1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 44 #define TTM_ASSERT_LOCKED(param) 45 #define TTM_DEBUG(fmt, arg...) 46 #define TTM_BO_HASH_ORDER 13 47 48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 50 static void ttm_bo_global_kobj_release(struct kobject *kobj); 51 52 static struct attribute ttm_bo_count = { 53 .name = "bo_count", 54 .mode = S_IRUGO 55 }; 56 57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 58 { 59 int i; 60 61 for (i = 0; i <= TTM_PL_PRIV5; i++) 62 if (flags & (1 << i)) { 63 *mem_type = i; 64 return 0; 65 } 66 return -EINVAL; 67 } 68 69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 70 { 71 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 72 73 pr_err(" has_type: %d\n", man->has_type); 74 pr_err(" use_type: %d\n", man->use_type); 75 pr_err(" flags: 0x%08X\n", man->flags); 76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 77 pr_err(" size: %llu\n", man->size); 78 pr_err(" available_caching: 0x%08X\n", man->available_caching); 79 pr_err(" default_caching: 0x%08X\n", man->default_caching); 80 if (mem_type != TTM_PL_SYSTEM) 81 (*man->func->debug)(man, TTM_PFX); 82 } 83 84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 85 struct ttm_placement *placement) 86 { 87 int i, ret, mem_type; 88 89 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 90 bo, bo->mem.num_pages, bo->mem.size >> 10, 91 bo->mem.size >> 20); 92 for (i = 0; i < placement->num_placement; i++) { 93 ret = ttm_mem_type_from_flags(placement->placement[i], 94 &mem_type); 95 if (ret) 96 return; 97 pr_err(" placement[%d]=0x%08X (%d)\n", 98 i, placement->placement[i], mem_type); 99 ttm_mem_type_debug(bo->bdev, mem_type); 100 } 101 } 102 103 static ssize_t ttm_bo_global_show(struct kobject *kobj, 104 struct attribute *attr, 105 char *buffer) 106 { 107 struct ttm_bo_global *glob = 108 container_of(kobj, struct ttm_bo_global, kobj); 109 110 return snprintf(buffer, PAGE_SIZE, "%lu\n", 111 (unsigned long) atomic_read(&glob->bo_count)); 112 } 113 114 static struct attribute *ttm_bo_global_attrs[] = { 115 &ttm_bo_count, 116 NULL 117 }; 118 119 static const struct sysfs_ops ttm_bo_global_ops = { 120 .show = &ttm_bo_global_show 121 }; 122 123 static struct kobj_type ttm_bo_glob_kobj_type = { 124 .release = &ttm_bo_global_kobj_release, 125 .sysfs_ops = &ttm_bo_global_ops, 126 .default_attrs = ttm_bo_global_attrs 127 }; 128 129 130 static inline uint32_t ttm_bo_type_flags(unsigned type) 131 { 132 return 1 << (type); 133 } 134 135 static void ttm_bo_release_list(struct kref *list_kref) 136 { 137 struct ttm_buffer_object *bo = 138 container_of(list_kref, struct ttm_buffer_object, list_kref); 139 struct ttm_bo_device *bdev = bo->bdev; 140 size_t acc_size = bo->acc_size; 141 142 BUG_ON(atomic_read(&bo->list_kref.refcount)); 143 BUG_ON(atomic_read(&bo->kref.refcount)); 144 BUG_ON(atomic_read(&bo->cpu_writers)); 145 BUG_ON(bo->sync_obj != NULL); 146 BUG_ON(bo->mem.mm_node != NULL); 147 BUG_ON(!list_empty(&bo->lru)); 148 BUG_ON(!list_empty(&bo->ddestroy)); 149 150 if (bo->ttm) 151 ttm_tt_destroy(bo->ttm); 152 atomic_dec(&bo->glob->bo_count); 153 if (bo->destroy) 154 bo->destroy(bo); 155 else { 156 kfree(bo); 157 } 158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 159 } 160 161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible) 162 { 163 if (interruptible) { 164 return wait_event_interruptible(bo->event_queue, 165 atomic_read(&bo->reserved) == 0); 166 } else { 167 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0); 168 return 0; 169 } 170 } 171 EXPORT_SYMBOL(ttm_bo_wait_unreserved); 172 173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 174 { 175 struct ttm_bo_device *bdev = bo->bdev; 176 struct ttm_mem_type_manager *man; 177 178 BUG_ON(!atomic_read(&bo->reserved)); 179 180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 181 182 BUG_ON(!list_empty(&bo->lru)); 183 184 man = &bdev->man[bo->mem.mem_type]; 185 list_add_tail(&bo->lru, &man->lru); 186 kref_get(&bo->list_kref); 187 188 if (bo->ttm != NULL) { 189 list_add_tail(&bo->swap, &bo->glob->swap_lru); 190 kref_get(&bo->list_kref); 191 } 192 } 193 } 194 195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 196 { 197 int put_count = 0; 198 199 if (!list_empty(&bo->swap)) { 200 list_del_init(&bo->swap); 201 ++put_count; 202 } 203 if (!list_empty(&bo->lru)) { 204 list_del_init(&bo->lru); 205 ++put_count; 206 } 207 208 /* 209 * TODO: Add a driver hook to delete from 210 * driver-specific LRU's here. 211 */ 212 213 return put_count; 214 } 215 216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo, 217 bool interruptible, 218 bool no_wait, bool use_sequence, uint32_t sequence) 219 { 220 struct ttm_bo_global *glob = bo->glob; 221 int ret; 222 223 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { 224 /** 225 * Deadlock avoidance for multi-bo reserving. 226 */ 227 if (use_sequence && bo->seq_valid) { 228 /** 229 * We've already reserved this one. 230 */ 231 if (unlikely(sequence == bo->val_seq)) 232 return -EDEADLK; 233 /** 234 * Already reserved by a thread that will not back 235 * off for us. We need to back off. 236 */ 237 if (unlikely(sequence - bo->val_seq < (1 << 31))) 238 return -EAGAIN; 239 } 240 241 if (no_wait) 242 return -EBUSY; 243 244 spin_unlock(&glob->lru_lock); 245 ret = ttm_bo_wait_unreserved(bo, interruptible); 246 spin_lock(&glob->lru_lock); 247 248 if (unlikely(ret)) 249 return ret; 250 } 251 252 if (use_sequence) { 253 /** 254 * Wake up waiters that may need to recheck for deadlock, 255 * if we decreased the sequence number. 256 */ 257 if (unlikely((bo->val_seq - sequence < (1 << 31)) 258 || !bo->seq_valid)) 259 wake_up_all(&bo->event_queue); 260 261 bo->val_seq = sequence; 262 bo->seq_valid = true; 263 } else { 264 bo->seq_valid = false; 265 } 266 267 return 0; 268 } 269 EXPORT_SYMBOL(ttm_bo_reserve); 270 271 static void ttm_bo_ref_bug(struct kref *list_kref) 272 { 273 BUG(); 274 } 275 276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 277 bool never_free) 278 { 279 kref_sub(&bo->list_kref, count, 280 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 281 } 282 283 int ttm_bo_reserve(struct ttm_buffer_object *bo, 284 bool interruptible, 285 bool no_wait, bool use_sequence, uint32_t sequence) 286 { 287 struct ttm_bo_global *glob = bo->glob; 288 int put_count = 0; 289 int ret; 290 291 spin_lock(&glob->lru_lock); 292 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence, 293 sequence); 294 if (likely(ret == 0)) 295 put_count = ttm_bo_del_from_lru(bo); 296 spin_unlock(&glob->lru_lock); 297 298 ttm_bo_list_ref_sub(bo, put_count, true); 299 300 return ret; 301 } 302 303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 304 { 305 ttm_bo_add_to_lru(bo); 306 atomic_set(&bo->reserved, 0); 307 wake_up_all(&bo->event_queue); 308 } 309 310 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 311 { 312 struct ttm_bo_global *glob = bo->glob; 313 314 spin_lock(&glob->lru_lock); 315 ttm_bo_unreserve_locked(bo); 316 spin_unlock(&glob->lru_lock); 317 } 318 EXPORT_SYMBOL(ttm_bo_unreserve); 319 320 /* 321 * Call bo->mutex locked. 322 */ 323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 324 { 325 struct ttm_bo_device *bdev = bo->bdev; 326 struct ttm_bo_global *glob = bo->glob; 327 int ret = 0; 328 uint32_t page_flags = 0; 329 330 TTM_ASSERT_LOCKED(&bo->mutex); 331 bo->ttm = NULL; 332 333 if (bdev->need_dma32) 334 page_flags |= TTM_PAGE_FLAG_DMA32; 335 336 switch (bo->type) { 337 case ttm_bo_type_device: 338 if (zero_alloc) 339 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 340 case ttm_bo_type_kernel: 341 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 342 page_flags, glob->dummy_read_page); 343 if (unlikely(bo->ttm == NULL)) 344 ret = -ENOMEM; 345 break; 346 case ttm_bo_type_sg: 347 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 348 page_flags | TTM_PAGE_FLAG_SG, 349 glob->dummy_read_page); 350 if (unlikely(bo->ttm == NULL)) { 351 ret = -ENOMEM; 352 break; 353 } 354 bo->ttm->sg = bo->sg; 355 break; 356 default: 357 pr_err("Illegal buffer object type\n"); 358 ret = -EINVAL; 359 break; 360 } 361 362 return ret; 363 } 364 365 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 366 struct ttm_mem_reg *mem, 367 bool evict, bool interruptible, 368 bool no_wait_reserve, bool no_wait_gpu) 369 { 370 struct ttm_bo_device *bdev = bo->bdev; 371 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 372 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 373 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 374 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 375 int ret = 0; 376 377 if (old_is_pci || new_is_pci || 378 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 379 ret = ttm_mem_io_lock(old_man, true); 380 if (unlikely(ret != 0)) 381 goto out_err; 382 ttm_bo_unmap_virtual_locked(bo); 383 ttm_mem_io_unlock(old_man); 384 } 385 386 /* 387 * Create and bind a ttm if required. 388 */ 389 390 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 391 if (bo->ttm == NULL) { 392 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 393 ret = ttm_bo_add_ttm(bo, zero); 394 if (ret) 395 goto out_err; 396 } 397 398 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 399 if (ret) 400 goto out_err; 401 402 if (mem->mem_type != TTM_PL_SYSTEM) { 403 ret = ttm_tt_bind(bo->ttm, mem); 404 if (ret) 405 goto out_err; 406 } 407 408 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 409 if (bdev->driver->move_notify) 410 bdev->driver->move_notify(bo, mem); 411 bo->mem = *mem; 412 mem->mm_node = NULL; 413 goto moved; 414 } 415 } 416 417 if (bdev->driver->move_notify) 418 bdev->driver->move_notify(bo, mem); 419 420 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 421 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 422 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem); 423 else if (bdev->driver->move) 424 ret = bdev->driver->move(bo, evict, interruptible, 425 no_wait_reserve, no_wait_gpu, mem); 426 else 427 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem); 428 429 if (ret) { 430 if (bdev->driver->move_notify) { 431 struct ttm_mem_reg tmp_mem = *mem; 432 *mem = bo->mem; 433 bo->mem = tmp_mem; 434 bdev->driver->move_notify(bo, mem); 435 bo->mem = *mem; 436 } 437 438 goto out_err; 439 } 440 441 moved: 442 if (bo->evicted) { 443 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 444 if (ret) 445 pr_err("Can not flush read caches\n"); 446 bo->evicted = false; 447 } 448 449 if (bo->mem.mm_node) { 450 bo->offset = (bo->mem.start << PAGE_SHIFT) + 451 bdev->man[bo->mem.mem_type].gpu_offset; 452 bo->cur_placement = bo->mem.placement; 453 } else 454 bo->offset = 0; 455 456 return 0; 457 458 out_err: 459 new_man = &bdev->man[bo->mem.mem_type]; 460 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 461 ttm_tt_unbind(bo->ttm); 462 ttm_tt_destroy(bo->ttm); 463 bo->ttm = NULL; 464 } 465 466 return ret; 467 } 468 469 /** 470 * Call bo::reserved. 471 * Will release GPU memory type usage on destruction. 472 * This is the place to put in driver specific hooks to release 473 * driver private resources. 474 * Will release the bo::reserved lock. 475 */ 476 477 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 478 { 479 if (bo->bdev->driver->move_notify) 480 bo->bdev->driver->move_notify(bo, NULL); 481 482 if (bo->ttm) { 483 ttm_tt_unbind(bo->ttm); 484 ttm_tt_destroy(bo->ttm); 485 bo->ttm = NULL; 486 } 487 ttm_bo_mem_put(bo, &bo->mem); 488 489 atomic_set(&bo->reserved, 0); 490 491 /* 492 * Make processes trying to reserve really pick it up. 493 */ 494 smp_mb__after_atomic_dec(); 495 wake_up_all(&bo->event_queue); 496 } 497 498 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 499 { 500 struct ttm_bo_device *bdev = bo->bdev; 501 struct ttm_bo_global *glob = bo->glob; 502 struct ttm_bo_driver *driver; 503 void *sync_obj = NULL; 504 void *sync_obj_arg; 505 int put_count; 506 int ret; 507 508 spin_lock(&bdev->fence_lock); 509 (void) ttm_bo_wait(bo, false, false, true); 510 if (!bo->sync_obj) { 511 512 spin_lock(&glob->lru_lock); 513 514 /** 515 * Lock inversion between bo:reserve and bdev::fence_lock here, 516 * but that's OK, since we're only trylocking. 517 */ 518 519 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 520 521 if (unlikely(ret == -EBUSY)) 522 goto queue; 523 524 spin_unlock(&bdev->fence_lock); 525 put_count = ttm_bo_del_from_lru(bo); 526 527 spin_unlock(&glob->lru_lock); 528 ttm_bo_cleanup_memtype_use(bo); 529 530 ttm_bo_list_ref_sub(bo, put_count, true); 531 532 return; 533 } else { 534 spin_lock(&glob->lru_lock); 535 } 536 queue: 537 driver = bdev->driver; 538 if (bo->sync_obj) 539 sync_obj = driver->sync_obj_ref(bo->sync_obj); 540 sync_obj_arg = bo->sync_obj_arg; 541 542 kref_get(&bo->list_kref); 543 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 544 spin_unlock(&glob->lru_lock); 545 spin_unlock(&bdev->fence_lock); 546 547 if (sync_obj) { 548 driver->sync_obj_flush(sync_obj, sync_obj_arg); 549 driver->sync_obj_unref(&sync_obj); 550 } 551 schedule_delayed_work(&bdev->wq, 552 ((HZ / 100) < 1) ? 1 : HZ / 100); 553 } 554 555 /** 556 * function ttm_bo_cleanup_refs 557 * If bo idle, remove from delayed- and lru lists, and unref. 558 * If not idle, do nothing. 559 * 560 * @interruptible Any sleeps should occur interruptibly. 561 * @no_wait_reserve Never wait for reserve. Return -EBUSY instead. 562 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 563 */ 564 565 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 566 bool interruptible, 567 bool no_wait_reserve, 568 bool no_wait_gpu) 569 { 570 struct ttm_bo_device *bdev = bo->bdev; 571 struct ttm_bo_global *glob = bo->glob; 572 int put_count; 573 int ret = 0; 574 575 retry: 576 spin_lock(&bdev->fence_lock); 577 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 578 spin_unlock(&bdev->fence_lock); 579 580 if (unlikely(ret != 0)) 581 return ret; 582 583 retry_reserve: 584 spin_lock(&glob->lru_lock); 585 586 if (unlikely(list_empty(&bo->ddestroy))) { 587 spin_unlock(&glob->lru_lock); 588 return 0; 589 } 590 591 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 592 593 if (unlikely(ret == -EBUSY)) { 594 spin_unlock(&glob->lru_lock); 595 if (likely(!no_wait_reserve)) 596 ret = ttm_bo_wait_unreserved(bo, interruptible); 597 if (unlikely(ret != 0)) 598 return ret; 599 600 goto retry_reserve; 601 } 602 603 BUG_ON(ret != 0); 604 605 /** 606 * We can re-check for sync object without taking 607 * the bo::lock since setting the sync object requires 608 * also bo::reserved. A busy object at this point may 609 * be caused by another thread recently starting an accelerated 610 * eviction. 611 */ 612 613 if (unlikely(bo->sync_obj)) { 614 atomic_set(&bo->reserved, 0); 615 wake_up_all(&bo->event_queue); 616 spin_unlock(&glob->lru_lock); 617 goto retry; 618 } 619 620 put_count = ttm_bo_del_from_lru(bo); 621 list_del_init(&bo->ddestroy); 622 ++put_count; 623 624 spin_unlock(&glob->lru_lock); 625 ttm_bo_cleanup_memtype_use(bo); 626 627 ttm_bo_list_ref_sub(bo, put_count, true); 628 629 return 0; 630 } 631 632 /** 633 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 634 * encountered buffers. 635 */ 636 637 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 638 { 639 struct ttm_bo_global *glob = bdev->glob; 640 struct ttm_buffer_object *entry = NULL; 641 int ret = 0; 642 643 spin_lock(&glob->lru_lock); 644 if (list_empty(&bdev->ddestroy)) 645 goto out_unlock; 646 647 entry = list_first_entry(&bdev->ddestroy, 648 struct ttm_buffer_object, ddestroy); 649 kref_get(&entry->list_kref); 650 651 for (;;) { 652 struct ttm_buffer_object *nentry = NULL; 653 654 if (entry->ddestroy.next != &bdev->ddestroy) { 655 nentry = list_first_entry(&entry->ddestroy, 656 struct ttm_buffer_object, ddestroy); 657 kref_get(&nentry->list_kref); 658 } 659 660 spin_unlock(&glob->lru_lock); 661 ret = ttm_bo_cleanup_refs(entry, false, !remove_all, 662 !remove_all); 663 kref_put(&entry->list_kref, ttm_bo_release_list); 664 entry = nentry; 665 666 if (ret || !entry) 667 goto out; 668 669 spin_lock(&glob->lru_lock); 670 if (list_empty(&entry->ddestroy)) 671 break; 672 } 673 674 out_unlock: 675 spin_unlock(&glob->lru_lock); 676 out: 677 if (entry) 678 kref_put(&entry->list_kref, ttm_bo_release_list); 679 return ret; 680 } 681 682 static void ttm_bo_delayed_workqueue(struct work_struct *work) 683 { 684 struct ttm_bo_device *bdev = 685 container_of(work, struct ttm_bo_device, wq.work); 686 687 if (ttm_bo_delayed_delete(bdev, false)) { 688 schedule_delayed_work(&bdev->wq, 689 ((HZ / 100) < 1) ? 1 : HZ / 100); 690 } 691 } 692 693 static void ttm_bo_release(struct kref *kref) 694 { 695 struct ttm_buffer_object *bo = 696 container_of(kref, struct ttm_buffer_object, kref); 697 struct ttm_bo_device *bdev = bo->bdev; 698 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 699 700 if (likely(bo->vm_node != NULL)) { 701 rb_erase(&bo->vm_rb, &bdev->addr_space_rb); 702 drm_mm_put_block(bo->vm_node); 703 bo->vm_node = NULL; 704 } 705 write_unlock(&bdev->vm_lock); 706 ttm_mem_io_lock(man, false); 707 ttm_mem_io_free_vm(bo); 708 ttm_mem_io_unlock(man); 709 ttm_bo_cleanup_refs_or_queue(bo); 710 kref_put(&bo->list_kref, ttm_bo_release_list); 711 write_lock(&bdev->vm_lock); 712 } 713 714 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 715 { 716 struct ttm_buffer_object *bo = *p_bo; 717 struct ttm_bo_device *bdev = bo->bdev; 718 719 *p_bo = NULL; 720 write_lock(&bdev->vm_lock); 721 kref_put(&bo->kref, ttm_bo_release); 722 write_unlock(&bdev->vm_lock); 723 } 724 EXPORT_SYMBOL(ttm_bo_unref); 725 726 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 727 { 728 return cancel_delayed_work_sync(&bdev->wq); 729 } 730 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 731 732 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 733 { 734 if (resched) 735 schedule_delayed_work(&bdev->wq, 736 ((HZ / 100) < 1) ? 1 : HZ / 100); 737 } 738 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 739 740 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 741 bool no_wait_reserve, bool no_wait_gpu) 742 { 743 struct ttm_bo_device *bdev = bo->bdev; 744 struct ttm_mem_reg evict_mem; 745 struct ttm_placement placement; 746 int ret = 0; 747 748 spin_lock(&bdev->fence_lock); 749 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 750 spin_unlock(&bdev->fence_lock); 751 752 if (unlikely(ret != 0)) { 753 if (ret != -ERESTARTSYS) { 754 pr_err("Failed to expire sync object before buffer eviction\n"); 755 } 756 goto out; 757 } 758 759 BUG_ON(!atomic_read(&bo->reserved)); 760 761 evict_mem = bo->mem; 762 evict_mem.mm_node = NULL; 763 evict_mem.bus.io_reserved_vm = false; 764 evict_mem.bus.io_reserved_count = 0; 765 766 placement.fpfn = 0; 767 placement.lpfn = 0; 768 placement.num_placement = 0; 769 placement.num_busy_placement = 0; 770 bdev->driver->evict_flags(bo, &placement); 771 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 772 no_wait_reserve, no_wait_gpu); 773 if (ret) { 774 if (ret != -ERESTARTSYS) { 775 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 776 bo); 777 ttm_bo_mem_space_debug(bo, &placement); 778 } 779 goto out; 780 } 781 782 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 783 no_wait_reserve, no_wait_gpu); 784 if (ret) { 785 if (ret != -ERESTARTSYS) 786 pr_err("Buffer eviction failed\n"); 787 ttm_bo_mem_put(bo, &evict_mem); 788 goto out; 789 } 790 bo->evicted = true; 791 out: 792 return ret; 793 } 794 795 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 796 uint32_t mem_type, 797 bool interruptible, bool no_wait_reserve, 798 bool no_wait_gpu) 799 { 800 struct ttm_bo_global *glob = bdev->glob; 801 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 802 struct ttm_buffer_object *bo; 803 int ret, put_count = 0; 804 805 retry: 806 spin_lock(&glob->lru_lock); 807 if (list_empty(&man->lru)) { 808 spin_unlock(&glob->lru_lock); 809 return -EBUSY; 810 } 811 812 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru); 813 kref_get(&bo->list_kref); 814 815 if (!list_empty(&bo->ddestroy)) { 816 spin_unlock(&glob->lru_lock); 817 ret = ttm_bo_cleanup_refs(bo, interruptible, 818 no_wait_reserve, no_wait_gpu); 819 kref_put(&bo->list_kref, ttm_bo_release_list); 820 821 return ret; 822 } 823 824 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 825 826 if (unlikely(ret == -EBUSY)) { 827 spin_unlock(&glob->lru_lock); 828 if (likely(!no_wait_reserve)) 829 ret = ttm_bo_wait_unreserved(bo, interruptible); 830 831 kref_put(&bo->list_kref, ttm_bo_release_list); 832 833 /** 834 * We *need* to retry after releasing the lru lock. 835 */ 836 837 if (unlikely(ret != 0)) 838 return ret; 839 goto retry; 840 } 841 842 put_count = ttm_bo_del_from_lru(bo); 843 spin_unlock(&glob->lru_lock); 844 845 BUG_ON(ret != 0); 846 847 ttm_bo_list_ref_sub(bo, put_count, true); 848 849 ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu); 850 ttm_bo_unreserve(bo); 851 852 kref_put(&bo->list_kref, ttm_bo_release_list); 853 return ret; 854 } 855 856 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 857 { 858 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 859 860 if (mem->mm_node) 861 (*man->func->put_node)(man, mem); 862 } 863 EXPORT_SYMBOL(ttm_bo_mem_put); 864 865 /** 866 * Repeatedly evict memory from the LRU for @mem_type until we create enough 867 * space, or we've evicted everything and there isn't enough space. 868 */ 869 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 870 uint32_t mem_type, 871 struct ttm_placement *placement, 872 struct ttm_mem_reg *mem, 873 bool interruptible, 874 bool no_wait_reserve, 875 bool no_wait_gpu) 876 { 877 struct ttm_bo_device *bdev = bo->bdev; 878 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 879 int ret; 880 881 do { 882 ret = (*man->func->get_node)(man, bo, placement, mem); 883 if (unlikely(ret != 0)) 884 return ret; 885 if (mem->mm_node) 886 break; 887 ret = ttm_mem_evict_first(bdev, mem_type, interruptible, 888 no_wait_reserve, no_wait_gpu); 889 if (unlikely(ret != 0)) 890 return ret; 891 } while (1); 892 if (mem->mm_node == NULL) 893 return -ENOMEM; 894 mem->mem_type = mem_type; 895 return 0; 896 } 897 898 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 899 uint32_t cur_placement, 900 uint32_t proposed_placement) 901 { 902 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 903 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 904 905 /** 906 * Keep current caching if possible. 907 */ 908 909 if ((cur_placement & caching) != 0) 910 result |= (cur_placement & caching); 911 else if ((man->default_caching & caching) != 0) 912 result |= man->default_caching; 913 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 914 result |= TTM_PL_FLAG_CACHED; 915 else if ((TTM_PL_FLAG_WC & caching) != 0) 916 result |= TTM_PL_FLAG_WC; 917 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 918 result |= TTM_PL_FLAG_UNCACHED; 919 920 return result; 921 } 922 923 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 924 uint32_t mem_type, 925 uint32_t proposed_placement, 926 uint32_t *masked_placement) 927 { 928 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 929 930 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 931 return false; 932 933 if ((proposed_placement & man->available_caching) == 0) 934 return false; 935 936 cur_flags |= (proposed_placement & man->available_caching); 937 938 *masked_placement = cur_flags; 939 return true; 940 } 941 942 /** 943 * Creates space for memory region @mem according to its type. 944 * 945 * This function first searches for free space in compatible memory types in 946 * the priority order defined by the driver. If free space isn't found, then 947 * ttm_bo_mem_force_space is attempted in priority order to evict and find 948 * space. 949 */ 950 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 951 struct ttm_placement *placement, 952 struct ttm_mem_reg *mem, 953 bool interruptible, bool no_wait_reserve, 954 bool no_wait_gpu) 955 { 956 struct ttm_bo_device *bdev = bo->bdev; 957 struct ttm_mem_type_manager *man; 958 uint32_t mem_type = TTM_PL_SYSTEM; 959 uint32_t cur_flags = 0; 960 bool type_found = false; 961 bool type_ok = false; 962 bool has_erestartsys = false; 963 int i, ret; 964 965 mem->mm_node = NULL; 966 for (i = 0; i < placement->num_placement; ++i) { 967 ret = ttm_mem_type_from_flags(placement->placement[i], 968 &mem_type); 969 if (ret) 970 return ret; 971 man = &bdev->man[mem_type]; 972 973 type_ok = ttm_bo_mt_compatible(man, 974 mem_type, 975 placement->placement[i], 976 &cur_flags); 977 978 if (!type_ok) 979 continue; 980 981 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 982 cur_flags); 983 /* 984 * Use the access and other non-mapping-related flag bits from 985 * the memory placement flags to the current flags 986 */ 987 ttm_flag_masked(&cur_flags, placement->placement[i], 988 ~TTM_PL_MASK_MEMTYPE); 989 990 if (mem_type == TTM_PL_SYSTEM) 991 break; 992 993 if (man->has_type && man->use_type) { 994 type_found = true; 995 ret = (*man->func->get_node)(man, bo, placement, mem); 996 if (unlikely(ret)) 997 return ret; 998 } 999 if (mem->mm_node) 1000 break; 1001 } 1002 1003 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1004 mem->mem_type = mem_type; 1005 mem->placement = cur_flags; 1006 return 0; 1007 } 1008 1009 if (!type_found) 1010 return -EINVAL; 1011 1012 for (i = 0; i < placement->num_busy_placement; ++i) { 1013 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1014 &mem_type); 1015 if (ret) 1016 return ret; 1017 man = &bdev->man[mem_type]; 1018 if (!man->has_type) 1019 continue; 1020 if (!ttm_bo_mt_compatible(man, 1021 mem_type, 1022 placement->busy_placement[i], 1023 &cur_flags)) 1024 continue; 1025 1026 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1027 cur_flags); 1028 /* 1029 * Use the access and other non-mapping-related flag bits from 1030 * the memory placement flags to the current flags 1031 */ 1032 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1033 ~TTM_PL_MASK_MEMTYPE); 1034 1035 1036 if (mem_type == TTM_PL_SYSTEM) { 1037 mem->mem_type = mem_type; 1038 mem->placement = cur_flags; 1039 mem->mm_node = NULL; 1040 return 0; 1041 } 1042 1043 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1044 interruptible, no_wait_reserve, no_wait_gpu); 1045 if (ret == 0 && mem->mm_node) { 1046 mem->placement = cur_flags; 1047 return 0; 1048 } 1049 if (ret == -ERESTARTSYS) 1050 has_erestartsys = true; 1051 } 1052 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1053 return ret; 1054 } 1055 EXPORT_SYMBOL(ttm_bo_mem_space); 1056 1057 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait) 1058 { 1059 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait) 1060 return -EBUSY; 1061 1062 return wait_event_interruptible(bo->event_queue, 1063 atomic_read(&bo->cpu_writers) == 0); 1064 } 1065 EXPORT_SYMBOL(ttm_bo_wait_cpu); 1066 1067 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1068 struct ttm_placement *placement, 1069 bool interruptible, bool no_wait_reserve, 1070 bool no_wait_gpu) 1071 { 1072 int ret = 0; 1073 struct ttm_mem_reg mem; 1074 struct ttm_bo_device *bdev = bo->bdev; 1075 1076 BUG_ON(!atomic_read(&bo->reserved)); 1077 1078 /* 1079 * FIXME: It's possible to pipeline buffer moves. 1080 * Have the driver move function wait for idle when necessary, 1081 * instead of doing it here. 1082 */ 1083 spin_lock(&bdev->fence_lock); 1084 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1085 spin_unlock(&bdev->fence_lock); 1086 if (ret) 1087 return ret; 1088 mem.num_pages = bo->num_pages; 1089 mem.size = mem.num_pages << PAGE_SHIFT; 1090 mem.page_alignment = bo->mem.page_alignment; 1091 mem.bus.io_reserved_vm = false; 1092 mem.bus.io_reserved_count = 0; 1093 /* 1094 * Determine where to move the buffer. 1095 */ 1096 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu); 1097 if (ret) 1098 goto out_unlock; 1099 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu); 1100 out_unlock: 1101 if (ret && mem.mm_node) 1102 ttm_bo_mem_put(bo, &mem); 1103 return ret; 1104 } 1105 1106 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1107 struct ttm_mem_reg *mem) 1108 { 1109 int i; 1110 1111 if (mem->mm_node && placement->lpfn != 0 && 1112 (mem->start < placement->fpfn || 1113 mem->start + mem->num_pages > placement->lpfn)) 1114 return -1; 1115 1116 for (i = 0; i < placement->num_placement; i++) { 1117 if ((placement->placement[i] & mem->placement & 1118 TTM_PL_MASK_CACHING) && 1119 (placement->placement[i] & mem->placement & 1120 TTM_PL_MASK_MEM)) 1121 return i; 1122 } 1123 return -1; 1124 } 1125 1126 int ttm_bo_validate(struct ttm_buffer_object *bo, 1127 struct ttm_placement *placement, 1128 bool interruptible, bool no_wait_reserve, 1129 bool no_wait_gpu) 1130 { 1131 int ret; 1132 1133 BUG_ON(!atomic_read(&bo->reserved)); 1134 /* Check that range is valid */ 1135 if (placement->lpfn || placement->fpfn) 1136 if (placement->fpfn > placement->lpfn || 1137 (placement->lpfn - placement->fpfn) < bo->num_pages) 1138 return -EINVAL; 1139 /* 1140 * Check whether we need to move buffer. 1141 */ 1142 ret = ttm_bo_mem_compat(placement, &bo->mem); 1143 if (ret < 0) { 1144 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu); 1145 if (ret) 1146 return ret; 1147 } else { 1148 /* 1149 * Use the access and other non-mapping-related flag bits from 1150 * the compatible memory placement flags to the active flags 1151 */ 1152 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1153 ~TTM_PL_MASK_MEMTYPE); 1154 } 1155 /* 1156 * We might need to add a TTM. 1157 */ 1158 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1159 ret = ttm_bo_add_ttm(bo, true); 1160 if (ret) 1161 return ret; 1162 } 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(ttm_bo_validate); 1166 1167 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1168 struct ttm_placement *placement) 1169 { 1170 BUG_ON((placement->fpfn || placement->lpfn) && 1171 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); 1172 1173 return 0; 1174 } 1175 1176 int ttm_bo_init(struct ttm_bo_device *bdev, 1177 struct ttm_buffer_object *bo, 1178 unsigned long size, 1179 enum ttm_bo_type type, 1180 struct ttm_placement *placement, 1181 uint32_t page_alignment, 1182 unsigned long buffer_start, 1183 bool interruptible, 1184 struct file *persistent_swap_storage, 1185 size_t acc_size, 1186 struct sg_table *sg, 1187 void (*destroy) (struct ttm_buffer_object *)) 1188 { 1189 int ret = 0; 1190 unsigned long num_pages; 1191 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1192 1193 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1194 if (ret) { 1195 pr_err("Out of kernel memory\n"); 1196 if (destroy) 1197 (*destroy)(bo); 1198 else 1199 kfree(bo); 1200 return -ENOMEM; 1201 } 1202 1203 size += buffer_start & ~PAGE_MASK; 1204 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1205 if (num_pages == 0) { 1206 pr_err("Illegal buffer object size\n"); 1207 if (destroy) 1208 (*destroy)(bo); 1209 else 1210 kfree(bo); 1211 ttm_mem_global_free(mem_glob, acc_size); 1212 return -EINVAL; 1213 } 1214 bo->destroy = destroy; 1215 1216 kref_init(&bo->kref); 1217 kref_init(&bo->list_kref); 1218 atomic_set(&bo->cpu_writers, 0); 1219 atomic_set(&bo->reserved, 1); 1220 init_waitqueue_head(&bo->event_queue); 1221 INIT_LIST_HEAD(&bo->lru); 1222 INIT_LIST_HEAD(&bo->ddestroy); 1223 INIT_LIST_HEAD(&bo->swap); 1224 INIT_LIST_HEAD(&bo->io_reserve_lru); 1225 bo->bdev = bdev; 1226 bo->glob = bdev->glob; 1227 bo->type = type; 1228 bo->num_pages = num_pages; 1229 bo->mem.size = num_pages << PAGE_SHIFT; 1230 bo->mem.mem_type = TTM_PL_SYSTEM; 1231 bo->mem.num_pages = bo->num_pages; 1232 bo->mem.mm_node = NULL; 1233 bo->mem.page_alignment = page_alignment; 1234 bo->mem.bus.io_reserved_vm = false; 1235 bo->mem.bus.io_reserved_count = 0; 1236 bo->buffer_start = buffer_start & PAGE_MASK; 1237 bo->priv_flags = 0; 1238 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1239 bo->seq_valid = false; 1240 bo->persistent_swap_storage = persistent_swap_storage; 1241 bo->acc_size = acc_size; 1242 bo->sg = sg; 1243 atomic_inc(&bo->glob->bo_count); 1244 1245 ret = ttm_bo_check_placement(bo, placement); 1246 if (unlikely(ret != 0)) 1247 goto out_err; 1248 1249 /* 1250 * For ttm_bo_type_device buffers, allocate 1251 * address space from the device. 1252 */ 1253 if (bo->type == ttm_bo_type_device || 1254 bo->type == ttm_bo_type_sg) { 1255 ret = ttm_bo_setup_vm(bo); 1256 if (ret) 1257 goto out_err; 1258 } 1259 1260 ret = ttm_bo_validate(bo, placement, interruptible, false, false); 1261 if (ret) 1262 goto out_err; 1263 1264 ttm_bo_unreserve(bo); 1265 return 0; 1266 1267 out_err: 1268 ttm_bo_unreserve(bo); 1269 ttm_bo_unref(&bo); 1270 1271 return ret; 1272 } 1273 EXPORT_SYMBOL(ttm_bo_init); 1274 1275 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1276 unsigned long bo_size, 1277 unsigned struct_size) 1278 { 1279 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1280 size_t size = 0; 1281 1282 size += ttm_round_pot(struct_size); 1283 size += PAGE_ALIGN(npages * sizeof(void *)); 1284 size += ttm_round_pot(sizeof(struct ttm_tt)); 1285 return size; 1286 } 1287 EXPORT_SYMBOL(ttm_bo_acc_size); 1288 1289 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1290 unsigned long bo_size, 1291 unsigned struct_size) 1292 { 1293 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1294 size_t size = 0; 1295 1296 size += ttm_round_pot(struct_size); 1297 size += PAGE_ALIGN(npages * sizeof(void *)); 1298 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1299 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1300 return size; 1301 } 1302 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1303 1304 int ttm_bo_create(struct ttm_bo_device *bdev, 1305 unsigned long size, 1306 enum ttm_bo_type type, 1307 struct ttm_placement *placement, 1308 uint32_t page_alignment, 1309 unsigned long buffer_start, 1310 bool interruptible, 1311 struct file *persistent_swap_storage, 1312 struct ttm_buffer_object **p_bo) 1313 { 1314 struct ttm_buffer_object *bo; 1315 size_t acc_size; 1316 int ret; 1317 1318 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1319 if (unlikely(bo == NULL)) 1320 return -ENOMEM; 1321 1322 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1323 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1324 buffer_start, interruptible, 1325 persistent_swap_storage, acc_size, NULL, NULL); 1326 if (likely(ret == 0)) 1327 *p_bo = bo; 1328 1329 return ret; 1330 } 1331 EXPORT_SYMBOL(ttm_bo_create); 1332 1333 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1334 unsigned mem_type, bool allow_errors) 1335 { 1336 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1337 struct ttm_bo_global *glob = bdev->glob; 1338 int ret; 1339 1340 /* 1341 * Can't use standard list traversal since we're unlocking. 1342 */ 1343 1344 spin_lock(&glob->lru_lock); 1345 while (!list_empty(&man->lru)) { 1346 spin_unlock(&glob->lru_lock); 1347 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false); 1348 if (ret) { 1349 if (allow_errors) { 1350 return ret; 1351 } else { 1352 pr_err("Cleanup eviction failed\n"); 1353 } 1354 } 1355 spin_lock(&glob->lru_lock); 1356 } 1357 spin_unlock(&glob->lru_lock); 1358 return 0; 1359 } 1360 1361 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1362 { 1363 struct ttm_mem_type_manager *man; 1364 int ret = -EINVAL; 1365 1366 if (mem_type >= TTM_NUM_MEM_TYPES) { 1367 pr_err("Illegal memory type %d\n", mem_type); 1368 return ret; 1369 } 1370 man = &bdev->man[mem_type]; 1371 1372 if (!man->has_type) { 1373 pr_err("Trying to take down uninitialized memory manager type %u\n", 1374 mem_type); 1375 return ret; 1376 } 1377 1378 man->use_type = false; 1379 man->has_type = false; 1380 1381 ret = 0; 1382 if (mem_type > 0) { 1383 ttm_bo_force_list_clean(bdev, mem_type, false); 1384 1385 ret = (*man->func->takedown)(man); 1386 } 1387 1388 return ret; 1389 } 1390 EXPORT_SYMBOL(ttm_bo_clean_mm); 1391 1392 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1393 { 1394 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1395 1396 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1397 pr_err("Illegal memory manager memory type %u\n", mem_type); 1398 return -EINVAL; 1399 } 1400 1401 if (!man->has_type) { 1402 pr_err("Memory type %u has not been initialized\n", mem_type); 1403 return 0; 1404 } 1405 1406 return ttm_bo_force_list_clean(bdev, mem_type, true); 1407 } 1408 EXPORT_SYMBOL(ttm_bo_evict_mm); 1409 1410 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1411 unsigned long p_size) 1412 { 1413 int ret = -EINVAL; 1414 struct ttm_mem_type_manager *man; 1415 1416 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1417 man = &bdev->man[type]; 1418 BUG_ON(man->has_type); 1419 man->io_reserve_fastpath = true; 1420 man->use_io_reserve_lru = false; 1421 mutex_init(&man->io_reserve_mutex); 1422 INIT_LIST_HEAD(&man->io_reserve_lru); 1423 1424 ret = bdev->driver->init_mem_type(bdev, type, man); 1425 if (ret) 1426 return ret; 1427 man->bdev = bdev; 1428 1429 ret = 0; 1430 if (type != TTM_PL_SYSTEM) { 1431 ret = (*man->func->init)(man, p_size); 1432 if (ret) 1433 return ret; 1434 } 1435 man->has_type = true; 1436 man->use_type = true; 1437 man->size = p_size; 1438 1439 INIT_LIST_HEAD(&man->lru); 1440 1441 return 0; 1442 } 1443 EXPORT_SYMBOL(ttm_bo_init_mm); 1444 1445 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1446 { 1447 struct ttm_bo_global *glob = 1448 container_of(kobj, struct ttm_bo_global, kobj); 1449 1450 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1451 __free_page(glob->dummy_read_page); 1452 kfree(glob); 1453 } 1454 1455 void ttm_bo_global_release(struct drm_global_reference *ref) 1456 { 1457 struct ttm_bo_global *glob = ref->object; 1458 1459 kobject_del(&glob->kobj); 1460 kobject_put(&glob->kobj); 1461 } 1462 EXPORT_SYMBOL(ttm_bo_global_release); 1463 1464 int ttm_bo_global_init(struct drm_global_reference *ref) 1465 { 1466 struct ttm_bo_global_ref *bo_ref = 1467 container_of(ref, struct ttm_bo_global_ref, ref); 1468 struct ttm_bo_global *glob = ref->object; 1469 int ret; 1470 1471 mutex_init(&glob->device_list_mutex); 1472 spin_lock_init(&glob->lru_lock); 1473 glob->mem_glob = bo_ref->mem_glob; 1474 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1475 1476 if (unlikely(glob->dummy_read_page == NULL)) { 1477 ret = -ENOMEM; 1478 goto out_no_drp; 1479 } 1480 1481 INIT_LIST_HEAD(&glob->swap_lru); 1482 INIT_LIST_HEAD(&glob->device_list); 1483 1484 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1485 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1486 if (unlikely(ret != 0)) { 1487 pr_err("Could not register buffer object swapout\n"); 1488 goto out_no_shrink; 1489 } 1490 1491 atomic_set(&glob->bo_count, 0); 1492 1493 ret = kobject_init_and_add( 1494 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1495 if (unlikely(ret != 0)) 1496 kobject_put(&glob->kobj); 1497 return ret; 1498 out_no_shrink: 1499 __free_page(glob->dummy_read_page); 1500 out_no_drp: 1501 kfree(glob); 1502 return ret; 1503 } 1504 EXPORT_SYMBOL(ttm_bo_global_init); 1505 1506 1507 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1508 { 1509 int ret = 0; 1510 unsigned i = TTM_NUM_MEM_TYPES; 1511 struct ttm_mem_type_manager *man; 1512 struct ttm_bo_global *glob = bdev->glob; 1513 1514 while (i--) { 1515 man = &bdev->man[i]; 1516 if (man->has_type) { 1517 man->use_type = false; 1518 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1519 ret = -EBUSY; 1520 pr_err("DRM memory manager type %d is not clean\n", 1521 i); 1522 } 1523 man->has_type = false; 1524 } 1525 } 1526 1527 mutex_lock(&glob->device_list_mutex); 1528 list_del(&bdev->device_list); 1529 mutex_unlock(&glob->device_list_mutex); 1530 1531 cancel_delayed_work_sync(&bdev->wq); 1532 1533 while (ttm_bo_delayed_delete(bdev, true)) 1534 ; 1535 1536 spin_lock(&glob->lru_lock); 1537 if (list_empty(&bdev->ddestroy)) 1538 TTM_DEBUG("Delayed destroy list was clean\n"); 1539 1540 if (list_empty(&bdev->man[0].lru)) 1541 TTM_DEBUG("Swap list was clean\n"); 1542 spin_unlock(&glob->lru_lock); 1543 1544 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1545 write_lock(&bdev->vm_lock); 1546 drm_mm_takedown(&bdev->addr_space_mm); 1547 write_unlock(&bdev->vm_lock); 1548 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(ttm_bo_device_release); 1552 1553 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1554 struct ttm_bo_global *glob, 1555 struct ttm_bo_driver *driver, 1556 uint64_t file_page_offset, 1557 bool need_dma32) 1558 { 1559 int ret = -EINVAL; 1560 1561 rwlock_init(&bdev->vm_lock); 1562 bdev->driver = driver; 1563 1564 memset(bdev->man, 0, sizeof(bdev->man)); 1565 1566 /* 1567 * Initialize the system memory buffer type. 1568 * Other types need to be driver / IOCTL initialized. 1569 */ 1570 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1571 if (unlikely(ret != 0)) 1572 goto out_no_sys; 1573 1574 bdev->addr_space_rb = RB_ROOT; 1575 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1576 if (unlikely(ret != 0)) 1577 goto out_no_addr_mm; 1578 1579 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1580 bdev->nice_mode = true; 1581 INIT_LIST_HEAD(&bdev->ddestroy); 1582 bdev->dev_mapping = NULL; 1583 bdev->glob = glob; 1584 bdev->need_dma32 = need_dma32; 1585 bdev->val_seq = 0; 1586 spin_lock_init(&bdev->fence_lock); 1587 mutex_lock(&glob->device_list_mutex); 1588 list_add_tail(&bdev->device_list, &glob->device_list); 1589 mutex_unlock(&glob->device_list_mutex); 1590 1591 return 0; 1592 out_no_addr_mm: 1593 ttm_bo_clean_mm(bdev, 0); 1594 out_no_sys: 1595 return ret; 1596 } 1597 EXPORT_SYMBOL(ttm_bo_device_init); 1598 1599 /* 1600 * buffer object vm functions. 1601 */ 1602 1603 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1604 { 1605 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1606 1607 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1608 if (mem->mem_type == TTM_PL_SYSTEM) 1609 return false; 1610 1611 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1612 return false; 1613 1614 if (mem->placement & TTM_PL_FLAG_CACHED) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1621 { 1622 struct ttm_bo_device *bdev = bo->bdev; 1623 loff_t offset = (loff_t) bo->addr_space_offset; 1624 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; 1625 1626 if (!bdev->dev_mapping) 1627 return; 1628 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); 1629 ttm_mem_io_free_vm(bo); 1630 } 1631 1632 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1633 { 1634 struct ttm_bo_device *bdev = bo->bdev; 1635 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1636 1637 ttm_mem_io_lock(man, false); 1638 ttm_bo_unmap_virtual_locked(bo); 1639 ttm_mem_io_unlock(man); 1640 } 1641 1642 1643 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1644 1645 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1646 { 1647 struct ttm_bo_device *bdev = bo->bdev; 1648 struct rb_node **cur = &bdev->addr_space_rb.rb_node; 1649 struct rb_node *parent = NULL; 1650 struct ttm_buffer_object *cur_bo; 1651 unsigned long offset = bo->vm_node->start; 1652 unsigned long cur_offset; 1653 1654 while (*cur) { 1655 parent = *cur; 1656 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); 1657 cur_offset = cur_bo->vm_node->start; 1658 if (offset < cur_offset) 1659 cur = &parent->rb_left; 1660 else if (offset > cur_offset) 1661 cur = &parent->rb_right; 1662 else 1663 BUG(); 1664 } 1665 1666 rb_link_node(&bo->vm_rb, parent, cur); 1667 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); 1668 } 1669 1670 /** 1671 * ttm_bo_setup_vm: 1672 * 1673 * @bo: the buffer to allocate address space for 1674 * 1675 * Allocate address space in the drm device so that applications 1676 * can mmap the buffer and access the contents. This only 1677 * applies to ttm_bo_type_device objects as others are not 1678 * placed in the drm device address space. 1679 */ 1680 1681 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1682 { 1683 struct ttm_bo_device *bdev = bo->bdev; 1684 int ret; 1685 1686 retry_pre_get: 1687 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1688 if (unlikely(ret != 0)) 1689 return ret; 1690 1691 write_lock(&bdev->vm_lock); 1692 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1693 bo->mem.num_pages, 0, 0); 1694 1695 if (unlikely(bo->vm_node == NULL)) { 1696 ret = -ENOMEM; 1697 goto out_unlock; 1698 } 1699 1700 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1701 bo->mem.num_pages, 0); 1702 1703 if (unlikely(bo->vm_node == NULL)) { 1704 write_unlock(&bdev->vm_lock); 1705 goto retry_pre_get; 1706 } 1707 1708 ttm_bo_vm_insert_rb(bo); 1709 write_unlock(&bdev->vm_lock); 1710 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1711 1712 return 0; 1713 out_unlock: 1714 write_unlock(&bdev->vm_lock); 1715 return ret; 1716 } 1717 1718 int ttm_bo_wait(struct ttm_buffer_object *bo, 1719 bool lazy, bool interruptible, bool no_wait) 1720 { 1721 struct ttm_bo_driver *driver = bo->bdev->driver; 1722 struct ttm_bo_device *bdev = bo->bdev; 1723 void *sync_obj; 1724 void *sync_obj_arg; 1725 int ret = 0; 1726 1727 if (likely(bo->sync_obj == NULL)) 1728 return 0; 1729 1730 while (bo->sync_obj) { 1731 1732 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) { 1733 void *tmp_obj = bo->sync_obj; 1734 bo->sync_obj = NULL; 1735 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1736 spin_unlock(&bdev->fence_lock); 1737 driver->sync_obj_unref(&tmp_obj); 1738 spin_lock(&bdev->fence_lock); 1739 continue; 1740 } 1741 1742 if (no_wait) 1743 return -EBUSY; 1744 1745 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1746 sync_obj_arg = bo->sync_obj_arg; 1747 spin_unlock(&bdev->fence_lock); 1748 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg, 1749 lazy, interruptible); 1750 if (unlikely(ret != 0)) { 1751 driver->sync_obj_unref(&sync_obj); 1752 spin_lock(&bdev->fence_lock); 1753 return ret; 1754 } 1755 spin_lock(&bdev->fence_lock); 1756 if (likely(bo->sync_obj == sync_obj && 1757 bo->sync_obj_arg == sync_obj_arg)) { 1758 void *tmp_obj = bo->sync_obj; 1759 bo->sync_obj = NULL; 1760 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1761 &bo->priv_flags); 1762 spin_unlock(&bdev->fence_lock); 1763 driver->sync_obj_unref(&sync_obj); 1764 driver->sync_obj_unref(&tmp_obj); 1765 spin_lock(&bdev->fence_lock); 1766 } else { 1767 spin_unlock(&bdev->fence_lock); 1768 driver->sync_obj_unref(&sync_obj); 1769 spin_lock(&bdev->fence_lock); 1770 } 1771 } 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(ttm_bo_wait); 1775 1776 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1777 { 1778 struct ttm_bo_device *bdev = bo->bdev; 1779 int ret = 0; 1780 1781 /* 1782 * Using ttm_bo_reserve makes sure the lru lists are updated. 1783 */ 1784 1785 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1786 if (unlikely(ret != 0)) 1787 return ret; 1788 spin_lock(&bdev->fence_lock); 1789 ret = ttm_bo_wait(bo, false, true, no_wait); 1790 spin_unlock(&bdev->fence_lock); 1791 if (likely(ret == 0)) 1792 atomic_inc(&bo->cpu_writers); 1793 ttm_bo_unreserve(bo); 1794 return ret; 1795 } 1796 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1797 1798 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1799 { 1800 if (atomic_dec_and_test(&bo->cpu_writers)) 1801 wake_up_all(&bo->event_queue); 1802 } 1803 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1804 1805 /** 1806 * A buffer object shrink method that tries to swap out the first 1807 * buffer object on the bo_global::swap_lru list. 1808 */ 1809 1810 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1811 { 1812 struct ttm_bo_global *glob = 1813 container_of(shrink, struct ttm_bo_global, shrink); 1814 struct ttm_buffer_object *bo; 1815 int ret = -EBUSY; 1816 int put_count; 1817 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1818 1819 spin_lock(&glob->lru_lock); 1820 while (ret == -EBUSY) { 1821 if (unlikely(list_empty(&glob->swap_lru))) { 1822 spin_unlock(&glob->lru_lock); 1823 return -EBUSY; 1824 } 1825 1826 bo = list_first_entry(&glob->swap_lru, 1827 struct ttm_buffer_object, swap); 1828 kref_get(&bo->list_kref); 1829 1830 if (!list_empty(&bo->ddestroy)) { 1831 spin_unlock(&glob->lru_lock); 1832 (void) ttm_bo_cleanup_refs(bo, false, false, false); 1833 kref_put(&bo->list_kref, ttm_bo_release_list); 1834 spin_lock(&glob->lru_lock); 1835 continue; 1836 } 1837 1838 /** 1839 * Reserve buffer. Since we unlock while sleeping, we need 1840 * to re-check that nobody removed us from the swap-list while 1841 * we slept. 1842 */ 1843 1844 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 1845 if (unlikely(ret == -EBUSY)) { 1846 spin_unlock(&glob->lru_lock); 1847 ttm_bo_wait_unreserved(bo, false); 1848 kref_put(&bo->list_kref, ttm_bo_release_list); 1849 spin_lock(&glob->lru_lock); 1850 } 1851 } 1852 1853 BUG_ON(ret != 0); 1854 put_count = ttm_bo_del_from_lru(bo); 1855 spin_unlock(&glob->lru_lock); 1856 1857 ttm_bo_list_ref_sub(bo, put_count, true); 1858 1859 /** 1860 * Wait for GPU, then move to system cached. 1861 */ 1862 1863 spin_lock(&bo->bdev->fence_lock); 1864 ret = ttm_bo_wait(bo, false, false, false); 1865 spin_unlock(&bo->bdev->fence_lock); 1866 1867 if (unlikely(ret != 0)) 1868 goto out; 1869 1870 if ((bo->mem.placement & swap_placement) != swap_placement) { 1871 struct ttm_mem_reg evict_mem; 1872 1873 evict_mem = bo->mem; 1874 evict_mem.mm_node = NULL; 1875 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1876 evict_mem.mem_type = TTM_PL_SYSTEM; 1877 1878 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1879 false, false, false); 1880 if (unlikely(ret != 0)) 1881 goto out; 1882 } 1883 1884 ttm_bo_unmap_virtual(bo); 1885 1886 /** 1887 * Swap out. Buffer will be swapped in again as soon as 1888 * anyone tries to access a ttm page. 1889 */ 1890 1891 if (bo->bdev->driver->swap_notify) 1892 bo->bdev->driver->swap_notify(bo); 1893 1894 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1895 out: 1896 1897 /** 1898 * 1899 * Unreserve without putting on LRU to avoid swapping out an 1900 * already swapped buffer. 1901 */ 1902 1903 atomic_set(&bo->reserved, 0); 1904 wake_up_all(&bo->event_queue); 1905 kref_put(&bo->list_kref, ttm_bo_release_list); 1906 return ret; 1907 } 1908 1909 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1910 { 1911 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1912 ; 1913 } 1914 EXPORT_SYMBOL(ttm_bo_swapout_all); 1915