xref: /linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision 504f9bdd3a1588604b0452bfe927ff86e5f6e6df)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/vmalloc.h>
35 
36 #include <drm/ttm/ttm_bo.h>
37 #include <drm/ttm/ttm_placement.h>
38 #include <drm/ttm/ttm_tt.h>
39 
40 #include <drm/drm_cache.h>
41 
42 #include "ttm_bo_internal.h"
43 
44 struct ttm_transfer_obj {
45 	struct ttm_buffer_object base;
46 	struct ttm_buffer_object *bo;
47 };
48 
49 int ttm_mem_io_reserve(struct ttm_device *bdev,
50 		       struct ttm_resource *mem)
51 {
52 	if (mem->bus.offset || mem->bus.addr)
53 		return 0;
54 
55 	mem->bus.is_iomem = false;
56 	if (!bdev->funcs->io_mem_reserve)
57 		return 0;
58 
59 	return bdev->funcs->io_mem_reserve(bdev, mem);
60 }
61 
62 void ttm_mem_io_free(struct ttm_device *bdev,
63 		     struct ttm_resource *mem)
64 {
65 	if (!mem)
66 		return;
67 
68 	if (!mem->bus.offset && !mem->bus.addr)
69 		return;
70 
71 	if (bdev->funcs->io_mem_free)
72 		bdev->funcs->io_mem_free(bdev, mem);
73 
74 	mem->bus.offset = 0;
75 	mem->bus.addr = NULL;
76 }
77 
78 /**
79  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
80  * @clear: Whether to clear rather than copy.
81  * @num_pages: Number of pages of the operation.
82  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
83  * @src_iter: A struct ttm_kmap_iter representing the source resource.
84  *
85  * This function is intended to be able to move out async under a
86  * dma-fence if desired.
87  */
88 void ttm_move_memcpy(bool clear,
89 		     u32 num_pages,
90 		     struct ttm_kmap_iter *dst_iter,
91 		     struct ttm_kmap_iter *src_iter)
92 {
93 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
94 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
95 	struct iosys_map src_map, dst_map;
96 	pgoff_t i;
97 
98 	/* Single TTM move. NOP */
99 	if (dst_ops->maps_tt && src_ops->maps_tt)
100 		return;
101 
102 	/* Don't move nonexistent data. Clear destination instead. */
103 	if (clear) {
104 		for (i = 0; i < num_pages; ++i) {
105 			dst_ops->map_local(dst_iter, &dst_map, i);
106 			if (dst_map.is_iomem)
107 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
108 			else
109 				memset(dst_map.vaddr, 0, PAGE_SIZE);
110 			if (dst_ops->unmap_local)
111 				dst_ops->unmap_local(dst_iter, &dst_map);
112 		}
113 		return;
114 	}
115 
116 	for (i = 0; i < num_pages; ++i) {
117 		dst_ops->map_local(dst_iter, &dst_map, i);
118 		src_ops->map_local(src_iter, &src_map, i);
119 
120 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
121 
122 		if (src_ops->unmap_local)
123 			src_ops->unmap_local(src_iter, &src_map);
124 		if (dst_ops->unmap_local)
125 			dst_ops->unmap_local(dst_iter, &dst_map);
126 	}
127 }
128 EXPORT_SYMBOL(ttm_move_memcpy);
129 
130 /**
131  * ttm_bo_move_memcpy
132  *
133  * @bo: A pointer to a struct ttm_buffer_object.
134  * @ctx: operation context
135  * @dst_mem: struct ttm_resource indicating where to move.
136  *
137  * Fallback move function for a mappable buffer object in mappable memory.
138  * The function will, if successful,
139  * free any old aperture space, and set (@new_mem)->mm_node to NULL,
140  * and update the (@bo)->mem placement flags. If unsuccessful, the old
141  * data remains untouched, and it's up to the caller to free the
142  * memory space indicated by @new_mem.
143  * Returns:
144  * !0: Failure.
145  */
146 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
147 		       struct ttm_operation_ctx *ctx,
148 		       struct ttm_resource *dst_mem)
149 {
150 	struct ttm_device *bdev = bo->bdev;
151 	struct ttm_resource_manager *dst_man =
152 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
153 	struct ttm_tt *ttm = bo->ttm;
154 	struct ttm_resource *src_mem = bo->resource;
155 	struct ttm_resource_manager *src_man;
156 	union {
157 		struct ttm_kmap_iter_tt tt;
158 		struct ttm_kmap_iter_linear_io io;
159 	} _dst_iter, _src_iter;
160 	struct ttm_kmap_iter *dst_iter, *src_iter;
161 	bool clear;
162 	int ret = 0;
163 
164 	if (WARN_ON(!src_mem))
165 		return -EINVAL;
166 
167 	src_man = ttm_manager_type(bdev, src_mem->mem_type);
168 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
169 		    dst_man->use_tt)) {
170 		ret = ttm_bo_populate(bo, ctx);
171 		if (ret)
172 			return ret;
173 	}
174 
175 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
176 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
177 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
178 	if (IS_ERR(dst_iter))
179 		return PTR_ERR(dst_iter);
180 
181 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
182 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
183 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
184 	if (IS_ERR(src_iter)) {
185 		ret = PTR_ERR(src_iter);
186 		goto out_src_iter;
187 	}
188 
189 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
190 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
191 		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
192 
193 	if (!src_iter->ops->maps_tt)
194 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
195 	ttm_bo_move_sync_cleanup(bo, dst_mem);
196 
197 out_src_iter:
198 	if (!dst_iter->ops->maps_tt)
199 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
200 
201 	return ret;
202 }
203 EXPORT_SYMBOL(ttm_bo_move_memcpy);
204 
205 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
206 {
207 	struct ttm_transfer_obj *fbo;
208 
209 	fbo = container_of(bo, struct ttm_transfer_obj, base);
210 	dma_resv_fini(&fbo->base.base._resv);
211 	ttm_bo_put(fbo->bo);
212 	kfree(fbo);
213 }
214 
215 /**
216  * ttm_buffer_object_transfer
217  *
218  * @bo: A pointer to a struct ttm_buffer_object.
219  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
220  * holding the data of @bo with the old placement.
221  *
222  * This is a utility function that may be called after an accelerated move
223  * has been scheduled. A new buffer object is created as a placeholder for
224  * the old data while it's being copied. When that buffer object is idle,
225  * it can be destroyed, releasing the space of the old placement.
226  * Returns:
227  * !0: Failure.
228  */
229 
230 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
231 				      struct ttm_buffer_object **new_obj)
232 {
233 	struct ttm_transfer_obj *fbo;
234 	int ret;
235 
236 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
237 	if (!fbo)
238 		return -ENOMEM;
239 
240 	fbo->base = *bo;
241 
242 	/**
243 	 * Fix up members that we shouldn't copy directly:
244 	 * TODO: Explicit member copy would probably be better here.
245 	 */
246 
247 	atomic_inc(&ttm_glob.bo_count);
248 	drm_vma_node_reset(&fbo->base.base.vma_node);
249 
250 	kref_init(&fbo->base.kref);
251 	fbo->base.destroy = &ttm_transfered_destroy;
252 	fbo->base.pin_count = 0;
253 	if (bo->type != ttm_bo_type_sg)
254 		fbo->base.base.resv = &fbo->base.base._resv;
255 
256 	dma_resv_init(&fbo->base.base._resv);
257 	fbo->base.base.dev = NULL;
258 	ret = dma_resv_trylock(&fbo->base.base._resv);
259 	WARN_ON(!ret);
260 
261 	if (fbo->base.resource) {
262 		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
263 		bo->resource = NULL;
264 		ttm_bo_set_bulk_move(&fbo->base, NULL);
265 	} else {
266 		fbo->base.bulk_move = NULL;
267 	}
268 
269 	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
270 	if (ret) {
271 		kfree(fbo);
272 		return ret;
273 	}
274 
275 	ttm_bo_get(bo);
276 	fbo->bo = bo;
277 
278 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
279 
280 	*new_obj = &fbo->base;
281 	return 0;
282 }
283 
284 /**
285  * ttm_io_prot
286  *
287  * @bo: ttm buffer object
288  * @res: ttm resource object
289  * @tmp: Page protection flag for a normal, cached mapping.
290  *
291  * Utility function that returns the pgprot_t that should be used for
292  * setting up a PTE with the caching model indicated by @c_state.
293  */
294 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
295 		     pgprot_t tmp)
296 {
297 	struct ttm_resource_manager *man;
298 	enum ttm_caching caching;
299 
300 	man = ttm_manager_type(bo->bdev, res->mem_type);
301 	if (man->use_tt) {
302 		caching = bo->ttm->caching;
303 		if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
304 			tmp = pgprot_decrypted(tmp);
305 	} else  {
306 		caching = res->bus.caching;
307 	}
308 
309 	return ttm_prot_from_caching(caching, tmp);
310 }
311 EXPORT_SYMBOL(ttm_io_prot);
312 
313 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
314 			  unsigned long offset,
315 			  unsigned long size,
316 			  struct ttm_bo_kmap_obj *map)
317 {
318 	struct ttm_resource *mem = bo->resource;
319 
320 	if (bo->resource->bus.addr) {
321 		map->bo_kmap_type = ttm_bo_map_premapped;
322 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
323 	} else {
324 		resource_size_t res = bo->resource->bus.offset + offset;
325 
326 		map->bo_kmap_type = ttm_bo_map_iomap;
327 		if (mem->bus.caching == ttm_write_combined)
328 			map->virtual = ioremap_wc(res, size);
329 #ifdef CONFIG_X86
330 		else if (mem->bus.caching == ttm_cached)
331 			map->virtual = ioremap_cache(res, size);
332 #endif
333 		else
334 			map->virtual = ioremap(res, size);
335 	}
336 	return (!map->virtual) ? -ENOMEM : 0;
337 }
338 
339 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
340 			   unsigned long start_page,
341 			   unsigned long num_pages,
342 			   struct ttm_bo_kmap_obj *map)
343 {
344 	struct ttm_resource *mem = bo->resource;
345 	struct ttm_operation_ctx ctx = {
346 		.interruptible = false,
347 		.no_wait_gpu = false
348 	};
349 	struct ttm_tt *ttm = bo->ttm;
350 	struct ttm_resource_manager *man =
351 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
352 	pgprot_t prot;
353 	int ret;
354 
355 	BUG_ON(!ttm);
356 
357 	ret = ttm_bo_populate(bo, &ctx);
358 	if (ret)
359 		return ret;
360 
361 	if (num_pages == 1 && ttm->caching == ttm_cached &&
362 	    !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
363 		/*
364 		 * We're mapping a single page, and the desired
365 		 * page protection is consistent with the bo.
366 		 */
367 
368 		map->bo_kmap_type = ttm_bo_map_kmap;
369 		map->page = ttm->pages[start_page];
370 		map->virtual = kmap(map->page);
371 	} else {
372 		/*
373 		 * We need to use vmap to get the desired page protection
374 		 * or to make the buffer object look contiguous.
375 		 */
376 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
377 		map->bo_kmap_type = ttm_bo_map_vmap;
378 		map->virtual = vmap(ttm->pages + start_page, num_pages,
379 				    0, prot);
380 	}
381 	return (!map->virtual) ? -ENOMEM : 0;
382 }
383 
384 /**
385  * ttm_bo_kmap_try_from_panic
386  *
387  * @bo: The buffer object
388  * @page: The page to map
389  *
390  * Sets up a kernel virtual mapping using kmap_local_page_try_from_panic().
391  * This should only be called from the panic handler, if you make sure the bo
392  * is the one being displayed, so is properly allocated, and protected.
393  *
394  * Returns the vaddr, that you can use to write to the bo, and that you should
395  * pass to kunmap_local() when you're done with this page, or NULL if the bo
396  * is in iomem.
397  */
398 void *ttm_bo_kmap_try_from_panic(struct ttm_buffer_object *bo, unsigned long page)
399 {
400 	if (page + 1 > PFN_UP(bo->resource->size))
401 		return NULL;
402 
403 	if (!bo->resource->bus.is_iomem && bo->ttm->pages && bo->ttm->pages[page])
404 		return kmap_local_page_try_from_panic(bo->ttm->pages[page]);
405 
406 	return NULL;
407 }
408 EXPORT_SYMBOL(ttm_bo_kmap_try_from_panic);
409 
410 /**
411  * ttm_bo_kmap
412  *
413  * @bo: The buffer object.
414  * @start_page: The first page to map.
415  * @num_pages: Number of pages to map.
416  * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
417  *
418  * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
419  * data in the buffer object. The ttm_kmap_obj_virtual function can then be
420  * used to obtain a virtual address to the data.
421  *
422  * Returns
423  * -ENOMEM: Out of memory.
424  * -EINVAL: Invalid range.
425  */
426 int ttm_bo_kmap(struct ttm_buffer_object *bo,
427 		unsigned long start_page, unsigned long num_pages,
428 		struct ttm_bo_kmap_obj *map)
429 {
430 	unsigned long offset, size;
431 	int ret;
432 
433 	map->virtual = NULL;
434 	map->bo = bo;
435 	if (num_pages > PFN_UP(bo->resource->size))
436 		return -EINVAL;
437 	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
438 		return -EINVAL;
439 
440 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
441 	if (ret)
442 		return ret;
443 	if (!bo->resource->bus.is_iomem) {
444 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
445 	} else {
446 		offset = start_page << PAGE_SHIFT;
447 		size = num_pages << PAGE_SHIFT;
448 		return ttm_bo_ioremap(bo, offset, size, map);
449 	}
450 }
451 EXPORT_SYMBOL(ttm_bo_kmap);
452 
453 /**
454  * ttm_bo_kunmap
455  *
456  * @map: Object describing the map to unmap.
457  *
458  * Unmaps a kernel map set up by ttm_bo_kmap.
459  */
460 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
461 {
462 	if (!map->virtual)
463 		return;
464 	switch (map->bo_kmap_type) {
465 	case ttm_bo_map_iomap:
466 		iounmap(map->virtual);
467 		break;
468 	case ttm_bo_map_vmap:
469 		vunmap(map->virtual);
470 		break;
471 	case ttm_bo_map_kmap:
472 		kunmap(map->page);
473 		break;
474 	case ttm_bo_map_premapped:
475 		break;
476 	default:
477 		BUG();
478 	}
479 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
480 	map->virtual = NULL;
481 	map->page = NULL;
482 }
483 EXPORT_SYMBOL(ttm_bo_kunmap);
484 
485 /**
486  * ttm_bo_vmap
487  *
488  * @bo: The buffer object.
489  * @map: pointer to a struct iosys_map representing the map.
490  *
491  * Sets up a kernel virtual mapping, using ioremap or vmap to the
492  * data in the buffer object. The parameter @map returns the virtual
493  * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
494  *
495  * Returns
496  * -ENOMEM: Out of memory.
497  * -EINVAL: Invalid range.
498  */
499 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
500 {
501 	struct ttm_resource *mem = bo->resource;
502 	int ret;
503 
504 	dma_resv_assert_held(bo->base.resv);
505 
506 	ret = ttm_mem_io_reserve(bo->bdev, mem);
507 	if (ret)
508 		return ret;
509 
510 	if (mem->bus.is_iomem) {
511 		void __iomem *vaddr_iomem;
512 
513 		if (mem->bus.addr)
514 			vaddr_iomem = (void __iomem *)mem->bus.addr;
515 		else if (mem->bus.caching == ttm_write_combined)
516 			vaddr_iomem = ioremap_wc(mem->bus.offset,
517 						 bo->base.size);
518 #ifdef CONFIG_X86
519 		else if (mem->bus.caching == ttm_cached)
520 			vaddr_iomem = ioremap_cache(mem->bus.offset,
521 						  bo->base.size);
522 #endif
523 		else
524 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
525 
526 		if (!vaddr_iomem)
527 			return -ENOMEM;
528 
529 		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
530 
531 	} else {
532 		struct ttm_operation_ctx ctx = {
533 			.interruptible = false,
534 			.no_wait_gpu = false
535 		};
536 		struct ttm_tt *ttm = bo->ttm;
537 		pgprot_t prot;
538 		void *vaddr;
539 
540 		ret = ttm_bo_populate(bo, &ctx);
541 		if (ret)
542 			return ret;
543 
544 		/*
545 		 * We need to use vmap to get the desired page protection
546 		 * or to make the buffer object look contiguous.
547 		 */
548 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
549 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
550 		if (!vaddr)
551 			return -ENOMEM;
552 
553 		iosys_map_set_vaddr(map, vaddr);
554 	}
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL(ttm_bo_vmap);
559 
560 /**
561  * ttm_bo_vunmap
562  *
563  * @bo: The buffer object.
564  * @map: Object describing the map to unmap.
565  *
566  * Unmaps a kernel map set up by ttm_bo_vmap().
567  */
568 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
569 {
570 	struct ttm_resource *mem = bo->resource;
571 
572 	dma_resv_assert_held(bo->base.resv);
573 
574 	if (iosys_map_is_null(map))
575 		return;
576 
577 	if (!map->is_iomem)
578 		vunmap(map->vaddr);
579 	else if (!mem->bus.addr)
580 		iounmap(map->vaddr_iomem);
581 	iosys_map_clear(map);
582 
583 	ttm_mem_io_free(bo->bdev, bo->resource);
584 }
585 EXPORT_SYMBOL(ttm_bo_vunmap);
586 
587 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
588 				 bool dst_use_tt)
589 {
590 	long ret;
591 
592 	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
593 				    false, 15 * HZ);
594 	if (ret == 0)
595 		return -EBUSY;
596 	if (ret < 0)
597 		return ret;
598 
599 	if (!dst_use_tt)
600 		ttm_bo_tt_destroy(bo);
601 	ttm_resource_free(bo, &bo->resource);
602 	return 0;
603 }
604 
605 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
606 				struct dma_fence *fence,
607 				bool dst_use_tt)
608 {
609 	struct ttm_buffer_object *ghost_obj;
610 	int ret;
611 
612 	/**
613 	 * This should help pipeline ordinary buffer moves.
614 	 *
615 	 * Hang old buffer memory on a new buffer object,
616 	 * and leave it to be released when the GPU
617 	 * operation has completed.
618 	 */
619 
620 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
621 	if (ret)
622 		return ret;
623 
624 	dma_resv_add_fence(&ghost_obj->base._resv, fence,
625 			   DMA_RESV_USAGE_KERNEL);
626 
627 	/**
628 	 * If we're not moving to fixed memory, the TTM object
629 	 * needs to stay alive. Otherwhise hang it on the ghost
630 	 * bo to be unbound and destroyed.
631 	 */
632 
633 	if (dst_use_tt)
634 		ghost_obj->ttm = NULL;
635 	else
636 		bo->ttm = NULL;
637 
638 	dma_resv_unlock(&ghost_obj->base._resv);
639 	ttm_bo_put(ghost_obj);
640 	return 0;
641 }
642 
643 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
644 				       struct dma_fence *fence)
645 {
646 	struct ttm_device *bdev = bo->bdev;
647 	struct ttm_resource_manager *from;
648 
649 	from = ttm_manager_type(bdev, bo->resource->mem_type);
650 
651 	/**
652 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
653 	 * this eviction and free up the allocation
654 	 */
655 	spin_lock(&from->move_lock);
656 	if (!from->move || dma_fence_is_later(fence, from->move)) {
657 		dma_fence_put(from->move);
658 		from->move = dma_fence_get(fence);
659 	}
660 	spin_unlock(&from->move_lock);
661 
662 	ttm_resource_free(bo, &bo->resource);
663 }
664 
665 /**
666  * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
667  *
668  * @bo: A pointer to a struct ttm_buffer_object.
669  * @fence: A fence object that signals when moving is complete.
670  * @evict: This is an evict move. Don't return until the buffer is idle.
671  * @pipeline: evictions are to be pipelined.
672  * @new_mem: struct ttm_resource indicating where to move.
673  *
674  * Accelerated move function to be called when an accelerated move
675  * has been scheduled. The function will create a new temporary buffer object
676  * representing the old placement, and put the sync object on both buffer
677  * objects. After that the newly created buffer object is unref'd to be
678  * destroyed when the move is complete. This will help pipeline
679  * buffer moves.
680  */
681 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
682 			      struct dma_fence *fence,
683 			      bool evict,
684 			      bool pipeline,
685 			      struct ttm_resource *new_mem)
686 {
687 	struct ttm_device *bdev = bo->bdev;
688 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
689 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
690 	int ret = 0;
691 
692 	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
693 	if (!evict)
694 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
695 	else if (!from->use_tt && pipeline)
696 		ttm_bo_move_pipeline_evict(bo, fence);
697 	else
698 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
699 
700 	if (ret)
701 		return ret;
702 
703 	ttm_bo_assign_mem(bo, new_mem);
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
708 
709 /**
710  * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
711  *
712  * @bo: A pointer to a struct ttm_buffer_object.
713  * @new_mem: struct ttm_resource indicating where to move.
714  *
715  * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
716  * by the caller to be idle. Typically used after memcpy buffer moves.
717  */
718 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
719 			      struct ttm_resource *new_mem)
720 {
721 	struct ttm_device *bdev = bo->bdev;
722 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
723 	int ret;
724 
725 	ret = ttm_bo_wait_free_node(bo, man->use_tt);
726 	if (WARN_ON(ret))
727 		return;
728 
729 	ttm_bo_assign_mem(bo, new_mem);
730 }
731 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
732 
733 /**
734  * ttm_bo_pipeline_gutting - purge the contents of a bo
735  * @bo: The buffer object
736  *
737  * Purge the contents of a bo, async if the bo is not idle.
738  * After a successful call, the bo is left unpopulated in
739  * system placement. The function may wait uninterruptible
740  * for idle on OOM.
741  *
742  * Return: 0 if successful, negative error code on failure.
743  */
744 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
745 {
746 	struct ttm_buffer_object *ghost;
747 	struct ttm_tt *ttm;
748 	int ret;
749 
750 	/* If already idle, no need for ghost object dance. */
751 	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
752 		if (!bo->ttm) {
753 			/* See comment below about clearing. */
754 			ret = ttm_tt_create(bo, true);
755 			if (ret)
756 				return ret;
757 		} else {
758 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
759 			if (bo->type == ttm_bo_type_device)
760 				ttm_tt_mark_for_clear(bo->ttm);
761 		}
762 		ttm_resource_free(bo, &bo->resource);
763 		return 0;
764 	}
765 
766 	/*
767 	 * We need an unpopulated ttm_tt after giving our current one,
768 	 * if any, to the ghost object. And we can't afford to fail
769 	 * creating one *after* the operation. If the bo subsequently gets
770 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
771 	 * to avoid leaking sensitive information to user-space.
772 	 */
773 
774 	ttm = bo->ttm;
775 	bo->ttm = NULL;
776 	ret = ttm_tt_create(bo, true);
777 	swap(bo->ttm, ttm);
778 	if (ret)
779 		return ret;
780 
781 	ret = ttm_buffer_object_transfer(bo, &ghost);
782 	if (ret)
783 		goto error_destroy_tt;
784 
785 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
786 	/* Last resort, wait for the BO to be idle when we are OOM */
787 	if (ret) {
788 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
789 				      false, MAX_SCHEDULE_TIMEOUT);
790 	}
791 
792 	dma_resv_unlock(&ghost->base._resv);
793 	ttm_bo_put(ghost);
794 	bo->ttm = ttm;
795 	return 0;
796 
797 error_destroy_tt:
798 	ttm_tt_destroy(bo->bdev, ttm);
799 	return ret;
800 }
801 
802 static bool ttm_lru_walk_trylock(struct ttm_bo_lru_cursor *curs,
803 				 struct ttm_buffer_object *bo)
804 {
805 	struct ttm_operation_ctx *ctx = curs->arg->ctx;
806 
807 	curs->needs_unlock = false;
808 
809 	if (dma_resv_trylock(bo->base.resv)) {
810 		curs->needs_unlock = true;
811 		return true;
812 	}
813 
814 	if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
815 		dma_resv_assert_held(bo->base.resv);
816 		return true;
817 	}
818 
819 	return false;
820 }
821 
822 static int ttm_lru_walk_ticketlock(struct ttm_bo_lru_cursor *curs,
823 				   struct ttm_buffer_object *bo)
824 {
825 	struct ttm_lru_walk_arg *arg = curs->arg;
826 	struct dma_resv *resv = bo->base.resv;
827 	int ret;
828 
829 	if (arg->ctx->interruptible)
830 		ret = dma_resv_lock_interruptible(resv, arg->ticket);
831 	else
832 		ret = dma_resv_lock(resv, arg->ticket);
833 
834 	if (!ret) {
835 		curs->needs_unlock = true;
836 		/*
837 		 * Only a single ticketlock per loop. Ticketlocks are prone
838 		 * to return -EDEADLK causing the eviction to fail, so
839 		 * after waiting for the ticketlock, revert back to
840 		 * trylocking for this walk.
841 		 */
842 		arg->ticket = NULL;
843 	} else if (ret == -EDEADLK) {
844 		/* Caller needs to exit the ww transaction. */
845 		ret = -ENOSPC;
846 	}
847 
848 	return ret;
849 }
850 
851 /**
852  * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
853  * valid items.
854  * @walk: describe the walks and actions taken
855  * @bdev: The TTM device.
856  * @man: The struct ttm_resource manager whose LRU lists we're walking.
857  * @target: The end condition for the walk.
858  *
859  * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
860  * the corresponding ttm_buffer_object is locked and taken a reference on, and
861  * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
862  * that case, it's verified that the item actually remains on the LRU list after
863  * the lock, and that the buffer object didn't switch resource in between.
864  *
865  * With a locked object, the actions indicated by @walk->process_bo are
866  * performed, and after that, the bo is unlocked, the refcount dropped and the
867  * next struct ttm_resource is processed. Here, the walker relies on
868  * TTM's restartable LRU list implementation.
869  *
870  * Typically @walk->process_bo() would return the number of pages evicted,
871  * swapped or shrunken, so that when the total exceeds @target, or when the
872  * LRU list has been walked in full, iteration is terminated. It's also terminated
873  * on error. Note that the definition of @target is done by the caller, it
874  * could have a different meaning than the number of pages.
875  *
876  * Note that the way dma_resv individualization is done, locking needs to be done
877  * either with the LRU lock held (trylocking only) or with a reference on the
878  * object.
879  *
880  * Return: The progress made towards target or negative error code on error.
881  */
882 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
883 			   struct ttm_resource_manager *man, s64 target)
884 {
885 	struct ttm_bo_lru_cursor cursor;
886 	struct ttm_buffer_object *bo;
887 	s64 progress = 0;
888 	s64 lret;
889 
890 	ttm_bo_lru_for_each_reserved_guarded(&cursor, man, &walk->arg, bo) {
891 		lret = walk->ops->process_bo(walk, bo);
892 		if (lret == -EBUSY || lret == -EALREADY)
893 			lret = 0;
894 		progress = (lret < 0) ? lret : progress + lret;
895 		if (progress < 0 || progress >= target)
896 			break;
897 	}
898 	if (IS_ERR(bo))
899 		return PTR_ERR(bo);
900 
901 	return progress;
902 }
903 EXPORT_SYMBOL(ttm_lru_walk_for_evict);
904 
905 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs)
906 {
907 	struct ttm_buffer_object *bo = curs->bo;
908 
909 	if (bo) {
910 		if (curs->needs_unlock)
911 			dma_resv_unlock(bo->base.resv);
912 		ttm_bo_put(bo);
913 		curs->bo = NULL;
914 	}
915 }
916 
917 /**
918  * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor
919  * and clean up any iteration it was used for.
920  * @curs: The cursor.
921  */
922 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs)
923 {
924 	spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
925 
926 	ttm_bo_lru_cursor_cleanup_bo(curs);
927 	spin_lock(lru_lock);
928 	ttm_resource_cursor_fini(&curs->res_curs);
929 	spin_unlock(lru_lock);
930 }
931 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini);
932 
933 /**
934  * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor
935  * @curs: The ttm_bo_lru_cursor to initialize.
936  * @man: The ttm resource_manager whose LRU lists to iterate over.
937  * @arg: The ttm_lru_walk_arg to govern the walk.
938  *
939  * Initialize a struct ttm_bo_lru_cursor.
940  *
941  * Return: Pointer to @curs. The function does not fail.
942  */
943 struct ttm_bo_lru_cursor *
944 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs,
945 		       struct ttm_resource_manager *man,
946 		       struct ttm_lru_walk_arg *arg)
947 {
948 	memset(curs, 0, sizeof(*curs));
949 	ttm_resource_cursor_init(&curs->res_curs, man);
950 	curs->arg = arg;
951 
952 	return curs;
953 }
954 EXPORT_SYMBOL(ttm_bo_lru_cursor_init);
955 
956 static struct ttm_buffer_object *
957 __ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
958 {
959 	spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
960 	struct ttm_resource *res = NULL;
961 	struct ttm_buffer_object *bo;
962 	struct ttm_lru_walk_arg *arg = curs->arg;
963 	bool first = !curs->bo;
964 
965 	ttm_bo_lru_cursor_cleanup_bo(curs);
966 
967 	spin_lock(lru_lock);
968 	for (;;) {
969 		int mem_type, ret = 0;
970 		bool bo_locked = false;
971 
972 		if (first) {
973 			res = ttm_resource_manager_first(&curs->res_curs);
974 			first = false;
975 		} else {
976 			res = ttm_resource_manager_next(&curs->res_curs);
977 		}
978 		if (!res)
979 			break;
980 
981 		bo = res->bo;
982 		if (ttm_lru_walk_trylock(curs, bo))
983 			bo_locked = true;
984 		else if (!arg->ticket || arg->ctx->no_wait_gpu || arg->trylock_only)
985 			continue;
986 
987 		if (!ttm_bo_get_unless_zero(bo)) {
988 			if (curs->needs_unlock)
989 				dma_resv_unlock(bo->base.resv);
990 			continue;
991 		}
992 
993 		mem_type = res->mem_type;
994 		spin_unlock(lru_lock);
995 		if (!bo_locked)
996 			ret = ttm_lru_walk_ticketlock(curs, bo);
997 
998 		/*
999 		 * Note that in between the release of the lru lock and the
1000 		 * ticketlock, the bo may have switched resource,
1001 		 * and also memory type, since the resource may have been
1002 		 * freed and allocated again with a different memory type.
1003 		 * In that case, just skip it.
1004 		 */
1005 		curs->bo = bo;
1006 		if (!ret && bo->resource && bo->resource->mem_type == mem_type)
1007 			return bo;
1008 
1009 		ttm_bo_lru_cursor_cleanup_bo(curs);
1010 		if (ret && ret != -EALREADY)
1011 			return ERR_PTR(ret);
1012 
1013 		spin_lock(lru_lock);
1014 	}
1015 
1016 	spin_unlock(lru_lock);
1017 	return res ? bo : NULL;
1018 }
1019 
1020 /**
1021  * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists
1022  * to find and lock buffer object.
1023  * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and
1024  * ttm_bo_lru_cursor_first().
1025  *
1026  * Return: A pointer to a locked and reference-counted buffer object,
1027  * or NULL if none could be found and looping should be terminated.
1028  */
1029 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
1030 {
1031 	return __ttm_bo_lru_cursor_next(curs);
1032 }
1033 EXPORT_SYMBOL(ttm_bo_lru_cursor_next);
1034 
1035 /**
1036  * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists
1037  * to find and lock buffer object.
1038  * @curs: The cursor initialized using ttm_bo_lru_cursor_init().
1039  *
1040  * Return: A pointer to a locked and reference-counted buffer object,
1041  * or NULL if none could be found and looping should be terminated.
1042  */
1043 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs)
1044 {
1045 	ttm_bo_lru_cursor_cleanup_bo(curs);
1046 	return __ttm_bo_lru_cursor_next(curs);
1047 }
1048 EXPORT_SYMBOL(ttm_bo_lru_cursor_first);
1049 
1050 /**
1051  * ttm_bo_shrink() - Helper to shrink a ttm buffer object.
1052  * @ctx: The struct ttm_operation_ctx used for the shrinking operation.
1053  * @bo: The buffer object.
1054  * @flags: Flags governing the shrinking behaviour.
1055  *
1056  * The function uses the ttm_tt_back_up functionality to back up or
1057  * purge a struct ttm_tt. If the bo is not in system, it's first
1058  * moved there.
1059  *
1060  * Return: The number of pages shrunken or purged, or
1061  * negative error code on failure.
1062  */
1063 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1064 		   const struct ttm_bo_shrink_flags flags)
1065 {
1066 	static const struct ttm_place sys_placement_flags = {
1067 		.fpfn = 0,
1068 		.lpfn = 0,
1069 		.mem_type = TTM_PL_SYSTEM,
1070 		.flags = 0,
1071 	};
1072 	static struct ttm_placement sys_placement = {
1073 		.num_placement = 1,
1074 		.placement = &sys_placement_flags,
1075 	};
1076 	struct ttm_tt *tt = bo->ttm;
1077 	long lret;
1078 
1079 	dma_resv_assert_held(bo->base.resv);
1080 
1081 	if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) {
1082 		int ret = ttm_bo_validate(bo, &sys_placement, ctx);
1083 
1084 		/* Consider -ENOMEM and -ENOSPC non-fatal. */
1085 		if (ret) {
1086 			if (ret == -ENOMEM || ret == -ENOSPC)
1087 				ret = -EBUSY;
1088 			return ret;
1089 		}
1090 	}
1091 
1092 	ttm_bo_unmap_virtual(bo);
1093 	lret = ttm_bo_wait_ctx(bo, ctx);
1094 	if (lret < 0)
1095 		return lret;
1096 
1097 	if (bo->bulk_move) {
1098 		spin_lock(&bo->bdev->lru_lock);
1099 		ttm_resource_del_bulk_move(bo->resource, bo);
1100 		spin_unlock(&bo->bdev->lru_lock);
1101 	}
1102 
1103 	lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags)
1104 			     {.purge = flags.purge,
1105 			      .writeback = flags.writeback});
1106 
1107 	if (lret <= 0 && bo->bulk_move) {
1108 		spin_lock(&bo->bdev->lru_lock);
1109 		ttm_resource_add_bulk_move(bo->resource, bo);
1110 		spin_unlock(&bo->bdev->lru_lock);
1111 	}
1112 
1113 	if (lret < 0 && lret != -EINTR)
1114 		return -EBUSY;
1115 
1116 	return lret;
1117 }
1118 EXPORT_SYMBOL(ttm_bo_shrink);
1119 
1120 /**
1121  * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking
1122  * @ctx: The struct ttm_operation_ctx governing the shrinking.
1123  * @bo: The candidate for shrinking.
1124  *
1125  * Check whether the object, given the information available to TTM,
1126  * is suitable for shinking, This function can and should be used
1127  * before attempting to shrink an object.
1128  *
1129  * Return: true if suitable. false if not.
1130  */
1131 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1132 {
1133 	return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count &&
1134 		(!ctx->no_wait_gpu ||
1135 		 dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP));
1136 }
1137 EXPORT_SYMBOL(ttm_bo_shrink_suitable);
1138 
1139 /**
1140  * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU
1141  * during shrinking
1142  *
1143  * In some situations, like direct reclaim, waiting (in particular gpu waiting)
1144  * should be avoided since it may stall a system that could otherwise make progress
1145  * shrinking something else less time consuming.
1146  *
1147  * Return: true if gpu waiting should be avoided, false if not.
1148  */
1149 bool ttm_bo_shrink_avoid_wait(void)
1150 {
1151 	return !current_is_kswapd();
1152 }
1153 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait);
1154