1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_vma_manager.h> 35 #include <linux/dma-buf-map.h> 36 #include <linux/io.h> 37 #include <linux/highmem.h> 38 #include <linux/wait.h> 39 #include <linux/slab.h> 40 #include <linux/vmalloc.h> 41 #include <linux/module.h> 42 #include <linux/dma-resv.h> 43 44 struct ttm_transfer_obj { 45 struct ttm_buffer_object base; 46 struct ttm_buffer_object *bo; 47 }; 48 49 int ttm_mem_io_reserve(struct ttm_bo_device *bdev, 50 struct ttm_resource *mem) 51 { 52 if (mem->bus.offset || mem->bus.addr) 53 return 0; 54 55 mem->bus.is_iomem = false; 56 if (!bdev->driver->io_mem_reserve) 57 return 0; 58 59 return bdev->driver->io_mem_reserve(bdev, mem); 60 } 61 62 void ttm_mem_io_free(struct ttm_bo_device *bdev, 63 struct ttm_resource *mem) 64 { 65 if (!mem->bus.offset && !mem->bus.addr) 66 return; 67 68 if (bdev->driver->io_mem_free) 69 bdev->driver->io_mem_free(bdev, mem); 70 71 mem->bus.offset = 0; 72 mem->bus.addr = NULL; 73 } 74 75 static int ttm_resource_ioremap(struct ttm_bo_device *bdev, 76 struct ttm_resource *mem, 77 void **virtual) 78 { 79 int ret; 80 void *addr; 81 82 *virtual = NULL; 83 ret = ttm_mem_io_reserve(bdev, mem); 84 if (ret || !mem->bus.is_iomem) 85 return ret; 86 87 if (mem->bus.addr) { 88 addr = mem->bus.addr; 89 } else { 90 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 91 92 if (mem->bus.caching == ttm_write_combined) 93 addr = ioremap_wc(mem->bus.offset, bus_size); 94 else 95 addr = ioremap(mem->bus.offset, bus_size); 96 if (!addr) { 97 ttm_mem_io_free(bdev, mem); 98 return -ENOMEM; 99 } 100 } 101 *virtual = addr; 102 return 0; 103 } 104 105 static void ttm_resource_iounmap(struct ttm_bo_device *bdev, 106 struct ttm_resource *mem, 107 void *virtual) 108 { 109 if (virtual && mem->bus.addr == NULL) 110 iounmap(virtual); 111 ttm_mem_io_free(bdev, mem); 112 } 113 114 static int ttm_copy_io_page(void *dst, void *src, unsigned long page) 115 { 116 uint32_t *dstP = 117 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); 118 uint32_t *srcP = 119 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); 120 121 int i; 122 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) 123 iowrite32(ioread32(srcP++), dstP++); 124 return 0; 125 } 126 127 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, 128 unsigned long page, 129 pgprot_t prot) 130 { 131 struct page *d = ttm->pages[page]; 132 void *dst; 133 134 if (!d) 135 return -ENOMEM; 136 137 src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); 138 dst = kmap_atomic_prot(d, prot); 139 if (!dst) 140 return -ENOMEM; 141 142 memcpy_fromio(dst, src, PAGE_SIZE); 143 144 kunmap_atomic(dst); 145 146 return 0; 147 } 148 149 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, 150 unsigned long page, 151 pgprot_t prot) 152 { 153 struct page *s = ttm->pages[page]; 154 void *src; 155 156 if (!s) 157 return -ENOMEM; 158 159 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); 160 src = kmap_atomic_prot(s, prot); 161 if (!src) 162 return -ENOMEM; 163 164 memcpy_toio(dst, src, PAGE_SIZE); 165 166 kunmap_atomic(src); 167 168 return 0; 169 } 170 171 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 172 struct ttm_operation_ctx *ctx, 173 struct ttm_resource *new_mem) 174 { 175 struct ttm_bo_device *bdev = bo->bdev; 176 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 177 struct ttm_tt *ttm = bo->ttm; 178 struct ttm_resource *old_mem = &bo->mem; 179 struct ttm_resource old_copy = *old_mem; 180 void *old_iomap; 181 void *new_iomap; 182 int ret; 183 unsigned long i; 184 185 ret = ttm_bo_wait_ctx(bo, ctx); 186 if (ret) 187 return ret; 188 189 ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap); 190 if (ret) 191 return ret; 192 ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap); 193 if (ret) 194 goto out; 195 196 /* 197 * Single TTM move. NOP. 198 */ 199 if (old_iomap == NULL && new_iomap == NULL) 200 goto out2; 201 202 /* 203 * Don't move nonexistent data. Clear destination instead. 204 */ 205 if (old_iomap == NULL && 206 (ttm == NULL || (!ttm_tt_is_populated(ttm) && 207 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) { 208 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE); 209 goto out2; 210 } 211 212 /* 213 * TTM might be null for moves within the same region. 214 */ 215 if (ttm) { 216 ret = ttm_tt_populate(bdev, ttm, ctx); 217 if (ret) 218 goto out1; 219 } 220 221 for (i = 0; i < new_mem->num_pages; ++i) { 222 if (old_iomap == NULL) { 223 pgprot_t prot = ttm_io_prot(bo, old_mem, PAGE_KERNEL); 224 ret = ttm_copy_ttm_io_page(ttm, new_iomap, i, 225 prot); 226 } else if (new_iomap == NULL) { 227 pgprot_t prot = ttm_io_prot(bo, new_mem, PAGE_KERNEL); 228 ret = ttm_copy_io_ttm_page(ttm, old_iomap, i, 229 prot); 230 } else { 231 ret = ttm_copy_io_page(new_iomap, old_iomap, i); 232 } 233 if (ret) 234 goto out1; 235 } 236 mb(); 237 out2: 238 old_copy = *old_mem; 239 240 ttm_bo_assign_mem(bo, new_mem); 241 242 if (!man->use_tt) 243 ttm_bo_tt_destroy(bo); 244 245 out1: 246 ttm_resource_iounmap(bdev, old_mem, new_iomap); 247 out: 248 ttm_resource_iounmap(bdev, &old_copy, old_iomap); 249 250 /* 251 * On error, keep the mm node! 252 */ 253 if (!ret) 254 ttm_resource_free(bo, &old_copy); 255 return ret; 256 } 257 EXPORT_SYMBOL(ttm_bo_move_memcpy); 258 259 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 260 { 261 struct ttm_transfer_obj *fbo; 262 263 fbo = container_of(bo, struct ttm_transfer_obj, base); 264 ttm_bo_put(fbo->bo); 265 kfree(fbo); 266 } 267 268 /** 269 * ttm_buffer_object_transfer 270 * 271 * @bo: A pointer to a struct ttm_buffer_object. 272 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 273 * holding the data of @bo with the old placement. 274 * 275 * This is a utility function that may be called after an accelerated move 276 * has been scheduled. A new buffer object is created as a placeholder for 277 * the old data while it's being copied. When that buffer object is idle, 278 * it can be destroyed, releasing the space of the old placement. 279 * Returns: 280 * !0: Failure. 281 */ 282 283 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 284 struct ttm_buffer_object **new_obj) 285 { 286 struct ttm_transfer_obj *fbo; 287 int ret; 288 289 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 290 if (!fbo) 291 return -ENOMEM; 292 293 fbo->base = *bo; 294 295 ttm_bo_get(bo); 296 fbo->bo = bo; 297 298 /** 299 * Fix up members that we shouldn't copy directly: 300 * TODO: Explicit member copy would probably be better here. 301 */ 302 303 atomic_inc(&ttm_bo_glob.bo_count); 304 INIT_LIST_HEAD(&fbo->base.ddestroy); 305 INIT_LIST_HEAD(&fbo->base.lru); 306 INIT_LIST_HEAD(&fbo->base.swap); 307 fbo->base.moving = NULL; 308 drm_vma_node_reset(&fbo->base.base.vma_node); 309 310 kref_init(&fbo->base.kref); 311 fbo->base.destroy = &ttm_transfered_destroy; 312 fbo->base.acc_size = 0; 313 fbo->base.pin_count = 0; 314 if (bo->type != ttm_bo_type_sg) 315 fbo->base.base.resv = &fbo->base.base._resv; 316 317 dma_resv_init(&fbo->base.base._resv); 318 fbo->base.base.dev = NULL; 319 ret = dma_resv_trylock(&fbo->base.base._resv); 320 WARN_ON(!ret); 321 322 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 323 324 *new_obj = &fbo->base; 325 return 0; 326 } 327 328 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 329 pgprot_t tmp) 330 { 331 struct ttm_resource_manager *man; 332 enum ttm_caching caching; 333 334 man = ttm_manager_type(bo->bdev, res->mem_type); 335 caching = man->use_tt ? bo->ttm->caching : res->bus.caching; 336 337 /* Cached mappings need no adjustment */ 338 if (caching == ttm_cached) 339 return tmp; 340 341 #if defined(__i386__) || defined(__x86_64__) 342 if (caching == ttm_write_combined) 343 tmp = pgprot_writecombine(tmp); 344 else if (boot_cpu_data.x86 > 3) 345 tmp = pgprot_noncached(tmp); 346 #endif 347 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \ 348 defined(__powerpc__) || defined(__mips__) 349 if (caching == ttm_write_combined) 350 tmp = pgprot_writecombine(tmp); 351 else 352 tmp = pgprot_noncached(tmp); 353 #endif 354 #if defined(__sparc__) 355 tmp = pgprot_noncached(tmp); 356 #endif 357 return tmp; 358 } 359 EXPORT_SYMBOL(ttm_io_prot); 360 361 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 362 unsigned long offset, 363 unsigned long size, 364 struct ttm_bo_kmap_obj *map) 365 { 366 struct ttm_resource *mem = &bo->mem; 367 368 if (bo->mem.bus.addr) { 369 map->bo_kmap_type = ttm_bo_map_premapped; 370 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); 371 } else { 372 map->bo_kmap_type = ttm_bo_map_iomap; 373 if (mem->bus.caching == ttm_write_combined) 374 map->virtual = ioremap_wc(bo->mem.bus.offset + offset, 375 size); 376 else 377 map->virtual = ioremap(bo->mem.bus.offset + offset, 378 size); 379 } 380 return (!map->virtual) ? -ENOMEM : 0; 381 } 382 383 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 384 unsigned long start_page, 385 unsigned long num_pages, 386 struct ttm_bo_kmap_obj *map) 387 { 388 struct ttm_resource *mem = &bo->mem; 389 struct ttm_operation_ctx ctx = { 390 .interruptible = false, 391 .no_wait_gpu = false 392 }; 393 struct ttm_tt *ttm = bo->ttm; 394 pgprot_t prot; 395 int ret; 396 397 BUG_ON(!ttm); 398 399 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 400 if (ret) 401 return ret; 402 403 if (num_pages == 1 && ttm->caching == ttm_cached) { 404 /* 405 * We're mapping a single page, and the desired 406 * page protection is consistent with the bo. 407 */ 408 409 map->bo_kmap_type = ttm_bo_map_kmap; 410 map->page = ttm->pages[start_page]; 411 map->virtual = kmap(map->page); 412 } else { 413 /* 414 * We need to use vmap to get the desired page protection 415 * or to make the buffer object look contiguous. 416 */ 417 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 418 map->bo_kmap_type = ttm_bo_map_vmap; 419 map->virtual = vmap(ttm->pages + start_page, num_pages, 420 0, prot); 421 } 422 return (!map->virtual) ? -ENOMEM : 0; 423 } 424 425 int ttm_bo_kmap(struct ttm_buffer_object *bo, 426 unsigned long start_page, unsigned long num_pages, 427 struct ttm_bo_kmap_obj *map) 428 { 429 unsigned long offset, size; 430 int ret; 431 432 map->virtual = NULL; 433 map->bo = bo; 434 if (num_pages > bo->mem.num_pages) 435 return -EINVAL; 436 if ((start_page + num_pages) > bo->mem.num_pages) 437 return -EINVAL; 438 439 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); 440 if (ret) 441 return ret; 442 if (!bo->mem.bus.is_iomem) { 443 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 444 } else { 445 offset = start_page << PAGE_SHIFT; 446 size = num_pages << PAGE_SHIFT; 447 return ttm_bo_ioremap(bo, offset, size, map); 448 } 449 } 450 EXPORT_SYMBOL(ttm_bo_kmap); 451 452 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 453 { 454 if (!map->virtual) 455 return; 456 switch (map->bo_kmap_type) { 457 case ttm_bo_map_iomap: 458 iounmap(map->virtual); 459 break; 460 case ttm_bo_map_vmap: 461 vunmap(map->virtual); 462 break; 463 case ttm_bo_map_kmap: 464 kunmap(map->page); 465 break; 466 case ttm_bo_map_premapped: 467 break; 468 default: 469 BUG(); 470 } 471 ttm_mem_io_free(map->bo->bdev, &map->bo->mem); 472 map->virtual = NULL; 473 map->page = NULL; 474 } 475 EXPORT_SYMBOL(ttm_bo_kunmap); 476 477 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 478 { 479 struct ttm_resource *mem = &bo->mem; 480 int ret; 481 482 ret = ttm_mem_io_reserve(bo->bdev, mem); 483 if (ret) 484 return ret; 485 486 if (mem->bus.is_iomem) { 487 void __iomem *vaddr_iomem; 488 489 if (mem->bus.addr) 490 vaddr_iomem = (void __iomem *)mem->bus.addr; 491 else if (mem->bus.caching == ttm_write_combined) 492 vaddr_iomem = ioremap_wc(mem->bus.offset, 493 bo->base.size); 494 else 495 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 496 497 if (!vaddr_iomem) 498 return -ENOMEM; 499 500 dma_buf_map_set_vaddr_iomem(map, vaddr_iomem); 501 502 } else { 503 struct ttm_operation_ctx ctx = { 504 .interruptible = false, 505 .no_wait_gpu = false 506 }; 507 struct ttm_tt *ttm = bo->ttm; 508 pgprot_t prot; 509 void *vaddr; 510 511 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 512 if (ret) 513 return ret; 514 515 /* 516 * We need to use vmap to get the desired page protection 517 * or to make the buffer object look contiguous. 518 */ 519 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 520 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 521 if (!vaddr) 522 return -ENOMEM; 523 524 dma_buf_map_set_vaddr(map, vaddr); 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL(ttm_bo_vmap); 530 531 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 532 { 533 struct ttm_resource *mem = &bo->mem; 534 535 if (dma_buf_map_is_null(map)) 536 return; 537 538 if (!map->is_iomem) 539 vunmap(map->vaddr); 540 else if (!mem->bus.addr) 541 iounmap(map->vaddr_iomem); 542 dma_buf_map_clear(map); 543 544 ttm_mem_io_free(bo->bdev, &bo->mem); 545 } 546 EXPORT_SYMBOL(ttm_bo_vunmap); 547 548 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 549 bool dst_use_tt) 550 { 551 int ret; 552 ret = ttm_bo_wait(bo, false, false); 553 if (ret) 554 return ret; 555 556 if (!dst_use_tt) 557 ttm_bo_tt_destroy(bo); 558 ttm_resource_free(bo, &bo->mem); 559 return 0; 560 } 561 562 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 563 struct dma_fence *fence, 564 bool dst_use_tt) 565 { 566 struct ttm_buffer_object *ghost_obj; 567 int ret; 568 569 /** 570 * This should help pipeline ordinary buffer moves. 571 * 572 * Hang old buffer memory on a new buffer object, 573 * and leave it to be released when the GPU 574 * operation has completed. 575 */ 576 577 dma_fence_put(bo->moving); 578 bo->moving = dma_fence_get(fence); 579 580 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 581 if (ret) 582 return ret; 583 584 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 585 586 /** 587 * If we're not moving to fixed memory, the TTM object 588 * needs to stay alive. Otherwhise hang it on the ghost 589 * bo to be unbound and destroyed. 590 */ 591 592 if (dst_use_tt) 593 ghost_obj->ttm = NULL; 594 else 595 bo->ttm = NULL; 596 597 dma_resv_unlock(&ghost_obj->base._resv); 598 ttm_bo_put(ghost_obj); 599 return 0; 600 } 601 602 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 603 struct dma_fence *fence) 604 { 605 struct ttm_bo_device *bdev = bo->bdev; 606 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->mem.mem_type); 607 608 /** 609 * BO doesn't have a TTM we need to bind/unbind. Just remember 610 * this eviction and free up the allocation 611 */ 612 spin_lock(&from->move_lock); 613 if (!from->move || dma_fence_is_later(fence, from->move)) { 614 dma_fence_put(from->move); 615 from->move = dma_fence_get(fence); 616 } 617 spin_unlock(&from->move_lock); 618 619 ttm_resource_free(bo, &bo->mem); 620 621 dma_fence_put(bo->moving); 622 bo->moving = dma_fence_get(fence); 623 } 624 625 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 626 struct dma_fence *fence, 627 bool evict, 628 bool pipeline, 629 struct ttm_resource *new_mem) 630 { 631 struct ttm_bo_device *bdev = bo->bdev; 632 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->mem.mem_type); 633 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 634 int ret = 0; 635 636 dma_resv_add_excl_fence(bo->base.resv, fence); 637 if (!evict) 638 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 639 else if (!from->use_tt && pipeline) 640 ttm_bo_move_pipeline_evict(bo, fence); 641 else 642 ret = ttm_bo_wait_free_node(bo, man->use_tt); 643 644 if (ret) 645 return ret; 646 647 ttm_bo_assign_mem(bo, new_mem); 648 649 return 0; 650 } 651 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 652 653 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 654 { 655 struct ttm_buffer_object *ghost; 656 int ret; 657 658 ret = ttm_buffer_object_transfer(bo, &ghost); 659 if (ret) 660 return ret; 661 662 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 663 /* Last resort, wait for the BO to be idle when we are OOM */ 664 if (ret) 665 ttm_bo_wait(bo, false, false); 666 667 memset(&bo->mem, 0, sizeof(bo->mem)); 668 bo->mem.mem_type = TTM_PL_SYSTEM; 669 bo->ttm = NULL; 670 671 dma_resv_unlock(&ghost->base._resv); 672 ttm_bo_put(ghost); 673 674 return 0; 675 } 676