xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41 
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45 
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49 
50 static struct attribute ttm_bo_count = {
51 	.name = "bo_count",
52 	.mode = S_IRUGO
53 };
54 
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57 	int i;
58 
59 	for (i = 0; i <= TTM_PL_PRIV5; i++)
60 		if (flags & (1 << i)) {
61 			*mem_type = i;
62 			return 0;
63 		}
64 	return -EINVAL;
65 }
66 
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70 
71 	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72 	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73 	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74 	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75 	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77 		man->available_caching);
78 	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79 		man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 		bo, bo->mem.num_pages, bo->mem.size >> 10,
91 		bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98 			i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       atomic_read(&bo->reserved) == 0);
166 	} else {
167 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!atomic_read(&bo->reserved));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	if (use_sequence) {
253 		/**
254 		 * Wake up waiters that may need to recheck for deadlock,
255 		 * if we decreased the sequence number.
256 		 */
257 		if (unlikely((bo->val_seq - sequence < (1 << 31))
258 			     || !bo->seq_valid))
259 			wake_up_all(&bo->event_queue);
260 
261 		bo->val_seq = sequence;
262 		bo->seq_valid = true;
263 	} else {
264 		bo->seq_valid = false;
265 	}
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270 
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 	BUG();
274 }
275 
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 			 bool never_free)
278 {
279 	kref_sub(&bo->list_kref, count,
280 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282 
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 		   bool interruptible,
285 		   bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 	struct ttm_bo_global *glob = bo->glob;
288 	int put_count = 0;
289 	int ret;
290 
291 	spin_lock(&glob->lru_lock);
292 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 				    sequence);
294 	if (likely(ret == 0))
295 		put_count = ttm_bo_del_from_lru(bo);
296 	spin_unlock(&glob->lru_lock);
297 
298 	ttm_bo_list_ref_sub(bo, put_count, true);
299 
300 	return ret;
301 }
302 
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 	ttm_bo_add_to_lru(bo);
306 	atomic_set(&bo->reserved, 0);
307 	wake_up_all(&bo->event_queue);
308 }
309 
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 	struct ttm_bo_global *glob = bo->glob;
313 
314 	spin_lock(&glob->lru_lock);
315 	ttm_bo_unreserve_locked(bo);
316 	spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319 
320 /*
321  * Call bo->mutex locked.
322  */
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 	struct ttm_bo_device *bdev = bo->bdev;
326 	struct ttm_bo_global *glob = bo->glob;
327 	int ret = 0;
328 	uint32_t page_flags = 0;
329 
330 	TTM_ASSERT_LOCKED(&bo->mutex);
331 	bo->ttm = NULL;
332 
333 	if (bdev->need_dma32)
334 		page_flags |= TTM_PAGE_FLAG_DMA32;
335 
336 	switch (bo->type) {
337 	case ttm_bo_type_device:
338 		if (zero_alloc)
339 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 	case ttm_bo_type_kernel:
341 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 						      page_flags, glob->dummy_read_page);
343 		if (unlikely(bo->ttm == NULL))
344 			ret = -ENOMEM;
345 		break;
346 	default:
347 		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
348 		ret = -EINVAL;
349 		break;
350 	}
351 
352 	return ret;
353 }
354 
355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 				  struct ttm_mem_reg *mem,
357 				  bool evict, bool interruptible,
358 				  bool no_wait_reserve, bool no_wait_gpu)
359 {
360 	struct ttm_bo_device *bdev = bo->bdev;
361 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 	int ret = 0;
366 
367 	if (old_is_pci || new_is_pci ||
368 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 		ret = ttm_mem_io_lock(old_man, true);
370 		if (unlikely(ret != 0))
371 			goto out_err;
372 		ttm_bo_unmap_virtual_locked(bo);
373 		ttm_mem_io_unlock(old_man);
374 	}
375 
376 	/*
377 	 * Create and bind a ttm if required.
378 	 */
379 
380 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 		if (bo->ttm == NULL) {
382 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 			ret = ttm_bo_add_ttm(bo, zero);
384 			if (ret)
385 				goto out_err;
386 		}
387 
388 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 		if (ret)
390 			goto out_err;
391 
392 		if (mem->mem_type != TTM_PL_SYSTEM) {
393 			ret = ttm_tt_bind(bo->ttm, mem);
394 			if (ret)
395 				goto out_err;
396 		}
397 
398 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 			if (bdev->driver->move_notify)
400 				bdev->driver->move_notify(bo, mem);
401 			bo->mem = *mem;
402 			mem->mm_node = NULL;
403 			goto moved;
404 		}
405 	}
406 
407 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
408 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
409 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
410 	else if (bdev->driver->move)
411 		ret = bdev->driver->move(bo, evict, interruptible,
412 					 no_wait_reserve, no_wait_gpu, mem);
413 	else
414 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
415 
416 	if (ret)
417 		goto out_err;
418 
419 	if (bdev->driver->move_notify)
420 		bdev->driver->move_notify(bo, mem);
421 
422 moved:
423 	if (bo->evicted) {
424 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
425 		if (ret)
426 			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
427 		bo->evicted = false;
428 	}
429 
430 	if (bo->mem.mm_node) {
431 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
432 		    bdev->man[bo->mem.mem_type].gpu_offset;
433 		bo->cur_placement = bo->mem.placement;
434 	} else
435 		bo->offset = 0;
436 
437 	return 0;
438 
439 out_err:
440 	new_man = &bdev->man[bo->mem.mem_type];
441 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
442 		ttm_tt_unbind(bo->ttm);
443 		ttm_tt_destroy(bo->ttm);
444 		bo->ttm = NULL;
445 	}
446 
447 	return ret;
448 }
449 
450 /**
451  * Call bo::reserved.
452  * Will release GPU memory type usage on destruction.
453  * This is the place to put in driver specific hooks to release
454  * driver private resources.
455  * Will release the bo::reserved lock.
456  */
457 
458 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
459 {
460 	if (bo->bdev->driver->move_notify)
461 		bo->bdev->driver->move_notify(bo, NULL);
462 
463 	if (bo->ttm) {
464 		ttm_tt_unbind(bo->ttm);
465 		ttm_tt_destroy(bo->ttm);
466 		bo->ttm = NULL;
467 	}
468 	ttm_bo_mem_put(bo, &bo->mem);
469 
470 	atomic_set(&bo->reserved, 0);
471 
472 	/*
473 	 * Make processes trying to reserve really pick it up.
474 	 */
475 	smp_mb__after_atomic_dec();
476 	wake_up_all(&bo->event_queue);
477 }
478 
479 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
480 {
481 	struct ttm_bo_device *bdev = bo->bdev;
482 	struct ttm_bo_global *glob = bo->glob;
483 	struct ttm_bo_driver *driver;
484 	void *sync_obj = NULL;
485 	void *sync_obj_arg;
486 	int put_count;
487 	int ret;
488 
489 	spin_lock(&bdev->fence_lock);
490 	(void) ttm_bo_wait(bo, false, false, true);
491 	if (!bo->sync_obj) {
492 
493 		spin_lock(&glob->lru_lock);
494 
495 		/**
496 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
497 		 * but that's OK, since we're only trylocking.
498 		 */
499 
500 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
501 
502 		if (unlikely(ret == -EBUSY))
503 			goto queue;
504 
505 		spin_unlock(&bdev->fence_lock);
506 		put_count = ttm_bo_del_from_lru(bo);
507 
508 		spin_unlock(&glob->lru_lock);
509 		ttm_bo_cleanup_memtype_use(bo);
510 
511 		ttm_bo_list_ref_sub(bo, put_count, true);
512 
513 		return;
514 	} else {
515 		spin_lock(&glob->lru_lock);
516 	}
517 queue:
518 	driver = bdev->driver;
519 	if (bo->sync_obj)
520 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
521 	sync_obj_arg = bo->sync_obj_arg;
522 
523 	kref_get(&bo->list_kref);
524 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
525 	spin_unlock(&glob->lru_lock);
526 	spin_unlock(&bdev->fence_lock);
527 
528 	if (sync_obj) {
529 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
530 		driver->sync_obj_unref(&sync_obj);
531 	}
532 	schedule_delayed_work(&bdev->wq,
533 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
534 }
535 
536 /**
537  * function ttm_bo_cleanup_refs
538  * If bo idle, remove from delayed- and lru lists, and unref.
539  * If not idle, do nothing.
540  *
541  * @interruptible         Any sleeps should occur interruptibly.
542  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
543  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
544  */
545 
546 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
547 			       bool interruptible,
548 			       bool no_wait_reserve,
549 			       bool no_wait_gpu)
550 {
551 	struct ttm_bo_device *bdev = bo->bdev;
552 	struct ttm_bo_global *glob = bo->glob;
553 	int put_count;
554 	int ret = 0;
555 
556 retry:
557 	spin_lock(&bdev->fence_lock);
558 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
559 	spin_unlock(&bdev->fence_lock);
560 
561 	if (unlikely(ret != 0))
562 		return ret;
563 
564 	spin_lock(&glob->lru_lock);
565 
566 	if (unlikely(list_empty(&bo->ddestroy))) {
567 		spin_unlock(&glob->lru_lock);
568 		return 0;
569 	}
570 
571 	ret = ttm_bo_reserve_locked(bo, interruptible,
572 				    no_wait_reserve, false, 0);
573 
574 	if (unlikely(ret != 0)) {
575 		spin_unlock(&glob->lru_lock);
576 		return ret;
577 	}
578 
579 	/**
580 	 * We can re-check for sync object without taking
581 	 * the bo::lock since setting the sync object requires
582 	 * also bo::reserved. A busy object at this point may
583 	 * be caused by another thread recently starting an accelerated
584 	 * eviction.
585 	 */
586 
587 	if (unlikely(bo->sync_obj)) {
588 		atomic_set(&bo->reserved, 0);
589 		wake_up_all(&bo->event_queue);
590 		spin_unlock(&glob->lru_lock);
591 		goto retry;
592 	}
593 
594 	put_count = ttm_bo_del_from_lru(bo);
595 	list_del_init(&bo->ddestroy);
596 	++put_count;
597 
598 	spin_unlock(&glob->lru_lock);
599 	ttm_bo_cleanup_memtype_use(bo);
600 
601 	ttm_bo_list_ref_sub(bo, put_count, true);
602 
603 	return 0;
604 }
605 
606 /**
607  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
608  * encountered buffers.
609  */
610 
611 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
612 {
613 	struct ttm_bo_global *glob = bdev->glob;
614 	struct ttm_buffer_object *entry = NULL;
615 	int ret = 0;
616 
617 	spin_lock(&glob->lru_lock);
618 	if (list_empty(&bdev->ddestroy))
619 		goto out_unlock;
620 
621 	entry = list_first_entry(&bdev->ddestroy,
622 		struct ttm_buffer_object, ddestroy);
623 	kref_get(&entry->list_kref);
624 
625 	for (;;) {
626 		struct ttm_buffer_object *nentry = NULL;
627 
628 		if (entry->ddestroy.next != &bdev->ddestroy) {
629 			nentry = list_first_entry(&entry->ddestroy,
630 				struct ttm_buffer_object, ddestroy);
631 			kref_get(&nentry->list_kref);
632 		}
633 
634 		spin_unlock(&glob->lru_lock);
635 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
636 					  !remove_all);
637 		kref_put(&entry->list_kref, ttm_bo_release_list);
638 		entry = nentry;
639 
640 		if (ret || !entry)
641 			goto out;
642 
643 		spin_lock(&glob->lru_lock);
644 		if (list_empty(&entry->ddestroy))
645 			break;
646 	}
647 
648 out_unlock:
649 	spin_unlock(&glob->lru_lock);
650 out:
651 	if (entry)
652 		kref_put(&entry->list_kref, ttm_bo_release_list);
653 	return ret;
654 }
655 
656 static void ttm_bo_delayed_workqueue(struct work_struct *work)
657 {
658 	struct ttm_bo_device *bdev =
659 	    container_of(work, struct ttm_bo_device, wq.work);
660 
661 	if (ttm_bo_delayed_delete(bdev, false)) {
662 		schedule_delayed_work(&bdev->wq,
663 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
664 	}
665 }
666 
667 static void ttm_bo_release(struct kref *kref)
668 {
669 	struct ttm_buffer_object *bo =
670 	    container_of(kref, struct ttm_buffer_object, kref);
671 	struct ttm_bo_device *bdev = bo->bdev;
672 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
673 
674 	if (likely(bo->vm_node != NULL)) {
675 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
676 		drm_mm_put_block(bo->vm_node);
677 		bo->vm_node = NULL;
678 	}
679 	write_unlock(&bdev->vm_lock);
680 	ttm_mem_io_lock(man, false);
681 	ttm_mem_io_free_vm(bo);
682 	ttm_mem_io_unlock(man);
683 	ttm_bo_cleanup_refs_or_queue(bo);
684 	kref_put(&bo->list_kref, ttm_bo_release_list);
685 	write_lock(&bdev->vm_lock);
686 }
687 
688 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
689 {
690 	struct ttm_buffer_object *bo = *p_bo;
691 	struct ttm_bo_device *bdev = bo->bdev;
692 
693 	*p_bo = NULL;
694 	write_lock(&bdev->vm_lock);
695 	kref_put(&bo->kref, ttm_bo_release);
696 	write_unlock(&bdev->vm_lock);
697 }
698 EXPORT_SYMBOL(ttm_bo_unref);
699 
700 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
701 {
702 	return cancel_delayed_work_sync(&bdev->wq);
703 }
704 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
705 
706 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
707 {
708 	if (resched)
709 		schedule_delayed_work(&bdev->wq,
710 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
711 }
712 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
713 
714 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
715 			bool no_wait_reserve, bool no_wait_gpu)
716 {
717 	struct ttm_bo_device *bdev = bo->bdev;
718 	struct ttm_mem_reg evict_mem;
719 	struct ttm_placement placement;
720 	int ret = 0;
721 
722 	spin_lock(&bdev->fence_lock);
723 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
724 	spin_unlock(&bdev->fence_lock);
725 
726 	if (unlikely(ret != 0)) {
727 		if (ret != -ERESTARTSYS) {
728 			printk(KERN_ERR TTM_PFX
729 			       "Failed to expire sync object before "
730 			       "buffer eviction.\n");
731 		}
732 		goto out;
733 	}
734 
735 	BUG_ON(!atomic_read(&bo->reserved));
736 
737 	evict_mem = bo->mem;
738 	evict_mem.mm_node = NULL;
739 	evict_mem.bus.io_reserved_vm = false;
740 	evict_mem.bus.io_reserved_count = 0;
741 
742 	placement.fpfn = 0;
743 	placement.lpfn = 0;
744 	placement.num_placement = 0;
745 	placement.num_busy_placement = 0;
746 	bdev->driver->evict_flags(bo, &placement);
747 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
748 				no_wait_reserve, no_wait_gpu);
749 	if (ret) {
750 		if (ret != -ERESTARTSYS) {
751 			printk(KERN_ERR TTM_PFX
752 			       "Failed to find memory space for "
753 			       "buffer 0x%p eviction.\n", bo);
754 			ttm_bo_mem_space_debug(bo, &placement);
755 		}
756 		goto out;
757 	}
758 
759 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
760 				     no_wait_reserve, no_wait_gpu);
761 	if (ret) {
762 		if (ret != -ERESTARTSYS)
763 			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
764 		ttm_bo_mem_put(bo, &evict_mem);
765 		goto out;
766 	}
767 	bo->evicted = true;
768 out:
769 	return ret;
770 }
771 
772 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
773 				uint32_t mem_type,
774 				bool interruptible, bool no_wait_reserve,
775 				bool no_wait_gpu)
776 {
777 	struct ttm_bo_global *glob = bdev->glob;
778 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
779 	struct ttm_buffer_object *bo;
780 	int ret, put_count = 0;
781 
782 retry:
783 	spin_lock(&glob->lru_lock);
784 	if (list_empty(&man->lru)) {
785 		spin_unlock(&glob->lru_lock);
786 		return -EBUSY;
787 	}
788 
789 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
790 	kref_get(&bo->list_kref);
791 
792 	if (!list_empty(&bo->ddestroy)) {
793 		spin_unlock(&glob->lru_lock);
794 		ret = ttm_bo_cleanup_refs(bo, interruptible,
795 					  no_wait_reserve, no_wait_gpu);
796 		kref_put(&bo->list_kref, ttm_bo_release_list);
797 
798 		if (likely(ret == 0 || ret == -ERESTARTSYS))
799 			return ret;
800 
801 		goto retry;
802 	}
803 
804 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
805 
806 	if (unlikely(ret == -EBUSY)) {
807 		spin_unlock(&glob->lru_lock);
808 		if (likely(!no_wait_gpu))
809 			ret = ttm_bo_wait_unreserved(bo, interruptible);
810 
811 		kref_put(&bo->list_kref, ttm_bo_release_list);
812 
813 		/**
814 		 * We *need* to retry after releasing the lru lock.
815 		 */
816 
817 		if (unlikely(ret != 0))
818 			return ret;
819 		goto retry;
820 	}
821 
822 	put_count = ttm_bo_del_from_lru(bo);
823 	spin_unlock(&glob->lru_lock);
824 
825 	BUG_ON(ret != 0);
826 
827 	ttm_bo_list_ref_sub(bo, put_count, true);
828 
829 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
830 	ttm_bo_unreserve(bo);
831 
832 	kref_put(&bo->list_kref, ttm_bo_release_list);
833 	return ret;
834 }
835 
836 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
837 {
838 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
839 
840 	if (mem->mm_node)
841 		(*man->func->put_node)(man, mem);
842 }
843 EXPORT_SYMBOL(ttm_bo_mem_put);
844 
845 /**
846  * Repeatedly evict memory from the LRU for @mem_type until we create enough
847  * space, or we've evicted everything and there isn't enough space.
848  */
849 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
850 					uint32_t mem_type,
851 					struct ttm_placement *placement,
852 					struct ttm_mem_reg *mem,
853 					bool interruptible,
854 					bool no_wait_reserve,
855 					bool no_wait_gpu)
856 {
857 	struct ttm_bo_device *bdev = bo->bdev;
858 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
859 	int ret;
860 
861 	do {
862 		ret = (*man->func->get_node)(man, bo, placement, mem);
863 		if (unlikely(ret != 0))
864 			return ret;
865 		if (mem->mm_node)
866 			break;
867 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
868 						no_wait_reserve, no_wait_gpu);
869 		if (unlikely(ret != 0))
870 			return ret;
871 	} while (1);
872 	if (mem->mm_node == NULL)
873 		return -ENOMEM;
874 	mem->mem_type = mem_type;
875 	return 0;
876 }
877 
878 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
879 				      uint32_t cur_placement,
880 				      uint32_t proposed_placement)
881 {
882 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
883 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
884 
885 	/**
886 	 * Keep current caching if possible.
887 	 */
888 
889 	if ((cur_placement & caching) != 0)
890 		result |= (cur_placement & caching);
891 	else if ((man->default_caching & caching) != 0)
892 		result |= man->default_caching;
893 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
894 		result |= TTM_PL_FLAG_CACHED;
895 	else if ((TTM_PL_FLAG_WC & caching) != 0)
896 		result |= TTM_PL_FLAG_WC;
897 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
898 		result |= TTM_PL_FLAG_UNCACHED;
899 
900 	return result;
901 }
902 
903 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
904 				 uint32_t mem_type,
905 				 uint32_t proposed_placement,
906 				 uint32_t *masked_placement)
907 {
908 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
909 
910 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
911 		return false;
912 
913 	if ((proposed_placement & man->available_caching) == 0)
914 		return false;
915 
916 	cur_flags |= (proposed_placement & man->available_caching);
917 
918 	*masked_placement = cur_flags;
919 	return true;
920 }
921 
922 /**
923  * Creates space for memory region @mem according to its type.
924  *
925  * This function first searches for free space in compatible memory types in
926  * the priority order defined by the driver.  If free space isn't found, then
927  * ttm_bo_mem_force_space is attempted in priority order to evict and find
928  * space.
929  */
930 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
931 			struct ttm_placement *placement,
932 			struct ttm_mem_reg *mem,
933 			bool interruptible, bool no_wait_reserve,
934 			bool no_wait_gpu)
935 {
936 	struct ttm_bo_device *bdev = bo->bdev;
937 	struct ttm_mem_type_manager *man;
938 	uint32_t mem_type = TTM_PL_SYSTEM;
939 	uint32_t cur_flags = 0;
940 	bool type_found = false;
941 	bool type_ok = false;
942 	bool has_erestartsys = false;
943 	int i, ret;
944 
945 	mem->mm_node = NULL;
946 	for (i = 0; i < placement->num_placement; ++i) {
947 		ret = ttm_mem_type_from_flags(placement->placement[i],
948 						&mem_type);
949 		if (ret)
950 			return ret;
951 		man = &bdev->man[mem_type];
952 
953 		type_ok = ttm_bo_mt_compatible(man,
954 						mem_type,
955 						placement->placement[i],
956 						&cur_flags);
957 
958 		if (!type_ok)
959 			continue;
960 
961 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
962 						  cur_flags);
963 		/*
964 		 * Use the access and other non-mapping-related flag bits from
965 		 * the memory placement flags to the current flags
966 		 */
967 		ttm_flag_masked(&cur_flags, placement->placement[i],
968 				~TTM_PL_MASK_MEMTYPE);
969 
970 		if (mem_type == TTM_PL_SYSTEM)
971 			break;
972 
973 		if (man->has_type && man->use_type) {
974 			type_found = true;
975 			ret = (*man->func->get_node)(man, bo, placement, mem);
976 			if (unlikely(ret))
977 				return ret;
978 		}
979 		if (mem->mm_node)
980 			break;
981 	}
982 
983 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
984 		mem->mem_type = mem_type;
985 		mem->placement = cur_flags;
986 		return 0;
987 	}
988 
989 	if (!type_found)
990 		return -EINVAL;
991 
992 	for (i = 0; i < placement->num_busy_placement; ++i) {
993 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
994 						&mem_type);
995 		if (ret)
996 			return ret;
997 		man = &bdev->man[mem_type];
998 		if (!man->has_type)
999 			continue;
1000 		if (!ttm_bo_mt_compatible(man,
1001 						mem_type,
1002 						placement->busy_placement[i],
1003 						&cur_flags))
1004 			continue;
1005 
1006 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1007 						  cur_flags);
1008 		/*
1009 		 * Use the access and other non-mapping-related flag bits from
1010 		 * the memory placement flags to the current flags
1011 		 */
1012 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1013 				~TTM_PL_MASK_MEMTYPE);
1014 
1015 
1016 		if (mem_type == TTM_PL_SYSTEM) {
1017 			mem->mem_type = mem_type;
1018 			mem->placement = cur_flags;
1019 			mem->mm_node = NULL;
1020 			return 0;
1021 		}
1022 
1023 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1024 						interruptible, no_wait_reserve, no_wait_gpu);
1025 		if (ret == 0 && mem->mm_node) {
1026 			mem->placement = cur_flags;
1027 			return 0;
1028 		}
1029 		if (ret == -ERESTARTSYS)
1030 			has_erestartsys = true;
1031 	}
1032 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1033 	return ret;
1034 }
1035 EXPORT_SYMBOL(ttm_bo_mem_space);
1036 
1037 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1038 {
1039 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1040 		return -EBUSY;
1041 
1042 	return wait_event_interruptible(bo->event_queue,
1043 					atomic_read(&bo->cpu_writers) == 0);
1044 }
1045 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1046 
1047 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1048 			struct ttm_placement *placement,
1049 			bool interruptible, bool no_wait_reserve,
1050 			bool no_wait_gpu)
1051 {
1052 	int ret = 0;
1053 	struct ttm_mem_reg mem;
1054 	struct ttm_bo_device *bdev = bo->bdev;
1055 
1056 	BUG_ON(!atomic_read(&bo->reserved));
1057 
1058 	/*
1059 	 * FIXME: It's possible to pipeline buffer moves.
1060 	 * Have the driver move function wait for idle when necessary,
1061 	 * instead of doing it here.
1062 	 */
1063 	spin_lock(&bdev->fence_lock);
1064 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1065 	spin_unlock(&bdev->fence_lock);
1066 	if (ret)
1067 		return ret;
1068 	mem.num_pages = bo->num_pages;
1069 	mem.size = mem.num_pages << PAGE_SHIFT;
1070 	mem.page_alignment = bo->mem.page_alignment;
1071 	mem.bus.io_reserved_vm = false;
1072 	mem.bus.io_reserved_count = 0;
1073 	/*
1074 	 * Determine where to move the buffer.
1075 	 */
1076 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1077 	if (ret)
1078 		goto out_unlock;
1079 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1080 out_unlock:
1081 	if (ret && mem.mm_node)
1082 		ttm_bo_mem_put(bo, &mem);
1083 	return ret;
1084 }
1085 
1086 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1087 			     struct ttm_mem_reg *mem)
1088 {
1089 	int i;
1090 
1091 	if (mem->mm_node && placement->lpfn != 0 &&
1092 	    (mem->start < placement->fpfn ||
1093 	     mem->start + mem->num_pages > placement->lpfn))
1094 		return -1;
1095 
1096 	for (i = 0; i < placement->num_placement; i++) {
1097 		if ((placement->placement[i] & mem->placement &
1098 			TTM_PL_MASK_CACHING) &&
1099 			(placement->placement[i] & mem->placement &
1100 			TTM_PL_MASK_MEM))
1101 			return i;
1102 	}
1103 	return -1;
1104 }
1105 
1106 int ttm_bo_validate(struct ttm_buffer_object *bo,
1107 			struct ttm_placement *placement,
1108 			bool interruptible, bool no_wait_reserve,
1109 			bool no_wait_gpu)
1110 {
1111 	int ret;
1112 
1113 	BUG_ON(!atomic_read(&bo->reserved));
1114 	/* Check that range is valid */
1115 	if (placement->lpfn || placement->fpfn)
1116 		if (placement->fpfn > placement->lpfn ||
1117 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1118 			return -EINVAL;
1119 	/*
1120 	 * Check whether we need to move buffer.
1121 	 */
1122 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1123 	if (ret < 0) {
1124 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1125 		if (ret)
1126 			return ret;
1127 	} else {
1128 		/*
1129 		 * Use the access and other non-mapping-related flag bits from
1130 		 * the compatible memory placement flags to the active flags
1131 		 */
1132 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1133 				~TTM_PL_MASK_MEMTYPE);
1134 	}
1135 	/*
1136 	 * We might need to add a TTM.
1137 	 */
1138 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1139 		ret = ttm_bo_add_ttm(bo, true);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 	return 0;
1144 }
1145 EXPORT_SYMBOL(ttm_bo_validate);
1146 
1147 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1148 				struct ttm_placement *placement)
1149 {
1150 	BUG_ON((placement->fpfn || placement->lpfn) &&
1151 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1152 
1153 	return 0;
1154 }
1155 
1156 int ttm_bo_init(struct ttm_bo_device *bdev,
1157 		struct ttm_buffer_object *bo,
1158 		unsigned long size,
1159 		enum ttm_bo_type type,
1160 		struct ttm_placement *placement,
1161 		uint32_t page_alignment,
1162 		unsigned long buffer_start,
1163 		bool interruptible,
1164 		struct file *persistent_swap_storage,
1165 		size_t acc_size,
1166 		void (*destroy) (struct ttm_buffer_object *))
1167 {
1168 	int ret = 0;
1169 	unsigned long num_pages;
1170 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1171 
1172 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1173 	if (ret) {
1174 		printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
1175 		if (destroy)
1176 			(*destroy)(bo);
1177 		else
1178 			kfree(bo);
1179 		return -ENOMEM;
1180 	}
1181 
1182 	size += buffer_start & ~PAGE_MASK;
1183 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1184 	if (num_pages == 0) {
1185 		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1186 		if (destroy)
1187 			(*destroy)(bo);
1188 		else
1189 			kfree(bo);
1190 		return -EINVAL;
1191 	}
1192 	bo->destroy = destroy;
1193 
1194 	kref_init(&bo->kref);
1195 	kref_init(&bo->list_kref);
1196 	atomic_set(&bo->cpu_writers, 0);
1197 	atomic_set(&bo->reserved, 1);
1198 	init_waitqueue_head(&bo->event_queue);
1199 	INIT_LIST_HEAD(&bo->lru);
1200 	INIT_LIST_HEAD(&bo->ddestroy);
1201 	INIT_LIST_HEAD(&bo->swap);
1202 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1203 	bo->bdev = bdev;
1204 	bo->glob = bdev->glob;
1205 	bo->type = type;
1206 	bo->num_pages = num_pages;
1207 	bo->mem.size = num_pages << PAGE_SHIFT;
1208 	bo->mem.mem_type = TTM_PL_SYSTEM;
1209 	bo->mem.num_pages = bo->num_pages;
1210 	bo->mem.mm_node = NULL;
1211 	bo->mem.page_alignment = page_alignment;
1212 	bo->mem.bus.io_reserved_vm = false;
1213 	bo->mem.bus.io_reserved_count = 0;
1214 	bo->buffer_start = buffer_start & PAGE_MASK;
1215 	bo->priv_flags = 0;
1216 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1217 	bo->seq_valid = false;
1218 	bo->persistent_swap_storage = persistent_swap_storage;
1219 	bo->acc_size = acc_size;
1220 	atomic_inc(&bo->glob->bo_count);
1221 
1222 	ret = ttm_bo_check_placement(bo, placement);
1223 	if (unlikely(ret != 0))
1224 		goto out_err;
1225 
1226 	/*
1227 	 * For ttm_bo_type_device buffers, allocate
1228 	 * address space from the device.
1229 	 */
1230 	if (bo->type == ttm_bo_type_device) {
1231 		ret = ttm_bo_setup_vm(bo);
1232 		if (ret)
1233 			goto out_err;
1234 	}
1235 
1236 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1237 	if (ret)
1238 		goto out_err;
1239 
1240 	ttm_bo_unreserve(bo);
1241 	return 0;
1242 
1243 out_err:
1244 	ttm_bo_unreserve(bo);
1245 	ttm_bo_unref(&bo);
1246 
1247 	return ret;
1248 }
1249 EXPORT_SYMBOL(ttm_bo_init);
1250 
1251 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1252 		       unsigned long bo_size,
1253 		       unsigned struct_size)
1254 {
1255 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1256 	size_t size = 0;
1257 
1258 	size += ttm_round_pot(struct_size);
1259 	size += PAGE_ALIGN(npages * sizeof(void *));
1260 	size += ttm_round_pot(sizeof(struct ttm_tt));
1261 	return size;
1262 }
1263 EXPORT_SYMBOL(ttm_bo_acc_size);
1264 
1265 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1266 			   unsigned long bo_size,
1267 			   unsigned struct_size)
1268 {
1269 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1270 	size_t size = 0;
1271 
1272 	size += ttm_round_pot(struct_size);
1273 	size += PAGE_ALIGN(npages * sizeof(void *));
1274 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1275 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1276 	return size;
1277 }
1278 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1279 
1280 int ttm_bo_create(struct ttm_bo_device *bdev,
1281 			unsigned long size,
1282 			enum ttm_bo_type type,
1283 			struct ttm_placement *placement,
1284 			uint32_t page_alignment,
1285 			unsigned long buffer_start,
1286 			bool interruptible,
1287 			struct file *persistent_swap_storage,
1288 			struct ttm_buffer_object **p_bo)
1289 {
1290 	struct ttm_buffer_object *bo;
1291 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292 	size_t acc_size;
1293 	int ret;
1294 
1295 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1296 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1297 	if (unlikely(ret != 0))
1298 		return ret;
1299 
1300 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1301 
1302 	if (unlikely(bo == NULL)) {
1303 		ttm_mem_global_free(mem_glob, acc_size);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1308 				buffer_start, interruptible,
1309 				persistent_swap_storage, acc_size, NULL);
1310 	if (likely(ret == 0))
1311 		*p_bo = bo;
1312 
1313 	return ret;
1314 }
1315 EXPORT_SYMBOL(ttm_bo_create);
1316 
1317 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1318 					unsigned mem_type, bool allow_errors)
1319 {
1320 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1321 	struct ttm_bo_global *glob = bdev->glob;
1322 	int ret;
1323 
1324 	/*
1325 	 * Can't use standard list traversal since we're unlocking.
1326 	 */
1327 
1328 	spin_lock(&glob->lru_lock);
1329 	while (!list_empty(&man->lru)) {
1330 		spin_unlock(&glob->lru_lock);
1331 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1332 		if (ret) {
1333 			if (allow_errors) {
1334 				return ret;
1335 			} else {
1336 				printk(KERN_ERR TTM_PFX
1337 					"Cleanup eviction failed\n");
1338 			}
1339 		}
1340 		spin_lock(&glob->lru_lock);
1341 	}
1342 	spin_unlock(&glob->lru_lock);
1343 	return 0;
1344 }
1345 
1346 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1347 {
1348 	struct ttm_mem_type_manager *man;
1349 	int ret = -EINVAL;
1350 
1351 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1352 		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1353 		return ret;
1354 	}
1355 	man = &bdev->man[mem_type];
1356 
1357 	if (!man->has_type) {
1358 		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1359 		       "memory manager type %u\n", mem_type);
1360 		return ret;
1361 	}
1362 
1363 	man->use_type = false;
1364 	man->has_type = false;
1365 
1366 	ret = 0;
1367 	if (mem_type > 0) {
1368 		ttm_bo_force_list_clean(bdev, mem_type, false);
1369 
1370 		ret = (*man->func->takedown)(man);
1371 	}
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(ttm_bo_clean_mm);
1376 
1377 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1378 {
1379 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1380 
1381 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1382 		printk(KERN_ERR TTM_PFX
1383 		       "Illegal memory manager memory type %u.\n",
1384 		       mem_type);
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (!man->has_type) {
1389 		printk(KERN_ERR TTM_PFX
1390 		       "Memory type %u has not been initialized.\n",
1391 		       mem_type);
1392 		return 0;
1393 	}
1394 
1395 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1396 }
1397 EXPORT_SYMBOL(ttm_bo_evict_mm);
1398 
1399 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1400 			unsigned long p_size)
1401 {
1402 	int ret = -EINVAL;
1403 	struct ttm_mem_type_manager *man;
1404 
1405 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1406 	man = &bdev->man[type];
1407 	BUG_ON(man->has_type);
1408 	man->io_reserve_fastpath = true;
1409 	man->use_io_reserve_lru = false;
1410 	mutex_init(&man->io_reserve_mutex);
1411 	INIT_LIST_HEAD(&man->io_reserve_lru);
1412 
1413 	ret = bdev->driver->init_mem_type(bdev, type, man);
1414 	if (ret)
1415 		return ret;
1416 	man->bdev = bdev;
1417 
1418 	ret = 0;
1419 	if (type != TTM_PL_SYSTEM) {
1420 		ret = (*man->func->init)(man, p_size);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 	man->has_type = true;
1425 	man->use_type = true;
1426 	man->size = p_size;
1427 
1428 	INIT_LIST_HEAD(&man->lru);
1429 
1430 	return 0;
1431 }
1432 EXPORT_SYMBOL(ttm_bo_init_mm);
1433 
1434 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1435 {
1436 	struct ttm_bo_global *glob =
1437 		container_of(kobj, struct ttm_bo_global, kobj);
1438 
1439 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1440 	__free_page(glob->dummy_read_page);
1441 	kfree(glob);
1442 }
1443 
1444 void ttm_bo_global_release(struct drm_global_reference *ref)
1445 {
1446 	struct ttm_bo_global *glob = ref->object;
1447 
1448 	kobject_del(&glob->kobj);
1449 	kobject_put(&glob->kobj);
1450 }
1451 EXPORT_SYMBOL(ttm_bo_global_release);
1452 
1453 int ttm_bo_global_init(struct drm_global_reference *ref)
1454 {
1455 	struct ttm_bo_global_ref *bo_ref =
1456 		container_of(ref, struct ttm_bo_global_ref, ref);
1457 	struct ttm_bo_global *glob = ref->object;
1458 	int ret;
1459 
1460 	mutex_init(&glob->device_list_mutex);
1461 	spin_lock_init(&glob->lru_lock);
1462 	glob->mem_glob = bo_ref->mem_glob;
1463 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1464 
1465 	if (unlikely(glob->dummy_read_page == NULL)) {
1466 		ret = -ENOMEM;
1467 		goto out_no_drp;
1468 	}
1469 
1470 	INIT_LIST_HEAD(&glob->swap_lru);
1471 	INIT_LIST_HEAD(&glob->device_list);
1472 
1473 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1474 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1475 	if (unlikely(ret != 0)) {
1476 		printk(KERN_ERR TTM_PFX
1477 		       "Could not register buffer object swapout.\n");
1478 		goto out_no_shrink;
1479 	}
1480 
1481 	atomic_set(&glob->bo_count, 0);
1482 
1483 	ret = kobject_init_and_add(
1484 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1485 	if (unlikely(ret != 0))
1486 		kobject_put(&glob->kobj);
1487 	return ret;
1488 out_no_shrink:
1489 	__free_page(glob->dummy_read_page);
1490 out_no_drp:
1491 	kfree(glob);
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL(ttm_bo_global_init);
1495 
1496 
1497 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1498 {
1499 	int ret = 0;
1500 	unsigned i = TTM_NUM_MEM_TYPES;
1501 	struct ttm_mem_type_manager *man;
1502 	struct ttm_bo_global *glob = bdev->glob;
1503 
1504 	while (i--) {
1505 		man = &bdev->man[i];
1506 		if (man->has_type) {
1507 			man->use_type = false;
1508 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1509 				ret = -EBUSY;
1510 				printk(KERN_ERR TTM_PFX
1511 				       "DRM memory manager type %d "
1512 				       "is not clean.\n", i);
1513 			}
1514 			man->has_type = false;
1515 		}
1516 	}
1517 
1518 	mutex_lock(&glob->device_list_mutex);
1519 	list_del(&bdev->device_list);
1520 	mutex_unlock(&glob->device_list_mutex);
1521 
1522 	cancel_delayed_work_sync(&bdev->wq);
1523 
1524 	while (ttm_bo_delayed_delete(bdev, true))
1525 		;
1526 
1527 	spin_lock(&glob->lru_lock);
1528 	if (list_empty(&bdev->ddestroy))
1529 		TTM_DEBUG("Delayed destroy list was clean\n");
1530 
1531 	if (list_empty(&bdev->man[0].lru))
1532 		TTM_DEBUG("Swap list was clean\n");
1533 	spin_unlock(&glob->lru_lock);
1534 
1535 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1536 	write_lock(&bdev->vm_lock);
1537 	drm_mm_takedown(&bdev->addr_space_mm);
1538 	write_unlock(&bdev->vm_lock);
1539 
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL(ttm_bo_device_release);
1543 
1544 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1545 		       struct ttm_bo_global *glob,
1546 		       struct ttm_bo_driver *driver,
1547 		       uint64_t file_page_offset,
1548 		       bool need_dma32)
1549 {
1550 	int ret = -EINVAL;
1551 
1552 	rwlock_init(&bdev->vm_lock);
1553 	bdev->driver = driver;
1554 
1555 	memset(bdev->man, 0, sizeof(bdev->man));
1556 
1557 	/*
1558 	 * Initialize the system memory buffer type.
1559 	 * Other types need to be driver / IOCTL initialized.
1560 	 */
1561 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1562 	if (unlikely(ret != 0))
1563 		goto out_no_sys;
1564 
1565 	bdev->addr_space_rb = RB_ROOT;
1566 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1567 	if (unlikely(ret != 0))
1568 		goto out_no_addr_mm;
1569 
1570 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1571 	bdev->nice_mode = true;
1572 	INIT_LIST_HEAD(&bdev->ddestroy);
1573 	bdev->dev_mapping = NULL;
1574 	bdev->glob = glob;
1575 	bdev->need_dma32 = need_dma32;
1576 	bdev->val_seq = 0;
1577 	spin_lock_init(&bdev->fence_lock);
1578 	mutex_lock(&glob->device_list_mutex);
1579 	list_add_tail(&bdev->device_list, &glob->device_list);
1580 	mutex_unlock(&glob->device_list_mutex);
1581 
1582 	return 0;
1583 out_no_addr_mm:
1584 	ttm_bo_clean_mm(bdev, 0);
1585 out_no_sys:
1586 	return ret;
1587 }
1588 EXPORT_SYMBOL(ttm_bo_device_init);
1589 
1590 /*
1591  * buffer object vm functions.
1592  */
1593 
1594 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1595 {
1596 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1597 
1598 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1599 		if (mem->mem_type == TTM_PL_SYSTEM)
1600 			return false;
1601 
1602 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1603 			return false;
1604 
1605 		if (mem->placement & TTM_PL_FLAG_CACHED)
1606 			return false;
1607 	}
1608 	return true;
1609 }
1610 
1611 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1612 {
1613 	struct ttm_bo_device *bdev = bo->bdev;
1614 	loff_t offset = (loff_t) bo->addr_space_offset;
1615 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1616 
1617 	if (!bdev->dev_mapping)
1618 		return;
1619 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1620 	ttm_mem_io_free_vm(bo);
1621 }
1622 
1623 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1624 {
1625 	struct ttm_bo_device *bdev = bo->bdev;
1626 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1627 
1628 	ttm_mem_io_lock(man, false);
1629 	ttm_bo_unmap_virtual_locked(bo);
1630 	ttm_mem_io_unlock(man);
1631 }
1632 
1633 
1634 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1635 
1636 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1637 {
1638 	struct ttm_bo_device *bdev = bo->bdev;
1639 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1640 	struct rb_node *parent = NULL;
1641 	struct ttm_buffer_object *cur_bo;
1642 	unsigned long offset = bo->vm_node->start;
1643 	unsigned long cur_offset;
1644 
1645 	while (*cur) {
1646 		parent = *cur;
1647 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1648 		cur_offset = cur_bo->vm_node->start;
1649 		if (offset < cur_offset)
1650 			cur = &parent->rb_left;
1651 		else if (offset > cur_offset)
1652 			cur = &parent->rb_right;
1653 		else
1654 			BUG();
1655 	}
1656 
1657 	rb_link_node(&bo->vm_rb, parent, cur);
1658 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1659 }
1660 
1661 /**
1662  * ttm_bo_setup_vm:
1663  *
1664  * @bo: the buffer to allocate address space for
1665  *
1666  * Allocate address space in the drm device so that applications
1667  * can mmap the buffer and access the contents. This only
1668  * applies to ttm_bo_type_device objects as others are not
1669  * placed in the drm device address space.
1670  */
1671 
1672 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1673 {
1674 	struct ttm_bo_device *bdev = bo->bdev;
1675 	int ret;
1676 
1677 retry_pre_get:
1678 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1679 	if (unlikely(ret != 0))
1680 		return ret;
1681 
1682 	write_lock(&bdev->vm_lock);
1683 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1684 					 bo->mem.num_pages, 0, 0);
1685 
1686 	if (unlikely(bo->vm_node == NULL)) {
1687 		ret = -ENOMEM;
1688 		goto out_unlock;
1689 	}
1690 
1691 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1692 					      bo->mem.num_pages, 0);
1693 
1694 	if (unlikely(bo->vm_node == NULL)) {
1695 		write_unlock(&bdev->vm_lock);
1696 		goto retry_pre_get;
1697 	}
1698 
1699 	ttm_bo_vm_insert_rb(bo);
1700 	write_unlock(&bdev->vm_lock);
1701 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1702 
1703 	return 0;
1704 out_unlock:
1705 	write_unlock(&bdev->vm_lock);
1706 	return ret;
1707 }
1708 
1709 int ttm_bo_wait(struct ttm_buffer_object *bo,
1710 		bool lazy, bool interruptible, bool no_wait)
1711 {
1712 	struct ttm_bo_driver *driver = bo->bdev->driver;
1713 	struct ttm_bo_device *bdev = bo->bdev;
1714 	void *sync_obj;
1715 	void *sync_obj_arg;
1716 	int ret = 0;
1717 
1718 	if (likely(bo->sync_obj == NULL))
1719 		return 0;
1720 
1721 	while (bo->sync_obj) {
1722 
1723 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1724 			void *tmp_obj = bo->sync_obj;
1725 			bo->sync_obj = NULL;
1726 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1727 			spin_unlock(&bdev->fence_lock);
1728 			driver->sync_obj_unref(&tmp_obj);
1729 			spin_lock(&bdev->fence_lock);
1730 			continue;
1731 		}
1732 
1733 		if (no_wait)
1734 			return -EBUSY;
1735 
1736 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1737 		sync_obj_arg = bo->sync_obj_arg;
1738 		spin_unlock(&bdev->fence_lock);
1739 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1740 					    lazy, interruptible);
1741 		if (unlikely(ret != 0)) {
1742 			driver->sync_obj_unref(&sync_obj);
1743 			spin_lock(&bdev->fence_lock);
1744 			return ret;
1745 		}
1746 		spin_lock(&bdev->fence_lock);
1747 		if (likely(bo->sync_obj == sync_obj &&
1748 			   bo->sync_obj_arg == sync_obj_arg)) {
1749 			void *tmp_obj = bo->sync_obj;
1750 			bo->sync_obj = NULL;
1751 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1752 				  &bo->priv_flags);
1753 			spin_unlock(&bdev->fence_lock);
1754 			driver->sync_obj_unref(&sync_obj);
1755 			driver->sync_obj_unref(&tmp_obj);
1756 			spin_lock(&bdev->fence_lock);
1757 		} else {
1758 			spin_unlock(&bdev->fence_lock);
1759 			driver->sync_obj_unref(&sync_obj);
1760 			spin_lock(&bdev->fence_lock);
1761 		}
1762 	}
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(ttm_bo_wait);
1766 
1767 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1768 {
1769 	struct ttm_bo_device *bdev = bo->bdev;
1770 	int ret = 0;
1771 
1772 	/*
1773 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1774 	 */
1775 
1776 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1777 	if (unlikely(ret != 0))
1778 		return ret;
1779 	spin_lock(&bdev->fence_lock);
1780 	ret = ttm_bo_wait(bo, false, true, no_wait);
1781 	spin_unlock(&bdev->fence_lock);
1782 	if (likely(ret == 0))
1783 		atomic_inc(&bo->cpu_writers);
1784 	ttm_bo_unreserve(bo);
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1788 
1789 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1790 {
1791 	if (atomic_dec_and_test(&bo->cpu_writers))
1792 		wake_up_all(&bo->event_queue);
1793 }
1794 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1795 
1796 /**
1797  * A buffer object shrink method that tries to swap out the first
1798  * buffer object on the bo_global::swap_lru list.
1799  */
1800 
1801 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1802 {
1803 	struct ttm_bo_global *glob =
1804 	    container_of(shrink, struct ttm_bo_global, shrink);
1805 	struct ttm_buffer_object *bo;
1806 	int ret = -EBUSY;
1807 	int put_count;
1808 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1809 
1810 	spin_lock(&glob->lru_lock);
1811 	while (ret == -EBUSY) {
1812 		if (unlikely(list_empty(&glob->swap_lru))) {
1813 			spin_unlock(&glob->lru_lock);
1814 			return -EBUSY;
1815 		}
1816 
1817 		bo = list_first_entry(&glob->swap_lru,
1818 				      struct ttm_buffer_object, swap);
1819 		kref_get(&bo->list_kref);
1820 
1821 		if (!list_empty(&bo->ddestroy)) {
1822 			spin_unlock(&glob->lru_lock);
1823 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1824 			kref_put(&bo->list_kref, ttm_bo_release_list);
1825 			continue;
1826 		}
1827 
1828 		/**
1829 		 * Reserve buffer. Since we unlock while sleeping, we need
1830 		 * to re-check that nobody removed us from the swap-list while
1831 		 * we slept.
1832 		 */
1833 
1834 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1835 		if (unlikely(ret == -EBUSY)) {
1836 			spin_unlock(&glob->lru_lock);
1837 			ttm_bo_wait_unreserved(bo, false);
1838 			kref_put(&bo->list_kref, ttm_bo_release_list);
1839 			spin_lock(&glob->lru_lock);
1840 		}
1841 	}
1842 
1843 	BUG_ON(ret != 0);
1844 	put_count = ttm_bo_del_from_lru(bo);
1845 	spin_unlock(&glob->lru_lock);
1846 
1847 	ttm_bo_list_ref_sub(bo, put_count, true);
1848 
1849 	/**
1850 	 * Wait for GPU, then move to system cached.
1851 	 */
1852 
1853 	spin_lock(&bo->bdev->fence_lock);
1854 	ret = ttm_bo_wait(bo, false, false, false);
1855 	spin_unlock(&bo->bdev->fence_lock);
1856 
1857 	if (unlikely(ret != 0))
1858 		goto out;
1859 
1860 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1861 		struct ttm_mem_reg evict_mem;
1862 
1863 		evict_mem = bo->mem;
1864 		evict_mem.mm_node = NULL;
1865 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1866 		evict_mem.mem_type = TTM_PL_SYSTEM;
1867 
1868 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1869 					     false, false, false);
1870 		if (unlikely(ret != 0))
1871 			goto out;
1872 	}
1873 
1874 	ttm_bo_unmap_virtual(bo);
1875 
1876 	/**
1877 	 * Swap out. Buffer will be swapped in again as soon as
1878 	 * anyone tries to access a ttm page.
1879 	 */
1880 
1881 	if (bo->bdev->driver->swap_notify)
1882 		bo->bdev->driver->swap_notify(bo);
1883 
1884 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1885 out:
1886 
1887 	/**
1888 	 *
1889 	 * Unreserve without putting on LRU to avoid swapping out an
1890 	 * already swapped buffer.
1891 	 */
1892 
1893 	atomic_set(&bo->reserved, 0);
1894 	wake_up_all(&bo->event_queue);
1895 	kref_put(&bo->list_kref, ttm_bo_release_list);
1896 	return ret;
1897 }
1898 
1899 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1900 {
1901 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1902 		;
1903 }
1904 EXPORT_SYMBOL(ttm_bo_swapout_all);
1905