1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/vmalloc.h> 35 36 #include <drm/ttm/ttm_bo.h> 37 #include <drm/ttm/ttm_placement.h> 38 #include <drm/ttm/ttm_tt.h> 39 40 #include <drm/drm_cache.h> 41 42 #include "ttm_bo_internal.h" 43 44 struct ttm_transfer_obj { 45 struct ttm_buffer_object base; 46 struct ttm_buffer_object *bo; 47 }; 48 49 int ttm_mem_io_reserve(struct ttm_device *bdev, 50 struct ttm_resource *mem) 51 { 52 if (mem->bus.offset || mem->bus.addr) 53 return 0; 54 55 mem->bus.is_iomem = false; 56 if (!bdev->funcs->io_mem_reserve) 57 return 0; 58 59 return bdev->funcs->io_mem_reserve(bdev, mem); 60 } 61 62 void ttm_mem_io_free(struct ttm_device *bdev, 63 struct ttm_resource *mem) 64 { 65 if (!mem) 66 return; 67 68 if (!mem->bus.offset && !mem->bus.addr) 69 return; 70 71 if (bdev->funcs->io_mem_free) 72 bdev->funcs->io_mem_free(bdev, mem); 73 74 mem->bus.offset = 0; 75 mem->bus.addr = NULL; 76 } 77 78 /** 79 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 80 * @clear: Whether to clear rather than copy. 81 * @num_pages: Number of pages of the operation. 82 * @dst_iter: A struct ttm_kmap_iter representing the destination resource. 83 * @src_iter: A struct ttm_kmap_iter representing the source resource. 84 * 85 * This function is intended to be able to move out async under a 86 * dma-fence if desired. 87 */ 88 void ttm_move_memcpy(bool clear, 89 u32 num_pages, 90 struct ttm_kmap_iter *dst_iter, 91 struct ttm_kmap_iter *src_iter) 92 { 93 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 94 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 95 struct iosys_map src_map, dst_map; 96 pgoff_t i; 97 98 /* Single TTM move. NOP */ 99 if (dst_ops->maps_tt && src_ops->maps_tt) 100 return; 101 102 /* Don't move nonexistent data. Clear destination instead. */ 103 if (clear) { 104 for (i = 0; i < num_pages; ++i) { 105 dst_ops->map_local(dst_iter, &dst_map, i); 106 if (dst_map.is_iomem) 107 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 108 else 109 memset(dst_map.vaddr, 0, PAGE_SIZE); 110 if (dst_ops->unmap_local) 111 dst_ops->unmap_local(dst_iter, &dst_map); 112 } 113 return; 114 } 115 116 for (i = 0; i < num_pages; ++i) { 117 dst_ops->map_local(dst_iter, &dst_map, i); 118 src_ops->map_local(src_iter, &src_map, i); 119 120 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 121 122 if (src_ops->unmap_local) 123 src_ops->unmap_local(src_iter, &src_map); 124 if (dst_ops->unmap_local) 125 dst_ops->unmap_local(dst_iter, &dst_map); 126 } 127 } 128 EXPORT_SYMBOL(ttm_move_memcpy); 129 130 /** 131 * ttm_bo_move_memcpy 132 * 133 * @bo: A pointer to a struct ttm_buffer_object. 134 * @ctx: operation context 135 * @dst_mem: struct ttm_resource indicating where to move. 136 * 137 * Fallback move function for a mappable buffer object in mappable memory. 138 * The function will, if successful, 139 * free any old aperture space, and set (@new_mem)->mm_node to NULL, 140 * and update the (@bo)->mem placement flags. If unsuccessful, the old 141 * data remains untouched, and it's up to the caller to free the 142 * memory space indicated by @new_mem. 143 * Returns: 144 * !0: Failure. 145 */ 146 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 147 struct ttm_operation_ctx *ctx, 148 struct ttm_resource *dst_mem) 149 { 150 struct ttm_device *bdev = bo->bdev; 151 struct ttm_resource_manager *dst_man = 152 ttm_manager_type(bo->bdev, dst_mem->mem_type); 153 struct ttm_tt *ttm = bo->ttm; 154 struct ttm_resource *src_mem = bo->resource; 155 struct ttm_resource_manager *src_man; 156 union { 157 struct ttm_kmap_iter_tt tt; 158 struct ttm_kmap_iter_linear_io io; 159 } _dst_iter, _src_iter; 160 struct ttm_kmap_iter *dst_iter, *src_iter; 161 bool clear; 162 int ret = 0; 163 164 if (WARN_ON(!src_mem)) 165 return -EINVAL; 166 167 src_man = ttm_manager_type(bdev, src_mem->mem_type); 168 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || 169 dst_man->use_tt)) { 170 ret = ttm_bo_populate(bo, ctx); 171 if (ret) 172 return ret; 173 } 174 175 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 176 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 177 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 178 if (IS_ERR(dst_iter)) 179 return PTR_ERR(dst_iter); 180 181 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 182 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 183 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 184 if (IS_ERR(src_iter)) { 185 ret = PTR_ERR(src_iter); 186 goto out_src_iter; 187 } 188 189 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); 190 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) 191 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter); 192 193 if (!src_iter->ops->maps_tt) 194 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); 195 ttm_bo_move_sync_cleanup(bo, dst_mem); 196 197 out_src_iter: 198 if (!dst_iter->ops->maps_tt) 199 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 200 201 return ret; 202 } 203 EXPORT_SYMBOL(ttm_bo_move_memcpy); 204 205 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 206 { 207 struct ttm_transfer_obj *fbo; 208 209 fbo = container_of(bo, struct ttm_transfer_obj, base); 210 dma_resv_fini(&fbo->base.base._resv); 211 ttm_bo_put(fbo->bo); 212 kfree(fbo); 213 } 214 215 /** 216 * ttm_buffer_object_transfer 217 * 218 * @bo: A pointer to a struct ttm_buffer_object. 219 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 220 * holding the data of @bo with the old placement. 221 * 222 * This is a utility function that may be called after an accelerated move 223 * has been scheduled. A new buffer object is created as a placeholder for 224 * the old data while it's being copied. When that buffer object is idle, 225 * it can be destroyed, releasing the space of the old placement. 226 * Returns: 227 * !0: Failure. 228 */ 229 230 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 231 struct ttm_buffer_object **new_obj) 232 { 233 struct ttm_transfer_obj *fbo; 234 int ret; 235 236 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 237 if (!fbo) 238 return -ENOMEM; 239 240 fbo->base = *bo; 241 242 /** 243 * Fix up members that we shouldn't copy directly: 244 * TODO: Explicit member copy would probably be better here. 245 */ 246 247 atomic_inc(&ttm_glob.bo_count); 248 drm_vma_node_reset(&fbo->base.base.vma_node); 249 250 kref_init(&fbo->base.kref); 251 fbo->base.destroy = &ttm_transfered_destroy; 252 fbo->base.pin_count = 0; 253 if (bo->type != ttm_bo_type_sg) 254 fbo->base.base.resv = &fbo->base.base._resv; 255 256 dma_resv_init(&fbo->base.base._resv); 257 fbo->base.base.dev = NULL; 258 ret = dma_resv_trylock(&fbo->base.base._resv); 259 WARN_ON(!ret); 260 261 if (fbo->base.resource) { 262 ttm_resource_set_bo(fbo->base.resource, &fbo->base); 263 bo->resource = NULL; 264 ttm_bo_set_bulk_move(&fbo->base, NULL); 265 } else { 266 fbo->base.bulk_move = NULL; 267 } 268 269 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1); 270 if (ret) { 271 kfree(fbo); 272 return ret; 273 } 274 275 ttm_bo_get(bo); 276 fbo->bo = bo; 277 278 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 279 280 *new_obj = &fbo->base; 281 return 0; 282 } 283 284 /** 285 * ttm_io_prot 286 * 287 * @bo: ttm buffer object 288 * @res: ttm resource object 289 * @tmp: Page protection flag for a normal, cached mapping. 290 * 291 * Utility function that returns the pgprot_t that should be used for 292 * setting up a PTE with the caching model indicated by @c_state. 293 */ 294 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 295 pgprot_t tmp) 296 { 297 struct ttm_resource_manager *man; 298 enum ttm_caching caching; 299 300 man = ttm_manager_type(bo->bdev, res->mem_type); 301 if (man->use_tt) { 302 caching = bo->ttm->caching; 303 if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED) 304 tmp = pgprot_decrypted(tmp); 305 } else { 306 caching = res->bus.caching; 307 } 308 309 return ttm_prot_from_caching(caching, tmp); 310 } 311 EXPORT_SYMBOL(ttm_io_prot); 312 313 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 314 unsigned long offset, 315 unsigned long size, 316 struct ttm_bo_kmap_obj *map) 317 { 318 struct ttm_resource *mem = bo->resource; 319 320 if (bo->resource->bus.addr) { 321 map->bo_kmap_type = ttm_bo_map_premapped; 322 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 323 } else { 324 resource_size_t res = bo->resource->bus.offset + offset; 325 326 map->bo_kmap_type = ttm_bo_map_iomap; 327 if (mem->bus.caching == ttm_write_combined) 328 map->virtual = ioremap_wc(res, size); 329 #ifdef CONFIG_X86 330 else if (mem->bus.caching == ttm_cached) 331 map->virtual = ioremap_cache(res, size); 332 #endif 333 else 334 map->virtual = ioremap(res, size); 335 } 336 return (!map->virtual) ? -ENOMEM : 0; 337 } 338 339 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 340 unsigned long start_page, 341 unsigned long num_pages, 342 struct ttm_bo_kmap_obj *map) 343 { 344 struct ttm_resource *mem = bo->resource; 345 struct ttm_operation_ctx ctx = { 346 .interruptible = false, 347 .no_wait_gpu = false 348 }; 349 struct ttm_tt *ttm = bo->ttm; 350 struct ttm_resource_manager *man = 351 ttm_manager_type(bo->bdev, bo->resource->mem_type); 352 pgprot_t prot; 353 int ret; 354 355 BUG_ON(!ttm); 356 357 ret = ttm_bo_populate(bo, &ctx); 358 if (ret) 359 return ret; 360 361 if (num_pages == 1 && ttm->caching == ttm_cached && 362 !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) { 363 /* 364 * We're mapping a single page, and the desired 365 * page protection is consistent with the bo. 366 */ 367 368 map->bo_kmap_type = ttm_bo_map_kmap; 369 map->page = ttm->pages[start_page]; 370 map->virtual = kmap(map->page); 371 } else { 372 /* 373 * We need to use vmap to get the desired page protection 374 * or to make the buffer object look contiguous. 375 */ 376 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 377 map->bo_kmap_type = ttm_bo_map_vmap; 378 map->virtual = vmap(ttm->pages + start_page, num_pages, 379 0, prot); 380 } 381 return (!map->virtual) ? -ENOMEM : 0; 382 } 383 384 /** 385 * ttm_bo_kmap_try_from_panic 386 * 387 * @bo: The buffer object 388 * @page: The page to map 389 * 390 * Sets up a kernel virtual mapping using kmap_local_page_try_from_panic(). 391 * This should only be called from the panic handler, if you make sure the bo 392 * is the one being displayed, so is properly allocated, and protected. 393 * 394 * Returns the vaddr, that you can use to write to the bo, and that you should 395 * pass to kunmap_local() when you're done with this page, or NULL if the bo 396 * is in iomem. 397 */ 398 void *ttm_bo_kmap_try_from_panic(struct ttm_buffer_object *bo, unsigned long page) 399 { 400 if (page + 1 > PFN_UP(bo->resource->size)) 401 return NULL; 402 403 if (!bo->resource->bus.is_iomem && bo->ttm->pages && bo->ttm->pages[page]) 404 return kmap_local_page_try_from_panic(bo->ttm->pages[page]); 405 406 return NULL; 407 } 408 EXPORT_SYMBOL(ttm_bo_kmap_try_from_panic); 409 410 /** 411 * ttm_bo_kmap 412 * 413 * @bo: The buffer object. 414 * @start_page: The first page to map. 415 * @num_pages: Number of pages to map. 416 * @map: pointer to a struct ttm_bo_kmap_obj representing the map. 417 * 418 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the 419 * data in the buffer object. The ttm_kmap_obj_virtual function can then be 420 * used to obtain a virtual address to the data. 421 * 422 * Returns 423 * -ENOMEM: Out of memory. 424 * -EINVAL: Invalid range. 425 */ 426 int ttm_bo_kmap(struct ttm_buffer_object *bo, 427 unsigned long start_page, unsigned long num_pages, 428 struct ttm_bo_kmap_obj *map) 429 { 430 unsigned long offset, size; 431 int ret; 432 433 map->virtual = NULL; 434 map->bo = bo; 435 if (num_pages > PFN_UP(bo->resource->size)) 436 return -EINVAL; 437 if ((start_page + num_pages) > PFN_UP(bo->resource->size)) 438 return -EINVAL; 439 440 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 441 if (ret) 442 return ret; 443 if (!bo->resource->bus.is_iomem) { 444 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 445 } else { 446 offset = start_page << PAGE_SHIFT; 447 size = num_pages << PAGE_SHIFT; 448 return ttm_bo_ioremap(bo, offset, size, map); 449 } 450 } 451 EXPORT_SYMBOL(ttm_bo_kmap); 452 453 /** 454 * ttm_bo_kunmap 455 * 456 * @map: Object describing the map to unmap. 457 * 458 * Unmaps a kernel map set up by ttm_bo_kmap. 459 */ 460 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 461 { 462 if (!map->virtual) 463 return; 464 switch (map->bo_kmap_type) { 465 case ttm_bo_map_iomap: 466 iounmap(map->virtual); 467 break; 468 case ttm_bo_map_vmap: 469 vunmap(map->virtual); 470 break; 471 case ttm_bo_map_kmap: 472 kunmap(map->page); 473 break; 474 case ttm_bo_map_premapped: 475 break; 476 default: 477 BUG(); 478 } 479 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 480 map->virtual = NULL; 481 map->page = NULL; 482 } 483 EXPORT_SYMBOL(ttm_bo_kunmap); 484 485 /** 486 * ttm_bo_vmap 487 * 488 * @bo: The buffer object. 489 * @map: pointer to a struct iosys_map representing the map. 490 * 491 * Sets up a kernel virtual mapping, using ioremap or vmap to the 492 * data in the buffer object. The parameter @map returns the virtual 493 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap(). 494 * 495 * Returns 496 * -ENOMEM: Out of memory. 497 * -EINVAL: Invalid range. 498 */ 499 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) 500 { 501 struct ttm_resource *mem = bo->resource; 502 int ret; 503 504 dma_resv_assert_held(bo->base.resv); 505 506 ret = ttm_mem_io_reserve(bo->bdev, mem); 507 if (ret) 508 return ret; 509 510 if (mem->bus.is_iomem) { 511 void __iomem *vaddr_iomem; 512 513 if (mem->bus.addr) 514 vaddr_iomem = (void __iomem *)mem->bus.addr; 515 else if (mem->bus.caching == ttm_write_combined) 516 vaddr_iomem = ioremap_wc(mem->bus.offset, 517 bo->base.size); 518 #ifdef CONFIG_X86 519 else if (mem->bus.caching == ttm_cached) 520 vaddr_iomem = ioremap_cache(mem->bus.offset, 521 bo->base.size); 522 #endif 523 else 524 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 525 526 if (!vaddr_iomem) 527 return -ENOMEM; 528 529 iosys_map_set_vaddr_iomem(map, vaddr_iomem); 530 531 } else { 532 struct ttm_operation_ctx ctx = { 533 .interruptible = false, 534 .no_wait_gpu = false 535 }; 536 struct ttm_tt *ttm = bo->ttm; 537 pgprot_t prot; 538 void *vaddr; 539 540 ret = ttm_bo_populate(bo, &ctx); 541 if (ret) 542 return ret; 543 544 /* 545 * We need to use vmap to get the desired page protection 546 * or to make the buffer object look contiguous. 547 */ 548 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 549 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 550 if (!vaddr) 551 return -ENOMEM; 552 553 iosys_map_set_vaddr(map, vaddr); 554 } 555 556 return 0; 557 } 558 EXPORT_SYMBOL(ttm_bo_vmap); 559 560 /** 561 * ttm_bo_vunmap 562 * 563 * @bo: The buffer object. 564 * @map: Object describing the map to unmap. 565 * 566 * Unmaps a kernel map set up by ttm_bo_vmap(). 567 */ 568 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) 569 { 570 struct ttm_resource *mem = bo->resource; 571 572 dma_resv_assert_held(bo->base.resv); 573 574 if (iosys_map_is_null(map)) 575 return; 576 577 if (!map->is_iomem) 578 vunmap(map->vaddr); 579 else if (!mem->bus.addr) 580 iounmap(map->vaddr_iomem); 581 iosys_map_clear(map); 582 583 ttm_mem_io_free(bo->bdev, bo->resource); 584 } 585 EXPORT_SYMBOL(ttm_bo_vunmap); 586 587 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 588 bool dst_use_tt) 589 { 590 long ret; 591 592 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 593 false, 15 * HZ); 594 if (ret == 0) 595 return -EBUSY; 596 if (ret < 0) 597 return ret; 598 599 if (!dst_use_tt) 600 ttm_bo_tt_destroy(bo); 601 ttm_resource_free(bo, &bo->resource); 602 return 0; 603 } 604 605 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 606 struct dma_fence *fence, 607 bool dst_use_tt) 608 { 609 struct ttm_buffer_object *ghost_obj; 610 int ret; 611 612 /** 613 * This should help pipeline ordinary buffer moves. 614 * 615 * Hang old buffer memory on a new buffer object, 616 * and leave it to be released when the GPU 617 * operation has completed. 618 */ 619 620 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 621 if (ret) 622 return ret; 623 624 dma_resv_add_fence(&ghost_obj->base._resv, fence, 625 DMA_RESV_USAGE_KERNEL); 626 627 /** 628 * If we're not moving to fixed memory, the TTM object 629 * needs to stay alive. Otherwhise hang it on the ghost 630 * bo to be unbound and destroyed. 631 */ 632 633 if (dst_use_tt) 634 ghost_obj->ttm = NULL; 635 else 636 bo->ttm = NULL; 637 638 dma_resv_unlock(&ghost_obj->base._resv); 639 ttm_bo_put(ghost_obj); 640 return 0; 641 } 642 643 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 644 struct dma_fence *fence) 645 { 646 struct ttm_device *bdev = bo->bdev; 647 struct ttm_resource_manager *from; 648 649 from = ttm_manager_type(bdev, bo->resource->mem_type); 650 651 /** 652 * BO doesn't have a TTM we need to bind/unbind. Just remember 653 * this eviction and free up the allocation 654 */ 655 spin_lock(&from->move_lock); 656 if (!from->move || dma_fence_is_later(fence, from->move)) { 657 dma_fence_put(from->move); 658 from->move = dma_fence_get(fence); 659 } 660 spin_unlock(&from->move_lock); 661 662 ttm_resource_free(bo, &bo->resource); 663 } 664 665 /** 666 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies 667 * 668 * @bo: A pointer to a struct ttm_buffer_object. 669 * @fence: A fence object that signals when moving is complete. 670 * @evict: This is an evict move. Don't return until the buffer is idle. 671 * @pipeline: evictions are to be pipelined. 672 * @new_mem: struct ttm_resource indicating where to move. 673 * 674 * Accelerated move function to be called when an accelerated move 675 * has been scheduled. The function will create a new temporary buffer object 676 * representing the old placement, and put the sync object on both buffer 677 * objects. After that the newly created buffer object is unref'd to be 678 * destroyed when the move is complete. This will help pipeline 679 * buffer moves. 680 */ 681 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 682 struct dma_fence *fence, 683 bool evict, 684 bool pipeline, 685 struct ttm_resource *new_mem) 686 { 687 struct ttm_device *bdev = bo->bdev; 688 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 689 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 690 int ret = 0; 691 692 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); 693 if (!evict) 694 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 695 else if (!from->use_tt && pipeline) 696 ttm_bo_move_pipeline_evict(bo, fence); 697 else 698 ret = ttm_bo_wait_free_node(bo, man->use_tt); 699 700 if (ret) 701 return ret; 702 703 ttm_bo_assign_mem(bo, new_mem); 704 705 return 0; 706 } 707 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 708 709 /** 710 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish 711 * 712 * @bo: A pointer to a struct ttm_buffer_object. 713 * @new_mem: struct ttm_resource indicating where to move. 714 * 715 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed 716 * by the caller to be idle. Typically used after memcpy buffer moves. 717 */ 718 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo, 719 struct ttm_resource *new_mem) 720 { 721 struct ttm_device *bdev = bo->bdev; 722 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 723 int ret; 724 725 ret = ttm_bo_wait_free_node(bo, man->use_tt); 726 if (WARN_ON(ret)) 727 return; 728 729 ttm_bo_assign_mem(bo, new_mem); 730 } 731 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup); 732 733 /** 734 * ttm_bo_pipeline_gutting - purge the contents of a bo 735 * @bo: The buffer object 736 * 737 * Purge the contents of a bo, async if the bo is not idle. 738 * After a successful call, the bo is left unpopulated in 739 * system placement. The function may wait uninterruptible 740 * for idle on OOM. 741 * 742 * Return: 0 if successful, negative error code on failure. 743 */ 744 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 745 { 746 struct ttm_buffer_object *ghost; 747 struct ttm_tt *ttm; 748 int ret; 749 750 /* If already idle, no need for ghost object dance. */ 751 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) { 752 if (!bo->ttm) { 753 /* See comment below about clearing. */ 754 ret = ttm_tt_create(bo, true); 755 if (ret) 756 return ret; 757 } else { 758 ttm_tt_unpopulate(bo->bdev, bo->ttm); 759 if (bo->type == ttm_bo_type_device) 760 ttm_tt_mark_for_clear(bo->ttm); 761 } 762 ttm_resource_free(bo, &bo->resource); 763 return 0; 764 } 765 766 /* 767 * We need an unpopulated ttm_tt after giving our current one, 768 * if any, to the ghost object. And we can't afford to fail 769 * creating one *after* the operation. If the bo subsequently gets 770 * resurrected, make sure it's cleared (if ttm_bo_type_device) 771 * to avoid leaking sensitive information to user-space. 772 */ 773 774 ttm = bo->ttm; 775 bo->ttm = NULL; 776 ret = ttm_tt_create(bo, true); 777 swap(bo->ttm, ttm); 778 if (ret) 779 return ret; 780 781 ret = ttm_buffer_object_transfer(bo, &ghost); 782 if (ret) 783 goto error_destroy_tt; 784 785 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 786 /* Last resort, wait for the BO to be idle when we are OOM */ 787 if (ret) { 788 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 789 false, MAX_SCHEDULE_TIMEOUT); 790 } 791 792 dma_resv_unlock(&ghost->base._resv); 793 ttm_bo_put(ghost); 794 bo->ttm = ttm; 795 return 0; 796 797 error_destroy_tt: 798 ttm_tt_destroy(bo->bdev, ttm); 799 return ret; 800 } 801 802 static bool ttm_lru_walk_trylock(struct ttm_bo_lru_cursor *curs, 803 struct ttm_buffer_object *bo) 804 { 805 struct ttm_operation_ctx *ctx = curs->arg->ctx; 806 807 curs->needs_unlock = false; 808 809 if (dma_resv_trylock(bo->base.resv)) { 810 curs->needs_unlock = true; 811 return true; 812 } 813 814 if (bo->base.resv == ctx->resv && ctx->allow_res_evict) { 815 dma_resv_assert_held(bo->base.resv); 816 return true; 817 } 818 819 return false; 820 } 821 822 static int ttm_lru_walk_ticketlock(struct ttm_bo_lru_cursor *curs, 823 struct ttm_buffer_object *bo) 824 { 825 struct ttm_lru_walk_arg *arg = curs->arg; 826 struct dma_resv *resv = bo->base.resv; 827 int ret; 828 829 if (arg->ctx->interruptible) 830 ret = dma_resv_lock_interruptible(resv, arg->ticket); 831 else 832 ret = dma_resv_lock(resv, arg->ticket); 833 834 if (!ret) { 835 curs->needs_unlock = true; 836 /* 837 * Only a single ticketlock per loop. Ticketlocks are prone 838 * to return -EDEADLK causing the eviction to fail, so 839 * after waiting for the ticketlock, revert back to 840 * trylocking for this walk. 841 */ 842 arg->ticket = NULL; 843 } else if (ret == -EDEADLK) { 844 /* Caller needs to exit the ww transaction. */ 845 ret = -ENOSPC; 846 } 847 848 return ret; 849 } 850 851 /** 852 * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on 853 * valid items. 854 * @walk: describe the walks and actions taken 855 * @bdev: The TTM device. 856 * @man: The struct ttm_resource manager whose LRU lists we're walking. 857 * @target: The end condition for the walk. 858 * 859 * The LRU lists of @man are walk, and for each struct ttm_resource encountered, 860 * the corresponding ttm_buffer_object is locked and taken a reference on, and 861 * the LRU lock is dropped. the LRU lock may be dropped before locking and, in 862 * that case, it's verified that the item actually remains on the LRU list after 863 * the lock, and that the buffer object didn't switch resource in between. 864 * 865 * With a locked object, the actions indicated by @walk->process_bo are 866 * performed, and after that, the bo is unlocked, the refcount dropped and the 867 * next struct ttm_resource is processed. Here, the walker relies on 868 * TTM's restartable LRU list implementation. 869 * 870 * Typically @walk->process_bo() would return the number of pages evicted, 871 * swapped or shrunken, so that when the total exceeds @target, or when the 872 * LRU list has been walked in full, iteration is terminated. It's also terminated 873 * on error. Note that the definition of @target is done by the caller, it 874 * could have a different meaning than the number of pages. 875 * 876 * Note that the way dma_resv individualization is done, locking needs to be done 877 * either with the LRU lock held (trylocking only) or with a reference on the 878 * object. 879 * 880 * Return: The progress made towards target or negative error code on error. 881 */ 882 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev, 883 struct ttm_resource_manager *man, s64 target) 884 { 885 struct ttm_bo_lru_cursor cursor; 886 struct ttm_buffer_object *bo; 887 s64 progress = 0; 888 s64 lret; 889 890 ttm_bo_lru_for_each_reserved_guarded(&cursor, man, &walk->arg, bo) { 891 lret = walk->ops->process_bo(walk, bo); 892 if (lret == -EBUSY || lret == -EALREADY) 893 lret = 0; 894 progress = (lret < 0) ? lret : progress + lret; 895 if (progress < 0 || progress >= target) 896 break; 897 } 898 if (IS_ERR(bo)) 899 return PTR_ERR(bo); 900 901 return progress; 902 } 903 EXPORT_SYMBOL(ttm_lru_walk_for_evict); 904 905 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs) 906 { 907 struct ttm_buffer_object *bo = curs->bo; 908 909 if (bo) { 910 if (curs->needs_unlock) 911 dma_resv_unlock(bo->base.resv); 912 ttm_bo_put(bo); 913 curs->bo = NULL; 914 } 915 } 916 917 /** 918 * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor 919 * and clean up any iteration it was used for. 920 * @curs: The cursor. 921 */ 922 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs) 923 { 924 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; 925 926 ttm_bo_lru_cursor_cleanup_bo(curs); 927 spin_lock(lru_lock); 928 ttm_resource_cursor_fini(&curs->res_curs); 929 spin_unlock(lru_lock); 930 } 931 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini); 932 933 /** 934 * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor 935 * @curs: The ttm_bo_lru_cursor to initialize. 936 * @man: The ttm resource_manager whose LRU lists to iterate over. 937 * @arg: The ttm_lru_walk_arg to govern the walk. 938 * 939 * Initialize a struct ttm_bo_lru_cursor. 940 * 941 * Return: Pointer to @curs. The function does not fail. 942 */ 943 struct ttm_bo_lru_cursor * 944 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs, 945 struct ttm_resource_manager *man, 946 struct ttm_lru_walk_arg *arg) 947 { 948 memset(curs, 0, sizeof(*curs)); 949 ttm_resource_cursor_init(&curs->res_curs, man); 950 curs->arg = arg; 951 952 return curs; 953 } 954 EXPORT_SYMBOL(ttm_bo_lru_cursor_init); 955 956 static struct ttm_buffer_object * 957 __ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs) 958 { 959 spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock; 960 struct ttm_resource *res = NULL; 961 struct ttm_buffer_object *bo; 962 struct ttm_lru_walk_arg *arg = curs->arg; 963 bool first = !curs->bo; 964 965 ttm_bo_lru_cursor_cleanup_bo(curs); 966 967 spin_lock(lru_lock); 968 for (;;) { 969 int mem_type, ret = 0; 970 bool bo_locked = false; 971 972 if (first) { 973 res = ttm_resource_manager_first(&curs->res_curs); 974 first = false; 975 } else { 976 res = ttm_resource_manager_next(&curs->res_curs); 977 } 978 if (!res) 979 break; 980 981 bo = res->bo; 982 if (ttm_lru_walk_trylock(curs, bo)) 983 bo_locked = true; 984 else if (!arg->ticket || arg->ctx->no_wait_gpu || arg->trylock_only) 985 continue; 986 987 if (!ttm_bo_get_unless_zero(bo)) { 988 if (curs->needs_unlock) 989 dma_resv_unlock(bo->base.resv); 990 continue; 991 } 992 993 mem_type = res->mem_type; 994 spin_unlock(lru_lock); 995 if (!bo_locked) 996 ret = ttm_lru_walk_ticketlock(curs, bo); 997 998 /* 999 * Note that in between the release of the lru lock and the 1000 * ticketlock, the bo may have switched resource, 1001 * and also memory type, since the resource may have been 1002 * freed and allocated again with a different memory type. 1003 * In that case, just skip it. 1004 */ 1005 curs->bo = bo; 1006 if (!ret && bo->resource && bo->resource->mem_type == mem_type) 1007 return bo; 1008 1009 ttm_bo_lru_cursor_cleanup_bo(curs); 1010 if (ret && ret != -EALREADY) 1011 return ERR_PTR(ret); 1012 1013 spin_lock(lru_lock); 1014 } 1015 1016 spin_unlock(lru_lock); 1017 return res ? bo : NULL; 1018 } 1019 1020 /** 1021 * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists 1022 * to find and lock buffer object. 1023 * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and 1024 * ttm_bo_lru_cursor_first(). 1025 * 1026 * Return: A pointer to a locked and reference-counted buffer object, 1027 * or NULL if none could be found and looping should be terminated. 1028 */ 1029 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs) 1030 { 1031 return __ttm_bo_lru_cursor_next(curs); 1032 } 1033 EXPORT_SYMBOL(ttm_bo_lru_cursor_next); 1034 1035 /** 1036 * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists 1037 * to find and lock buffer object. 1038 * @curs: The cursor initialized using ttm_bo_lru_cursor_init(). 1039 * 1040 * Return: A pointer to a locked and reference-counted buffer object, 1041 * or NULL if none could be found and looping should be terminated. 1042 */ 1043 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs) 1044 { 1045 ttm_bo_lru_cursor_cleanup_bo(curs); 1046 return __ttm_bo_lru_cursor_next(curs); 1047 } 1048 EXPORT_SYMBOL(ttm_bo_lru_cursor_first); 1049 1050 /** 1051 * ttm_bo_shrink() - Helper to shrink a ttm buffer object. 1052 * @ctx: The struct ttm_operation_ctx used for the shrinking operation. 1053 * @bo: The buffer object. 1054 * @flags: Flags governing the shrinking behaviour. 1055 * 1056 * The function uses the ttm_tt_back_up functionality to back up or 1057 * purge a struct ttm_tt. If the bo is not in system, it's first 1058 * moved there. 1059 * 1060 * Return: The number of pages shrunken or purged, or 1061 * negative error code on failure. 1062 */ 1063 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1064 const struct ttm_bo_shrink_flags flags) 1065 { 1066 static const struct ttm_place sys_placement_flags = { 1067 .fpfn = 0, 1068 .lpfn = 0, 1069 .mem_type = TTM_PL_SYSTEM, 1070 .flags = 0, 1071 }; 1072 static struct ttm_placement sys_placement = { 1073 .num_placement = 1, 1074 .placement = &sys_placement_flags, 1075 }; 1076 struct ttm_tt *tt = bo->ttm; 1077 long lret; 1078 1079 dma_resv_assert_held(bo->base.resv); 1080 1081 if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) { 1082 int ret = ttm_bo_validate(bo, &sys_placement, ctx); 1083 1084 /* Consider -ENOMEM and -ENOSPC non-fatal. */ 1085 if (ret) { 1086 if (ret == -ENOMEM || ret == -ENOSPC) 1087 ret = -EBUSY; 1088 return ret; 1089 } 1090 } 1091 1092 ttm_bo_unmap_virtual(bo); 1093 lret = ttm_bo_wait_ctx(bo, ctx); 1094 if (lret < 0) 1095 return lret; 1096 1097 if (bo->bulk_move) { 1098 spin_lock(&bo->bdev->lru_lock); 1099 ttm_resource_del_bulk_move(bo->resource, bo); 1100 spin_unlock(&bo->bdev->lru_lock); 1101 } 1102 1103 lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags) 1104 {.purge = flags.purge, 1105 .writeback = flags.writeback}); 1106 1107 if (lret <= 0 && bo->bulk_move) { 1108 spin_lock(&bo->bdev->lru_lock); 1109 ttm_resource_add_bulk_move(bo->resource, bo); 1110 spin_unlock(&bo->bdev->lru_lock); 1111 } 1112 1113 if (lret < 0 && lret != -EINTR) 1114 return -EBUSY; 1115 1116 return lret; 1117 } 1118 EXPORT_SYMBOL(ttm_bo_shrink); 1119 1120 /** 1121 * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking 1122 * @ctx: The struct ttm_operation_ctx governing the shrinking. 1123 * @bo: The candidate for shrinking. 1124 * 1125 * Check whether the object, given the information available to TTM, 1126 * is suitable for shinking, This function can and should be used 1127 * before attempting to shrink an object. 1128 * 1129 * Return: true if suitable. false if not. 1130 */ 1131 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx) 1132 { 1133 return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count && 1134 (!ctx->no_wait_gpu || 1135 dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)); 1136 } 1137 EXPORT_SYMBOL(ttm_bo_shrink_suitable); 1138 1139 /** 1140 * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU 1141 * during shrinking 1142 * 1143 * In some situations, like direct reclaim, waiting (in particular gpu waiting) 1144 * should be avoided since it may stall a system that could otherwise make progress 1145 * shrinking something else less time consuming. 1146 * 1147 * Return: true if gpu waiting should be avoided, false if not. 1148 */ 1149 bool ttm_bo_shrink_avoid_wait(void) 1150 { 1151 return !current_is_kswapd(); 1152 } 1153 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait); 1154