1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 #include <linux/dma-resv.h> 44 45 #include "ttm_module.h" 46 47 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 48 struct ttm_placement *placement) 49 { 50 struct drm_printer p = drm_debug_printer(TTM_PFX); 51 struct ttm_resource_manager *man; 52 int i, mem_type; 53 54 for (i = 0; i < placement->num_placement; i++) { 55 mem_type = placement->placement[i].mem_type; 56 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 57 i, placement->placement[i].flags, mem_type); 58 man = ttm_manager_type(bo->bdev, mem_type); 59 ttm_resource_manager_debug(man, &p); 60 } 61 } 62 63 /** 64 * ttm_bo_move_to_lru_tail 65 * 66 * @bo: The buffer object. 67 * 68 * Move this BO to the tail of all lru lists used to lookup and reserve an 69 * object. This function must be called with struct ttm_global::lru_lock 70 * held, and is used to make a BO less likely to be considered for eviction. 71 */ 72 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo) 73 { 74 dma_resv_assert_held(bo->base.resv); 75 76 if (bo->resource) 77 ttm_resource_move_to_lru_tail(bo->resource); 78 } 79 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 80 81 /** 82 * ttm_bo_set_bulk_move - update BOs bulk move object 83 * 84 * @bo: The buffer object. 85 * 86 * Update the BOs bulk move object, making sure that resources are added/removed 87 * as well. A bulk move allows to move many resource on the LRU at once, 88 * resulting in much less overhead of maintaining the LRU. 89 * The only requirement is that the resources stay together on the LRU and are 90 * never separated. This is enforces by setting the bulk_move structure on a BO. 91 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of 92 * their LRU list. 93 */ 94 void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo, 95 struct ttm_lru_bulk_move *bulk) 96 { 97 dma_resv_assert_held(bo->base.resv); 98 99 if (bo->bulk_move == bulk) 100 return; 101 102 spin_lock(&bo->bdev->lru_lock); 103 if (bo->resource) 104 ttm_resource_del_bulk_move(bo->resource, bo); 105 bo->bulk_move = bulk; 106 if (bo->resource) 107 ttm_resource_add_bulk_move(bo->resource, bo); 108 spin_unlock(&bo->bdev->lru_lock); 109 } 110 EXPORT_SYMBOL(ttm_bo_set_bulk_move); 111 112 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 113 struct ttm_resource *mem, bool evict, 114 struct ttm_operation_ctx *ctx, 115 struct ttm_place *hop) 116 { 117 struct ttm_device *bdev = bo->bdev; 118 bool old_use_tt, new_use_tt; 119 int ret; 120 121 old_use_tt = bo->resource && 122 ttm_manager_type(bdev, bo->resource->mem_type)->use_tt; 123 new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt; 124 125 ttm_bo_unmap_virtual(bo); 126 127 /* 128 * Create and bind a ttm if required. 129 */ 130 131 if (new_use_tt) { 132 /* Zero init the new TTM structure if the old location should 133 * have used one as well. 134 */ 135 ret = ttm_tt_create(bo, old_use_tt); 136 if (ret) 137 goto out_err; 138 139 if (mem->mem_type != TTM_PL_SYSTEM) { 140 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 141 if (ret) 142 goto out_err; 143 } 144 } 145 146 ret = dma_resv_reserve_fences(bo->base.resv, 1); 147 if (ret) 148 goto out_err; 149 150 ret = bdev->funcs->move(bo, evict, ctx, mem, hop); 151 if (ret) { 152 if (ret == -EMULTIHOP) 153 return ret; 154 goto out_err; 155 } 156 157 ctx->bytes_moved += bo->base.size; 158 return 0; 159 160 out_err: 161 if (!old_use_tt) 162 ttm_bo_tt_destroy(bo); 163 164 return ret; 165 } 166 167 /* 168 * Call bo::reserved. 169 * Will release GPU memory type usage on destruction. 170 * This is the place to put in driver specific hooks to release 171 * driver private resources. 172 * Will release the bo::reserved lock. 173 */ 174 175 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 176 { 177 if (bo->bdev->funcs->delete_mem_notify) 178 bo->bdev->funcs->delete_mem_notify(bo); 179 180 ttm_bo_tt_destroy(bo); 181 ttm_resource_free(bo, &bo->resource); 182 } 183 184 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 185 { 186 int r; 187 188 if (bo->base.resv == &bo->base._resv) 189 return 0; 190 191 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 192 193 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 194 dma_resv_unlock(&bo->base._resv); 195 if (r) 196 return r; 197 198 if (bo->type != ttm_bo_type_sg) { 199 /* This works because the BO is about to be destroyed and nobody 200 * reference it any more. The only tricky case is the trylock on 201 * the resv object while holding the lru_lock. 202 */ 203 spin_lock(&bo->bdev->lru_lock); 204 bo->base.resv = &bo->base._resv; 205 spin_unlock(&bo->bdev->lru_lock); 206 } 207 208 return r; 209 } 210 211 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 212 { 213 struct dma_resv *resv = &bo->base._resv; 214 struct dma_resv_iter cursor; 215 struct dma_fence *fence; 216 217 dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP); 218 dma_resv_for_each_fence_unlocked(&cursor, fence) { 219 if (!fence->ops->signaled) 220 dma_fence_enable_sw_signaling(fence); 221 } 222 dma_resv_iter_end(&cursor); 223 } 224 225 /** 226 * ttm_bo_cleanup_refs 227 * If bo idle, remove from lru lists, and unref. 228 * If not idle, block if possible. 229 * 230 * Must be called with lru_lock and reservation held, this function 231 * will drop the lru lock and optionally the reservation lock before returning. 232 * 233 * @bo: The buffer object to clean-up 234 * @interruptible: Any sleeps should occur interruptibly. 235 * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead. 236 * @unlock_resv: Unlock the reservation lock as well. 237 */ 238 239 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 240 bool interruptible, bool no_wait_gpu, 241 bool unlock_resv) 242 { 243 struct dma_resv *resv = &bo->base._resv; 244 int ret; 245 246 if (dma_resv_test_signaled(resv, DMA_RESV_USAGE_BOOKKEEP)) 247 ret = 0; 248 else 249 ret = -EBUSY; 250 251 if (ret && !no_wait_gpu) { 252 long lret; 253 254 if (unlock_resv) 255 dma_resv_unlock(bo->base.resv); 256 spin_unlock(&bo->bdev->lru_lock); 257 258 lret = dma_resv_wait_timeout(resv, DMA_RESV_USAGE_BOOKKEEP, 259 interruptible, 260 30 * HZ); 261 262 if (lret < 0) 263 return lret; 264 else if (lret == 0) 265 return -EBUSY; 266 267 spin_lock(&bo->bdev->lru_lock); 268 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 269 /* 270 * We raced, and lost, someone else holds the reservation now, 271 * and is probably busy in ttm_bo_cleanup_memtype_use. 272 * 273 * Even if it's not the case, because we finished waiting any 274 * delayed destruction would succeed, so just return success 275 * here. 276 */ 277 spin_unlock(&bo->bdev->lru_lock); 278 return 0; 279 } 280 ret = 0; 281 } 282 283 if (ret || unlikely(list_empty(&bo->ddestroy))) { 284 if (unlock_resv) 285 dma_resv_unlock(bo->base.resv); 286 spin_unlock(&bo->bdev->lru_lock); 287 return ret; 288 } 289 290 list_del_init(&bo->ddestroy); 291 spin_unlock(&bo->bdev->lru_lock); 292 ttm_bo_cleanup_memtype_use(bo); 293 294 if (unlock_resv) 295 dma_resv_unlock(bo->base.resv); 296 297 ttm_bo_put(bo); 298 299 return 0; 300 } 301 302 /* 303 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 304 * encountered buffers. 305 */ 306 bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all) 307 { 308 struct list_head removed; 309 bool empty; 310 311 INIT_LIST_HEAD(&removed); 312 313 spin_lock(&bdev->lru_lock); 314 while (!list_empty(&bdev->ddestroy)) { 315 struct ttm_buffer_object *bo; 316 317 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 318 ddestroy); 319 list_move_tail(&bo->ddestroy, &removed); 320 if (!ttm_bo_get_unless_zero(bo)) 321 continue; 322 323 if (remove_all || bo->base.resv != &bo->base._resv) { 324 spin_unlock(&bdev->lru_lock); 325 dma_resv_lock(bo->base.resv, NULL); 326 327 spin_lock(&bdev->lru_lock); 328 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 329 330 } else if (dma_resv_trylock(bo->base.resv)) { 331 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 332 } else { 333 spin_unlock(&bdev->lru_lock); 334 } 335 336 ttm_bo_put(bo); 337 spin_lock(&bdev->lru_lock); 338 } 339 list_splice_tail(&removed, &bdev->ddestroy); 340 empty = list_empty(&bdev->ddestroy); 341 spin_unlock(&bdev->lru_lock); 342 343 return empty; 344 } 345 346 static void ttm_bo_release(struct kref *kref) 347 { 348 struct ttm_buffer_object *bo = 349 container_of(kref, struct ttm_buffer_object, kref); 350 struct ttm_device *bdev = bo->bdev; 351 int ret; 352 353 WARN_ON_ONCE(bo->pin_count); 354 WARN_ON_ONCE(bo->bulk_move); 355 356 if (!bo->deleted) { 357 ret = ttm_bo_individualize_resv(bo); 358 if (ret) { 359 /* Last resort, if we fail to allocate memory for the 360 * fences block for the BO to become idle 361 */ 362 dma_resv_wait_timeout(bo->base.resv, 363 DMA_RESV_USAGE_BOOKKEEP, false, 364 30 * HZ); 365 } 366 367 if (bo->bdev->funcs->release_notify) 368 bo->bdev->funcs->release_notify(bo); 369 370 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 371 ttm_mem_io_free(bdev, bo->resource); 372 } 373 374 if (!dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP) || 375 !dma_resv_trylock(bo->base.resv)) { 376 /* The BO is not idle, resurrect it for delayed destroy */ 377 ttm_bo_flush_all_fences(bo); 378 bo->deleted = true; 379 380 spin_lock(&bo->bdev->lru_lock); 381 382 /* 383 * Make pinned bos immediately available to 384 * shrinkers, now that they are queued for 385 * destruction. 386 * 387 * FIXME: QXL is triggering this. Can be removed when the 388 * driver is fixed. 389 */ 390 if (bo->pin_count) { 391 bo->pin_count = 0; 392 ttm_resource_move_to_lru_tail(bo->resource); 393 } 394 395 kref_init(&bo->kref); 396 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 397 spin_unlock(&bo->bdev->lru_lock); 398 399 schedule_delayed_work(&bdev->wq, 400 ((HZ / 100) < 1) ? 1 : HZ / 100); 401 return; 402 } 403 404 spin_lock(&bo->bdev->lru_lock); 405 list_del(&bo->ddestroy); 406 spin_unlock(&bo->bdev->lru_lock); 407 408 ttm_bo_cleanup_memtype_use(bo); 409 dma_resv_unlock(bo->base.resv); 410 411 atomic_dec(&ttm_glob.bo_count); 412 bo->destroy(bo); 413 } 414 415 void ttm_bo_put(struct ttm_buffer_object *bo) 416 { 417 kref_put(&bo->kref, ttm_bo_release); 418 } 419 EXPORT_SYMBOL(ttm_bo_put); 420 421 int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev) 422 { 423 return cancel_delayed_work_sync(&bdev->wq); 424 } 425 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 426 427 void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched) 428 { 429 if (resched) 430 schedule_delayed_work(&bdev->wq, 431 ((HZ / 100) < 1) ? 1 : HZ / 100); 432 } 433 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 434 435 static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo, 436 struct ttm_resource **mem, 437 struct ttm_operation_ctx *ctx, 438 struct ttm_place *hop) 439 { 440 struct ttm_placement hop_placement; 441 struct ttm_resource *hop_mem; 442 int ret; 443 444 hop_placement.num_placement = hop_placement.num_busy_placement = 1; 445 hop_placement.placement = hop_placement.busy_placement = hop; 446 447 /* find space in the bounce domain */ 448 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx); 449 if (ret) 450 return ret; 451 /* move to the bounce domain */ 452 ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL); 453 if (ret) { 454 ttm_resource_free(bo, &hop_mem); 455 return ret; 456 } 457 return 0; 458 } 459 460 static int ttm_bo_evict(struct ttm_buffer_object *bo, 461 struct ttm_operation_ctx *ctx) 462 { 463 struct ttm_device *bdev = bo->bdev; 464 struct ttm_resource *evict_mem; 465 struct ttm_placement placement; 466 struct ttm_place hop; 467 int ret = 0; 468 469 memset(&hop, 0, sizeof(hop)); 470 471 dma_resv_assert_held(bo->base.resv); 472 473 placement.num_placement = 0; 474 placement.num_busy_placement = 0; 475 bdev->funcs->evict_flags(bo, &placement); 476 477 if (!placement.num_placement && !placement.num_busy_placement) { 478 ret = ttm_bo_wait(bo, true, false); 479 if (ret) 480 return ret; 481 482 /* 483 * Since we've already synced, this frees backing store 484 * immediately. 485 */ 486 return ttm_bo_pipeline_gutting(bo); 487 } 488 489 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 490 if (ret) { 491 if (ret != -ERESTARTSYS) { 492 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 493 bo); 494 ttm_bo_mem_space_debug(bo, &placement); 495 } 496 goto out; 497 } 498 499 bounce: 500 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop); 501 if (ret == -EMULTIHOP) { 502 ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop); 503 if (ret) { 504 pr_err("Buffer eviction failed\n"); 505 ttm_resource_free(bo, &evict_mem); 506 goto out; 507 } 508 /* try and move to final place now. */ 509 goto bounce; 510 } 511 out: 512 return ret; 513 } 514 515 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 516 const struct ttm_place *place) 517 { 518 struct ttm_resource *res = bo->resource; 519 struct ttm_device *bdev = bo->bdev; 520 521 dma_resv_assert_held(bo->base.resv); 522 if (bo->resource->mem_type == TTM_PL_SYSTEM) 523 return true; 524 525 /* Don't evict this BO if it's outside of the 526 * requested placement range 527 */ 528 return ttm_resource_intersects(bdev, res, place, bo->base.size); 529 } 530 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 531 532 /* 533 * Check the target bo is allowable to be evicted or swapout, including cases: 534 * 535 * a. if share same reservation object with ctx->resv, have assumption 536 * reservation objects should already be locked, so not lock again and 537 * return true directly when either the opreation allow_reserved_eviction 538 * or the target bo already is in delayed free list; 539 * 540 * b. Otherwise, trylock it. 541 */ 542 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 543 struct ttm_operation_ctx *ctx, 544 const struct ttm_place *place, 545 bool *locked, bool *busy) 546 { 547 bool ret = false; 548 549 if (bo->base.resv == ctx->resv) { 550 dma_resv_assert_held(bo->base.resv); 551 if (ctx->allow_res_evict) 552 ret = true; 553 *locked = false; 554 if (busy) 555 *busy = false; 556 } else { 557 ret = dma_resv_trylock(bo->base.resv); 558 *locked = ret; 559 if (busy) 560 *busy = !ret; 561 } 562 563 if (ret && place && (bo->resource->mem_type != place->mem_type || 564 !bo->bdev->funcs->eviction_valuable(bo, place))) { 565 ret = false; 566 if (*locked) { 567 dma_resv_unlock(bo->base.resv); 568 *locked = false; 569 } 570 } 571 572 return ret; 573 } 574 575 /** 576 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 577 * 578 * @busy_bo: BO which couldn't be locked with trylock 579 * @ctx: operation context 580 * @ticket: acquire ticket 581 * 582 * Try to lock a busy buffer object to avoid failing eviction. 583 */ 584 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 585 struct ttm_operation_ctx *ctx, 586 struct ww_acquire_ctx *ticket) 587 { 588 int r; 589 590 if (!busy_bo || !ticket) 591 return -EBUSY; 592 593 if (ctx->interruptible) 594 r = dma_resv_lock_interruptible(busy_bo->base.resv, 595 ticket); 596 else 597 r = dma_resv_lock(busy_bo->base.resv, ticket); 598 599 /* 600 * TODO: It would be better to keep the BO locked until allocation is at 601 * least tried one more time, but that would mean a much larger rework 602 * of TTM. 603 */ 604 if (!r) 605 dma_resv_unlock(busy_bo->base.resv); 606 607 return r == -EDEADLK ? -EBUSY : r; 608 } 609 610 int ttm_mem_evict_first(struct ttm_device *bdev, 611 struct ttm_resource_manager *man, 612 const struct ttm_place *place, 613 struct ttm_operation_ctx *ctx, 614 struct ww_acquire_ctx *ticket) 615 { 616 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 617 struct ttm_resource_cursor cursor; 618 struct ttm_resource *res; 619 bool locked = false; 620 int ret; 621 622 spin_lock(&bdev->lru_lock); 623 ttm_resource_manager_for_each_res(man, &cursor, res) { 624 bool busy; 625 626 if (!ttm_bo_evict_swapout_allowable(res->bo, ctx, place, 627 &locked, &busy)) { 628 if (busy && !busy_bo && ticket != 629 dma_resv_locking_ctx(res->bo->base.resv)) 630 busy_bo = res->bo; 631 continue; 632 } 633 634 if (ttm_bo_get_unless_zero(res->bo)) { 635 bo = res->bo; 636 break; 637 } 638 if (locked) 639 dma_resv_unlock(res->bo->base.resv); 640 } 641 642 if (!bo) { 643 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 644 busy_bo = NULL; 645 spin_unlock(&bdev->lru_lock); 646 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 647 if (busy_bo) 648 ttm_bo_put(busy_bo); 649 return ret; 650 } 651 652 if (bo->deleted) { 653 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 654 ctx->no_wait_gpu, locked); 655 ttm_bo_put(bo); 656 return ret; 657 } 658 659 spin_unlock(&bdev->lru_lock); 660 661 ret = ttm_bo_evict(bo, ctx); 662 if (locked) 663 ttm_bo_unreserve(bo); 664 else 665 ttm_bo_move_to_lru_tail_unlocked(bo); 666 667 ttm_bo_put(bo); 668 return ret; 669 } 670 671 /** 672 * ttm_bo_pin - Pin the buffer object. 673 * @bo: The buffer object to pin 674 * 675 * Make sure the buffer is not evicted any more during memory pressure. 676 * @bo must be unpinned again by calling ttm_bo_unpin(). 677 */ 678 void ttm_bo_pin(struct ttm_buffer_object *bo) 679 { 680 dma_resv_assert_held(bo->base.resv); 681 WARN_ON_ONCE(!kref_read(&bo->kref)); 682 spin_lock(&bo->bdev->lru_lock); 683 if (bo->resource) 684 ttm_resource_del_bulk_move(bo->resource, bo); 685 ++bo->pin_count; 686 spin_unlock(&bo->bdev->lru_lock); 687 } 688 EXPORT_SYMBOL(ttm_bo_pin); 689 690 /** 691 * ttm_bo_unpin - Unpin the buffer object. 692 * @bo: The buffer object to unpin 693 * 694 * Allows the buffer object to be evicted again during memory pressure. 695 */ 696 void ttm_bo_unpin(struct ttm_buffer_object *bo) 697 { 698 dma_resv_assert_held(bo->base.resv); 699 WARN_ON_ONCE(!kref_read(&bo->kref)); 700 if (WARN_ON_ONCE(!bo->pin_count)) 701 return; 702 703 spin_lock(&bo->bdev->lru_lock); 704 --bo->pin_count; 705 if (bo->resource) 706 ttm_resource_add_bulk_move(bo->resource, bo); 707 spin_unlock(&bo->bdev->lru_lock); 708 } 709 EXPORT_SYMBOL(ttm_bo_unpin); 710 711 /* 712 * Add the last move fence to the BO as kernel dependency and reserve a new 713 * fence slot. 714 */ 715 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 716 struct ttm_resource_manager *man, 717 struct ttm_resource *mem, 718 bool no_wait_gpu) 719 { 720 struct dma_fence *fence; 721 int ret; 722 723 spin_lock(&man->move_lock); 724 fence = dma_fence_get(man->move); 725 spin_unlock(&man->move_lock); 726 727 if (!fence) 728 return 0; 729 730 if (no_wait_gpu) { 731 ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY; 732 dma_fence_put(fence); 733 return ret; 734 } 735 736 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL); 737 738 ret = dma_resv_reserve_fences(bo->base.resv, 1); 739 dma_fence_put(fence); 740 return ret; 741 } 742 743 /* 744 * Repeatedly evict memory from the LRU for @mem_type until we create enough 745 * space, or we've evicted everything and there isn't enough space. 746 */ 747 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 748 const struct ttm_place *place, 749 struct ttm_resource **mem, 750 struct ttm_operation_ctx *ctx) 751 { 752 struct ttm_device *bdev = bo->bdev; 753 struct ttm_resource_manager *man; 754 struct ww_acquire_ctx *ticket; 755 int ret; 756 757 man = ttm_manager_type(bdev, place->mem_type); 758 ticket = dma_resv_locking_ctx(bo->base.resv); 759 do { 760 ret = ttm_resource_alloc(bo, place, mem); 761 if (likely(!ret)) 762 break; 763 if (unlikely(ret != -ENOSPC)) 764 return ret; 765 ret = ttm_mem_evict_first(bdev, man, place, ctx, 766 ticket); 767 if (unlikely(ret != 0)) 768 return ret; 769 } while (1); 770 771 return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu); 772 } 773 774 /* 775 * Creates space for memory region @mem according to its type. 776 * 777 * This function first searches for free space in compatible memory types in 778 * the priority order defined by the driver. If free space isn't found, then 779 * ttm_bo_mem_force_space is attempted in priority order to evict and find 780 * space. 781 */ 782 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 783 struct ttm_placement *placement, 784 struct ttm_resource **mem, 785 struct ttm_operation_ctx *ctx) 786 { 787 struct ttm_device *bdev = bo->bdev; 788 bool type_found = false; 789 int i, ret; 790 791 ret = dma_resv_reserve_fences(bo->base.resv, 1); 792 if (unlikely(ret)) 793 return ret; 794 795 for (i = 0; i < placement->num_placement; ++i) { 796 const struct ttm_place *place = &placement->placement[i]; 797 struct ttm_resource_manager *man; 798 799 man = ttm_manager_type(bdev, place->mem_type); 800 if (!man || !ttm_resource_manager_used(man)) 801 continue; 802 803 type_found = true; 804 ret = ttm_resource_alloc(bo, place, mem); 805 if (ret == -ENOSPC) 806 continue; 807 if (unlikely(ret)) 808 goto error; 809 810 ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu); 811 if (unlikely(ret)) { 812 ttm_resource_free(bo, mem); 813 if (ret == -EBUSY) 814 continue; 815 816 goto error; 817 } 818 return 0; 819 } 820 821 for (i = 0; i < placement->num_busy_placement; ++i) { 822 const struct ttm_place *place = &placement->busy_placement[i]; 823 struct ttm_resource_manager *man; 824 825 man = ttm_manager_type(bdev, place->mem_type); 826 if (!man || !ttm_resource_manager_used(man)) 827 continue; 828 829 type_found = true; 830 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 831 if (likely(!ret)) 832 return 0; 833 834 if (ret && ret != -EBUSY) 835 goto error; 836 } 837 838 ret = -ENOMEM; 839 if (!type_found) { 840 pr_err(TTM_PFX "No compatible memory type found\n"); 841 ret = -EINVAL; 842 } 843 844 error: 845 return ret; 846 } 847 EXPORT_SYMBOL(ttm_bo_mem_space); 848 849 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 850 struct ttm_placement *placement, 851 struct ttm_operation_ctx *ctx) 852 { 853 struct ttm_resource *mem; 854 struct ttm_place hop; 855 int ret; 856 857 dma_resv_assert_held(bo->base.resv); 858 859 /* 860 * Determine where to move the buffer. 861 * 862 * If driver determines move is going to need 863 * an extra step then it will return -EMULTIHOP 864 * and the buffer will be moved to the temporary 865 * stop and the driver will be called to make 866 * the second hop. 867 */ 868 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 869 if (ret) 870 return ret; 871 bounce: 872 ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop); 873 if (ret == -EMULTIHOP) { 874 ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop); 875 if (ret) 876 goto out; 877 /* try and move to final place now. */ 878 goto bounce; 879 } 880 out: 881 if (ret) 882 ttm_resource_free(bo, &mem); 883 return ret; 884 } 885 886 int ttm_bo_validate(struct ttm_buffer_object *bo, 887 struct ttm_placement *placement, 888 struct ttm_operation_ctx *ctx) 889 { 890 int ret; 891 892 dma_resv_assert_held(bo->base.resv); 893 894 /* 895 * Remove the backing store if no placement is given. 896 */ 897 if (!placement->num_placement && !placement->num_busy_placement) 898 return ttm_bo_pipeline_gutting(bo); 899 900 /* 901 * Check whether we need to move buffer. 902 */ 903 if (!bo->resource || !ttm_resource_compat(bo->resource, placement)) { 904 ret = ttm_bo_move_buffer(bo, placement, ctx); 905 if (ret) 906 return ret; 907 } 908 /* 909 * We might need to add a TTM. 910 */ 911 if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) { 912 ret = ttm_tt_create(bo, true); 913 if (ret) 914 return ret; 915 } 916 return 0; 917 } 918 EXPORT_SYMBOL(ttm_bo_validate); 919 920 /** 921 * ttm_bo_init_reserved 922 * 923 * @bdev: Pointer to a ttm_device struct. 924 * @bo: Pointer to a ttm_buffer_object to be initialized. 925 * @type: Requested type of buffer object. 926 * @placement: Initial placement for buffer object. 927 * @alignment: Data alignment in pages. 928 * @ctx: TTM operation context for memory allocation. 929 * @sg: Scatter-gather table. 930 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one. 931 * @destroy: Destroy function. Use NULL for kfree(). 932 * 933 * This function initializes a pre-allocated struct ttm_buffer_object. 934 * As this object may be part of a larger structure, this function, 935 * together with the @destroy function, enables driver-specific objects 936 * derived from a ttm_buffer_object. 937 * 938 * On successful return, the caller owns an object kref to @bo. The kref and 939 * list_kref are usually set to 1, but note that in some situations, other 940 * tasks may already be holding references to @bo as well. 941 * Furthermore, if resv == NULL, the buffer's reservation lock will be held, 942 * and it is the caller's responsibility to call ttm_bo_unreserve. 943 * 944 * If a failure occurs, the function will call the @destroy function. Thus, 945 * after a failure, dereferencing @bo is illegal and will likely cause memory 946 * corruption. 947 * 948 * Returns 949 * -ENOMEM: Out of memory. 950 * -EINVAL: Invalid placement flags. 951 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources. 952 */ 953 int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo, 954 enum ttm_bo_type type, struct ttm_placement *placement, 955 uint32_t alignment, struct ttm_operation_ctx *ctx, 956 struct sg_table *sg, struct dma_resv *resv, 957 void (*destroy) (struct ttm_buffer_object *)) 958 { 959 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; 960 int ret; 961 962 kref_init(&bo->kref); 963 INIT_LIST_HEAD(&bo->ddestroy); 964 bo->bdev = bdev; 965 bo->type = type; 966 bo->page_alignment = alignment; 967 bo->destroy = destroy; 968 bo->pin_count = 0; 969 bo->sg = sg; 970 bo->bulk_move = NULL; 971 if (resv) 972 bo->base.resv = resv; 973 else 974 bo->base.resv = &bo->base._resv; 975 atomic_inc(&ttm_glob.bo_count); 976 977 ret = ttm_resource_alloc(bo, &sys_mem, &bo->resource); 978 if (unlikely(ret)) { 979 ttm_bo_put(bo); 980 return ret; 981 } 982 983 /* 984 * For ttm_bo_type_device buffers, allocate 985 * address space from the device. 986 */ 987 if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) { 988 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 989 PFN_UP(bo->base.size)); 990 if (ret) 991 goto err_put; 992 } 993 994 /* passed reservation objects should already be locked, 995 * since otherwise lockdep will be angered in radeon. 996 */ 997 if (!resv) 998 WARN_ON(!dma_resv_trylock(bo->base.resv)); 999 else 1000 dma_resv_assert_held(resv); 1001 1002 ret = ttm_bo_validate(bo, placement, ctx); 1003 if (unlikely(ret)) 1004 goto err_unlock; 1005 1006 return 0; 1007 1008 err_unlock: 1009 if (!resv) 1010 dma_resv_unlock(bo->base.resv); 1011 1012 err_put: 1013 ttm_bo_put(bo); 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(ttm_bo_init_reserved); 1017 1018 /** 1019 * ttm_bo_init_validate 1020 * 1021 * @bdev: Pointer to a ttm_device struct. 1022 * @bo: Pointer to a ttm_buffer_object to be initialized. 1023 * @type: Requested type of buffer object. 1024 * @placement: Initial placement for buffer object. 1025 * @alignment: Data alignment in pages. 1026 * @interruptible: If needing to sleep to wait for GPU resources, 1027 * sleep interruptible. 1028 * pinned in physical memory. If this behaviour is not desired, this member 1029 * holds a pointer to a persistent shmem object. Typically, this would 1030 * point to the shmem object backing a GEM object if TTM is used to back a 1031 * GEM user interface. 1032 * @sg: Scatter-gather table. 1033 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one. 1034 * @destroy: Destroy function. Use NULL for kfree(). 1035 * 1036 * This function initializes a pre-allocated struct ttm_buffer_object. 1037 * As this object may be part of a larger structure, this function, 1038 * together with the @destroy function, 1039 * enables driver-specific objects derived from a ttm_buffer_object. 1040 * 1041 * On successful return, the caller owns an object kref to @bo. The kref and 1042 * list_kref are usually set to 1, but note that in some situations, other 1043 * tasks may already be holding references to @bo as well. 1044 * 1045 * If a failure occurs, the function will call the @destroy function, Thus, 1046 * after a failure, dereferencing @bo is illegal and will likely cause memory 1047 * corruption. 1048 * 1049 * Returns 1050 * -ENOMEM: Out of memory. 1051 * -EINVAL: Invalid placement flags. 1052 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources. 1053 */ 1054 int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo, 1055 enum ttm_bo_type type, struct ttm_placement *placement, 1056 uint32_t alignment, bool interruptible, 1057 struct sg_table *sg, struct dma_resv *resv, 1058 void (*destroy) (struct ttm_buffer_object *)) 1059 { 1060 struct ttm_operation_ctx ctx = { interruptible, false }; 1061 int ret; 1062 1063 ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx, 1064 sg, resv, destroy); 1065 if (ret) 1066 return ret; 1067 1068 if (!resv) 1069 ttm_bo_unreserve(bo); 1070 1071 return 0; 1072 } 1073 EXPORT_SYMBOL(ttm_bo_init_validate); 1074 1075 /* 1076 * buffer object vm functions. 1077 */ 1078 1079 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1080 { 1081 struct ttm_device *bdev = bo->bdev; 1082 1083 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1084 ttm_mem_io_free(bdev, bo->resource); 1085 } 1086 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1087 1088 int ttm_bo_wait(struct ttm_buffer_object *bo, 1089 bool interruptible, bool no_wait) 1090 { 1091 long timeout = 15 * HZ; 1092 1093 if (no_wait) { 1094 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) 1095 return 0; 1096 else 1097 return -EBUSY; 1098 } 1099 1100 timeout = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 1101 interruptible, timeout); 1102 if (timeout < 0) 1103 return timeout; 1104 1105 if (timeout == 0) 1106 return -EBUSY; 1107 1108 return 0; 1109 } 1110 EXPORT_SYMBOL(ttm_bo_wait); 1111 1112 int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, 1113 gfp_t gfp_flags) 1114 { 1115 struct ttm_place place; 1116 bool locked; 1117 int ret; 1118 1119 /* 1120 * While the bo may already reside in SYSTEM placement, set 1121 * SYSTEM as new placement to cover also the move further below. 1122 * The driver may use the fact that we're moving from SYSTEM 1123 * as an indication that we're about to swap out. 1124 */ 1125 memset(&place, 0, sizeof(place)); 1126 place.mem_type = bo->resource->mem_type; 1127 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL)) 1128 return -EBUSY; 1129 1130 if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) || 1131 bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL || 1132 bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED || 1133 !ttm_bo_get_unless_zero(bo)) { 1134 if (locked) 1135 dma_resv_unlock(bo->base.resv); 1136 return -EBUSY; 1137 } 1138 1139 if (bo->deleted) { 1140 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1141 ttm_bo_put(bo); 1142 return ret == -EBUSY ? -ENOSPC : ret; 1143 } 1144 1145 /* TODO: Cleanup the locking */ 1146 spin_unlock(&bo->bdev->lru_lock); 1147 1148 /* 1149 * Move to system cached 1150 */ 1151 if (bo->resource->mem_type != TTM_PL_SYSTEM) { 1152 struct ttm_operation_ctx ctx = { false, false }; 1153 struct ttm_resource *evict_mem; 1154 struct ttm_place hop; 1155 1156 memset(&hop, 0, sizeof(hop)); 1157 place.mem_type = TTM_PL_SYSTEM; 1158 ret = ttm_resource_alloc(bo, &place, &evict_mem); 1159 if (unlikely(ret)) 1160 goto out; 1161 1162 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, &ctx, &hop); 1163 if (unlikely(ret != 0)) { 1164 WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n"); 1165 goto out; 1166 } 1167 } 1168 1169 /* 1170 * Make sure BO is idle. 1171 */ 1172 ret = ttm_bo_wait(bo, false, false); 1173 if (unlikely(ret != 0)) 1174 goto out; 1175 1176 ttm_bo_unmap_virtual(bo); 1177 1178 /* 1179 * Swap out. Buffer will be swapped in again as soon as 1180 * anyone tries to access a ttm page. 1181 */ 1182 if (bo->bdev->funcs->swap_notify) 1183 bo->bdev->funcs->swap_notify(bo); 1184 1185 if (ttm_tt_is_populated(bo->ttm)) 1186 ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags); 1187 out: 1188 1189 /* 1190 * Unreserve without putting on LRU to avoid swapping out an 1191 * already swapped buffer. 1192 */ 1193 if (locked) 1194 dma_resv_unlock(bo->base.resv); 1195 ttm_bo_put(bo); 1196 return ret == -EBUSY ? -ENOSPC : ret; 1197 } 1198 1199 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1200 { 1201 if (bo->ttm == NULL) 1202 return; 1203 1204 ttm_tt_unpopulate(bo->bdev, bo->ttm); 1205 ttm_tt_destroy(bo->bdev, bo->ttm); 1206 bo->ttm = NULL; 1207 } 1208