1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Christian König 24 */ 25 26 /* Pooling of allocated pages is necessary because changing the caching 27 * attributes on x86 of the linear mapping requires a costly cross CPU TLB 28 * invalidate for those addresses. 29 * 30 * Additional to that allocations from the DMA coherent API are pooled as well 31 * cause they are rather slow compared to alloc_pages+map. 32 */ 33 34 #include <linux/export.h> 35 #include <linux/module.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/debugfs.h> 38 #include <linux/highmem.h> 39 #include <linux/sched/mm.h> 40 41 #ifdef CONFIG_X86 42 #include <asm/set_memory.h> 43 #endif 44 45 #include <drm/ttm/ttm_backup.h> 46 #include <drm/ttm/ttm_pool.h> 47 #include <drm/ttm/ttm_tt.h> 48 #include <drm/ttm/ttm_bo.h> 49 50 #include "ttm_module.h" 51 52 #ifdef CONFIG_FAULT_INJECTION 53 #include <linux/fault-inject.h> 54 static DECLARE_FAULT_ATTR(backup_fault_inject); 55 #else 56 #define should_fail(...) false 57 #endif 58 59 /** 60 * struct ttm_pool_dma - Helper object for coherent DMA mappings 61 * 62 * @addr: original DMA address returned for the mapping 63 * @vaddr: original vaddr return for the mapping and order in the lower bits 64 */ 65 struct ttm_pool_dma { 66 dma_addr_t addr; 67 unsigned long vaddr; 68 }; 69 70 /** 71 * struct ttm_pool_alloc_state - Current state of the tt page allocation process 72 * @pages: Pointer to the next tt page pointer to populate. 73 * @caching_divide: Pointer to the first page pointer whose page has a staged but 74 * not committed caching transition from write-back to @tt_caching. 75 * @dma_addr: Pointer to the next tt dma_address entry to populate if any. 76 * @remaining_pages: Remaining pages to populate. 77 * @tt_caching: The requested cpu-caching for the pages allocated. 78 */ 79 struct ttm_pool_alloc_state { 80 struct page **pages; 81 struct page **caching_divide; 82 dma_addr_t *dma_addr; 83 pgoff_t remaining_pages; 84 enum ttm_caching tt_caching; 85 }; 86 87 /** 88 * struct ttm_pool_tt_restore - State representing restore from backup 89 * @pool: The pool used for page allocation while restoring. 90 * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state. 91 * @alloced_page: Pointer to the page most recently allocated from a pool or system. 92 * @first_dma: The dma address corresponding to @alloced_page if dma_mapping 93 * is requested. 94 * @alloced_pages: The number of allocated pages present in the struct ttm_tt 95 * page vector from this restore session. 96 * @restored_pages: The number of 4K pages restored for @alloced_page (which 97 * is typically a multi-order page). 98 * @page_caching: The struct ttm_tt requested caching 99 * @order: The order of @alloced_page. 100 * 101 * Recovery from backup might fail when we've recovered less than the 102 * full ttm_tt. In order not to loose any data (yet), keep information 103 * around that allows us to restart a failed ttm backup recovery. 104 */ 105 struct ttm_pool_tt_restore { 106 struct ttm_pool *pool; 107 struct ttm_pool_alloc_state snapshot_alloc; 108 struct page *alloced_page; 109 dma_addr_t first_dma; 110 pgoff_t alloced_pages; 111 pgoff_t restored_pages; 112 enum ttm_caching page_caching; 113 unsigned int order; 114 }; 115 116 static unsigned long page_pool_size; 117 118 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool"); 119 module_param(page_pool_size, ulong, 0644); 120 121 static atomic_long_t allocated_pages; 122 123 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS]; 124 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS]; 125 126 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS]; 127 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS]; 128 129 static spinlock_t shrinker_lock; 130 static struct list_head shrinker_list; 131 static struct shrinker *mm_shrinker; 132 static DECLARE_RWSEM(pool_shrink_rwsem); 133 134 /* Allocate pages of size 1 << order with the given gfp_flags */ 135 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags, 136 unsigned int order) 137 { 138 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 139 struct ttm_pool_dma *dma; 140 struct page *p; 141 void *vaddr; 142 143 /* Don't set the __GFP_COMP flag for higher order allocations. 144 * Mapping pages directly into an userspace process and calling 145 * put_page() on a TTM allocated page is illegal. 146 */ 147 if (order) 148 gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | 149 __GFP_THISNODE; 150 151 if (!pool->use_dma_alloc) { 152 p = alloc_pages_node(pool->nid, gfp_flags, order); 153 if (p) 154 p->private = order; 155 return p; 156 } 157 158 dma = kmalloc(sizeof(*dma), GFP_KERNEL); 159 if (!dma) 160 return NULL; 161 162 if (order) 163 attr |= DMA_ATTR_NO_WARN; 164 165 vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE, 166 &dma->addr, gfp_flags, attr); 167 if (!vaddr) 168 goto error_free; 169 170 /* TODO: This is an illegal abuse of the DMA API, but we need to rework 171 * TTM page fault handling and extend the DMA API to clean this up. 172 */ 173 if (is_vmalloc_addr(vaddr)) 174 p = vmalloc_to_page(vaddr); 175 else 176 p = virt_to_page(vaddr); 177 178 dma->vaddr = (unsigned long)vaddr | order; 179 p->private = (unsigned long)dma; 180 return p; 181 182 error_free: 183 kfree(dma); 184 return NULL; 185 } 186 187 /* Reset the caching and pages of size 1 << order */ 188 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching, 189 unsigned int order, struct page *p) 190 { 191 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 192 struct ttm_pool_dma *dma; 193 void *vaddr; 194 195 #ifdef CONFIG_X86 196 /* We don't care that set_pages_wb is inefficient here. This is only 197 * used when we have to shrink and CPU overhead is irrelevant then. 198 */ 199 if (caching != ttm_cached && !PageHighMem(p)) 200 set_pages_wb(p, 1 << order); 201 #endif 202 203 if (!pool || !pool->use_dma_alloc) { 204 __free_pages(p, order); 205 return; 206 } 207 208 if (order) 209 attr |= DMA_ATTR_NO_WARN; 210 211 dma = (void *)p->private; 212 vaddr = (void *)(dma->vaddr & PAGE_MASK); 213 dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr, 214 attr); 215 kfree(dma); 216 } 217 218 /* Apply any cpu-caching deferred during page allocation */ 219 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc) 220 { 221 #ifdef CONFIG_X86 222 unsigned int num_pages = alloc->pages - alloc->caching_divide; 223 224 if (!num_pages) 225 return 0; 226 227 switch (alloc->tt_caching) { 228 case ttm_cached: 229 break; 230 case ttm_write_combined: 231 return set_pages_array_wc(alloc->caching_divide, num_pages); 232 case ttm_uncached: 233 return set_pages_array_uc(alloc->caching_divide, num_pages); 234 } 235 #endif 236 alloc->caching_divide = alloc->pages; 237 return 0; 238 } 239 240 /* DMA Map pages of 1 << order size and return the resulting dma_address. */ 241 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order, 242 struct page *p, dma_addr_t *dma_addr) 243 { 244 dma_addr_t addr; 245 246 if (pool->use_dma_alloc) { 247 struct ttm_pool_dma *dma = (void *)p->private; 248 249 addr = dma->addr; 250 } else { 251 size_t size = (1ULL << order) * PAGE_SIZE; 252 253 addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL); 254 if (dma_mapping_error(pool->dev, addr)) 255 return -EFAULT; 256 } 257 258 *dma_addr = addr; 259 260 return 0; 261 } 262 263 /* Unmap pages of 1 << order size */ 264 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr, 265 unsigned int num_pages) 266 { 267 /* Unmapped while freeing the page */ 268 if (pool->use_dma_alloc) 269 return; 270 271 dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT, 272 DMA_BIDIRECTIONAL); 273 } 274 275 /* Give pages into a specific pool_type */ 276 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p) 277 { 278 unsigned int i, num_pages = 1 << pt->order; 279 280 for (i = 0; i < num_pages; ++i) { 281 if (PageHighMem(p)) 282 clear_highpage(p + i); 283 else 284 clear_page(page_address(p + i)); 285 } 286 287 spin_lock(&pt->lock); 288 list_add(&p->lru, &pt->pages); 289 spin_unlock(&pt->lock); 290 atomic_long_add(1 << pt->order, &allocated_pages); 291 } 292 293 /* Take pages from a specific pool_type, return NULL when nothing available */ 294 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt) 295 { 296 struct page *p; 297 298 spin_lock(&pt->lock); 299 p = list_first_entry_or_null(&pt->pages, typeof(*p), lru); 300 if (p) { 301 atomic_long_sub(1 << pt->order, &allocated_pages); 302 list_del(&p->lru); 303 } 304 spin_unlock(&pt->lock); 305 306 return p; 307 } 308 309 /* Initialize and add a pool type to the global shrinker list */ 310 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool, 311 enum ttm_caching caching, unsigned int order) 312 { 313 pt->pool = pool; 314 pt->caching = caching; 315 pt->order = order; 316 spin_lock_init(&pt->lock); 317 INIT_LIST_HEAD(&pt->pages); 318 319 spin_lock(&shrinker_lock); 320 list_add_tail(&pt->shrinker_list, &shrinker_list); 321 spin_unlock(&shrinker_lock); 322 } 323 324 /* Remove a pool_type from the global shrinker list and free all pages */ 325 static void ttm_pool_type_fini(struct ttm_pool_type *pt) 326 { 327 struct page *p; 328 329 spin_lock(&shrinker_lock); 330 list_del(&pt->shrinker_list); 331 spin_unlock(&shrinker_lock); 332 333 while ((p = ttm_pool_type_take(pt))) 334 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 335 } 336 337 /* Return the pool_type to use for the given caching and order */ 338 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool, 339 enum ttm_caching caching, 340 unsigned int order) 341 { 342 if (pool->use_dma_alloc) 343 return &pool->caching[caching].orders[order]; 344 345 #ifdef CONFIG_X86 346 switch (caching) { 347 case ttm_write_combined: 348 if (pool->nid != NUMA_NO_NODE) 349 return &pool->caching[caching].orders[order]; 350 351 if (pool->use_dma32) 352 return &global_dma32_write_combined[order]; 353 354 return &global_write_combined[order]; 355 case ttm_uncached: 356 if (pool->nid != NUMA_NO_NODE) 357 return &pool->caching[caching].orders[order]; 358 359 if (pool->use_dma32) 360 return &global_dma32_uncached[order]; 361 362 return &global_uncached[order]; 363 default: 364 break; 365 } 366 #endif 367 368 return NULL; 369 } 370 371 /* Free pages using the global shrinker list */ 372 static unsigned int ttm_pool_shrink(void) 373 { 374 struct ttm_pool_type *pt; 375 unsigned int num_pages; 376 struct page *p; 377 378 down_read(&pool_shrink_rwsem); 379 spin_lock(&shrinker_lock); 380 pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list); 381 list_move_tail(&pt->shrinker_list, &shrinker_list); 382 spin_unlock(&shrinker_lock); 383 384 p = ttm_pool_type_take(pt); 385 if (p) { 386 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 387 num_pages = 1 << pt->order; 388 } else { 389 num_pages = 0; 390 } 391 up_read(&pool_shrink_rwsem); 392 393 return num_pages; 394 } 395 396 /* Return the allocation order based for a page */ 397 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p) 398 { 399 if (pool->use_dma_alloc) { 400 struct ttm_pool_dma *dma = (void *)p->private; 401 402 return dma->vaddr & ~PAGE_MASK; 403 } 404 405 return p->private; 406 } 407 408 /* 409 * Split larger pages so that we can free each PAGE_SIZE page as soon 410 * as it has been backed up, in order to avoid memory pressure during 411 * reclaim. 412 */ 413 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p) 414 { 415 unsigned int order = ttm_pool_page_order(pool, p); 416 pgoff_t nr; 417 418 if (!order) 419 return; 420 421 split_page(p, order); 422 nr = 1UL << order; 423 while (nr--) 424 (p++)->private = 0; 425 } 426 427 /** 428 * DOC: Partial backup and restoration of a struct ttm_tt. 429 * 430 * Swapout using ttm_backup_backup_page() and swapin using 431 * ttm_backup_copy_page() may fail. 432 * The former most likely due to lack of swap-space or memory, the latter due 433 * to lack of memory or because of signal interruption during waits. 434 * 435 * Backup failure is easily handled by using a ttm_tt pages vector that holds 436 * both backup handles and page pointers. This has to be taken into account when 437 * restoring such a ttm_tt from backup, and when freeing it while backed up. 438 * When restoring, for simplicity, new pages are actually allocated from the 439 * pool and the contents of any old pages are copied in and then the old pages 440 * are released. 441 * 442 * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state 443 * to be able to resume an interrupted restore, and that structure is freed once 444 * the restoration is complete. If the struct ttm_tt is destroyed while there 445 * is a valid struct ttm_pool_tt_restore attached, that is also properly taken 446 * care of. 447 */ 448 449 /* Is restore ongoing for the currently allocated page? */ 450 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore) 451 { 452 return restore && restore->restored_pages < (1 << restore->order); 453 } 454 455 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */ 456 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page, 457 const dma_addr_t *dma_addr, enum ttm_caching caching) 458 { 459 struct ttm_pool_type *pt = NULL; 460 unsigned int order; 461 pgoff_t nr; 462 463 if (pool) { 464 order = ttm_pool_page_order(pool, page); 465 nr = (1UL << order); 466 if (dma_addr) 467 ttm_pool_unmap(pool, *dma_addr, nr); 468 469 pt = ttm_pool_select_type(pool, caching, order); 470 } else { 471 order = page->private; 472 nr = (1UL << order); 473 } 474 475 if (pt) 476 ttm_pool_type_give(pt, page); 477 else 478 ttm_pool_free_page(pool, caching, order, page); 479 480 return nr; 481 } 482 483 /* Populate the page-array using the most recent allocated multi-order page. */ 484 static void ttm_pool_allocated_page_commit(struct page *allocated, 485 dma_addr_t first_dma, 486 struct ttm_pool_alloc_state *alloc, 487 pgoff_t nr) 488 { 489 pgoff_t i; 490 491 for (i = 0; i < nr; ++i) 492 *alloc->pages++ = allocated++; 493 494 alloc->remaining_pages -= nr; 495 496 if (!alloc->dma_addr) 497 return; 498 499 for (i = 0; i < nr; ++i) { 500 *alloc->dma_addr++ = first_dma; 501 first_dma += PAGE_SIZE; 502 } 503 } 504 505 /* 506 * When restoring, restore backed-up content to the newly allocated page and 507 * if successful, populate the page-table and dma-address arrays. 508 */ 509 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore, 510 struct file *backup, 511 const struct ttm_operation_ctx *ctx, 512 struct ttm_pool_alloc_state *alloc) 513 514 { 515 pgoff_t i, nr = 1UL << restore->order; 516 struct page **first_page = alloc->pages; 517 struct page *p; 518 int ret = 0; 519 520 for (i = restore->restored_pages; i < nr; ++i) { 521 p = first_page[i]; 522 if (ttm_backup_page_ptr_is_handle(p)) { 523 unsigned long handle = ttm_backup_page_ptr_to_handle(p); 524 525 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible && 526 should_fail(&backup_fault_inject, 1)) { 527 ret = -EINTR; 528 break; 529 } 530 531 if (handle == 0) { 532 restore->restored_pages++; 533 continue; 534 } 535 536 ret = ttm_backup_copy_page(backup, restore->alloced_page + i, 537 handle, ctx->interruptible); 538 if (ret) 539 break; 540 541 ttm_backup_drop(backup, handle); 542 } else if (p) { 543 /* 544 * We could probably avoid splitting the old page 545 * using clever logic, but ATM we don't care, as 546 * we prioritize releasing memory ASAP. Note that 547 * here, the old retained page is always write-back 548 * cached. 549 */ 550 ttm_pool_split_for_swap(restore->pool, p); 551 copy_highpage(restore->alloced_page + i, p); 552 __free_pages(p, 0); 553 } 554 555 restore->restored_pages++; 556 first_page[i] = ttm_backup_handle_to_page_ptr(0); 557 } 558 559 if (ret) { 560 if (!restore->restored_pages) { 561 dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL; 562 563 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page, 564 dma_addr, restore->page_caching); 565 restore->restored_pages = nr; 566 } 567 return ret; 568 } 569 570 ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma, 571 alloc, nr); 572 if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page)) 573 alloc->caching_divide = alloc->pages; 574 restore->snapshot_alloc = *alloc; 575 restore->alloced_pages += nr; 576 577 return 0; 578 } 579 580 /* If restoring, save information needed for ttm_pool_restore_commit(). */ 581 static void 582 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order, 583 struct page *p, 584 enum ttm_caching page_caching, 585 dma_addr_t first_dma, 586 struct ttm_pool_tt_restore *restore, 587 const struct ttm_pool_alloc_state *alloc) 588 { 589 restore->pool = pool; 590 restore->order = order; 591 restore->restored_pages = 0; 592 restore->page_caching = page_caching; 593 restore->first_dma = first_dma; 594 restore->alloced_page = p; 595 restore->snapshot_alloc = *alloc; 596 } 597 598 /* 599 * Called when we got a page, either from a pool or newly allocated. 600 * if needed, dma map the page and populate the dma address array. 601 * Populate the page address array. 602 * If the caching is consistent, update any deferred caching. Otherwise 603 * stage this page for an upcoming deferred caching update. 604 */ 605 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order, 606 struct page *p, enum ttm_caching page_caching, 607 struct ttm_pool_alloc_state *alloc, 608 struct ttm_pool_tt_restore *restore) 609 { 610 bool caching_consistent; 611 dma_addr_t first_dma; 612 int r = 0; 613 614 caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p); 615 616 if (caching_consistent) { 617 r = ttm_pool_apply_caching(alloc); 618 if (r) 619 return r; 620 } 621 622 if (alloc->dma_addr) { 623 r = ttm_pool_map(pool, order, p, &first_dma); 624 if (r) 625 return r; 626 } 627 628 if (restore) { 629 ttm_pool_page_allocated_restore(pool, order, p, page_caching, 630 first_dma, restore, alloc); 631 } else { 632 ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order); 633 634 if (caching_consistent) 635 alloc->caching_divide = alloc->pages; 636 } 637 638 return 0; 639 } 640 641 /** 642 * ttm_pool_free_range() - Free a range of TTM pages 643 * @pool: The pool used for allocating. 644 * @tt: The struct ttm_tt holding the page pointers. 645 * @caching: The page caching mode used by the range. 646 * @start_page: index for first page to free. 647 * @end_page: index for last page to free + 1. 648 * 649 * During allocation the ttm_tt page-vector may be populated with ranges of 650 * pages with different attributes if allocation hit an error without being 651 * able to completely fulfill the allocation. This function can be used 652 * to free these individual ranges. 653 */ 654 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt, 655 enum ttm_caching caching, 656 pgoff_t start_page, pgoff_t end_page) 657 { 658 struct page **pages = &tt->pages[start_page]; 659 struct file *backup = tt->backup; 660 pgoff_t i, nr; 661 662 for (i = start_page; i < end_page; i += nr, pages += nr) { 663 struct page *p = *pages; 664 665 nr = 1; 666 if (ttm_backup_page_ptr_is_handle(p)) { 667 unsigned long handle = ttm_backup_page_ptr_to_handle(p); 668 669 if (handle != 0) 670 ttm_backup_drop(backup, handle); 671 } else if (p) { 672 dma_addr_t *dma_addr = tt->dma_address ? 673 tt->dma_address + i : NULL; 674 675 nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching); 676 } 677 } 678 } 679 680 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt, 681 struct ttm_pool_alloc_state *alloc) 682 { 683 alloc->pages = tt->pages; 684 alloc->caching_divide = tt->pages; 685 alloc->dma_addr = tt->dma_address; 686 alloc->remaining_pages = tt->num_pages; 687 alloc->tt_caching = tt->caching; 688 } 689 690 /* 691 * Find a suitable allocation order based on highest desired order 692 * and number of remaining pages 693 */ 694 static unsigned int ttm_pool_alloc_find_order(unsigned int highest, 695 const struct ttm_pool_alloc_state *alloc) 696 { 697 return min_t(unsigned int, highest, __fls(alloc->remaining_pages)); 698 } 699 700 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 701 const struct ttm_operation_ctx *ctx, 702 struct ttm_pool_alloc_state *alloc, 703 struct ttm_pool_tt_restore *restore) 704 { 705 enum ttm_caching page_caching; 706 gfp_t gfp_flags = GFP_USER; 707 pgoff_t caching_divide; 708 unsigned int order; 709 bool allow_pools; 710 struct page *p; 711 int r; 712 713 WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt)); 714 WARN_ON(alloc->dma_addr && !pool->dev); 715 716 if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC) 717 gfp_flags |= __GFP_ZERO; 718 719 if (ctx->gfp_retry_mayfail) 720 gfp_flags |= __GFP_RETRY_MAYFAIL; 721 722 if (pool->use_dma32) 723 gfp_flags |= GFP_DMA32; 724 else 725 gfp_flags |= GFP_HIGHUSER; 726 727 page_caching = tt->caching; 728 allow_pools = true; 729 for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc); 730 alloc->remaining_pages; 731 order = ttm_pool_alloc_find_order(order, alloc)) { 732 struct ttm_pool_type *pt; 733 734 /* First, try to allocate a page from a pool if one exists. */ 735 p = NULL; 736 pt = ttm_pool_select_type(pool, page_caching, order); 737 if (pt && allow_pools) 738 p = ttm_pool_type_take(pt); 739 /* 740 * If that fails or previously failed, allocate from system. 741 * Note that this also disallows additional pool allocations using 742 * write-back cached pools of the same order. Consider removing 743 * that behaviour. 744 */ 745 if (!p) { 746 page_caching = ttm_cached; 747 allow_pools = false; 748 p = ttm_pool_alloc_page(pool, gfp_flags, order); 749 } 750 /* If that fails, lower the order if possible and retry. */ 751 if (!p) { 752 if (order) { 753 --order; 754 page_caching = tt->caching; 755 allow_pools = true; 756 continue; 757 } 758 r = -ENOMEM; 759 goto error_free_all; 760 } 761 r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc, 762 restore); 763 if (r) 764 goto error_free_page; 765 766 if (ttm_pool_restore_valid(restore)) { 767 r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc); 768 if (r) 769 goto error_free_all; 770 } 771 } 772 773 r = ttm_pool_apply_caching(alloc); 774 if (r) 775 goto error_free_all; 776 777 kfree(tt->restore); 778 tt->restore = NULL; 779 780 return 0; 781 782 error_free_page: 783 ttm_pool_free_page(pool, page_caching, order, p); 784 785 error_free_all: 786 if (tt->restore) 787 return r; 788 789 caching_divide = alloc->caching_divide - tt->pages; 790 ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide); 791 ttm_pool_free_range(pool, tt, ttm_cached, caching_divide, 792 tt->num_pages - alloc->remaining_pages); 793 794 return r; 795 } 796 797 /** 798 * ttm_pool_alloc - Fill a ttm_tt object 799 * 800 * @pool: ttm_pool to use 801 * @tt: ttm_tt object to fill 802 * @ctx: operation context 803 * 804 * Fill the ttm_tt object with pages and also make sure to DMA map them when 805 * necessary. 806 * 807 * Returns: 0 on successe, negative error code otherwise. 808 */ 809 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 810 struct ttm_operation_ctx *ctx) 811 { 812 struct ttm_pool_alloc_state alloc; 813 814 if (WARN_ON(ttm_tt_is_backed_up(tt))) 815 return -EINVAL; 816 817 ttm_pool_alloc_state_init(tt, &alloc); 818 819 return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL); 820 } 821 EXPORT_SYMBOL(ttm_pool_alloc); 822 823 /** 824 * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up 825 * content. 826 * 827 * @pool: ttm_pool to use 828 * @tt: ttm_tt object to fill 829 * @ctx: operation context 830 * 831 * Fill the ttm_tt object with pages and also make sure to DMA map them when 832 * necessary. Read in backed-up content. 833 * 834 * Returns: 0 on successe, negative error code otherwise. 835 */ 836 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 837 const struct ttm_operation_ctx *ctx) 838 { 839 struct ttm_pool_alloc_state alloc; 840 841 if (WARN_ON(!ttm_tt_is_backed_up(tt))) 842 return -EINVAL; 843 844 if (!tt->restore) { 845 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 846 847 ttm_pool_alloc_state_init(tt, &alloc); 848 if (ctx->gfp_retry_mayfail) 849 gfp |= __GFP_RETRY_MAYFAIL; 850 851 tt->restore = kzalloc(sizeof(*tt->restore), gfp); 852 if (!tt->restore) 853 return -ENOMEM; 854 855 tt->restore->snapshot_alloc = alloc; 856 tt->restore->pool = pool; 857 tt->restore->restored_pages = 1; 858 } else { 859 struct ttm_pool_tt_restore *restore = tt->restore; 860 int ret; 861 862 alloc = restore->snapshot_alloc; 863 if (ttm_pool_restore_valid(tt->restore)) { 864 ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc); 865 if (ret) 866 return ret; 867 } 868 if (!alloc.remaining_pages) 869 return 0; 870 } 871 872 return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore); 873 } 874 875 /** 876 * ttm_pool_free - Free the backing pages from a ttm_tt object 877 * 878 * @pool: Pool to give pages back to. 879 * @tt: ttm_tt object to unpopulate 880 * 881 * Give the packing pages back to a pool or free them 882 */ 883 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt) 884 { 885 ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages); 886 887 while (atomic_long_read(&allocated_pages) > page_pool_size) 888 ttm_pool_shrink(); 889 } 890 EXPORT_SYMBOL(ttm_pool_free); 891 892 /** 893 * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt 894 * @tt: The struct ttm_tt. 895 * 896 * Release handles with associated content or any remaining pages of 897 * a backed-up struct ttm_tt. 898 */ 899 void ttm_pool_drop_backed_up(struct ttm_tt *tt) 900 { 901 struct ttm_pool_tt_restore *restore; 902 pgoff_t start_page = 0; 903 904 WARN_ON(!ttm_tt_is_backed_up(tt)); 905 906 restore = tt->restore; 907 908 /* 909 * Unmap and free any uncommitted restore page. 910 * any tt page-array backup entries already read back has 911 * been cleared already 912 */ 913 if (ttm_pool_restore_valid(restore)) { 914 dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL; 915 916 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page, 917 dma_addr, restore->page_caching); 918 restore->restored_pages = 1UL << restore->order; 919 } 920 921 /* 922 * If a restore is ongoing, part of the tt pages may have a 923 * caching different than writeback. 924 */ 925 if (restore) { 926 pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages; 927 928 start_page = restore->alloced_pages; 929 WARN_ON(mid > start_page); 930 /* Pages that might be dma-mapped and non-cached */ 931 ttm_pool_free_range(restore->pool, tt, tt->caching, 932 0, mid); 933 /* Pages that might be dma-mapped but cached */ 934 ttm_pool_free_range(restore->pool, tt, ttm_cached, 935 mid, restore->alloced_pages); 936 kfree(restore); 937 tt->restore = NULL; 938 } 939 940 ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages); 941 } 942 943 /** 944 * ttm_pool_backup() - Back up or purge a struct ttm_tt 945 * @pool: The pool used when allocating the struct ttm_tt. 946 * @tt: The struct ttm_tt. 947 * @flags: Flags to govern the backup behaviour. 948 * 949 * Back up or purge a struct ttm_tt. If @purge is true, then 950 * all pages will be freed directly to the system rather than to the pool 951 * they were allocated from, making the function behave similarly to 952 * ttm_pool_free(). If @purge is false the pages will be backed up instead, 953 * exchanged for handles. 954 * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and 955 * a subsequent call to ttm_pool_drop_backed_up() will drop it. 956 * If backup of a page fails for whatever reason, @ttm will still be 957 * partially backed up, retaining those pages for which backup fails. 958 * In that case, this function can be retried, possibly after freeing up 959 * memory resources. 960 * 961 * Return: Number of pages actually backed up or freed, or negative 962 * error code on error. 963 */ 964 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt, 965 const struct ttm_backup_flags *flags) 966 { 967 struct file *backup = tt->backup; 968 struct page *page; 969 unsigned long handle; 970 gfp_t alloc_gfp; 971 gfp_t gfp; 972 int ret = 0; 973 pgoff_t shrunken = 0; 974 pgoff_t i, num_pages; 975 976 if (WARN_ON(ttm_tt_is_backed_up(tt))) 977 return -EINVAL; 978 979 if ((!ttm_backup_bytes_avail() && !flags->purge) || 980 pool->use_dma_alloc || ttm_tt_is_backed_up(tt)) 981 return -EBUSY; 982 983 #ifdef CONFIG_X86 984 /* Anything returned to the system needs to be cached. */ 985 if (tt->caching != ttm_cached) 986 set_pages_array_wb(tt->pages, tt->num_pages); 987 #endif 988 989 if (tt->dma_address || flags->purge) { 990 for (i = 0; i < tt->num_pages; i += num_pages) { 991 unsigned int order; 992 993 page = tt->pages[i]; 994 if (unlikely(!page)) { 995 num_pages = 1; 996 continue; 997 } 998 999 order = ttm_pool_page_order(pool, page); 1000 num_pages = 1UL << order; 1001 if (tt->dma_address) 1002 ttm_pool_unmap(pool, tt->dma_address[i], 1003 num_pages); 1004 if (flags->purge) { 1005 shrunken += num_pages; 1006 page->private = 0; 1007 __free_pages(page, order); 1008 memset(tt->pages + i, 0, 1009 num_pages * sizeof(*tt->pages)); 1010 } 1011 } 1012 } 1013 1014 if (flags->purge) 1015 return shrunken; 1016 1017 if (pool->use_dma32) 1018 gfp = GFP_DMA32; 1019 else 1020 gfp = GFP_HIGHUSER; 1021 1022 alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL; 1023 1024 num_pages = tt->num_pages; 1025 1026 /* Pretend doing fault injection by shrinking only half of the pages. */ 1027 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1)) 1028 num_pages = DIV_ROUND_UP(num_pages, 2); 1029 1030 for (i = 0; i < num_pages; ++i) { 1031 s64 shandle; 1032 1033 page = tt->pages[i]; 1034 if (unlikely(!page)) 1035 continue; 1036 1037 ttm_pool_split_for_swap(pool, page); 1038 1039 shandle = ttm_backup_backup_page(backup, page, flags->writeback, i, 1040 gfp, alloc_gfp); 1041 if (shandle < 0) { 1042 /* We allow partially shrunken tts */ 1043 ret = shandle; 1044 break; 1045 } 1046 handle = shandle; 1047 tt->pages[i] = ttm_backup_handle_to_page_ptr(handle); 1048 put_page(page); 1049 shrunken++; 1050 } 1051 1052 return shrunken ? shrunken : ret; 1053 } 1054 1055 /** 1056 * ttm_pool_init - Initialize a pool 1057 * 1058 * @pool: the pool to initialize 1059 * @dev: device for DMA allocations and mappings 1060 * @nid: NUMA node to use for allocations 1061 * @use_dma_alloc: true if coherent DMA alloc should be used 1062 * @use_dma32: true if GFP_DMA32 should be used 1063 * 1064 * Initialize the pool and its pool types. 1065 */ 1066 void ttm_pool_init(struct ttm_pool *pool, struct device *dev, 1067 int nid, bool use_dma_alloc, bool use_dma32) 1068 { 1069 unsigned int i, j; 1070 1071 WARN_ON(!dev && use_dma_alloc); 1072 1073 pool->dev = dev; 1074 pool->nid = nid; 1075 pool->use_dma_alloc = use_dma_alloc; 1076 pool->use_dma32 = use_dma32; 1077 1078 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1079 for (j = 0; j < NR_PAGE_ORDERS; ++j) { 1080 struct ttm_pool_type *pt; 1081 1082 /* Initialize only pool types which are actually used */ 1083 pt = ttm_pool_select_type(pool, i, j); 1084 if (pt != &pool->caching[i].orders[j]) 1085 continue; 1086 1087 ttm_pool_type_init(pt, pool, i, j); 1088 } 1089 } 1090 } 1091 EXPORT_SYMBOL(ttm_pool_init); 1092 1093 /** 1094 * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete. 1095 * 1096 * This is useful to guarantee that all shrinker invocations have seen an 1097 * update, before freeing memory, similar to rcu. 1098 */ 1099 static void ttm_pool_synchronize_shrinkers(void) 1100 { 1101 down_write(&pool_shrink_rwsem); 1102 up_write(&pool_shrink_rwsem); 1103 } 1104 1105 /** 1106 * ttm_pool_fini - Cleanup a pool 1107 * 1108 * @pool: the pool to clean up 1109 * 1110 * Free all pages in the pool and unregister the types from the global 1111 * shrinker. 1112 */ 1113 void ttm_pool_fini(struct ttm_pool *pool) 1114 { 1115 unsigned int i, j; 1116 1117 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1118 for (j = 0; j < NR_PAGE_ORDERS; ++j) { 1119 struct ttm_pool_type *pt; 1120 1121 pt = ttm_pool_select_type(pool, i, j); 1122 if (pt != &pool->caching[i].orders[j]) 1123 continue; 1124 1125 ttm_pool_type_fini(pt); 1126 } 1127 } 1128 1129 /* We removed the pool types from the LRU, but we need to also make sure 1130 * that no shrinker is concurrently freeing pages from the pool. 1131 */ 1132 ttm_pool_synchronize_shrinkers(); 1133 } 1134 EXPORT_SYMBOL(ttm_pool_fini); 1135 1136 /* Free average pool number of pages. */ 1137 #define TTM_SHRINKER_BATCH ((1 << (MAX_PAGE_ORDER / 2)) * NR_PAGE_ORDERS) 1138 1139 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink, 1140 struct shrink_control *sc) 1141 { 1142 unsigned long num_freed = 0; 1143 1144 do 1145 num_freed += ttm_pool_shrink(); 1146 while (num_freed < sc->nr_to_scan && 1147 atomic_long_read(&allocated_pages)); 1148 1149 sc->nr_scanned = num_freed; 1150 1151 return num_freed ?: SHRINK_STOP; 1152 } 1153 1154 /* Return the number of pages available or SHRINK_EMPTY if we have none */ 1155 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink, 1156 struct shrink_control *sc) 1157 { 1158 unsigned long num_pages = atomic_long_read(&allocated_pages); 1159 1160 return num_pages ? num_pages : SHRINK_EMPTY; 1161 } 1162 1163 #ifdef CONFIG_DEBUG_FS 1164 /* Count the number of pages available in a pool_type */ 1165 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt) 1166 { 1167 unsigned int count = 0; 1168 struct page *p; 1169 1170 spin_lock(&pt->lock); 1171 /* Only used for debugfs, the overhead doesn't matter */ 1172 list_for_each_entry(p, &pt->pages, lru) 1173 ++count; 1174 spin_unlock(&pt->lock); 1175 1176 return count; 1177 } 1178 1179 /* Print a nice header for the order */ 1180 static void ttm_pool_debugfs_header(struct seq_file *m) 1181 { 1182 unsigned int i; 1183 1184 seq_puts(m, "\t "); 1185 for (i = 0; i < NR_PAGE_ORDERS; ++i) 1186 seq_printf(m, " ---%2u---", i); 1187 seq_puts(m, "\n"); 1188 } 1189 1190 /* Dump information about the different pool types */ 1191 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt, 1192 struct seq_file *m) 1193 { 1194 unsigned int i; 1195 1196 for (i = 0; i < NR_PAGE_ORDERS; ++i) 1197 seq_printf(m, " %8u", ttm_pool_type_count(&pt[i])); 1198 seq_puts(m, "\n"); 1199 } 1200 1201 /* Dump the total amount of allocated pages */ 1202 static void ttm_pool_debugfs_footer(struct seq_file *m) 1203 { 1204 seq_printf(m, "\ntotal\t: %8lu of %8lu\n", 1205 atomic_long_read(&allocated_pages), page_pool_size); 1206 } 1207 1208 /* Dump the information for the global pools */ 1209 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data) 1210 { 1211 ttm_pool_debugfs_header(m); 1212 1213 spin_lock(&shrinker_lock); 1214 seq_puts(m, "wc\t:"); 1215 ttm_pool_debugfs_orders(global_write_combined, m); 1216 seq_puts(m, "uc\t:"); 1217 ttm_pool_debugfs_orders(global_uncached, m); 1218 seq_puts(m, "wc 32\t:"); 1219 ttm_pool_debugfs_orders(global_dma32_write_combined, m); 1220 seq_puts(m, "uc 32\t:"); 1221 ttm_pool_debugfs_orders(global_dma32_uncached, m); 1222 spin_unlock(&shrinker_lock); 1223 1224 ttm_pool_debugfs_footer(m); 1225 1226 return 0; 1227 } 1228 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals); 1229 1230 /** 1231 * ttm_pool_debugfs - Debugfs dump function for a pool 1232 * 1233 * @pool: the pool to dump the information for 1234 * @m: seq_file to dump to 1235 * 1236 * Make a debugfs dump with the per pool and global information. 1237 */ 1238 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m) 1239 { 1240 unsigned int i; 1241 1242 if (!pool->use_dma_alloc && pool->nid == NUMA_NO_NODE) { 1243 seq_puts(m, "unused\n"); 1244 return 0; 1245 } 1246 1247 ttm_pool_debugfs_header(m); 1248 1249 spin_lock(&shrinker_lock); 1250 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 1251 if (!ttm_pool_select_type(pool, i, 0)) 1252 continue; 1253 if (pool->use_dma_alloc) 1254 seq_puts(m, "DMA "); 1255 else 1256 seq_printf(m, "N%d ", pool->nid); 1257 switch (i) { 1258 case ttm_cached: 1259 seq_puts(m, "\t:"); 1260 break; 1261 case ttm_write_combined: 1262 seq_puts(m, "wc\t:"); 1263 break; 1264 case ttm_uncached: 1265 seq_puts(m, "uc\t:"); 1266 break; 1267 } 1268 ttm_pool_debugfs_orders(pool->caching[i].orders, m); 1269 } 1270 spin_unlock(&shrinker_lock); 1271 1272 ttm_pool_debugfs_footer(m); 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(ttm_pool_debugfs); 1276 1277 /* Test the shrinker functions and dump the result */ 1278 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data) 1279 { 1280 struct shrink_control sc = { 1281 .gfp_mask = GFP_NOFS, 1282 .nr_to_scan = TTM_SHRINKER_BATCH, 1283 }; 1284 unsigned long count; 1285 1286 fs_reclaim_acquire(GFP_KERNEL); 1287 count = ttm_pool_shrinker_count(mm_shrinker, &sc); 1288 seq_printf(m, "%lu/%lu\n", count, 1289 ttm_pool_shrinker_scan(mm_shrinker, &sc)); 1290 fs_reclaim_release(GFP_KERNEL); 1291 1292 return 0; 1293 } 1294 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink); 1295 1296 #endif 1297 1298 /** 1299 * ttm_pool_mgr_init - Initialize globals 1300 * 1301 * @num_pages: default number of pages 1302 * 1303 * Initialize the global locks and lists for the MM shrinker. 1304 */ 1305 int ttm_pool_mgr_init(unsigned long num_pages) 1306 { 1307 unsigned int i; 1308 1309 if (!page_pool_size) 1310 page_pool_size = num_pages; 1311 1312 spin_lock_init(&shrinker_lock); 1313 INIT_LIST_HEAD(&shrinker_list); 1314 1315 for (i = 0; i < NR_PAGE_ORDERS; ++i) { 1316 ttm_pool_type_init(&global_write_combined[i], NULL, 1317 ttm_write_combined, i); 1318 ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i); 1319 1320 ttm_pool_type_init(&global_dma32_write_combined[i], NULL, 1321 ttm_write_combined, i); 1322 ttm_pool_type_init(&global_dma32_uncached[i], NULL, 1323 ttm_uncached, i); 1324 } 1325 1326 #ifdef CONFIG_DEBUG_FS 1327 debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL, 1328 &ttm_pool_debugfs_globals_fops); 1329 debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL, 1330 &ttm_pool_debugfs_shrink_fops); 1331 #ifdef CONFIG_FAULT_INJECTION 1332 fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root, 1333 &backup_fault_inject); 1334 #endif 1335 #endif 1336 1337 mm_shrinker = shrinker_alloc(0, "drm-ttm_pool"); 1338 if (!mm_shrinker) 1339 return -ENOMEM; 1340 1341 mm_shrinker->count_objects = ttm_pool_shrinker_count; 1342 mm_shrinker->scan_objects = ttm_pool_shrinker_scan; 1343 mm_shrinker->batch = TTM_SHRINKER_BATCH; 1344 mm_shrinker->seeks = 1; 1345 1346 shrinker_register(mm_shrinker); 1347 1348 return 0; 1349 } 1350 1351 /** 1352 * ttm_pool_mgr_fini - Finalize globals 1353 * 1354 * Cleanup the global pools and unregister the MM shrinker. 1355 */ 1356 void ttm_pool_mgr_fini(void) 1357 { 1358 unsigned int i; 1359 1360 for (i = 0; i < NR_PAGE_ORDERS; ++i) { 1361 ttm_pool_type_fini(&global_write_combined[i]); 1362 ttm_pool_type_fini(&global_uncached[i]); 1363 1364 ttm_pool_type_fini(&global_dma32_write_combined[i]); 1365 ttm_pool_type_fini(&global_dma32_uncached[i]); 1366 } 1367 1368 shrinker_free(mm_shrinker); 1369 WARN_ON(!list_empty(&shrinker_list)); 1370 } 1371