1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/vmalloc.h> 35 36 #include <drm/ttm/ttm_bo.h> 37 #include <drm/ttm/ttm_placement.h> 38 #include <drm/ttm/ttm_tt.h> 39 40 #include <drm/drm_cache.h> 41 42 #include "ttm_bo_internal.h" 43 44 struct ttm_transfer_obj { 45 struct ttm_buffer_object base; 46 struct ttm_buffer_object *bo; 47 }; 48 49 int ttm_mem_io_reserve(struct ttm_device *bdev, 50 struct ttm_resource *mem) 51 { 52 if (mem->bus.offset || mem->bus.addr) 53 return 0; 54 55 mem->bus.is_iomem = false; 56 if (!bdev->funcs->io_mem_reserve) 57 return 0; 58 59 return bdev->funcs->io_mem_reserve(bdev, mem); 60 } 61 62 void ttm_mem_io_free(struct ttm_device *bdev, 63 struct ttm_resource *mem) 64 { 65 if (!mem) 66 return; 67 68 if (!mem->bus.offset && !mem->bus.addr) 69 return; 70 71 if (bdev->funcs->io_mem_free) 72 bdev->funcs->io_mem_free(bdev, mem); 73 74 mem->bus.offset = 0; 75 mem->bus.addr = NULL; 76 } 77 78 /** 79 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 80 * @clear: Whether to clear rather than copy. 81 * @num_pages: Number of pages of the operation. 82 * @dst_iter: A struct ttm_kmap_iter representing the destination resource. 83 * @src_iter: A struct ttm_kmap_iter representing the source resource. 84 * 85 * This function is intended to be able to move out async under a 86 * dma-fence if desired. 87 */ 88 void ttm_move_memcpy(bool clear, 89 u32 num_pages, 90 struct ttm_kmap_iter *dst_iter, 91 struct ttm_kmap_iter *src_iter) 92 { 93 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 94 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 95 struct iosys_map src_map, dst_map; 96 pgoff_t i; 97 98 /* Single TTM move. NOP */ 99 if (dst_ops->maps_tt && src_ops->maps_tt) 100 return; 101 102 /* Don't move nonexistent data. Clear destination instead. */ 103 if (clear) { 104 for (i = 0; i < num_pages; ++i) { 105 dst_ops->map_local(dst_iter, &dst_map, i); 106 if (dst_map.is_iomem) 107 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 108 else 109 memset(dst_map.vaddr, 0, PAGE_SIZE); 110 if (dst_ops->unmap_local) 111 dst_ops->unmap_local(dst_iter, &dst_map); 112 } 113 return; 114 } 115 116 for (i = 0; i < num_pages; ++i) { 117 dst_ops->map_local(dst_iter, &dst_map, i); 118 src_ops->map_local(src_iter, &src_map, i); 119 120 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 121 122 if (src_ops->unmap_local) 123 src_ops->unmap_local(src_iter, &src_map); 124 if (dst_ops->unmap_local) 125 dst_ops->unmap_local(dst_iter, &dst_map); 126 } 127 } 128 EXPORT_SYMBOL(ttm_move_memcpy); 129 130 /** 131 * ttm_bo_move_memcpy 132 * 133 * @bo: A pointer to a struct ttm_buffer_object. 134 * @ctx: operation context 135 * @dst_mem: struct ttm_resource indicating where to move. 136 * 137 * Fallback move function for a mappable buffer object in mappable memory. 138 * The function will, if successful, 139 * free any old aperture space, and set (@new_mem)->mm_node to NULL, 140 * and update the (@bo)->mem placement flags. If unsuccessful, the old 141 * data remains untouched, and it's up to the caller to free the 142 * memory space indicated by @new_mem. 143 * Returns: 144 * !0: Failure. 145 */ 146 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 147 struct ttm_operation_ctx *ctx, 148 struct ttm_resource *dst_mem) 149 { 150 struct ttm_device *bdev = bo->bdev; 151 struct ttm_resource_manager *dst_man = 152 ttm_manager_type(bo->bdev, dst_mem->mem_type); 153 struct ttm_tt *ttm = bo->ttm; 154 struct ttm_resource *src_mem = bo->resource; 155 struct ttm_resource_manager *src_man; 156 union { 157 struct ttm_kmap_iter_tt tt; 158 struct ttm_kmap_iter_linear_io io; 159 } _dst_iter, _src_iter; 160 struct ttm_kmap_iter *dst_iter, *src_iter; 161 bool clear; 162 int ret = 0; 163 164 if (WARN_ON(!src_mem)) 165 return -EINVAL; 166 167 src_man = ttm_manager_type(bdev, src_mem->mem_type); 168 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || 169 dst_man->use_tt)) { 170 ret = ttm_bo_populate(bo, ctx); 171 if (ret) 172 return ret; 173 } 174 175 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 176 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 177 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 178 if (IS_ERR(dst_iter)) 179 return PTR_ERR(dst_iter); 180 181 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 182 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 183 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 184 if (IS_ERR(src_iter)) { 185 ret = PTR_ERR(src_iter); 186 goto out_src_iter; 187 } 188 189 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); 190 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) 191 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter); 192 193 if (!src_iter->ops->maps_tt) 194 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); 195 ttm_bo_move_sync_cleanup(bo, dst_mem); 196 197 out_src_iter: 198 if (!dst_iter->ops->maps_tt) 199 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 200 201 return ret; 202 } 203 EXPORT_SYMBOL(ttm_bo_move_memcpy); 204 205 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 206 { 207 struct ttm_transfer_obj *fbo; 208 209 fbo = container_of(bo, struct ttm_transfer_obj, base); 210 dma_resv_fini(&fbo->base.base._resv); 211 ttm_bo_put(fbo->bo); 212 kfree(fbo); 213 } 214 215 /** 216 * ttm_buffer_object_transfer 217 * 218 * @bo: A pointer to a struct ttm_buffer_object. 219 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 220 * holding the data of @bo with the old placement. 221 * 222 * This is a utility function that may be called after an accelerated move 223 * has been scheduled. A new buffer object is created as a placeholder for 224 * the old data while it's being copied. When that buffer object is idle, 225 * it can be destroyed, releasing the space of the old placement. 226 * Returns: 227 * !0: Failure. 228 */ 229 230 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 231 struct ttm_buffer_object **new_obj) 232 { 233 struct ttm_transfer_obj *fbo; 234 int ret; 235 236 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 237 if (!fbo) 238 return -ENOMEM; 239 240 fbo->base = *bo; 241 242 /** 243 * Fix up members that we shouldn't copy directly: 244 * TODO: Explicit member copy would probably be better here. 245 */ 246 247 atomic_inc(&ttm_glob.bo_count); 248 drm_vma_node_reset(&fbo->base.base.vma_node); 249 250 kref_init(&fbo->base.kref); 251 fbo->base.destroy = &ttm_transfered_destroy; 252 fbo->base.pin_count = 0; 253 if (bo->type != ttm_bo_type_sg) 254 fbo->base.base.resv = &fbo->base.base._resv; 255 256 dma_resv_init(&fbo->base.base._resv); 257 fbo->base.base.dev = NULL; 258 ret = dma_resv_trylock(&fbo->base.base._resv); 259 WARN_ON(!ret); 260 261 if (fbo->base.resource) { 262 ttm_resource_set_bo(fbo->base.resource, &fbo->base); 263 bo->resource = NULL; 264 ttm_bo_set_bulk_move(&fbo->base, NULL); 265 } else { 266 fbo->base.bulk_move = NULL; 267 } 268 269 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1); 270 if (ret) { 271 kfree(fbo); 272 return ret; 273 } 274 275 ttm_bo_get(bo); 276 fbo->bo = bo; 277 278 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 279 280 *new_obj = &fbo->base; 281 return 0; 282 } 283 284 /** 285 * ttm_io_prot 286 * 287 * @bo: ttm buffer object 288 * @res: ttm resource object 289 * @tmp: Page protection flag for a normal, cached mapping. 290 * 291 * Utility function that returns the pgprot_t that should be used for 292 * setting up a PTE with the caching model indicated by @c_state. 293 */ 294 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 295 pgprot_t tmp) 296 { 297 struct ttm_resource_manager *man; 298 enum ttm_caching caching; 299 300 man = ttm_manager_type(bo->bdev, res->mem_type); 301 if (man->use_tt) { 302 caching = bo->ttm->caching; 303 if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED) 304 tmp = pgprot_decrypted(tmp); 305 } else { 306 caching = res->bus.caching; 307 } 308 309 return ttm_prot_from_caching(caching, tmp); 310 } 311 EXPORT_SYMBOL(ttm_io_prot); 312 313 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 314 unsigned long offset, 315 unsigned long size, 316 struct ttm_bo_kmap_obj *map) 317 { 318 struct ttm_resource *mem = bo->resource; 319 320 if (bo->resource->bus.addr) { 321 map->bo_kmap_type = ttm_bo_map_premapped; 322 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 323 } else { 324 resource_size_t res = bo->resource->bus.offset + offset; 325 326 map->bo_kmap_type = ttm_bo_map_iomap; 327 if (mem->bus.caching == ttm_write_combined) 328 map->virtual = ioremap_wc(res, size); 329 #ifdef CONFIG_X86 330 else if (mem->bus.caching == ttm_cached) 331 map->virtual = ioremap_cache(res, size); 332 #endif 333 else 334 map->virtual = ioremap(res, size); 335 } 336 return (!map->virtual) ? -ENOMEM : 0; 337 } 338 339 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 340 unsigned long start_page, 341 unsigned long num_pages, 342 struct ttm_bo_kmap_obj *map) 343 { 344 struct ttm_resource *mem = bo->resource; 345 struct ttm_operation_ctx ctx = { 346 .interruptible = false, 347 .no_wait_gpu = false 348 }; 349 struct ttm_tt *ttm = bo->ttm; 350 struct ttm_resource_manager *man = 351 ttm_manager_type(bo->bdev, bo->resource->mem_type); 352 pgprot_t prot; 353 int ret; 354 355 BUG_ON(!ttm); 356 357 ret = ttm_bo_populate(bo, &ctx); 358 if (ret) 359 return ret; 360 361 if (num_pages == 1 && ttm->caching == ttm_cached && 362 !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) { 363 /* 364 * We're mapping a single page, and the desired 365 * page protection is consistent with the bo. 366 */ 367 368 map->bo_kmap_type = ttm_bo_map_kmap; 369 map->page = ttm->pages[start_page]; 370 map->virtual = kmap(map->page); 371 } else { 372 /* 373 * We need to use vmap to get the desired page protection 374 * or to make the buffer object look contiguous. 375 */ 376 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 377 map->bo_kmap_type = ttm_bo_map_vmap; 378 map->virtual = vmap(ttm->pages + start_page, num_pages, 379 0, prot); 380 } 381 return (!map->virtual) ? -ENOMEM : 0; 382 } 383 384 /** 385 * ttm_bo_kmap 386 * 387 * @bo: The buffer object. 388 * @start_page: The first page to map. 389 * @num_pages: Number of pages to map. 390 * @map: pointer to a struct ttm_bo_kmap_obj representing the map. 391 * 392 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the 393 * data in the buffer object. The ttm_kmap_obj_virtual function can then be 394 * used to obtain a virtual address to the data. 395 * 396 * Returns 397 * -ENOMEM: Out of memory. 398 * -EINVAL: Invalid range. 399 */ 400 int ttm_bo_kmap(struct ttm_buffer_object *bo, 401 unsigned long start_page, unsigned long num_pages, 402 struct ttm_bo_kmap_obj *map) 403 { 404 unsigned long offset, size; 405 int ret; 406 407 map->virtual = NULL; 408 map->bo = bo; 409 if (num_pages > PFN_UP(bo->resource->size)) 410 return -EINVAL; 411 if ((start_page + num_pages) > PFN_UP(bo->resource->size)) 412 return -EINVAL; 413 414 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 415 if (ret) 416 return ret; 417 if (!bo->resource->bus.is_iomem) { 418 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 419 } else { 420 offset = start_page << PAGE_SHIFT; 421 size = num_pages << PAGE_SHIFT; 422 return ttm_bo_ioremap(bo, offset, size, map); 423 } 424 } 425 EXPORT_SYMBOL(ttm_bo_kmap); 426 427 /** 428 * ttm_bo_kunmap 429 * 430 * @map: Object describing the map to unmap. 431 * 432 * Unmaps a kernel map set up by ttm_bo_kmap. 433 */ 434 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 435 { 436 if (!map->virtual) 437 return; 438 switch (map->bo_kmap_type) { 439 case ttm_bo_map_iomap: 440 iounmap(map->virtual); 441 break; 442 case ttm_bo_map_vmap: 443 vunmap(map->virtual); 444 break; 445 case ttm_bo_map_kmap: 446 kunmap(map->page); 447 break; 448 case ttm_bo_map_premapped: 449 break; 450 default: 451 BUG(); 452 } 453 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 454 map->virtual = NULL; 455 map->page = NULL; 456 } 457 EXPORT_SYMBOL(ttm_bo_kunmap); 458 459 /** 460 * ttm_bo_vmap 461 * 462 * @bo: The buffer object. 463 * @map: pointer to a struct iosys_map representing the map. 464 * 465 * Sets up a kernel virtual mapping, using ioremap or vmap to the 466 * data in the buffer object. The parameter @map returns the virtual 467 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap(). 468 * 469 * Returns 470 * -ENOMEM: Out of memory. 471 * -EINVAL: Invalid range. 472 */ 473 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) 474 { 475 struct ttm_resource *mem = bo->resource; 476 int ret; 477 478 dma_resv_assert_held(bo->base.resv); 479 480 ret = ttm_mem_io_reserve(bo->bdev, mem); 481 if (ret) 482 return ret; 483 484 if (mem->bus.is_iomem) { 485 void __iomem *vaddr_iomem; 486 487 if (mem->bus.addr) 488 vaddr_iomem = (void __iomem *)mem->bus.addr; 489 else if (mem->bus.caching == ttm_write_combined) 490 vaddr_iomem = ioremap_wc(mem->bus.offset, 491 bo->base.size); 492 #ifdef CONFIG_X86 493 else if (mem->bus.caching == ttm_cached) 494 vaddr_iomem = ioremap_cache(mem->bus.offset, 495 bo->base.size); 496 #endif 497 else 498 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 499 500 if (!vaddr_iomem) 501 return -ENOMEM; 502 503 iosys_map_set_vaddr_iomem(map, vaddr_iomem); 504 505 } else { 506 struct ttm_operation_ctx ctx = { 507 .interruptible = false, 508 .no_wait_gpu = false 509 }; 510 struct ttm_tt *ttm = bo->ttm; 511 pgprot_t prot; 512 void *vaddr; 513 514 ret = ttm_bo_populate(bo, &ctx); 515 if (ret) 516 return ret; 517 518 /* 519 * We need to use vmap to get the desired page protection 520 * or to make the buffer object look contiguous. 521 */ 522 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 523 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 524 if (!vaddr) 525 return -ENOMEM; 526 527 iosys_map_set_vaddr(map, vaddr); 528 } 529 530 return 0; 531 } 532 EXPORT_SYMBOL(ttm_bo_vmap); 533 534 /** 535 * ttm_bo_vunmap 536 * 537 * @bo: The buffer object. 538 * @map: Object describing the map to unmap. 539 * 540 * Unmaps a kernel map set up by ttm_bo_vmap(). 541 */ 542 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) 543 { 544 struct ttm_resource *mem = bo->resource; 545 546 dma_resv_assert_held(bo->base.resv); 547 548 if (iosys_map_is_null(map)) 549 return; 550 551 if (!map->is_iomem) 552 vunmap(map->vaddr); 553 else if (!mem->bus.addr) 554 iounmap(map->vaddr_iomem); 555 iosys_map_clear(map); 556 557 ttm_mem_io_free(bo->bdev, bo->resource); 558 } 559 EXPORT_SYMBOL(ttm_bo_vunmap); 560 561 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 562 bool dst_use_tt) 563 { 564 long ret; 565 566 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 567 false, 15 * HZ); 568 if (ret == 0) 569 return -EBUSY; 570 if (ret < 0) 571 return ret; 572 573 if (!dst_use_tt) 574 ttm_bo_tt_destroy(bo); 575 ttm_resource_free(bo, &bo->resource); 576 return 0; 577 } 578 579 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 580 struct dma_fence *fence, 581 bool dst_use_tt) 582 { 583 struct ttm_buffer_object *ghost_obj; 584 int ret; 585 586 /** 587 * This should help pipeline ordinary buffer moves. 588 * 589 * Hang old buffer memory on a new buffer object, 590 * and leave it to be released when the GPU 591 * operation has completed. 592 */ 593 594 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 595 if (ret) 596 return ret; 597 598 dma_resv_add_fence(&ghost_obj->base._resv, fence, 599 DMA_RESV_USAGE_KERNEL); 600 601 /** 602 * If we're not moving to fixed memory, the TTM object 603 * needs to stay alive. Otherwhise hang it on the ghost 604 * bo to be unbound and destroyed. 605 */ 606 607 if (dst_use_tt) 608 ghost_obj->ttm = NULL; 609 else 610 bo->ttm = NULL; 611 612 dma_resv_unlock(&ghost_obj->base._resv); 613 ttm_bo_put(ghost_obj); 614 return 0; 615 } 616 617 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 618 struct dma_fence *fence) 619 { 620 struct ttm_device *bdev = bo->bdev; 621 struct ttm_resource_manager *from; 622 623 from = ttm_manager_type(bdev, bo->resource->mem_type); 624 625 /** 626 * BO doesn't have a TTM we need to bind/unbind. Just remember 627 * this eviction and free up the allocation 628 */ 629 spin_lock(&from->move_lock); 630 if (!from->move || dma_fence_is_later(fence, from->move)) { 631 dma_fence_put(from->move); 632 from->move = dma_fence_get(fence); 633 } 634 spin_unlock(&from->move_lock); 635 636 ttm_resource_free(bo, &bo->resource); 637 } 638 639 /** 640 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies 641 * 642 * @bo: A pointer to a struct ttm_buffer_object. 643 * @fence: A fence object that signals when moving is complete. 644 * @evict: This is an evict move. Don't return until the buffer is idle. 645 * @pipeline: evictions are to be pipelined. 646 * @new_mem: struct ttm_resource indicating where to move. 647 * 648 * Accelerated move function to be called when an accelerated move 649 * has been scheduled. The function will create a new temporary buffer object 650 * representing the old placement, and put the sync object on both buffer 651 * objects. After that the newly created buffer object is unref'd to be 652 * destroyed when the move is complete. This will help pipeline 653 * buffer moves. 654 */ 655 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 656 struct dma_fence *fence, 657 bool evict, 658 bool pipeline, 659 struct ttm_resource *new_mem) 660 { 661 struct ttm_device *bdev = bo->bdev; 662 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 663 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 664 int ret = 0; 665 666 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); 667 if (!evict) 668 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 669 else if (!from->use_tt && pipeline) 670 ttm_bo_move_pipeline_evict(bo, fence); 671 else 672 ret = ttm_bo_wait_free_node(bo, man->use_tt); 673 674 if (ret) 675 return ret; 676 677 ttm_bo_assign_mem(bo, new_mem); 678 679 return 0; 680 } 681 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 682 683 /** 684 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish 685 * 686 * @bo: A pointer to a struct ttm_buffer_object. 687 * @new_mem: struct ttm_resource indicating where to move. 688 * 689 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed 690 * by the caller to be idle. Typically used after memcpy buffer moves. 691 */ 692 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo, 693 struct ttm_resource *new_mem) 694 { 695 struct ttm_device *bdev = bo->bdev; 696 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 697 int ret; 698 699 ret = ttm_bo_wait_free_node(bo, man->use_tt); 700 if (WARN_ON(ret)) 701 return; 702 703 ttm_bo_assign_mem(bo, new_mem); 704 } 705 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup); 706 707 /** 708 * ttm_bo_pipeline_gutting - purge the contents of a bo 709 * @bo: The buffer object 710 * 711 * Purge the contents of a bo, async if the bo is not idle. 712 * After a successful call, the bo is left unpopulated in 713 * system placement. The function may wait uninterruptible 714 * for idle on OOM. 715 * 716 * Return: 0 if successful, negative error code on failure. 717 */ 718 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 719 { 720 struct ttm_buffer_object *ghost; 721 struct ttm_tt *ttm; 722 int ret; 723 724 /* If already idle, no need for ghost object dance. */ 725 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) { 726 if (!bo->ttm) { 727 /* See comment below about clearing. */ 728 ret = ttm_tt_create(bo, true); 729 if (ret) 730 return ret; 731 } else { 732 ttm_tt_unpopulate(bo->bdev, bo->ttm); 733 if (bo->type == ttm_bo_type_device) 734 ttm_tt_mark_for_clear(bo->ttm); 735 } 736 ttm_resource_free(bo, &bo->resource); 737 return 0; 738 } 739 740 /* 741 * We need an unpopulated ttm_tt after giving our current one, 742 * if any, to the ghost object. And we can't afford to fail 743 * creating one *after* the operation. If the bo subsequently gets 744 * resurrected, make sure it's cleared (if ttm_bo_type_device) 745 * to avoid leaking sensitive information to user-space. 746 */ 747 748 ttm = bo->ttm; 749 bo->ttm = NULL; 750 ret = ttm_tt_create(bo, true); 751 swap(bo->ttm, ttm); 752 if (ret) 753 return ret; 754 755 ret = ttm_buffer_object_transfer(bo, &ghost); 756 if (ret) 757 goto error_destroy_tt; 758 759 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 760 /* Last resort, wait for the BO to be idle when we are OOM */ 761 if (ret) { 762 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 763 false, MAX_SCHEDULE_TIMEOUT); 764 } 765 766 dma_resv_unlock(&ghost->base._resv); 767 ttm_bo_put(ghost); 768 bo->ttm = ttm; 769 return 0; 770 771 error_destroy_tt: 772 ttm_tt_destroy(bo->bdev, ttm); 773 return ret; 774 } 775 776 static bool ttm_lru_walk_trylock(struct ttm_bo_lru_cursor *curs, 777 struct ttm_buffer_object *bo) 778 { 779 struct ttm_operation_ctx *ctx = curs->arg->ctx; 780 781 curs->needs_unlock = false; 782 783 if (dma_resv_trylock(bo->base.resv)) { 784 curs->needs_unlock = true; 785 return true; 786 } 787 788 if (bo->base.resv == ctx->resv && ctx->allow_res_evict) { 789 dma_resv_assert_held(bo->base.resv); 790 return true; 791 } 792 793 return false; 794 } 795 796 static int ttm_lru_walk_ticketlock(struct ttm_bo_lru_cursor *curs, 797 struct ttm_buffer_object *bo) 798 { 799 struct ttm_lru_walk_arg *arg = curs->arg; 800 struct dma_resv *resv = bo->base.resv; 801 int ret; 802 803 if (arg->ctx->interruptible) 804 ret = dma_resv_lock_interruptible(resv, arg->ticket); 805 else 806 ret = dma_resv_lock(resv, arg->ticket); 807 808 if (!ret) { 809 curs->needs_unlock = true; 810 /* 811 * Only a single ticketlock per loop. Ticketlocks are prone 812 * to return -EDEADLK causing the eviction to fail, so 813 * after waiting for the ticketlock, revert back to 814 * trylocking for this walk. 815 */ 816 arg->ticket = NULL; 817 } else if (ret == -EDEADLK) { 818 /* Caller needs to exit the ww transaction. */ 819 ret = -ENOSPC; 820 } 821 822 return ret; 823 } 824 825 /** 826 * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on 827 * valid items. 828 * @walk: describe the walks and actions taken 829 * @bdev: The TTM device. 830 * @man: The struct ttm_resource manager whose LRU lists we're walking. 831 * @target: The end condition for the walk. 832 * 833 * The LRU lists of @man are walk, and for each struct ttm_resource encountered, 834 * the corresponding ttm_buffer_object is locked and taken a reference on, and 835 * the LRU lock is dropped. the LRU lock may be dropped before locking and, in 836 * that case, it's verified that the item actually remains on the LRU list after 837 * the lock, and that the buffer object didn't switch resource in between. 838 * 839 * With a locked object, the actions indicated by @walk->process_bo are 840 * performed, and after that, the bo is unlocked, the refcount dropped and the 841 * next struct ttm_resource is processed. Here, the walker relies on 842 * TTM's restartable LRU list implementation. 843 * 844 * Typically @walk->process_bo() would return the number of pages evicted, 845 * swapped or shrunken, so that when the total exceeds @target, or when the 846 * LRU list has been walked in full, iteration is terminated. It's also terminated 847 * on error. Note that the definition of @target is done by the caller, it 848 * could have a different meaning than the number of pages. 849 * 850 * Note that the way dma_resv individualization is done, locking needs to be done 851 * either with the LRU lock held (trylocking only) or with a reference on the 852 * object. 853 * 854 * Return: The progress made towards target or negative error code on error. 855 */ 856 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev, 857 struct ttm_resource_manager *man, s64 target) 858 { 859 struct ttm_bo_lru_cursor cursor; 860 struct ttm_buffer_object *bo; 861 s64 progress = 0; 862 s64 lret; 863 864 ttm_bo_lru_for_each_reserved_guarded(&cursor, man, &walk->arg, bo) { 865 lret = walk->ops->process_bo(walk, bo); 866 if (lret == -EBUSY || lret == -EALREADY) 867 lret = 0; 868 progress = (lret < 0) ? lret : progress + lret; 869 if (progress < 0 || progress >= target) 870 break; 871 } 872 if (IS_ERR(bo)) 873 return PTR_ERR(bo); 874 875 return progress; 876 } 877 EXPORT_SYMBOL(ttm_lru_walk_for_evict); 878 879 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs) 880 { 881 struct ttm_buffer_object *bo = curs->bo; 882 883 if (bo) { 884 if (curs->needs_unlock) 885 dma_resv_unlock(bo->base.resv); 886 ttm_bo_put(bo); 887 curs->bo = NULL; 888 } 889 } 890 891 /** 892 * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor 893 * and clean up any iteration it was used for. 894 * @curs: The cursor. 895 */ 896 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs) 897 { 898 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; 899 900 ttm_bo_lru_cursor_cleanup_bo(curs); 901 spin_lock(lru_lock); 902 ttm_resource_cursor_fini(&curs->res_curs); 903 spin_unlock(lru_lock); 904 } 905 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini); 906 907 /** 908 * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor 909 * @curs: The ttm_bo_lru_cursor to initialize. 910 * @man: The ttm resource_manager whose LRU lists to iterate over. 911 * @arg: The ttm_lru_walk_arg to govern the walk. 912 * 913 * Initialize a struct ttm_bo_lru_cursor. 914 * 915 * Return: Pointer to @curs. The function does not fail. 916 */ 917 struct ttm_bo_lru_cursor * 918 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs, 919 struct ttm_resource_manager *man, 920 struct ttm_lru_walk_arg *arg) 921 { 922 memset(curs, 0, sizeof(*curs)); 923 ttm_resource_cursor_init(&curs->res_curs, man); 924 curs->arg = arg; 925 926 return curs; 927 } 928 EXPORT_SYMBOL(ttm_bo_lru_cursor_init); 929 930 static struct ttm_buffer_object * 931 __ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs) 932 { 933 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; 934 struct ttm_resource *res = NULL; 935 struct ttm_buffer_object *bo; 936 struct ttm_lru_walk_arg *arg = curs->arg; 937 bool first = !curs->bo; 938 939 ttm_bo_lru_cursor_cleanup_bo(curs); 940 941 spin_lock(lru_lock); 942 for (;;) { 943 int mem_type, ret = 0; 944 bool bo_locked = false; 945 946 if (first) { 947 res = ttm_resource_manager_first(&curs->res_curs); 948 first = false; 949 } else { 950 res = ttm_resource_manager_next(&curs->res_curs); 951 } 952 if (!res) 953 break; 954 955 bo = res->bo; 956 if (ttm_lru_walk_trylock(curs, bo)) 957 bo_locked = true; 958 else if (!arg->ticket || arg->ctx->no_wait_gpu || arg->trylock_only) 959 continue; 960 961 if (!ttm_bo_get_unless_zero(bo)) { 962 if (curs->needs_unlock) 963 dma_resv_unlock(bo->base.resv); 964 continue; 965 } 966 967 mem_type = res->mem_type; 968 spin_unlock(lru_lock); 969 if (!bo_locked) 970 ret = ttm_lru_walk_ticketlock(curs, bo); 971 972 /* 973 * Note that in between the release of the lru lock and the 974 * ticketlock, the bo may have switched resource, 975 * and also memory type, since the resource may have been 976 * freed and allocated again with a different memory type. 977 * In that case, just skip it. 978 */ 979 curs->bo = bo; 980 if (!ret && bo->resource && bo->resource->mem_type == mem_type) 981 return bo; 982 983 ttm_bo_lru_cursor_cleanup_bo(curs); 984 if (ret && ret != -EALREADY) 985 return ERR_PTR(ret); 986 987 spin_lock(lru_lock); 988 } 989 990 spin_unlock(lru_lock); 991 return res ? bo : NULL; 992 } 993 994 /** 995 * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists 996 * to find and lock buffer object. 997 * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and 998 * ttm_bo_lru_cursor_first(). 999 * 1000 * Return: A pointer to a locked and reference-counted buffer object, 1001 * or NULL if none could be found and looping should be terminated. 1002 */ 1003 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs) 1004 { 1005 return __ttm_bo_lru_cursor_next(curs); 1006 } 1007 EXPORT_SYMBOL(ttm_bo_lru_cursor_next); 1008 1009 /** 1010 * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists 1011 * to find and lock buffer object. 1012 * @curs: The cursor initialized using ttm_bo_lru_cursor_init(). 1013 * 1014 * Return: A pointer to a locked and reference-counted buffer object, 1015 * or NULL if none could be found and looping should be terminated. 1016 */ 1017 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs) 1018 { 1019 ttm_bo_lru_cursor_cleanup_bo(curs); 1020 return __ttm_bo_lru_cursor_next(curs); 1021 } 1022 EXPORT_SYMBOL(ttm_bo_lru_cursor_first); 1023 1024 /** 1025 * ttm_bo_shrink() - Helper to shrink a ttm buffer object. 1026 * @ctx: The struct ttm_operation_ctx used for the shrinking operation. 1027 * @bo: The buffer object. 1028 * @flags: Flags governing the shrinking behaviour. 1029 * 1030 * The function uses the ttm_tt_back_up functionality to back up or 1031 * purge a struct ttm_tt. If the bo is not in system, it's first 1032 * moved there. 1033 * 1034 * Return: The number of pages shrunken or purged, or 1035 * negative error code on failure. 1036 */ 1037 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1038 const struct ttm_bo_shrink_flags flags) 1039 { 1040 static const struct ttm_place sys_placement_flags = { 1041 .fpfn = 0, 1042 .lpfn = 0, 1043 .mem_type = TTM_PL_SYSTEM, 1044 .flags = 0, 1045 }; 1046 static struct ttm_placement sys_placement = { 1047 .num_placement = 1, 1048 .placement = &sys_placement_flags, 1049 }; 1050 struct ttm_tt *tt = bo->ttm; 1051 long lret; 1052 1053 dma_resv_assert_held(bo->base.resv); 1054 1055 if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) { 1056 int ret = ttm_bo_validate(bo, &sys_placement, ctx); 1057 1058 /* Consider -ENOMEM and -ENOSPC non-fatal. */ 1059 if (ret) { 1060 if (ret == -ENOMEM || ret == -ENOSPC) 1061 ret = -EBUSY; 1062 return ret; 1063 } 1064 } 1065 1066 ttm_bo_unmap_virtual(bo); 1067 lret = ttm_bo_wait_ctx(bo, ctx); 1068 if (lret < 0) 1069 return lret; 1070 1071 if (bo->bulk_move) { 1072 spin_lock(&bo->bdev->lru_lock); 1073 ttm_resource_del_bulk_move(bo->resource, bo); 1074 spin_unlock(&bo->bdev->lru_lock); 1075 } 1076 1077 lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags) 1078 {.purge = flags.purge, 1079 .writeback = flags.writeback}); 1080 1081 if (lret <= 0 && bo->bulk_move) { 1082 spin_lock(&bo->bdev->lru_lock); 1083 ttm_resource_add_bulk_move(bo->resource, bo); 1084 spin_unlock(&bo->bdev->lru_lock); 1085 } 1086 1087 if (lret < 0 && lret != -EINTR) 1088 return -EBUSY; 1089 1090 return lret; 1091 } 1092 EXPORT_SYMBOL(ttm_bo_shrink); 1093 1094 /** 1095 * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking 1096 * @ctx: The struct ttm_operation_ctx governing the shrinking. 1097 * @bo: The candidate for shrinking. 1098 * 1099 * Check whether the object, given the information available to TTM, 1100 * is suitable for shinking, This function can and should be used 1101 * before attempting to shrink an object. 1102 * 1103 * Return: true if suitable. false if not. 1104 */ 1105 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx) 1106 { 1107 return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count && 1108 (!ctx->no_wait_gpu || 1109 dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)); 1110 } 1111 EXPORT_SYMBOL(ttm_bo_shrink_suitable); 1112 1113 /** 1114 * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU 1115 * during shrinking 1116 * 1117 * In some situations, like direct reclaim, waiting (in particular gpu waiting) 1118 * should be avoided since it may stall a system that could otherwise make progress 1119 * shrinking something else less time consuming. 1120 * 1121 * Return: true if gpu waiting should be avoided, false if not. 1122 */ 1123 bool ttm_bo_shrink_avoid_wait(void) 1124 { 1125 return !current_is_kswapd(); 1126 } 1127 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait); 1128