ttm/ttm_tt.h>
44 
45 /**
46  * struct ttm_pool_dma - Helper object for coherent DMA mappings
47  *
48  * @addr: original DMA address returned for the mapping
49  * @vaddr: original vaddr return for the mapping and order in the lower bits
50  */
51 struct ttm_pool_dma {
52 	dma_addr_t addr;
53 	unsigned long vaddr;
54 };
55 
56 static unsigned long page_pool_size;
57 
58 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
59 module_param(page_pool_size, ulong, 0644);
60 
61 static atomic_long_t allocated_pages;
62 
63 static struct ttm_pool_type global_write_combined[MAX_ORDER];
64 static struct ttm_pool_type global_uncached[MAX_ORDER];
65 
66 static struct ttm_pool_type global_dma32_write_combined[MAX_ORDER];
67 static struct ttm_pool_type global_dma32_uncached[MAX_ORDER];
68 
69 static struct mutex shrinker_lock;
70 static struct list_head shrinker_list;
71 static struct shrinker mm_shrinker;
72 
73 /* Allocate pages of size 1 << order with the given gfp_flags */
74 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
75 					unsigned int order)
76 {
77 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
78 	struct ttm_pool_dma *dma;
79 	struct page *p;
80 	void *vaddr;
81 
82 	/* Don't set the __GFP_COMP flag for higher order allocations.
83 	 * Mapping pages directly into an userspace process and calling
84 	 * put_page() on a TTM allocated page is illegal.
85 	 */
86 	if (order)
87 		gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY |
88 			__GFP_KSWAPD_RECLAIM;
89 
90 	if (!pool->use_dma_alloc) {
91 		p = alloc_pages(gfp_flags, order);
92 		if (p)
93 			p->private = order;
94 		return p;
95 	}
96 
97 	dma = kmalloc(sizeof(*dma), GFP_KERNEL);
98 	if (!dma)
99 		return NULL;
100 
101 	if (order)
102 		attr |= DMA_ATTR_NO_WARN;
103 
104 	vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
105 				&dma->addr, gfp_flags, attr);
106 	if (!vaddr)
107 		goto error_free;
108 
109 	/* TODO: This is an illegal abuse of the DMA API, but we need to rework
110 	 * TTM page fault handling and extend the DMA API to clean this up.
111 	 */
112 	if (is_vmalloc_addr(vaddr))
113 		p = vmalloc_to_page(vaddr);
114 	else
115 		p = virt_to_page(vaddr);
116 
117 	dma->vaddr = (unsigned long)vaddr | order;
118 	p->private = (unsigned long)dma;
119 	return p;
120 
121 error_free:
122 	kfree(dma);
123 	return NULL;
124 }
125 
126 /* Reset the caching and pages of size 1 << order */
127 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
128 			       unsigned int order, struct page *p)
129 {
130 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
131 	struct ttm_pool_dma *dma;
132 	void *vaddr;
133 
134 #ifdef CONFIG_X86
135 	/* We don't care that set_pages_wb is inefficient here. This is only
136 	 * used when we have to shrink and CPU overhead is irrelevant then.
137 	 */
138 	if (caching != ttm_cached && !PageHighMem(p))
139 		set_pages_wb(p, 1 << order);
140 #endif
141 
142 	if (!pool || !pool->use_dma_alloc) {
143 		__free_pages(p, order);
144 		return;
145 	}
146 
147 	if (order)
148 		attr |= DMA_ATTR_NO_WARN;
149 
150 	dma = (void *)p->private;
151 	vaddr = (void *)(dma->vaddr & PAGE_MASK);
152 	dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
153 		       attr);
154 	kfree(dma);
155 }
156 
157 /* Apply a new caching to an array of pages */
158 static int ttm_pool_apply_caching(struct page **first, struct page **last,
159 				  enum ttm_caching caching)
160 {
161 #ifdef CONFIG_X86
162 	unsigned int num_pages = last - first;
163 
164 	if (!num_pages)
165 		return 0;
166 
167 	switch (caching) {
168 	case ttm_cached:
169 		break;
170 	case ttm_write_combined:
171 		return set_pages_array_wc(first, num_pages);
172 	case ttm_uncached:
173 		return set_pages_array_uc(first, num_pages);
174 	}
175 #endif
176 	return 0;
177 }
178 
179 /* Map pages of 1 << order size and fill the DMA address array  */
180 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
181 			struct page *p, dma_addr_t **dma_addr)
182 {
183 	dma_addr_t addr;
184 	unsigned int i;
185 
186 	if (pool->use_dma_alloc) {
187 		struct ttm_pool_dma *dma = (void *)p->private;
188 
189 		addr = dma->addr;
190 	} else {
191 		size_t size = (1ULL << order) * PAGE_SIZE;
192 
193 		addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
194 		if (dma_mapping_error(pool->dev, addr))
195 			return -EFAULT;
196 	}
197 
198 	for (i = 1 << order; i ; --i) {
199 		*(*dma_addr)++ = addr;
200 		addr += PAGE_SIZE;
201 	}
202 
203 	return 0;
204 }
205 
206 /* Unmap pages of 1 << order size */
207 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
208 			   unsigned int num_pages)
209 {
210 	/* Unmapped while freeing the page */
211 	if (pool->use_dma_alloc)
212 		return;
213 
214 	dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
215 		       DMA_BIDIRECTIONAL);
216 }
217 
218 /* Give pages into a specific pool_type */
219 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
220 {
221 	spin_lock(&pt->lock);
222 	list_add(&p->lru, &pt->pages);
223 	spin_unlock(&pt->lock);
224 	atomic_long_add(1 << pt->order, &allocated_pages);
225 }
226 
227 /* Take pages from a specific pool_type, return NULL when nothing available */
228 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
229 {
230 	struct page *p;
231 
232 	spin_lock(&pt->lock);
233 	p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
234 	if (p) {
235 		atomic_long_sub(1 << pt->order, &allocated_pages);
236 		list_del(&p->lru);
237 	}
238 	spin_unlock(&pt->lock);
239 
240 	return p;
241 }
242 
243 /* Initialize and add a pool type to the global shrinker list */
244 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
245 			       enum ttm_caching caching, unsigned int order)
246 {
247 	pt->pool = pool;
248 	pt->caching = caching;
249 	pt->order = order;
250 	spin_lock_init(&pt->lock);
251 	INIT_LIST_HEAD(&pt->pages);
252 
253 	mutex_lock(&shrinker_lock);
254 	list_add_tail(&pt->shrinker_list, &shrinker_list);
255 	mutex_unlock(&shrinker_lock);
256 }
257 
258 /* Remove a pool_type from the global shrinker list and free all pages */
259 static void ttm_pool_type_fini(struct ttm_pool_type *pt)
260 {
261 	struct page *p, *tmp;
262 
263 	mutex_lock(&shrinker_lock);
264 	list_del(&pt->shrinker_list);
265 	mutex_unlock(&shrinker_lock);
266 
267 	list_for_each_entry_safe(p, tmp, &pt->pages, lru)
268 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
269 }
270 
271 /* Return the pool_type to use for the given caching and order */
272 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
273 						  enum ttm_caching caching,
274 						  unsigned int order)
275 {
276 	if (pool->use_dma_alloc)
277 		return &pool->caching[caching].orders[order];
278 
279 #ifdef CONFIG_X86
280 	switch (caching) {
281 	case ttm_write_combined:
282 		if (pool->use_dma32)
283 			return &global_dma32_write_combined[order];
284 
285 		return &global_write_combined[order];
286 	case ttm_uncached:
287 		if (pool->use_dma32)
288 			return &global_dma32_uncached[order];
289 
290 		return &global_uncached[order];
291 	default:
292 		break;
293 	}
294 #endif
295 
296 	return NULL;
297 }
298 
299 /* Free pages using the global shrinker list */
300 static unsigned int ttm_pool_shrink(void)
301 {
302 	struct ttm_pool_type *pt;
303 	unsigned int num_freed;
304 	struct page *p;
305 
306 	mutex_lock(&shrinker_lock);
307 	pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
308 
309 	p = ttm_pool_type_take(pt);
310 	if (p) {
311 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
312 		num_freed = 1 << pt->order;
313 	} else {
314 		num_freed = 0;
315 	}
316 
317 	list_move_tail(&pt->shrinker_list, &shrinker_list);
318 	mutex_unlock(&shrinker_lock);
319 
320 	return num_freed;
321 }
322 
323 /* Return the allocation order based for a page */
324 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
325 {
326 	if (pool->use_dma_alloc) {
327 		struct ttm_pool_dma *dma = (void *)p->private;
328 
329 		return dma->vaddr & ~PAGE_MASK;
330 	}
331 
332 	return p->private;
333 }
334 
335 /**
336  * ttm_pool_alloc - Fill a ttm_tt object
337  *
338  * @pool: ttm_pool to use
339  * @tt: ttm_tt object to fill
340  * @ctx: operation context
341  *
342  * Fill the ttm_tt object with pages and also make sure to DMA map them when
343  * necessary.
344  *
345  * Returns: 0 on successe, negative error code otherwise.
346  */
347 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
348 		   struct ttm_operation_ctx *ctx)
349 {
350 	unsigned long num_pages = tt->num_pages;
351 	dma_addr_t *dma_addr = tt->dma_address;
352 	struct page **caching = tt->pages;
353 	struct page **pages = tt->pages;
354 	gfp_t gfp_flags = GFP_USER;
355 	unsigned int i, order;
356 	struct page *p;
357 	int r;
358 
359 	WARN_ON(!num_pages || ttm_tt_is_populated(tt));
360 	WARN_ON(dma_addr && !pool->dev);
361 
362 	if (tt->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
363 		gfp_flags |= __GFP_ZERO;
364 
365 	if (ctx->gfp_retry_mayfail)
366 		gfp_flags |= __GFP_RETRY_MAYFAIL;
367 
368 	if (pool->use_dma32)
369 		gfp_flags |= GFP_DMA32;
370 	else
371 		gfp_flags |= GFP_HIGHUSER;
372 
373 	for (order = min(MAX_ORDER - 1UL, __fls(num_pages)); num_pages;
374 	     order = min_t(unsigned int, order, __fls(num_pages))) {
375 		bool apply_caching = false;
376 		struct ttm_pool_type *pt;
377 
378 		pt = ttm_pool_select_type(pool, tt->caching, order);
379 		p = pt ? ttm_pool_type_take(pt) : NULL;
380 		if (p) {
381 			apply_caching = true;
382 		} else {
383 			p = ttm_pool_alloc_page(pool, gfp_flags, order);
384 			if (p && PageHighMem(p))
385 				apply_caching = true;
386 		}
387 
388 		if (!p) {
389 			if (order) {
390 				--order;
391 				continue;
392 			}
393 			r = -ENOMEM;
394 			goto error_free_all;
395 		}
396 
397 		if (apply_caching) {
398 			r = ttm_pool_apply_caching(caching, pages,
399 						   tt->caching);
400 			if (r)
401 				goto error_free_page;
402 			caching = pages + (1 << order);
403 		}
404 
405 		r = ttm_mem_global_alloc_page(&ttm_mem_glob, p,
406 					      (1 << order) * PAGE_SIZE,
407 					      ctx);
408 		if (r)
409 			goto error_free_page;
410 
411 		if (dma_addr) {
412 			r = ttm_pool_map(pool, order, p, &dma_addr);
413 			if (r)
414 				goto error_global_free;
415 		}
416 
417 		num_pages -= 1 << order;
418 		for (i = 1 << order; i; --i)
419 			*(pages++) = p++;
420 	}
421 
422 	r = ttm_pool_apply_caching(caching, pages, tt->caching);
423 	if (r)
424 		goto error_free_all;
425 
426 	return 0;
427 
428 error_global_free:
429 	ttm_mem_global_free_page(&ttm_mem_glob, p, (1 << order) * PAGE_SIZE);
430 
431 error_free_page:
432 	ttm_pool_free_page(pool, tt->caching, order, p);
433 
434 error_free_all:
435 	num_pages = tt->num_pages - num_pages;
436 	for (i = 0; i < num_pages; ) {
437 		order = ttm_pool_page_order(pool, tt->pages[i]);
438 		ttm_pool_free_page(pool, tt->caching, order, tt->pages[i]);
439 		i += 1 << order;
440 	}
441 
442 	return r;
443 }
444 EXPORT_SYMBOL(ttm_pool_alloc);
445 
446 /**
447  * ttm_pool_free - Free the backing pages from a ttm_tt object
448  *
449  * @pool: Pool to give pages back to.
450  * @tt: ttm_tt object to unpopulate
451  *
452  * Give the packing pages back to a pool or free them
453  */
454 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
455 {
456 	unsigned int i;
457 
458 	for (i = 0; i < tt->num_pages; ) {
459 		struct page *p = tt->pages[i];
460 		unsigned int order, num_pages;
461 		struct ttm_pool_type *pt;
462 
463 		order = ttm_pool_page_order(pool, p);
464 		num_pages = 1ULL << order;
465 		ttm_mem_global_free_page(&ttm_mem_glob, p,
466 					 num_pages * PAGE_SIZE);
467 		if (tt->dma_address)
468 			ttm_pool_unmap(pool, tt->dma_address[i], num_pages);
469 
470 		pt = ttm_pool_select_type(pool, tt->caching, order);
471 		if (pt)
472 			ttm_pool_type_give(pt, tt->pages[i]);
473 		else
474 			ttm_pool_free_page(pool, tt->caching, order,
475 					   tt->pages[i]);
476 
477 		i += num_pages;
478 	}
479 
480 	while (atomic_long_read(&allocated_pages) > page_pool_size)
481 		ttm_pool_shrink();
482 }
483 EXPORT_SYMBOL(ttm_pool_free);
484 
485 /**
486  * ttm_pool_init - Initialize a pool
487  *
488  * @pool: the pool to initialize
489  * @dev: device for DMA allocations and mappings
490  * @use_dma_alloc: true if coherent DMA alloc should be used
491  * @use_dma32: true if GFP_DMA32 should be used
492  *
493  * Initialize the pool and its pool types.
494  */
495 void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
496 		   bool use_dma_alloc, bool use_dma32)
497 {
498 	unsigned int i, j;
499 
500 	WARN_ON(!dev && use_dma_alloc);
501 
502 	pool->dev = dev;
503 	pool->use_dma_alloc = use_dma_alloc;
504 	pool->use_dma32 = use_dma32;
505 
506 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i)
507 		for (j = 0; j < MAX_ORDER; ++j)
508 			ttm_pool_type_init(&pool->caching[i].orders[j],
509 					   pool, i, j);
510 }
511 
512 /**
513  * ttm_pool_fini - Cleanup a pool
514  *
515  * @pool: the pool to clean up
516  *
517  * Free all pages in the pool and unregister the types from the global
518  * shrinker.
519  */
520 void ttm_pool_fini(struct ttm_pool *pool)
521 {
522 	unsigned int i, j;
523 
524 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i)
525 		for (j = 0; j < MAX_ORDER; ++j)
526 			ttm_pool_type_fini(&pool->caching[i].orders[j]);
527 }
528 
529 #ifdef CONFIG_DEBUG_FS
530 /* Count the number of pages available in a pool_type */
531 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
532 {
533 	unsigned int count = 0;
534 	struct page *p;
535 
536 	spin_lock(&pt->lock);
537 	/* Only used for debugfs, the overhead doesn't matter */
538 	list_for_each_entry(p, &pt->pages, lru)
539 		++count;
540 	spin_unlock(&pt->lock);
541 
542 	return count;
543 }
544 
545 /* Dump information about the different pool types */
546 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
547 				    struct seq_file *m)
548 {
549 	unsigned int i;
550 
551 	for (i = 0; i < MAX_ORDER; ++i)
552 		seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
553 	seq_puts(m, "\n");
554 }
555 
556 /**
557  * ttm_pool_debugfs - Debugfs dump function for a pool
558  *
559  * @pool: the pool to dump the information for
560  * @m: seq_file to dump to
561  *
562  * Make a debugfs dump with the per pool and global information.
563  */
564 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
565 {
566 	unsigned int i;
567 
568 	mutex_lock(&shrinker_lock);
569 
570 	seq_puts(m, "\t ");
571 	for (i = 0; i < MAX_ORDER; ++i)
572 		seq_printf(m, " ---%2u---", i);
573 	seq_puts(m, "\n");
574 
575 	seq_puts(m, "wc\t:");
576 	ttm_pool_debugfs_orders(global_write_combined, m);
577 	seq_puts(m, "uc\t:");
578 	ttm_pool_debugfs_orders(global_uncached, m);
579 
580 	seq_puts(m, "wc 32\t:");
581 	ttm_pool_debugfs_orders(global_dma32_write_combined, m);
582 	seq_puts(m, "uc 32\t:");
583 	ttm_pool_debugfs_orders(global_dma32_uncached, m);
584 
585 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
586 		seq_puts(m, "DMA ");
587 		switch (i) {
588 		case ttm_cached:
589 			seq_puts(m, "\t:");
590 			break;
591 		case ttm_write_combined:
592 			seq_puts(m, "wc\t:");
593 			break;
594 		case ttm_uncached:
595 			seq_puts(m, "uc\t:");
596 			break;
597 		}
598 		ttm_pool_debugfs_orders(pool->caching[i].orders, m);
599 	}
600 
601 	seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
602 		   atomic_long_read(&allocated_pages), page_pool_size);
603 
604 	mutex_unlock(&shrinker_lock);
605 
606 	return 0;
607 }
608 EXPORT_SYMBOL(ttm_pool_debugfs);
609 
610 #endif
611 
612 /* As long as pages are available make sure to release at least one */
613 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
614 					    struct shrink_control *sc)
615 {
616 	unsigned long num_freed = 0;
617 
618 	do
619 		num_freed += ttm_pool_shrink();
620 	while (!num_freed && atomic_long_read(&allocated_pages));
621 
622 	return num_freed;
623 }
624 
625 /* Return the number of pages available or SHRINK_EMPTY if we have none */
626 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
627 					     struct shrink_control *sc)
628 {
629 	unsigned long num_pages = atomic_long_read(&allocated_pages);
630 
631 	return num_pages ? num_pages : SHRINK_EMPTY;
632 }
633 
634 /**
635  * ttm_pool_mgr_init - Initialize globals
636  *
637  * @num_pages: default number of pages
638  *
639  * Initialize the global locks and lists for the MM shrinker.
640  */
641 int ttm_pool_mgr_init(unsigned long num_pages)
642 {
643 	unsigned int i;
644 
645 	if (!page_pool_size)
646 		page_pool_size = num_pages;
647 
648 	mutex_init(&shrinker_lock);
649 	INIT_LIST_HEAD(&shrinker_list);
650 
651 	for (i = 0; i < MAX_ORDER; ++i) {
652 		ttm_pool_type_init(&global_write_combined[i], NULL,
653 				   ttm_write_combined, i);
654 		ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
655 
656 		ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
657 				   ttm_write_combined, i);
658 		ttm_pool_type_init(&global_dma32_uncached[i], NULL,
659 				   ttm_uncached, i);
660 	}
661 
662 	mm_shrinker.count_objects = ttm_pool_shrinker_count;
663 	mm_shrinker.scan_objects = ttm_pool_shrinker_scan;
664 	mm_shrinker.seeks = 1;
665 	return register_shrinker(&mm_shrinker);
666 }
667 
668 /**
669  * ttm_pool_mgr_fini - Finalize globals
670  *
671  * Cleanup the global pools and unregister the MM shrinker.
672  */
673 void ttm_pool_mgr_fini(void)
674 {
675 	unsigned int i;
676 
677 	for (i = 0; i < MAX_ORDER; ++i) {
678 		ttm_pool_type_fini(&global_write_combined[i]);
679 		ttm_pool_type_fini(&global_uncached[i]);
680 
681 		ttm_pool_type_fini(&global_dma32_write_combined[i]);
682 		ttm_pool_type_fini(&global_dma32_uncached[i]);
683 	}
684 
685 	unregister_shrinker(&mm_shrinker);
686 	WARN_ON(!list_empty(&shrinker_list));
687 }
688