xref: /linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision 8c69d0298fb56f603e694cf0188e25b58dfe8b7e)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/dma-buf-map.h>
36 #include <linux/io.h>
37 #include <linux/highmem.h>
38 #include <linux/wait.h>
39 #include <linux/slab.h>
40 #include <linux/vmalloc.h>
41 #include <linux/module.h>
42 #include <linux/dma-resv.h>
43 
44 struct ttm_transfer_obj {
45 	struct ttm_buffer_object base;
46 	struct ttm_buffer_object *bo;
47 };
48 
49 int ttm_mem_io_reserve(struct ttm_device *bdev,
50 		       struct ttm_resource *mem)
51 {
52 	if (mem->bus.offset || mem->bus.addr)
53 		return 0;
54 
55 	mem->bus.is_iomem = false;
56 	if (!bdev->funcs->io_mem_reserve)
57 		return 0;
58 
59 	return bdev->funcs->io_mem_reserve(bdev, mem);
60 }
61 
62 void ttm_mem_io_free(struct ttm_device *bdev,
63 		     struct ttm_resource *mem)
64 {
65 	if (!mem->bus.offset && !mem->bus.addr)
66 		return;
67 
68 	if (bdev->funcs->io_mem_free)
69 		bdev->funcs->io_mem_free(bdev, mem);
70 
71 	mem->bus.offset = 0;
72 	mem->bus.addr = NULL;
73 }
74 
75 static int ttm_resource_ioremap(struct ttm_device *bdev,
76 			       struct ttm_resource *mem,
77 			       void **virtual)
78 {
79 	int ret;
80 	void *addr;
81 
82 	*virtual = NULL;
83 	ret = ttm_mem_io_reserve(bdev, mem);
84 	if (ret || !mem->bus.is_iomem)
85 		return ret;
86 
87 	if (mem->bus.addr) {
88 		addr = mem->bus.addr;
89 	} else {
90 		size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
91 
92 		if (mem->bus.caching == ttm_write_combined)
93 			addr = ioremap_wc(mem->bus.offset, bus_size);
94 #ifdef CONFIG_X86
95 		else if (mem->bus.caching == ttm_cached)
96 			addr = ioremap_cache(mem->bus.offset, bus_size);
97 #endif
98 		else
99 			addr = ioremap(mem->bus.offset, bus_size);
100 		if (!addr) {
101 			ttm_mem_io_free(bdev, mem);
102 			return -ENOMEM;
103 		}
104 	}
105 	*virtual = addr;
106 	return 0;
107 }
108 
109 static void ttm_resource_iounmap(struct ttm_device *bdev,
110 				struct ttm_resource *mem,
111 				void *virtual)
112 {
113 	if (virtual && mem->bus.addr == NULL)
114 		iounmap(virtual);
115 	ttm_mem_io_free(bdev, mem);
116 }
117 
118 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
119 {
120 	uint32_t *dstP =
121 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
122 	uint32_t *srcP =
123 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
124 
125 	int i;
126 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
127 		iowrite32(ioread32(srcP++), dstP++);
128 	return 0;
129 }
130 
131 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
132 				unsigned long page,
133 				pgprot_t prot)
134 {
135 	struct page *d = ttm->pages[page];
136 	void *dst;
137 
138 	if (!d)
139 		return -ENOMEM;
140 
141 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
142 	dst = kmap_atomic_prot(d, prot);
143 	if (!dst)
144 		return -ENOMEM;
145 
146 	memcpy_fromio(dst, src, PAGE_SIZE);
147 
148 	kunmap_atomic(dst);
149 
150 	return 0;
151 }
152 
153 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
154 				unsigned long page,
155 				pgprot_t prot)
156 {
157 	struct page *s = ttm->pages[page];
158 	void *src;
159 
160 	if (!s)
161 		return -ENOMEM;
162 
163 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
164 	src = kmap_atomic_prot(s, prot);
165 	if (!src)
166 		return -ENOMEM;
167 
168 	memcpy_toio(dst, src, PAGE_SIZE);
169 
170 	kunmap_atomic(src);
171 
172 	return 0;
173 }
174 
175 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
176 		       struct ttm_operation_ctx *ctx,
177 		       struct ttm_resource *new_mem)
178 {
179 	struct ttm_device *bdev = bo->bdev;
180 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
181 	struct ttm_tt *ttm = bo->ttm;
182 	struct ttm_resource *old_mem = bo->resource;
183 	struct ttm_resource old_copy = *old_mem;
184 	void *old_iomap;
185 	void *new_iomap;
186 	int ret;
187 	unsigned long i;
188 
189 	ret = ttm_bo_wait_ctx(bo, ctx);
190 	if (ret)
191 		return ret;
192 
193 	ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap);
194 	if (ret)
195 		return ret;
196 	ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap);
197 	if (ret)
198 		goto out;
199 
200 	/*
201 	 * Single TTM move. NOP.
202 	 */
203 	if (old_iomap == NULL && new_iomap == NULL)
204 		goto out2;
205 
206 	/*
207 	 * Don't move nonexistent data. Clear destination instead.
208 	 */
209 	if (old_iomap == NULL &&
210 	    (ttm == NULL || (!ttm_tt_is_populated(ttm) &&
211 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
212 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
213 		goto out2;
214 	}
215 
216 	/*
217 	 * TTM might be null for moves within the same region.
218 	 */
219 	if (ttm) {
220 		ret = ttm_tt_populate(bdev, ttm, ctx);
221 		if (ret)
222 			goto out1;
223 	}
224 
225 	for (i = 0; i < new_mem->num_pages; ++i) {
226 		if (old_iomap == NULL) {
227 			pgprot_t prot = ttm_io_prot(bo, old_mem, PAGE_KERNEL);
228 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, i,
229 						   prot);
230 		} else if (new_iomap == NULL) {
231 			pgprot_t prot = ttm_io_prot(bo, new_mem, PAGE_KERNEL);
232 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, i,
233 						   prot);
234 		} else {
235 			ret = ttm_copy_io_page(new_iomap, old_iomap, i);
236 		}
237 		if (ret)
238 			goto out1;
239 	}
240 	mb();
241 out2:
242 	old_copy = *old_mem;
243 
244 	ttm_bo_assign_mem(bo, new_mem);
245 
246 	if (!man->use_tt)
247 		ttm_bo_tt_destroy(bo);
248 
249 out1:
250 	ttm_resource_iounmap(bdev, old_mem, new_iomap);
251 out:
252 	ttm_resource_iounmap(bdev, &old_copy, old_iomap);
253 
254 	/*
255 	 * On error, keep the mm node!
256 	 */
257 	if (!ret)
258 		ttm_resource_free(bo, &old_copy);
259 	return ret;
260 }
261 EXPORT_SYMBOL(ttm_bo_move_memcpy);
262 
263 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
264 {
265 	struct ttm_transfer_obj *fbo;
266 
267 	fbo = container_of(bo, struct ttm_transfer_obj, base);
268 	ttm_bo_put(fbo->bo);
269 	kfree(fbo);
270 }
271 
272 /**
273  * ttm_buffer_object_transfer
274  *
275  * @bo: A pointer to a struct ttm_buffer_object.
276  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
277  * holding the data of @bo with the old placement.
278  *
279  * This is a utility function that may be called after an accelerated move
280  * has been scheduled. A new buffer object is created as a placeholder for
281  * the old data while it's being copied. When that buffer object is idle,
282  * it can be destroyed, releasing the space of the old placement.
283  * Returns:
284  * !0: Failure.
285  */
286 
287 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
288 				      struct ttm_buffer_object **new_obj)
289 {
290 	struct ttm_transfer_obj *fbo;
291 	int ret;
292 
293 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
294 	if (!fbo)
295 		return -ENOMEM;
296 
297 	fbo->base = *bo;
298 
299 	ttm_bo_get(bo);
300 	fbo->bo = bo;
301 
302 	/**
303 	 * Fix up members that we shouldn't copy directly:
304 	 * TODO: Explicit member copy would probably be better here.
305 	 */
306 
307 	atomic_inc(&ttm_glob.bo_count);
308 	INIT_LIST_HEAD(&fbo->base.ddestroy);
309 	INIT_LIST_HEAD(&fbo->base.lru);
310 	fbo->base.moving = NULL;
311 	drm_vma_node_reset(&fbo->base.base.vma_node);
312 
313 	kref_init(&fbo->base.kref);
314 	fbo->base.destroy = &ttm_transfered_destroy;
315 	fbo->base.pin_count = 0;
316 	if (bo->type != ttm_bo_type_sg)
317 		fbo->base.base.resv = &fbo->base.base._resv;
318 
319 	dma_resv_init(&fbo->base.base._resv);
320 	fbo->base.base.dev = NULL;
321 	ret = dma_resv_trylock(&fbo->base.base._resv);
322 	WARN_ON(!ret);
323 
324 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
325 
326 	*new_obj = &fbo->base;
327 	return 0;
328 }
329 
330 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
331 		     pgprot_t tmp)
332 {
333 	struct ttm_resource_manager *man;
334 	enum ttm_caching caching;
335 
336 	man = ttm_manager_type(bo->bdev, res->mem_type);
337 	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
338 
339 	/* Cached mappings need no adjustment */
340 	if (caching == ttm_cached)
341 		return tmp;
342 
343 #if defined(__i386__) || defined(__x86_64__)
344 	if (caching == ttm_write_combined)
345 		tmp = pgprot_writecombine(tmp);
346 	else if (boot_cpu_data.x86 > 3)
347 		tmp = pgprot_noncached(tmp);
348 #endif
349 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
350     defined(__powerpc__) || defined(__mips__)
351 	if (caching == ttm_write_combined)
352 		tmp = pgprot_writecombine(tmp);
353 	else
354 		tmp = pgprot_noncached(tmp);
355 #endif
356 #if defined(__sparc__)
357 	tmp = pgprot_noncached(tmp);
358 #endif
359 	return tmp;
360 }
361 EXPORT_SYMBOL(ttm_io_prot);
362 
363 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
364 			  unsigned long offset,
365 			  unsigned long size,
366 			  struct ttm_bo_kmap_obj *map)
367 {
368 	struct ttm_resource *mem = bo->resource;
369 
370 	if (bo->resource->bus.addr) {
371 		map->bo_kmap_type = ttm_bo_map_premapped;
372 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
373 	} else {
374 		resource_size_t res = bo->resource->bus.offset + offset;
375 
376 		map->bo_kmap_type = ttm_bo_map_iomap;
377 		if (mem->bus.caching == ttm_write_combined)
378 			map->virtual = ioremap_wc(res, size);
379 #ifdef CONFIG_X86
380 		else if (mem->bus.caching == ttm_cached)
381 			map->virtual = ioremap_cache(res, size);
382 #endif
383 		else
384 			map->virtual = ioremap(res, size);
385 	}
386 	return (!map->virtual) ? -ENOMEM : 0;
387 }
388 
389 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
390 			   unsigned long start_page,
391 			   unsigned long num_pages,
392 			   struct ttm_bo_kmap_obj *map)
393 {
394 	struct ttm_resource *mem = bo->resource;
395 	struct ttm_operation_ctx ctx = {
396 		.interruptible = false,
397 		.no_wait_gpu = false
398 	};
399 	struct ttm_tt *ttm = bo->ttm;
400 	pgprot_t prot;
401 	int ret;
402 
403 	BUG_ON(!ttm);
404 
405 	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
406 	if (ret)
407 		return ret;
408 
409 	if (num_pages == 1 && ttm->caching == ttm_cached) {
410 		/*
411 		 * We're mapping a single page, and the desired
412 		 * page protection is consistent with the bo.
413 		 */
414 
415 		map->bo_kmap_type = ttm_bo_map_kmap;
416 		map->page = ttm->pages[start_page];
417 		map->virtual = kmap(map->page);
418 	} else {
419 		/*
420 		 * We need to use vmap to get the desired page protection
421 		 * or to make the buffer object look contiguous.
422 		 */
423 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
424 		map->bo_kmap_type = ttm_bo_map_vmap;
425 		map->virtual = vmap(ttm->pages + start_page, num_pages,
426 				    0, prot);
427 	}
428 	return (!map->virtual) ? -ENOMEM : 0;
429 }
430 
431 int ttm_bo_kmap(struct ttm_buffer_object *bo,
432 		unsigned long start_page, unsigned long num_pages,
433 		struct ttm_bo_kmap_obj *map)
434 {
435 	unsigned long offset, size;
436 	int ret;
437 
438 	map->virtual = NULL;
439 	map->bo = bo;
440 	if (num_pages > bo->resource->num_pages)
441 		return -EINVAL;
442 	if ((start_page + num_pages) > bo->resource->num_pages)
443 		return -EINVAL;
444 
445 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
446 	if (ret)
447 		return ret;
448 	if (!bo->resource->bus.is_iomem) {
449 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
450 	} else {
451 		offset = start_page << PAGE_SHIFT;
452 		size = num_pages << PAGE_SHIFT;
453 		return ttm_bo_ioremap(bo, offset, size, map);
454 	}
455 }
456 EXPORT_SYMBOL(ttm_bo_kmap);
457 
458 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
459 {
460 	if (!map->virtual)
461 		return;
462 	switch (map->bo_kmap_type) {
463 	case ttm_bo_map_iomap:
464 		iounmap(map->virtual);
465 		break;
466 	case ttm_bo_map_vmap:
467 		vunmap(map->virtual);
468 		break;
469 	case ttm_bo_map_kmap:
470 		kunmap(map->page);
471 		break;
472 	case ttm_bo_map_premapped:
473 		break;
474 	default:
475 		BUG();
476 	}
477 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
478 	map->virtual = NULL;
479 	map->page = NULL;
480 }
481 EXPORT_SYMBOL(ttm_bo_kunmap);
482 
483 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
484 {
485 	struct ttm_resource *mem = bo->resource;
486 	int ret;
487 
488 	ret = ttm_mem_io_reserve(bo->bdev, mem);
489 	if (ret)
490 		return ret;
491 
492 	if (mem->bus.is_iomem) {
493 		void __iomem *vaddr_iomem;
494 
495 		if (mem->bus.addr)
496 			vaddr_iomem = (void __iomem *)mem->bus.addr;
497 		else if (mem->bus.caching == ttm_write_combined)
498 			vaddr_iomem = ioremap_wc(mem->bus.offset,
499 						 bo->base.size);
500 #ifdef CONFIG_X86
501 		else if (mem->bus.caching == ttm_cached)
502 			vaddr_iomem = ioremap_cache(mem->bus.offset,
503 						  bo->base.size);
504 #endif
505 		else
506 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
507 
508 		if (!vaddr_iomem)
509 			return -ENOMEM;
510 
511 		dma_buf_map_set_vaddr_iomem(map, vaddr_iomem);
512 
513 	} else {
514 		struct ttm_operation_ctx ctx = {
515 			.interruptible = false,
516 			.no_wait_gpu = false
517 		};
518 		struct ttm_tt *ttm = bo->ttm;
519 		pgprot_t prot;
520 		void *vaddr;
521 
522 		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
523 		if (ret)
524 			return ret;
525 
526 		/*
527 		 * We need to use vmap to get the desired page protection
528 		 * or to make the buffer object look contiguous.
529 		 */
530 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
531 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
532 		if (!vaddr)
533 			return -ENOMEM;
534 
535 		dma_buf_map_set_vaddr(map, vaddr);
536 	}
537 
538 	return 0;
539 }
540 EXPORT_SYMBOL(ttm_bo_vmap);
541 
542 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
543 {
544 	struct ttm_resource *mem = bo->resource;
545 
546 	if (dma_buf_map_is_null(map))
547 		return;
548 
549 	if (!map->is_iomem)
550 		vunmap(map->vaddr);
551 	else if (!mem->bus.addr)
552 		iounmap(map->vaddr_iomem);
553 	dma_buf_map_clear(map);
554 
555 	ttm_mem_io_free(bo->bdev, bo->resource);
556 }
557 EXPORT_SYMBOL(ttm_bo_vunmap);
558 
559 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
560 				 bool dst_use_tt)
561 {
562 	int ret;
563 	ret = ttm_bo_wait(bo, false, false);
564 	if (ret)
565 		return ret;
566 
567 	if (!dst_use_tt)
568 		ttm_bo_tt_destroy(bo);
569 	ttm_resource_free(bo, bo->resource);
570 	return 0;
571 }
572 
573 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
574 				struct dma_fence *fence,
575 				bool dst_use_tt)
576 {
577 	struct ttm_buffer_object *ghost_obj;
578 	int ret;
579 
580 	/**
581 	 * This should help pipeline ordinary buffer moves.
582 	 *
583 	 * Hang old buffer memory on a new buffer object,
584 	 * and leave it to be released when the GPU
585 	 * operation has completed.
586 	 */
587 
588 	dma_fence_put(bo->moving);
589 	bo->moving = dma_fence_get(fence);
590 
591 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
592 	if (ret)
593 		return ret;
594 
595 	dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
596 
597 	/**
598 	 * If we're not moving to fixed memory, the TTM object
599 	 * needs to stay alive. Otherwhise hang it on the ghost
600 	 * bo to be unbound and destroyed.
601 	 */
602 
603 	if (dst_use_tt)
604 		ghost_obj->ttm = NULL;
605 	else
606 		bo->ttm = NULL;
607 
608 	dma_resv_unlock(&ghost_obj->base._resv);
609 	ttm_bo_put(ghost_obj);
610 	return 0;
611 }
612 
613 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
614 				       struct dma_fence *fence)
615 {
616 	struct ttm_device *bdev = bo->bdev;
617 	struct ttm_resource_manager *from;
618 
619 	from = ttm_manager_type(bdev, bo->resource->mem_type);
620 
621 	/**
622 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
623 	 * this eviction and free up the allocation
624 	 */
625 	spin_lock(&from->move_lock);
626 	if (!from->move || dma_fence_is_later(fence, from->move)) {
627 		dma_fence_put(from->move);
628 		from->move = dma_fence_get(fence);
629 	}
630 	spin_unlock(&from->move_lock);
631 
632 	ttm_resource_free(bo, bo->resource);
633 
634 	dma_fence_put(bo->moving);
635 	bo->moving = dma_fence_get(fence);
636 }
637 
638 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
639 			      struct dma_fence *fence,
640 			      bool evict,
641 			      bool pipeline,
642 			      struct ttm_resource *new_mem)
643 {
644 	struct ttm_device *bdev = bo->bdev;
645 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
646 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
647 	int ret = 0;
648 
649 	dma_resv_add_excl_fence(bo->base.resv, fence);
650 	if (!evict)
651 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
652 	else if (!from->use_tt && pipeline)
653 		ttm_bo_move_pipeline_evict(bo, fence);
654 	else
655 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
656 
657 	if (ret)
658 		return ret;
659 
660 	ttm_bo_assign_mem(bo, new_mem);
661 
662 	return 0;
663 }
664 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
665 
666 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
667 {
668 	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
669 	struct ttm_buffer_object *ghost;
670 	int ret;
671 
672 	ret = ttm_buffer_object_transfer(bo, &ghost);
673 	if (ret)
674 		return ret;
675 
676 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
677 	/* Last resort, wait for the BO to be idle when we are OOM */
678 	if (ret)
679 		ttm_bo_wait(bo, false, false);
680 
681 	ttm_resource_alloc(bo, &sys_mem, bo->resource);
682 	bo->ttm = NULL;
683 
684 	dma_resv_unlock(&ghost->base._resv);
685 	ttm_bo_put(ghost);
686 
687 	return 0;
688 }
689