1 /************************************************************************** 2 * 3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #include <drm/ttm/ttm_bo_driver.h> 32 #include <drm/ttm/ttm_placement.h> 33 #include <linux/io.h> 34 #include <linux/highmem.h> 35 #include <linux/wait.h> 36 #include <linux/slab.h> 37 #include <linux/vmalloc.h> 38 #include <linux/module.h> 39 40 void ttm_bo_free_old_node(struct ttm_buffer_object *bo) 41 { 42 ttm_bo_mem_put(bo, &bo->mem); 43 } 44 45 int ttm_bo_move_ttm(struct ttm_buffer_object *bo, 46 bool evict, 47 bool no_wait_gpu, struct ttm_mem_reg *new_mem) 48 { 49 struct ttm_tt *ttm = bo->ttm; 50 struct ttm_mem_reg *old_mem = &bo->mem; 51 int ret; 52 53 if (old_mem->mem_type != TTM_PL_SYSTEM) { 54 ttm_tt_unbind(ttm); 55 ttm_bo_free_old_node(bo); 56 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, 57 TTM_PL_MASK_MEM); 58 old_mem->mem_type = TTM_PL_SYSTEM; 59 } 60 61 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); 62 if (unlikely(ret != 0)) 63 return ret; 64 65 if (new_mem->mem_type != TTM_PL_SYSTEM) { 66 ret = ttm_tt_bind(ttm, new_mem); 67 if (unlikely(ret != 0)) 68 return ret; 69 } 70 71 *old_mem = *new_mem; 72 new_mem->mm_node = NULL; 73 74 return 0; 75 } 76 EXPORT_SYMBOL(ttm_bo_move_ttm); 77 78 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible) 79 { 80 if (likely(man->io_reserve_fastpath)) 81 return 0; 82 83 if (interruptible) 84 return mutex_lock_interruptible(&man->io_reserve_mutex); 85 86 mutex_lock(&man->io_reserve_mutex); 87 return 0; 88 } 89 90 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man) 91 { 92 if (likely(man->io_reserve_fastpath)) 93 return; 94 95 mutex_unlock(&man->io_reserve_mutex); 96 } 97 98 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man) 99 { 100 struct ttm_buffer_object *bo; 101 102 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru)) 103 return -EAGAIN; 104 105 bo = list_first_entry(&man->io_reserve_lru, 106 struct ttm_buffer_object, 107 io_reserve_lru); 108 list_del_init(&bo->io_reserve_lru); 109 ttm_bo_unmap_virtual_locked(bo); 110 111 return 0; 112 } 113 114 static int ttm_mem_io_reserve(struct ttm_bo_device *bdev, 115 struct ttm_mem_reg *mem) 116 { 117 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 118 int ret = 0; 119 120 if (!bdev->driver->io_mem_reserve) 121 return 0; 122 if (likely(man->io_reserve_fastpath)) 123 return bdev->driver->io_mem_reserve(bdev, mem); 124 125 if (bdev->driver->io_mem_reserve && 126 mem->bus.io_reserved_count++ == 0) { 127 retry: 128 ret = bdev->driver->io_mem_reserve(bdev, mem); 129 if (ret == -EAGAIN) { 130 ret = ttm_mem_io_evict(man); 131 if (ret == 0) 132 goto retry; 133 } 134 } 135 return ret; 136 } 137 138 static void ttm_mem_io_free(struct ttm_bo_device *bdev, 139 struct ttm_mem_reg *mem) 140 { 141 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 142 143 if (likely(man->io_reserve_fastpath)) 144 return; 145 146 if (bdev->driver->io_mem_reserve && 147 --mem->bus.io_reserved_count == 0 && 148 bdev->driver->io_mem_free) 149 bdev->driver->io_mem_free(bdev, mem); 150 151 } 152 153 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo) 154 { 155 struct ttm_mem_reg *mem = &bo->mem; 156 int ret; 157 158 if (!mem->bus.io_reserved_vm) { 159 struct ttm_mem_type_manager *man = 160 &bo->bdev->man[mem->mem_type]; 161 162 ret = ttm_mem_io_reserve(bo->bdev, mem); 163 if (unlikely(ret != 0)) 164 return ret; 165 mem->bus.io_reserved_vm = true; 166 if (man->use_io_reserve_lru) 167 list_add_tail(&bo->io_reserve_lru, 168 &man->io_reserve_lru); 169 } 170 return 0; 171 } 172 173 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo) 174 { 175 struct ttm_mem_reg *mem = &bo->mem; 176 177 if (mem->bus.io_reserved_vm) { 178 mem->bus.io_reserved_vm = false; 179 list_del_init(&bo->io_reserve_lru); 180 ttm_mem_io_free(bo->bdev, mem); 181 } 182 } 183 184 int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, 185 void **virtual) 186 { 187 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 188 int ret; 189 void *addr; 190 191 *virtual = NULL; 192 (void) ttm_mem_io_lock(man, false); 193 ret = ttm_mem_io_reserve(bdev, mem); 194 ttm_mem_io_unlock(man); 195 if (ret || !mem->bus.is_iomem) 196 return ret; 197 198 if (mem->bus.addr) { 199 addr = mem->bus.addr; 200 } else { 201 if (mem->placement & TTM_PL_FLAG_WC) 202 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); 203 else 204 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); 205 if (!addr) { 206 (void) ttm_mem_io_lock(man, false); 207 ttm_mem_io_free(bdev, mem); 208 ttm_mem_io_unlock(man); 209 return -ENOMEM; 210 } 211 } 212 *virtual = addr; 213 return 0; 214 } 215 216 void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, 217 void *virtual) 218 { 219 struct ttm_mem_type_manager *man; 220 221 man = &bdev->man[mem->mem_type]; 222 223 if (virtual && mem->bus.addr == NULL) 224 iounmap(virtual); 225 (void) ttm_mem_io_lock(man, false); 226 ttm_mem_io_free(bdev, mem); 227 ttm_mem_io_unlock(man); 228 } 229 230 static int ttm_copy_io_page(void *dst, void *src, unsigned long page) 231 { 232 uint32_t *dstP = 233 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); 234 uint32_t *srcP = 235 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); 236 237 int i; 238 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) 239 iowrite32(ioread32(srcP++), dstP++); 240 return 0; 241 } 242 243 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, 244 unsigned long page, 245 pgprot_t prot) 246 { 247 struct page *d = ttm->pages[page]; 248 void *dst; 249 250 if (!d) 251 return -ENOMEM; 252 253 src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); 254 255 #ifdef CONFIG_X86 256 dst = kmap_atomic_prot(d, prot); 257 #else 258 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 259 dst = vmap(&d, 1, 0, prot); 260 else 261 dst = kmap(d); 262 #endif 263 if (!dst) 264 return -ENOMEM; 265 266 memcpy_fromio(dst, src, PAGE_SIZE); 267 268 #ifdef CONFIG_X86 269 kunmap_atomic(dst); 270 #else 271 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 272 vunmap(dst); 273 else 274 kunmap(d); 275 #endif 276 277 return 0; 278 } 279 280 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, 281 unsigned long page, 282 pgprot_t prot) 283 { 284 struct page *s = ttm->pages[page]; 285 void *src; 286 287 if (!s) 288 return -ENOMEM; 289 290 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); 291 #ifdef CONFIG_X86 292 src = kmap_atomic_prot(s, prot); 293 #else 294 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 295 src = vmap(&s, 1, 0, prot); 296 else 297 src = kmap(s); 298 #endif 299 if (!src) 300 return -ENOMEM; 301 302 memcpy_toio(dst, src, PAGE_SIZE); 303 304 #ifdef CONFIG_X86 305 kunmap_atomic(src); 306 #else 307 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 308 vunmap(src); 309 else 310 kunmap(s); 311 #endif 312 313 return 0; 314 } 315 316 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 317 bool evict, bool no_wait_gpu, 318 struct ttm_mem_reg *new_mem) 319 { 320 struct ttm_bo_device *bdev = bo->bdev; 321 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; 322 struct ttm_tt *ttm = bo->ttm; 323 struct ttm_mem_reg *old_mem = &bo->mem; 324 struct ttm_mem_reg old_copy = *old_mem; 325 void *old_iomap; 326 void *new_iomap; 327 int ret; 328 unsigned long i; 329 unsigned long page; 330 unsigned long add = 0; 331 int dir; 332 333 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); 334 if (ret) 335 return ret; 336 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); 337 if (ret) 338 goto out; 339 340 if (old_iomap == NULL && new_iomap == NULL) 341 goto out2; 342 if (old_iomap == NULL && ttm == NULL) 343 goto out2; 344 345 if (ttm->state == tt_unpopulated) { 346 ret = ttm->bdev->driver->ttm_tt_populate(ttm); 347 if (ret) 348 goto out1; 349 } 350 351 add = 0; 352 dir = 1; 353 354 if ((old_mem->mem_type == new_mem->mem_type) && 355 (new_mem->start < old_mem->start + old_mem->size)) { 356 dir = -1; 357 add = new_mem->num_pages - 1; 358 } 359 360 for (i = 0; i < new_mem->num_pages; ++i) { 361 page = i * dir + add; 362 if (old_iomap == NULL) { 363 pgprot_t prot = ttm_io_prot(old_mem->placement, 364 PAGE_KERNEL); 365 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, 366 prot); 367 } else if (new_iomap == NULL) { 368 pgprot_t prot = ttm_io_prot(new_mem->placement, 369 PAGE_KERNEL); 370 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, 371 prot); 372 } else 373 ret = ttm_copy_io_page(new_iomap, old_iomap, page); 374 if (ret) 375 goto out1; 376 } 377 mb(); 378 out2: 379 old_copy = *old_mem; 380 *old_mem = *new_mem; 381 new_mem->mm_node = NULL; 382 383 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) { 384 ttm_tt_unbind(ttm); 385 ttm_tt_destroy(ttm); 386 bo->ttm = NULL; 387 } 388 389 out1: 390 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap); 391 out: 392 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); 393 ttm_bo_mem_put(bo, &old_copy); 394 return ret; 395 } 396 EXPORT_SYMBOL(ttm_bo_move_memcpy); 397 398 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 399 { 400 kfree(bo); 401 } 402 403 /** 404 * ttm_buffer_object_transfer 405 * 406 * @bo: A pointer to a struct ttm_buffer_object. 407 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 408 * holding the data of @bo with the old placement. 409 * 410 * This is a utility function that may be called after an accelerated move 411 * has been scheduled. A new buffer object is created as a placeholder for 412 * the old data while it's being copied. When that buffer object is idle, 413 * it can be destroyed, releasing the space of the old placement. 414 * Returns: 415 * !0: Failure. 416 */ 417 418 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 419 struct ttm_buffer_object **new_obj) 420 { 421 struct ttm_buffer_object *fbo; 422 struct ttm_bo_device *bdev = bo->bdev; 423 struct ttm_bo_driver *driver = bdev->driver; 424 425 fbo = kzalloc(sizeof(*fbo), GFP_KERNEL); 426 if (!fbo) 427 return -ENOMEM; 428 429 *fbo = *bo; 430 431 /** 432 * Fix up members that we shouldn't copy directly: 433 * TODO: Explicit member copy would probably be better here. 434 */ 435 436 init_waitqueue_head(&fbo->event_queue); 437 INIT_LIST_HEAD(&fbo->ddestroy); 438 INIT_LIST_HEAD(&fbo->lru); 439 INIT_LIST_HEAD(&fbo->swap); 440 INIT_LIST_HEAD(&fbo->io_reserve_lru); 441 fbo->vm_node = NULL; 442 atomic_set(&fbo->cpu_writers, 0); 443 444 fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj); 445 kref_init(&fbo->list_kref); 446 kref_init(&fbo->kref); 447 fbo->destroy = &ttm_transfered_destroy; 448 fbo->acc_size = 0; 449 450 *new_obj = fbo; 451 return 0; 452 } 453 454 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) 455 { 456 #if defined(__i386__) || defined(__x86_64__) 457 if (caching_flags & TTM_PL_FLAG_WC) 458 tmp = pgprot_writecombine(tmp); 459 else if (boot_cpu_data.x86 > 3) 460 tmp = pgprot_noncached(tmp); 461 462 #elif defined(__powerpc__) 463 if (!(caching_flags & TTM_PL_FLAG_CACHED)) { 464 pgprot_val(tmp) |= _PAGE_NO_CACHE; 465 if (caching_flags & TTM_PL_FLAG_UNCACHED) 466 pgprot_val(tmp) |= _PAGE_GUARDED; 467 } 468 #endif 469 #if defined(__ia64__) 470 if (caching_flags & TTM_PL_FLAG_WC) 471 tmp = pgprot_writecombine(tmp); 472 else 473 tmp = pgprot_noncached(tmp); 474 #endif 475 #if defined(__sparc__) || defined(__mips__) 476 if (!(caching_flags & TTM_PL_FLAG_CACHED)) 477 tmp = pgprot_noncached(tmp); 478 #endif 479 return tmp; 480 } 481 EXPORT_SYMBOL(ttm_io_prot); 482 483 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 484 unsigned long offset, 485 unsigned long size, 486 struct ttm_bo_kmap_obj *map) 487 { 488 struct ttm_mem_reg *mem = &bo->mem; 489 490 if (bo->mem.bus.addr) { 491 map->bo_kmap_type = ttm_bo_map_premapped; 492 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); 493 } else { 494 map->bo_kmap_type = ttm_bo_map_iomap; 495 if (mem->placement & TTM_PL_FLAG_WC) 496 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset, 497 size); 498 else 499 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset, 500 size); 501 } 502 return (!map->virtual) ? -ENOMEM : 0; 503 } 504 505 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 506 unsigned long start_page, 507 unsigned long num_pages, 508 struct ttm_bo_kmap_obj *map) 509 { 510 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot; 511 struct ttm_tt *ttm = bo->ttm; 512 int ret; 513 514 BUG_ON(!ttm); 515 516 if (ttm->state == tt_unpopulated) { 517 ret = ttm->bdev->driver->ttm_tt_populate(ttm); 518 if (ret) 519 return ret; 520 } 521 522 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { 523 /* 524 * We're mapping a single page, and the desired 525 * page protection is consistent with the bo. 526 */ 527 528 map->bo_kmap_type = ttm_bo_map_kmap; 529 map->page = ttm->pages[start_page]; 530 map->virtual = kmap(map->page); 531 } else { 532 /* 533 * We need to use vmap to get the desired page protection 534 * or to make the buffer object look contiguous. 535 */ 536 prot = (mem->placement & TTM_PL_FLAG_CACHED) ? 537 PAGE_KERNEL : 538 ttm_io_prot(mem->placement, PAGE_KERNEL); 539 map->bo_kmap_type = ttm_bo_map_vmap; 540 map->virtual = vmap(ttm->pages + start_page, num_pages, 541 0, prot); 542 } 543 return (!map->virtual) ? -ENOMEM : 0; 544 } 545 546 int ttm_bo_kmap(struct ttm_buffer_object *bo, 547 unsigned long start_page, unsigned long num_pages, 548 struct ttm_bo_kmap_obj *map) 549 { 550 struct ttm_mem_type_manager *man = 551 &bo->bdev->man[bo->mem.mem_type]; 552 unsigned long offset, size; 553 int ret; 554 555 BUG_ON(!list_empty(&bo->swap)); 556 map->virtual = NULL; 557 map->bo = bo; 558 if (num_pages > bo->num_pages) 559 return -EINVAL; 560 if (start_page > bo->num_pages) 561 return -EINVAL; 562 #if 0 563 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC)) 564 return -EPERM; 565 #endif 566 (void) ttm_mem_io_lock(man, false); 567 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); 568 ttm_mem_io_unlock(man); 569 if (ret) 570 return ret; 571 if (!bo->mem.bus.is_iomem) { 572 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 573 } else { 574 offset = start_page << PAGE_SHIFT; 575 size = num_pages << PAGE_SHIFT; 576 return ttm_bo_ioremap(bo, offset, size, map); 577 } 578 } 579 EXPORT_SYMBOL(ttm_bo_kmap); 580 581 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 582 { 583 struct ttm_buffer_object *bo = map->bo; 584 struct ttm_mem_type_manager *man = 585 &bo->bdev->man[bo->mem.mem_type]; 586 587 if (!map->virtual) 588 return; 589 switch (map->bo_kmap_type) { 590 case ttm_bo_map_iomap: 591 iounmap(map->virtual); 592 break; 593 case ttm_bo_map_vmap: 594 vunmap(map->virtual); 595 break; 596 case ttm_bo_map_kmap: 597 kunmap(map->page); 598 break; 599 case ttm_bo_map_premapped: 600 break; 601 default: 602 BUG(); 603 } 604 (void) ttm_mem_io_lock(man, false); 605 ttm_mem_io_free(map->bo->bdev, &map->bo->mem); 606 ttm_mem_io_unlock(man); 607 map->virtual = NULL; 608 map->page = NULL; 609 } 610 EXPORT_SYMBOL(ttm_bo_kunmap); 611 612 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 613 void *sync_obj, 614 bool evict, 615 bool no_wait_gpu, 616 struct ttm_mem_reg *new_mem) 617 { 618 struct ttm_bo_device *bdev = bo->bdev; 619 struct ttm_bo_driver *driver = bdev->driver; 620 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; 621 struct ttm_mem_reg *old_mem = &bo->mem; 622 int ret; 623 struct ttm_buffer_object *ghost_obj; 624 void *tmp_obj = NULL; 625 626 spin_lock(&bdev->fence_lock); 627 if (bo->sync_obj) { 628 tmp_obj = bo->sync_obj; 629 bo->sync_obj = NULL; 630 } 631 bo->sync_obj = driver->sync_obj_ref(sync_obj); 632 if (evict) { 633 ret = ttm_bo_wait(bo, false, false, false); 634 spin_unlock(&bdev->fence_lock); 635 if (tmp_obj) 636 driver->sync_obj_unref(&tmp_obj); 637 if (ret) 638 return ret; 639 640 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && 641 (bo->ttm != NULL)) { 642 ttm_tt_unbind(bo->ttm); 643 ttm_tt_destroy(bo->ttm); 644 bo->ttm = NULL; 645 } 646 ttm_bo_free_old_node(bo); 647 } else { 648 /** 649 * This should help pipeline ordinary buffer moves. 650 * 651 * Hang old buffer memory on a new buffer object, 652 * and leave it to be released when the GPU 653 * operation has completed. 654 */ 655 656 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 657 spin_unlock(&bdev->fence_lock); 658 if (tmp_obj) 659 driver->sync_obj_unref(&tmp_obj); 660 661 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 662 if (ret) 663 return ret; 664 665 /** 666 * If we're not moving to fixed memory, the TTM object 667 * needs to stay alive. Otherwhise hang it on the ghost 668 * bo to be unbound and destroyed. 669 */ 670 671 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) 672 ghost_obj->ttm = NULL; 673 else 674 bo->ttm = NULL; 675 676 ttm_bo_unreserve(ghost_obj); 677 ttm_bo_unref(&ghost_obj); 678 } 679 680 *old_mem = *new_mem; 681 new_mem->mm_node = NULL; 682 683 return 0; 684 } 685 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 686