xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 EXPORT_SYMBOL(ttm_bo_glob);
55 
56 static struct attribute ttm_bo_count = {
57 	.name = "bo_count",
58 	.mode = S_IRUGO
59 };
60 
61 /* default destructor */
62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
63 {
64 	kfree(bo);
65 }
66 
67 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
68 					  uint32_t *mem_type)
69 {
70 	int pos;
71 
72 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
73 	if (unlikely(!pos))
74 		return -EINVAL;
75 
76 	*mem_type = pos - 1;
77 	return 0;
78 }
79 
80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
81 			       int mem_type)
82 {
83 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
84 
85 	drm_printf(p, "    has_type: %d\n", man->has_type);
86 	drm_printf(p, "    use_type: %d\n", man->use_type);
87 	drm_printf(p, "    flags: 0x%08X\n", man->flags);
88 	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
89 	drm_printf(p, "    size: %llu\n", man->size);
90 	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
91 	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
92 	if (mem_type != TTM_PL_SYSTEM)
93 		(*man->func->debug)(man, p);
94 }
95 
96 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
97 					struct ttm_placement *placement)
98 {
99 	struct drm_printer p = drm_debug_printer(TTM_PFX);
100 	int i, ret, mem_type;
101 
102 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
103 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
104 		   bo->mem.size >> 20);
105 	for (i = 0; i < placement->num_placement; i++) {
106 		ret = ttm_mem_type_from_place(&placement->placement[i],
107 						&mem_type);
108 		if (ret)
109 			return;
110 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
111 			   i, placement->placement[i].flags, mem_type);
112 		ttm_mem_type_debug(bo->bdev, &p, mem_type);
113 	}
114 }
115 
116 static ssize_t ttm_bo_global_show(struct kobject *kobj,
117 				  struct attribute *attr,
118 				  char *buffer)
119 {
120 	struct ttm_bo_global *glob =
121 		container_of(kobj, struct ttm_bo_global, kobj);
122 
123 	return snprintf(buffer, PAGE_SIZE, "%d\n",
124 				atomic_read(&glob->bo_count));
125 }
126 
127 static struct attribute *ttm_bo_global_attrs[] = {
128 	&ttm_bo_count,
129 	NULL
130 };
131 
132 static const struct sysfs_ops ttm_bo_global_ops = {
133 	.show = &ttm_bo_global_show
134 };
135 
136 static struct kobj_type ttm_bo_glob_kobj_type  = {
137 	.release = &ttm_bo_global_kobj_release,
138 	.sysfs_ops = &ttm_bo_global_ops,
139 	.default_attrs = ttm_bo_global_attrs
140 };
141 
142 
143 static inline uint32_t ttm_bo_type_flags(unsigned type)
144 {
145 	return 1 << (type);
146 }
147 
148 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
149 				  struct ttm_mem_reg *mem)
150 {
151 	struct ttm_bo_device *bdev = bo->bdev;
152 	struct ttm_mem_type_manager *man;
153 
154 	if (!list_empty(&bo->lru))
155 		return;
156 
157 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
158 		return;
159 
160 	man = &bdev->man[mem->mem_type];
161 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
162 
163 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
164 	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
165 				     TTM_PAGE_FLAG_SWAPPED))) {
166 		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
167 	}
168 }
169 
170 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
171 {
172 	struct ttm_bo_device *bdev = bo->bdev;
173 	bool notify = false;
174 
175 	if (!list_empty(&bo->swap)) {
176 		list_del_init(&bo->swap);
177 		notify = true;
178 	}
179 	if (!list_empty(&bo->lru)) {
180 		list_del_init(&bo->lru);
181 		notify = true;
182 	}
183 
184 	if (notify && bdev->driver->del_from_lru_notify)
185 		bdev->driver->del_from_lru_notify(bo);
186 }
187 
188 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
189 				     struct ttm_buffer_object *bo)
190 {
191 	if (!pos->first)
192 		pos->first = bo;
193 	pos->last = bo;
194 }
195 
196 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
197 			     struct ttm_lru_bulk_move *bulk)
198 {
199 	dma_resv_assert_held(bo->base.resv);
200 
201 	ttm_bo_del_from_lru(bo);
202 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
203 
204 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
205 		switch (bo->mem.mem_type) {
206 		case TTM_PL_TT:
207 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
208 			break;
209 
210 		case TTM_PL_VRAM:
211 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
212 			break;
213 		}
214 		if (bo->ttm && !(bo->ttm->page_flags &
215 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
216 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
217 	}
218 }
219 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
220 
221 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
222 {
223 	unsigned i;
224 
225 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
226 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
227 		struct ttm_mem_type_manager *man;
228 
229 		if (!pos->first)
230 			continue;
231 
232 		dma_resv_assert_held(pos->first->base.resv);
233 		dma_resv_assert_held(pos->last->base.resv);
234 
235 		man = &pos->first->bdev->man[TTM_PL_TT];
236 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
237 				    &pos->last->lru);
238 	}
239 
240 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
241 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
242 		struct ttm_mem_type_manager *man;
243 
244 		if (!pos->first)
245 			continue;
246 
247 		dma_resv_assert_held(pos->first->base.resv);
248 		dma_resv_assert_held(pos->last->base.resv);
249 
250 		man = &pos->first->bdev->man[TTM_PL_VRAM];
251 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
252 				    &pos->last->lru);
253 	}
254 
255 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
256 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
257 		struct list_head *lru;
258 
259 		if (!pos->first)
260 			continue;
261 
262 		dma_resv_assert_held(pos->first->base.resv);
263 		dma_resv_assert_held(pos->last->base.resv);
264 
265 		lru = &ttm_bo_glob.swap_lru[i];
266 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
267 	}
268 }
269 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
270 
271 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
272 				  struct ttm_mem_reg *mem, bool evict,
273 				  struct ttm_operation_ctx *ctx)
274 {
275 	struct ttm_bo_device *bdev = bo->bdev;
276 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
277 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
278 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
279 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
280 	int ret = 0;
281 
282 	if (old_is_pci || new_is_pci ||
283 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
284 		ret = ttm_mem_io_lock(old_man, true);
285 		if (unlikely(ret != 0))
286 			goto out_err;
287 		ttm_bo_unmap_virtual_locked(bo);
288 		ttm_mem_io_unlock(old_man);
289 	}
290 
291 	/*
292 	 * Create and bind a ttm if required.
293 	 */
294 
295 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
296 		if (bo->ttm == NULL) {
297 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
298 			ret = ttm_tt_create(bo, zero);
299 			if (ret)
300 				goto out_err;
301 		}
302 
303 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
304 		if (ret)
305 			goto out_err;
306 
307 		if (mem->mem_type != TTM_PL_SYSTEM) {
308 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
309 			if (ret)
310 				goto out_err;
311 		}
312 
313 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
314 			if (bdev->driver->move_notify)
315 				bdev->driver->move_notify(bo, evict, mem);
316 			bo->mem = *mem;
317 			mem->mm_node = NULL;
318 			goto moved;
319 		}
320 	}
321 
322 	if (bdev->driver->move_notify)
323 		bdev->driver->move_notify(bo, evict, mem);
324 
325 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
326 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
327 		ret = ttm_bo_move_ttm(bo, ctx, mem);
328 	else if (bdev->driver->move)
329 		ret = bdev->driver->move(bo, evict, ctx, mem);
330 	else
331 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
332 
333 	if (ret) {
334 		if (bdev->driver->move_notify) {
335 			swap(*mem, bo->mem);
336 			bdev->driver->move_notify(bo, false, mem);
337 			swap(*mem, bo->mem);
338 		}
339 
340 		goto out_err;
341 	}
342 
343 moved:
344 	bo->evicted = false;
345 
346 	if (bo->mem.mm_node)
347 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
348 		    bdev->man[bo->mem.mem_type].gpu_offset;
349 	else
350 		bo->offset = 0;
351 
352 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
353 	return 0;
354 
355 out_err:
356 	new_man = &bdev->man[bo->mem.mem_type];
357 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
358 		ttm_tt_destroy(bo->ttm);
359 		bo->ttm = NULL;
360 	}
361 
362 	return ret;
363 }
364 
365 /**
366  * Call bo::reserved.
367  * Will release GPU memory type usage on destruction.
368  * This is the place to put in driver specific hooks to release
369  * driver private resources.
370  * Will release the bo::reserved lock.
371  */
372 
373 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
374 {
375 	if (bo->bdev->driver->move_notify)
376 		bo->bdev->driver->move_notify(bo, false, NULL);
377 
378 	ttm_tt_destroy(bo->ttm);
379 	bo->ttm = NULL;
380 	ttm_bo_mem_put(bo, &bo->mem);
381 }
382 
383 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
384 {
385 	int r;
386 
387 	if (bo->base.resv == &bo->base._resv)
388 		return 0;
389 
390 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
391 
392 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
393 	dma_resv_unlock(&bo->base._resv);
394 	if (r)
395 		return r;
396 
397 	if (bo->type != ttm_bo_type_sg) {
398 		/* This works because the BO is about to be destroyed and nobody
399 		 * reference it any more. The only tricky case is the trylock on
400 		 * the resv object while holding the lru_lock.
401 		 */
402 		spin_lock(&ttm_bo_glob.lru_lock);
403 		bo->base.resv = &bo->base._resv;
404 		spin_unlock(&ttm_bo_glob.lru_lock);
405 	}
406 
407 	return r;
408 }
409 
410 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
411 {
412 	struct dma_resv *resv = &bo->base._resv;
413 	struct dma_resv_list *fobj;
414 	struct dma_fence *fence;
415 	int i;
416 
417 	rcu_read_lock();
418 	fobj = rcu_dereference(resv->fence);
419 	fence = rcu_dereference(resv->fence_excl);
420 	if (fence && !fence->ops->signaled)
421 		dma_fence_enable_sw_signaling(fence);
422 
423 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
424 		fence = rcu_dereference(fobj->shared[i]);
425 
426 		if (!fence->ops->signaled)
427 			dma_fence_enable_sw_signaling(fence);
428 	}
429 	rcu_read_unlock();
430 }
431 
432 /**
433  * function ttm_bo_cleanup_refs
434  * If bo idle, remove from lru lists, and unref.
435  * If not idle, block if possible.
436  *
437  * Must be called with lru_lock and reservation held, this function
438  * will drop the lru lock and optionally the reservation lock before returning.
439  *
440  * @interruptible         Any sleeps should occur interruptibly.
441  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
442  * @unlock_resv           Unlock the reservation lock as well.
443  */
444 
445 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
446 			       bool interruptible, bool no_wait_gpu,
447 			       bool unlock_resv)
448 {
449 	struct dma_resv *resv = &bo->base._resv;
450 	int ret;
451 
452 	if (dma_resv_test_signaled_rcu(resv, true))
453 		ret = 0;
454 	else
455 		ret = -EBUSY;
456 
457 	if (ret && !no_wait_gpu) {
458 		long lret;
459 
460 		if (unlock_resv)
461 			dma_resv_unlock(bo->base.resv);
462 		spin_unlock(&ttm_bo_glob.lru_lock);
463 
464 		lret = dma_resv_wait_timeout_rcu(resv, true, interruptible,
465 						 30 * HZ);
466 
467 		if (lret < 0)
468 			return lret;
469 		else if (lret == 0)
470 			return -EBUSY;
471 
472 		spin_lock(&ttm_bo_glob.lru_lock);
473 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
474 			/*
475 			 * We raced, and lost, someone else holds the reservation now,
476 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
477 			 *
478 			 * Even if it's not the case, because we finished waiting any
479 			 * delayed destruction would succeed, so just return success
480 			 * here.
481 			 */
482 			spin_unlock(&ttm_bo_glob.lru_lock);
483 			return 0;
484 		}
485 		ret = 0;
486 	}
487 
488 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
489 		if (unlock_resv)
490 			dma_resv_unlock(bo->base.resv);
491 		spin_unlock(&ttm_bo_glob.lru_lock);
492 		return ret;
493 	}
494 
495 	ttm_bo_del_from_lru(bo);
496 	list_del_init(&bo->ddestroy);
497 	spin_unlock(&ttm_bo_glob.lru_lock);
498 	ttm_bo_cleanup_memtype_use(bo);
499 
500 	if (unlock_resv)
501 		dma_resv_unlock(bo->base.resv);
502 
503 	ttm_bo_put(bo);
504 
505 	return 0;
506 }
507 
508 /**
509  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
510  * encountered buffers.
511  */
512 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
513 {
514 	struct ttm_bo_global *glob = &ttm_bo_glob;
515 	struct list_head removed;
516 	bool empty;
517 
518 	INIT_LIST_HEAD(&removed);
519 
520 	spin_lock(&glob->lru_lock);
521 	while (!list_empty(&bdev->ddestroy)) {
522 		struct ttm_buffer_object *bo;
523 
524 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
525 				      ddestroy);
526 		list_move_tail(&bo->ddestroy, &removed);
527 		if (!ttm_bo_get_unless_zero(bo))
528 			continue;
529 
530 		if (remove_all || bo->base.resv != &bo->base._resv) {
531 			spin_unlock(&glob->lru_lock);
532 			dma_resv_lock(bo->base.resv, NULL);
533 
534 			spin_lock(&glob->lru_lock);
535 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
536 
537 		} else if (dma_resv_trylock(bo->base.resv)) {
538 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
539 		} else {
540 			spin_unlock(&glob->lru_lock);
541 		}
542 
543 		ttm_bo_put(bo);
544 		spin_lock(&glob->lru_lock);
545 	}
546 	list_splice_tail(&removed, &bdev->ddestroy);
547 	empty = list_empty(&bdev->ddestroy);
548 	spin_unlock(&glob->lru_lock);
549 
550 	return empty;
551 }
552 
553 static void ttm_bo_delayed_workqueue(struct work_struct *work)
554 {
555 	struct ttm_bo_device *bdev =
556 	    container_of(work, struct ttm_bo_device, wq.work);
557 
558 	if (!ttm_bo_delayed_delete(bdev, false))
559 		schedule_delayed_work(&bdev->wq,
560 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
561 }
562 
563 static void ttm_bo_release(struct kref *kref)
564 {
565 	struct ttm_buffer_object *bo =
566 	    container_of(kref, struct ttm_buffer_object, kref);
567 	struct ttm_bo_device *bdev = bo->bdev;
568 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
569 	size_t acc_size = bo->acc_size;
570 	int ret;
571 
572 	if (!bo->deleted) {
573 		ret = ttm_bo_individualize_resv(bo);
574 		if (ret) {
575 			/* Last resort, if we fail to allocate memory for the
576 			 * fences block for the BO to become idle
577 			 */
578 			dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
579 						  30 * HZ);
580 		}
581 
582 		if (bo->bdev->driver->release_notify)
583 			bo->bdev->driver->release_notify(bo);
584 
585 		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
586 		ttm_mem_io_lock(man, false);
587 		ttm_mem_io_free_vm(bo);
588 		ttm_mem_io_unlock(man);
589 	}
590 
591 	if (!dma_resv_test_signaled_rcu(bo->base.resv, true) ||
592 	    !dma_resv_trylock(bo->base.resv)) {
593 		/* The BO is not idle, resurrect it for delayed destroy */
594 		ttm_bo_flush_all_fences(bo);
595 		bo->deleted = true;
596 
597 		spin_lock(&ttm_bo_glob.lru_lock);
598 
599 		/*
600 		 * Make NO_EVICT bos immediately available to
601 		 * shrinkers, now that they are queued for
602 		 * destruction.
603 		 */
604 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
605 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
606 			ttm_bo_del_from_lru(bo);
607 			ttm_bo_add_mem_to_lru(bo, &bo->mem);
608 		}
609 
610 		kref_init(&bo->kref);
611 		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
612 		spin_unlock(&ttm_bo_glob.lru_lock);
613 
614 		schedule_delayed_work(&bdev->wq,
615 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
616 		return;
617 	}
618 
619 	spin_lock(&ttm_bo_glob.lru_lock);
620 	ttm_bo_del_from_lru(bo);
621 	list_del(&bo->ddestroy);
622 	spin_unlock(&ttm_bo_glob.lru_lock);
623 
624 	ttm_bo_cleanup_memtype_use(bo);
625 	dma_resv_unlock(bo->base.resv);
626 
627 	BUG_ON(bo->mem.mm_node != NULL);
628 	atomic_dec(&ttm_bo_glob.bo_count);
629 	dma_fence_put(bo->moving);
630 	if (!ttm_bo_uses_embedded_gem_object(bo))
631 		dma_resv_fini(&bo->base._resv);
632 	bo->destroy(bo);
633 	ttm_mem_global_free(&ttm_mem_glob, acc_size);
634 }
635 
636 void ttm_bo_put(struct ttm_buffer_object *bo)
637 {
638 	kref_put(&bo->kref, ttm_bo_release);
639 }
640 EXPORT_SYMBOL(ttm_bo_put);
641 
642 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
643 {
644 	return cancel_delayed_work_sync(&bdev->wq);
645 }
646 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
647 
648 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
649 {
650 	if (resched)
651 		schedule_delayed_work(&bdev->wq,
652 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
653 }
654 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
655 
656 static int ttm_bo_evict(struct ttm_buffer_object *bo,
657 			struct ttm_operation_ctx *ctx)
658 {
659 	struct ttm_bo_device *bdev = bo->bdev;
660 	struct ttm_mem_reg evict_mem;
661 	struct ttm_placement placement;
662 	int ret = 0;
663 
664 	dma_resv_assert_held(bo->base.resv);
665 
666 	placement.num_placement = 0;
667 	placement.num_busy_placement = 0;
668 	bdev->driver->evict_flags(bo, &placement);
669 
670 	if (!placement.num_placement && !placement.num_busy_placement) {
671 		ret = ttm_bo_pipeline_gutting(bo);
672 		if (ret)
673 			return ret;
674 
675 		return ttm_tt_create(bo, false);
676 	}
677 
678 	evict_mem = bo->mem;
679 	evict_mem.mm_node = NULL;
680 	evict_mem.bus.io_reserved_vm = false;
681 	evict_mem.bus.io_reserved_count = 0;
682 
683 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
684 	if (ret) {
685 		if (ret != -ERESTARTSYS) {
686 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
687 			       bo);
688 			ttm_bo_mem_space_debug(bo, &placement);
689 		}
690 		goto out;
691 	}
692 
693 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
694 	if (unlikely(ret)) {
695 		if (ret != -ERESTARTSYS)
696 			pr_err("Buffer eviction failed\n");
697 		ttm_bo_mem_put(bo, &evict_mem);
698 		goto out;
699 	}
700 	bo->evicted = true;
701 out:
702 	return ret;
703 }
704 
705 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
706 			      const struct ttm_place *place)
707 {
708 	/* Don't evict this BO if it's outside of the
709 	 * requested placement range
710 	 */
711 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
712 	    (place->lpfn && place->lpfn <= bo->mem.start))
713 		return false;
714 
715 	return true;
716 }
717 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
718 
719 /**
720  * Check the target bo is allowable to be evicted or swapout, including cases:
721  *
722  * a. if share same reservation object with ctx->resv, have assumption
723  * reservation objects should already be locked, so not lock again and
724  * return true directly when either the opreation allow_reserved_eviction
725  * or the target bo already is in delayed free list;
726  *
727  * b. Otherwise, trylock it.
728  */
729 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
730 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
731 {
732 	bool ret = false;
733 
734 	if (bo->base.resv == ctx->resv) {
735 		dma_resv_assert_held(bo->base.resv);
736 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT)
737 			ret = true;
738 		*locked = false;
739 		if (busy)
740 			*busy = false;
741 	} else {
742 		ret = dma_resv_trylock(bo->base.resv);
743 		*locked = ret;
744 		if (busy)
745 			*busy = !ret;
746 	}
747 
748 	return ret;
749 }
750 
751 /**
752  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
753  *
754  * @busy_bo: BO which couldn't be locked with trylock
755  * @ctx: operation context
756  * @ticket: acquire ticket
757  *
758  * Try to lock a busy buffer object to avoid failing eviction.
759  */
760 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
761 				   struct ttm_operation_ctx *ctx,
762 				   struct ww_acquire_ctx *ticket)
763 {
764 	int r;
765 
766 	if (!busy_bo || !ticket)
767 		return -EBUSY;
768 
769 	if (ctx->interruptible)
770 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
771 							  ticket);
772 	else
773 		r = dma_resv_lock(busy_bo->base.resv, ticket);
774 
775 	/*
776 	 * TODO: It would be better to keep the BO locked until allocation is at
777 	 * least tried one more time, but that would mean a much larger rework
778 	 * of TTM.
779 	 */
780 	if (!r)
781 		dma_resv_unlock(busy_bo->base.resv);
782 
783 	return r == -EDEADLK ? -EBUSY : r;
784 }
785 
786 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
787 			       uint32_t mem_type,
788 			       const struct ttm_place *place,
789 			       struct ttm_operation_ctx *ctx,
790 			       struct ww_acquire_ctx *ticket)
791 {
792 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
793 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
794 	bool locked = false;
795 	unsigned i;
796 	int ret;
797 
798 	spin_lock(&ttm_bo_glob.lru_lock);
799 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
800 		list_for_each_entry(bo, &man->lru[i], lru) {
801 			bool busy;
802 
803 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
804 							    &busy)) {
805 				if (busy && !busy_bo && ticket !=
806 				    dma_resv_locking_ctx(bo->base.resv))
807 					busy_bo = bo;
808 				continue;
809 			}
810 
811 			if (place && !bdev->driver->eviction_valuable(bo,
812 								      place)) {
813 				if (locked)
814 					dma_resv_unlock(bo->base.resv);
815 				continue;
816 			}
817 			if (!ttm_bo_get_unless_zero(bo)) {
818 				if (locked)
819 					dma_resv_unlock(bo->base.resv);
820 				continue;
821 			}
822 			break;
823 		}
824 
825 		/* If the inner loop terminated early, we have our candidate */
826 		if (&bo->lru != &man->lru[i])
827 			break;
828 
829 		bo = NULL;
830 	}
831 
832 	if (!bo) {
833 		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
834 			busy_bo = NULL;
835 		spin_unlock(&ttm_bo_glob.lru_lock);
836 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
837 		if (busy_bo)
838 			ttm_bo_put(busy_bo);
839 		return ret;
840 	}
841 
842 	if (bo->deleted) {
843 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
844 					  ctx->no_wait_gpu, locked);
845 		ttm_bo_put(bo);
846 		return ret;
847 	}
848 
849 	spin_unlock(&ttm_bo_glob.lru_lock);
850 
851 	ret = ttm_bo_evict(bo, ctx);
852 	if (locked)
853 		ttm_bo_unreserve(bo);
854 
855 	ttm_bo_put(bo);
856 	return ret;
857 }
858 
859 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
860 {
861 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
862 
863 	if (mem->mm_node)
864 		(*man->func->put_node)(man, mem);
865 }
866 EXPORT_SYMBOL(ttm_bo_mem_put);
867 
868 /**
869  * Add the last move fence to the BO and reserve a new shared slot.
870  */
871 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
872 				 struct ttm_mem_type_manager *man,
873 				 struct ttm_mem_reg *mem,
874 				 bool no_wait_gpu)
875 {
876 	struct dma_fence *fence;
877 	int ret;
878 
879 	spin_lock(&man->move_lock);
880 	fence = dma_fence_get(man->move);
881 	spin_unlock(&man->move_lock);
882 
883 	if (!fence)
884 		return 0;
885 
886 	if (no_wait_gpu)
887 		return -EBUSY;
888 
889 	dma_resv_add_shared_fence(bo->base.resv, fence);
890 
891 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
892 	if (unlikely(ret)) {
893 		dma_fence_put(fence);
894 		return ret;
895 	}
896 
897 	dma_fence_put(bo->moving);
898 	bo->moving = fence;
899 	return 0;
900 }
901 
902 /**
903  * Repeatedly evict memory from the LRU for @mem_type until we create enough
904  * space, or we've evicted everything and there isn't enough space.
905  */
906 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
907 				  const struct ttm_place *place,
908 				  struct ttm_mem_reg *mem,
909 				  struct ttm_operation_ctx *ctx)
910 {
911 	struct ttm_bo_device *bdev = bo->bdev;
912 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
913 	struct ww_acquire_ctx *ticket;
914 	int ret;
915 
916 	ticket = dma_resv_locking_ctx(bo->base.resv);
917 	do {
918 		ret = (*man->func->get_node)(man, bo, place, mem);
919 		if (unlikely(ret != 0))
920 			return ret;
921 		if (mem->mm_node)
922 			break;
923 		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
924 					  ticket);
925 		if (unlikely(ret != 0))
926 			return ret;
927 	} while (1);
928 
929 	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
930 }
931 
932 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
933 				      uint32_t cur_placement,
934 				      uint32_t proposed_placement)
935 {
936 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
937 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
938 
939 	/**
940 	 * Keep current caching if possible.
941 	 */
942 
943 	if ((cur_placement & caching) != 0)
944 		result |= (cur_placement & caching);
945 	else if ((man->default_caching & caching) != 0)
946 		result |= man->default_caching;
947 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
948 		result |= TTM_PL_FLAG_CACHED;
949 	else if ((TTM_PL_FLAG_WC & caching) != 0)
950 		result |= TTM_PL_FLAG_WC;
951 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
952 		result |= TTM_PL_FLAG_UNCACHED;
953 
954 	return result;
955 }
956 
957 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
958 				 uint32_t mem_type,
959 				 const struct ttm_place *place,
960 				 uint32_t *masked_placement)
961 {
962 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
963 
964 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
965 		return false;
966 
967 	if ((place->flags & man->available_caching) == 0)
968 		return false;
969 
970 	cur_flags |= (place->flags & man->available_caching);
971 
972 	*masked_placement = cur_flags;
973 	return true;
974 }
975 
976 /**
977  * ttm_bo_mem_placement - check if placement is compatible
978  * @bo: BO to find memory for
979  * @place: where to search
980  * @mem: the memory object to fill in
981  * @ctx: operation context
982  *
983  * Check if placement is compatible and fill in mem structure.
984  * Returns -EBUSY if placement won't work or negative error code.
985  * 0 when placement can be used.
986  */
987 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
988 				const struct ttm_place *place,
989 				struct ttm_mem_reg *mem,
990 				struct ttm_operation_ctx *ctx)
991 {
992 	struct ttm_bo_device *bdev = bo->bdev;
993 	uint32_t mem_type = TTM_PL_SYSTEM;
994 	struct ttm_mem_type_manager *man;
995 	uint32_t cur_flags = 0;
996 	int ret;
997 
998 	ret = ttm_mem_type_from_place(place, &mem_type);
999 	if (ret)
1000 		return ret;
1001 
1002 	man = &bdev->man[mem_type];
1003 	if (!man->has_type || !man->use_type)
1004 		return -EBUSY;
1005 
1006 	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1007 		return -EBUSY;
1008 
1009 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1010 	/*
1011 	 * Use the access and other non-mapping-related flag bits from
1012 	 * the memory placement flags to the current flags
1013 	 */
1014 	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1015 
1016 	mem->mem_type = mem_type;
1017 	mem->placement = cur_flags;
1018 
1019 	spin_lock(&ttm_bo_glob.lru_lock);
1020 	ttm_bo_del_from_lru(bo);
1021 	ttm_bo_add_mem_to_lru(bo, mem);
1022 	spin_unlock(&ttm_bo_glob.lru_lock);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * Creates space for memory region @mem according to its type.
1029  *
1030  * This function first searches for free space in compatible memory types in
1031  * the priority order defined by the driver.  If free space isn't found, then
1032  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1033  * space.
1034  */
1035 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1036 			struct ttm_placement *placement,
1037 			struct ttm_mem_reg *mem,
1038 			struct ttm_operation_ctx *ctx)
1039 {
1040 	struct ttm_bo_device *bdev = bo->bdev;
1041 	bool type_found = false;
1042 	int i, ret;
1043 
1044 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1045 	if (unlikely(ret))
1046 		return ret;
1047 
1048 	mem->mm_node = NULL;
1049 	for (i = 0; i < placement->num_placement; ++i) {
1050 		const struct ttm_place *place = &placement->placement[i];
1051 		struct ttm_mem_type_manager *man;
1052 
1053 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1054 		if (ret == -EBUSY)
1055 			continue;
1056 		if (ret)
1057 			goto error;
1058 
1059 		type_found = true;
1060 		mem->mm_node = NULL;
1061 		if (mem->mem_type == TTM_PL_SYSTEM)
1062 			return 0;
1063 
1064 		man = &bdev->man[mem->mem_type];
1065 		ret = (*man->func->get_node)(man, bo, place, mem);
1066 		if (unlikely(ret))
1067 			goto error;
1068 
1069 		if (!mem->mm_node)
1070 			continue;
1071 
1072 		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1073 		if (unlikely(ret)) {
1074 			(*man->func->put_node)(man, mem);
1075 			if (ret == -EBUSY)
1076 				continue;
1077 
1078 			goto error;
1079 		}
1080 		return 0;
1081 	}
1082 
1083 	for (i = 0; i < placement->num_busy_placement; ++i) {
1084 		const struct ttm_place *place = &placement->busy_placement[i];
1085 
1086 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1087 		if (ret == -EBUSY)
1088 			continue;
1089 		if (ret)
1090 			goto error;
1091 
1092 		type_found = true;
1093 		mem->mm_node = NULL;
1094 		if (mem->mem_type == TTM_PL_SYSTEM)
1095 			return 0;
1096 
1097 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1098 		if (ret == 0 && mem->mm_node)
1099 			return 0;
1100 
1101 		if (ret && ret != -EBUSY)
1102 			goto error;
1103 	}
1104 
1105 	ret = -ENOMEM;
1106 	if (!type_found) {
1107 		pr_err(TTM_PFX "No compatible memory type found\n");
1108 		ret = -EINVAL;
1109 	}
1110 
1111 error:
1112 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1113 		spin_lock(&ttm_bo_glob.lru_lock);
1114 		ttm_bo_move_to_lru_tail(bo, NULL);
1115 		spin_unlock(&ttm_bo_glob.lru_lock);
1116 	}
1117 
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL(ttm_bo_mem_space);
1121 
1122 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1123 			      struct ttm_placement *placement,
1124 			      struct ttm_operation_ctx *ctx)
1125 {
1126 	int ret = 0;
1127 	struct ttm_mem_reg mem;
1128 
1129 	dma_resv_assert_held(bo->base.resv);
1130 
1131 	mem.num_pages = bo->num_pages;
1132 	mem.size = mem.num_pages << PAGE_SHIFT;
1133 	mem.page_alignment = bo->mem.page_alignment;
1134 	mem.bus.io_reserved_vm = false;
1135 	mem.bus.io_reserved_count = 0;
1136 	/*
1137 	 * Determine where to move the buffer.
1138 	 */
1139 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1140 	if (ret)
1141 		goto out_unlock;
1142 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1143 out_unlock:
1144 	if (ret && mem.mm_node)
1145 		ttm_bo_mem_put(bo, &mem);
1146 	return ret;
1147 }
1148 
1149 static bool ttm_bo_places_compat(const struct ttm_place *places,
1150 				 unsigned num_placement,
1151 				 struct ttm_mem_reg *mem,
1152 				 uint32_t *new_flags)
1153 {
1154 	unsigned i;
1155 
1156 	for (i = 0; i < num_placement; i++) {
1157 		const struct ttm_place *heap = &places[i];
1158 
1159 		if (mem->mm_node && (mem->start < heap->fpfn ||
1160 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1161 			continue;
1162 
1163 		*new_flags = heap->flags;
1164 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1165 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1166 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1167 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1168 			return true;
1169 	}
1170 	return false;
1171 }
1172 
1173 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1174 		       struct ttm_mem_reg *mem,
1175 		       uint32_t *new_flags)
1176 {
1177 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1178 				 mem, new_flags))
1179 		return true;
1180 
1181 	if ((placement->busy_placement != placement->placement ||
1182 	     placement->num_busy_placement > placement->num_placement) &&
1183 	    ttm_bo_places_compat(placement->busy_placement,
1184 				 placement->num_busy_placement,
1185 				 mem, new_flags))
1186 		return true;
1187 
1188 	return false;
1189 }
1190 EXPORT_SYMBOL(ttm_bo_mem_compat);
1191 
1192 int ttm_bo_validate(struct ttm_buffer_object *bo,
1193 		    struct ttm_placement *placement,
1194 		    struct ttm_operation_ctx *ctx)
1195 {
1196 	int ret;
1197 	uint32_t new_flags;
1198 
1199 	dma_resv_assert_held(bo->base.resv);
1200 
1201 	/*
1202 	 * Remove the backing store if no placement is given.
1203 	 */
1204 	if (!placement->num_placement && !placement->num_busy_placement) {
1205 		ret = ttm_bo_pipeline_gutting(bo);
1206 		if (ret)
1207 			return ret;
1208 
1209 		return ttm_tt_create(bo, false);
1210 	}
1211 
1212 	/*
1213 	 * Check whether we need to move buffer.
1214 	 */
1215 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1216 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1217 		if (ret)
1218 			return ret;
1219 	} else {
1220 		/*
1221 		 * Use the access and other non-mapping-related flag bits from
1222 		 * the compatible memory placement flags to the active flags
1223 		 */
1224 		ttm_flag_masked(&bo->mem.placement, new_flags,
1225 				~TTM_PL_MASK_MEMTYPE);
1226 	}
1227 	/*
1228 	 * We might need to add a TTM.
1229 	 */
1230 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1231 		ret = ttm_tt_create(bo, true);
1232 		if (ret)
1233 			return ret;
1234 	}
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL(ttm_bo_validate);
1238 
1239 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1240 			 struct ttm_buffer_object *bo,
1241 			 unsigned long size,
1242 			 enum ttm_bo_type type,
1243 			 struct ttm_placement *placement,
1244 			 uint32_t page_alignment,
1245 			 struct ttm_operation_ctx *ctx,
1246 			 size_t acc_size,
1247 			 struct sg_table *sg,
1248 			 struct dma_resv *resv,
1249 			 void (*destroy) (struct ttm_buffer_object *))
1250 {
1251 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1252 	int ret = 0;
1253 	unsigned long num_pages;
1254 	bool locked;
1255 
1256 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1257 	if (ret) {
1258 		pr_err("Out of kernel memory\n");
1259 		if (destroy)
1260 			(*destroy)(bo);
1261 		else
1262 			kfree(bo);
1263 		return -ENOMEM;
1264 	}
1265 
1266 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1267 	if (num_pages == 0) {
1268 		pr_err("Illegal buffer object size\n");
1269 		if (destroy)
1270 			(*destroy)(bo);
1271 		else
1272 			kfree(bo);
1273 		ttm_mem_global_free(mem_glob, acc_size);
1274 		return -EINVAL;
1275 	}
1276 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1277 
1278 	kref_init(&bo->kref);
1279 	INIT_LIST_HEAD(&bo->lru);
1280 	INIT_LIST_HEAD(&bo->ddestroy);
1281 	INIT_LIST_HEAD(&bo->swap);
1282 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1283 	bo->bdev = bdev;
1284 	bo->type = type;
1285 	bo->num_pages = num_pages;
1286 	bo->mem.size = num_pages << PAGE_SHIFT;
1287 	bo->mem.mem_type = TTM_PL_SYSTEM;
1288 	bo->mem.num_pages = bo->num_pages;
1289 	bo->mem.mm_node = NULL;
1290 	bo->mem.page_alignment = page_alignment;
1291 	bo->mem.bus.io_reserved_vm = false;
1292 	bo->mem.bus.io_reserved_count = 0;
1293 	bo->moving = NULL;
1294 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1295 	bo->acc_size = acc_size;
1296 	bo->sg = sg;
1297 	if (resv) {
1298 		bo->base.resv = resv;
1299 		dma_resv_assert_held(bo->base.resv);
1300 	} else {
1301 		bo->base.resv = &bo->base._resv;
1302 	}
1303 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1304 		/*
1305 		 * bo.gem is not initialized, so we have to setup the
1306 		 * struct elements we want use regardless.
1307 		 */
1308 		dma_resv_init(&bo->base._resv);
1309 		drm_vma_node_reset(&bo->base.vma_node);
1310 	}
1311 	atomic_inc(&ttm_bo_glob.bo_count);
1312 
1313 	/*
1314 	 * For ttm_bo_type_device buffers, allocate
1315 	 * address space from the device.
1316 	 */
1317 	if (bo->type == ttm_bo_type_device ||
1318 	    bo->type == ttm_bo_type_sg)
1319 		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1320 					 bo->mem.num_pages);
1321 
1322 	/* passed reservation objects should already be locked,
1323 	 * since otherwise lockdep will be angered in radeon.
1324 	 */
1325 	if (!resv) {
1326 		locked = dma_resv_trylock(bo->base.resv);
1327 		WARN_ON(!locked);
1328 	}
1329 
1330 	if (likely(!ret))
1331 		ret = ttm_bo_validate(bo, placement, ctx);
1332 
1333 	if (unlikely(ret)) {
1334 		if (!resv)
1335 			ttm_bo_unreserve(bo);
1336 
1337 		ttm_bo_put(bo);
1338 		return ret;
1339 	}
1340 
1341 	spin_lock(&ttm_bo_glob.lru_lock);
1342 	ttm_bo_move_to_lru_tail(bo, NULL);
1343 	spin_unlock(&ttm_bo_glob.lru_lock);
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL(ttm_bo_init_reserved);
1348 
1349 int ttm_bo_init(struct ttm_bo_device *bdev,
1350 		struct ttm_buffer_object *bo,
1351 		unsigned long size,
1352 		enum ttm_bo_type type,
1353 		struct ttm_placement *placement,
1354 		uint32_t page_alignment,
1355 		bool interruptible,
1356 		size_t acc_size,
1357 		struct sg_table *sg,
1358 		struct dma_resv *resv,
1359 		void (*destroy) (struct ttm_buffer_object *))
1360 {
1361 	struct ttm_operation_ctx ctx = { interruptible, false };
1362 	int ret;
1363 
1364 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1365 				   page_alignment, &ctx, acc_size,
1366 				   sg, resv, destroy);
1367 	if (ret)
1368 		return ret;
1369 
1370 	if (!resv)
1371 		ttm_bo_unreserve(bo);
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(ttm_bo_init);
1376 
1377 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1378 		       unsigned long bo_size,
1379 		       unsigned struct_size)
1380 {
1381 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1382 	size_t size = 0;
1383 
1384 	size += ttm_round_pot(struct_size);
1385 	size += ttm_round_pot(npages * sizeof(void *));
1386 	size += ttm_round_pot(sizeof(struct ttm_tt));
1387 	return size;
1388 }
1389 EXPORT_SYMBOL(ttm_bo_acc_size);
1390 
1391 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1392 			   unsigned long bo_size,
1393 			   unsigned struct_size)
1394 {
1395 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1396 	size_t size = 0;
1397 
1398 	size += ttm_round_pot(struct_size);
1399 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1400 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1401 	return size;
1402 }
1403 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1404 
1405 int ttm_bo_create(struct ttm_bo_device *bdev,
1406 			unsigned long size,
1407 			enum ttm_bo_type type,
1408 			struct ttm_placement *placement,
1409 			uint32_t page_alignment,
1410 			bool interruptible,
1411 			struct ttm_buffer_object **p_bo)
1412 {
1413 	struct ttm_buffer_object *bo;
1414 	size_t acc_size;
1415 	int ret;
1416 
1417 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1418 	if (unlikely(bo == NULL))
1419 		return -ENOMEM;
1420 
1421 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1422 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1423 			  interruptible, acc_size,
1424 			  NULL, NULL, NULL);
1425 	if (likely(ret == 0))
1426 		*p_bo = bo;
1427 
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL(ttm_bo_create);
1431 
1432 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1433 				   unsigned mem_type)
1434 {
1435 	struct ttm_operation_ctx ctx = {
1436 		.interruptible = false,
1437 		.no_wait_gpu = false,
1438 		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1439 	};
1440 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1441 	struct ttm_bo_global *glob = &ttm_bo_glob;
1442 	struct dma_fence *fence;
1443 	int ret;
1444 	unsigned i;
1445 
1446 	/*
1447 	 * Can't use standard list traversal since we're unlocking.
1448 	 */
1449 
1450 	spin_lock(&glob->lru_lock);
1451 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1452 		while (!list_empty(&man->lru[i])) {
1453 			spin_unlock(&glob->lru_lock);
1454 			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1455 						  NULL);
1456 			if (ret)
1457 				return ret;
1458 			spin_lock(&glob->lru_lock);
1459 		}
1460 	}
1461 	spin_unlock(&glob->lru_lock);
1462 
1463 	spin_lock(&man->move_lock);
1464 	fence = dma_fence_get(man->move);
1465 	spin_unlock(&man->move_lock);
1466 
1467 	if (fence) {
1468 		ret = dma_fence_wait(fence, false);
1469 		dma_fence_put(fence);
1470 		if (ret)
1471 			return ret;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1478 {
1479 	struct ttm_mem_type_manager *man;
1480 	int ret = -EINVAL;
1481 
1482 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1483 		pr_err("Illegal memory type %d\n", mem_type);
1484 		return ret;
1485 	}
1486 	man = &bdev->man[mem_type];
1487 
1488 	if (!man->has_type) {
1489 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1490 		       mem_type);
1491 		return ret;
1492 	}
1493 
1494 	man->use_type = false;
1495 	man->has_type = false;
1496 
1497 	ret = 0;
1498 	if (mem_type > 0) {
1499 		ret = ttm_bo_force_list_clean(bdev, mem_type);
1500 		if (ret) {
1501 			pr_err("Cleanup eviction failed\n");
1502 			return ret;
1503 		}
1504 
1505 		ret = (*man->func->takedown)(man);
1506 	}
1507 
1508 	dma_fence_put(man->move);
1509 	man->move = NULL;
1510 
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL(ttm_bo_clean_mm);
1514 
1515 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1516 {
1517 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1518 
1519 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1520 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1521 		return -EINVAL;
1522 	}
1523 
1524 	if (!man->has_type) {
1525 		pr_err("Memory type %u has not been initialized\n", mem_type);
1526 		return 0;
1527 	}
1528 
1529 	return ttm_bo_force_list_clean(bdev, mem_type);
1530 }
1531 EXPORT_SYMBOL(ttm_bo_evict_mm);
1532 
1533 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1534 			unsigned long p_size)
1535 {
1536 	int ret;
1537 	struct ttm_mem_type_manager *man;
1538 	unsigned i;
1539 
1540 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1541 	man = &bdev->man[type];
1542 	BUG_ON(man->has_type);
1543 	man->io_reserve_fastpath = true;
1544 	man->use_io_reserve_lru = false;
1545 	mutex_init(&man->io_reserve_mutex);
1546 	spin_lock_init(&man->move_lock);
1547 	INIT_LIST_HEAD(&man->io_reserve_lru);
1548 
1549 	ret = bdev->driver->init_mem_type(bdev, type, man);
1550 	if (ret)
1551 		return ret;
1552 	man->bdev = bdev;
1553 
1554 	if (type != TTM_PL_SYSTEM) {
1555 		ret = (*man->func->init)(man, p_size);
1556 		if (ret)
1557 			return ret;
1558 	}
1559 	man->has_type = true;
1560 	man->use_type = true;
1561 	man->size = p_size;
1562 
1563 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1564 		INIT_LIST_HEAD(&man->lru[i]);
1565 	man->move = NULL;
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(ttm_bo_init_mm);
1570 
1571 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1572 {
1573 	struct ttm_bo_global *glob =
1574 		container_of(kobj, struct ttm_bo_global, kobj);
1575 
1576 	__free_page(glob->dummy_read_page);
1577 }
1578 
1579 static void ttm_bo_global_release(void)
1580 {
1581 	struct ttm_bo_global *glob = &ttm_bo_glob;
1582 
1583 	mutex_lock(&ttm_global_mutex);
1584 	if (--ttm_bo_glob_use_count > 0)
1585 		goto out;
1586 
1587 	kobject_del(&glob->kobj);
1588 	kobject_put(&glob->kobj);
1589 	ttm_mem_global_release(&ttm_mem_glob);
1590 	memset(glob, 0, sizeof(*glob));
1591 out:
1592 	mutex_unlock(&ttm_global_mutex);
1593 }
1594 
1595 static int ttm_bo_global_init(void)
1596 {
1597 	struct ttm_bo_global *glob = &ttm_bo_glob;
1598 	int ret = 0;
1599 	unsigned i;
1600 
1601 	mutex_lock(&ttm_global_mutex);
1602 	if (++ttm_bo_glob_use_count > 1)
1603 		goto out;
1604 
1605 	ret = ttm_mem_global_init(&ttm_mem_glob);
1606 	if (ret)
1607 		goto out;
1608 
1609 	spin_lock_init(&glob->lru_lock);
1610 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1611 
1612 	if (unlikely(glob->dummy_read_page == NULL)) {
1613 		ret = -ENOMEM;
1614 		goto out;
1615 	}
1616 
1617 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1618 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1619 	INIT_LIST_HEAD(&glob->device_list);
1620 	atomic_set(&glob->bo_count, 0);
1621 
1622 	ret = kobject_init_and_add(
1623 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1624 	if (unlikely(ret != 0))
1625 		kobject_put(&glob->kobj);
1626 out:
1627 	mutex_unlock(&ttm_global_mutex);
1628 	return ret;
1629 }
1630 
1631 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1632 {
1633 	struct ttm_bo_global *glob = &ttm_bo_glob;
1634 	int ret = 0;
1635 	unsigned i = TTM_NUM_MEM_TYPES;
1636 	struct ttm_mem_type_manager *man;
1637 
1638 	while (i--) {
1639 		man = &bdev->man[i];
1640 		if (man->has_type) {
1641 			man->use_type = false;
1642 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1643 				ret = -EBUSY;
1644 				pr_err("DRM memory manager type %d is not clean\n",
1645 				       i);
1646 			}
1647 			man->has_type = false;
1648 		}
1649 	}
1650 
1651 	mutex_lock(&ttm_global_mutex);
1652 	list_del(&bdev->device_list);
1653 	mutex_unlock(&ttm_global_mutex);
1654 
1655 	cancel_delayed_work_sync(&bdev->wq);
1656 
1657 	if (ttm_bo_delayed_delete(bdev, true))
1658 		pr_debug("Delayed destroy list was clean\n");
1659 
1660 	spin_lock(&glob->lru_lock);
1661 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1662 		if (list_empty(&bdev->man[0].lru[0]))
1663 			pr_debug("Swap list %d was clean\n", i);
1664 	spin_unlock(&glob->lru_lock);
1665 
1666 	if (!ret)
1667 		ttm_bo_global_release();
1668 
1669 	return ret;
1670 }
1671 EXPORT_SYMBOL(ttm_bo_device_release);
1672 
1673 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1674 		       struct ttm_bo_driver *driver,
1675 		       struct address_space *mapping,
1676 		       struct drm_vma_offset_manager *vma_manager,
1677 		       bool need_dma32)
1678 {
1679 	struct ttm_bo_global *glob = &ttm_bo_glob;
1680 	int ret;
1681 
1682 	if (WARN_ON(vma_manager == NULL))
1683 		return -EINVAL;
1684 
1685 	ret = ttm_bo_global_init();
1686 	if (ret)
1687 		return ret;
1688 
1689 	bdev->driver = driver;
1690 
1691 	memset(bdev->man, 0, sizeof(bdev->man));
1692 
1693 	/*
1694 	 * Initialize the system memory buffer type.
1695 	 * Other types need to be driver / IOCTL initialized.
1696 	 */
1697 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1698 	if (unlikely(ret != 0))
1699 		goto out_no_sys;
1700 
1701 	bdev->vma_manager = vma_manager;
1702 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1703 	INIT_LIST_HEAD(&bdev->ddestroy);
1704 	bdev->dev_mapping = mapping;
1705 	bdev->need_dma32 = need_dma32;
1706 	mutex_lock(&ttm_global_mutex);
1707 	list_add_tail(&bdev->device_list, &glob->device_list);
1708 	mutex_unlock(&ttm_global_mutex);
1709 
1710 	return 0;
1711 out_no_sys:
1712 	ttm_bo_global_release();
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL(ttm_bo_device_init);
1716 
1717 /*
1718  * buffer object vm functions.
1719  */
1720 
1721 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1722 {
1723 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1724 
1725 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1726 		if (mem->mem_type == TTM_PL_SYSTEM)
1727 			return false;
1728 
1729 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1730 			return false;
1731 
1732 		if (mem->placement & TTM_PL_FLAG_CACHED)
1733 			return false;
1734 	}
1735 	return true;
1736 }
1737 
1738 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1739 {
1740 	struct ttm_bo_device *bdev = bo->bdev;
1741 
1742 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1743 	ttm_mem_io_free_vm(bo);
1744 }
1745 
1746 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1747 {
1748 	struct ttm_bo_device *bdev = bo->bdev;
1749 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1750 
1751 	ttm_mem_io_lock(man, false);
1752 	ttm_bo_unmap_virtual_locked(bo);
1753 	ttm_mem_io_unlock(man);
1754 }
1755 
1756 
1757 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1758 
1759 int ttm_bo_wait(struct ttm_buffer_object *bo,
1760 		bool interruptible, bool no_wait)
1761 {
1762 	long timeout = 15 * HZ;
1763 
1764 	if (no_wait) {
1765 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1766 			return 0;
1767 		else
1768 			return -EBUSY;
1769 	}
1770 
1771 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1772 						      interruptible, timeout);
1773 	if (timeout < 0)
1774 		return timeout;
1775 
1776 	if (timeout == 0)
1777 		return -EBUSY;
1778 
1779 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(ttm_bo_wait);
1783 
1784 /**
1785  * A buffer object shrink method that tries to swap out the first
1786  * buffer object on the bo_global::swap_lru list.
1787  */
1788 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1789 {
1790 	struct ttm_buffer_object *bo;
1791 	int ret = -EBUSY;
1792 	bool locked;
1793 	unsigned i;
1794 
1795 	spin_lock(&glob->lru_lock);
1796 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1797 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1798 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1799 							    NULL))
1800 				continue;
1801 
1802 			if (!ttm_bo_get_unless_zero(bo)) {
1803 				if (locked)
1804 					dma_resv_unlock(bo->base.resv);
1805 				continue;
1806 			}
1807 
1808 			ret = 0;
1809 			break;
1810 		}
1811 		if (!ret)
1812 			break;
1813 	}
1814 
1815 	if (ret) {
1816 		spin_unlock(&glob->lru_lock);
1817 		return ret;
1818 	}
1819 
1820 	if (bo->deleted) {
1821 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1822 		ttm_bo_put(bo);
1823 		return ret;
1824 	}
1825 
1826 	ttm_bo_del_from_lru(bo);
1827 	spin_unlock(&glob->lru_lock);
1828 
1829 	/**
1830 	 * Move to system cached
1831 	 */
1832 
1833 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1834 	    bo->ttm->caching_state != tt_cached) {
1835 		struct ttm_operation_ctx ctx = { false, false };
1836 		struct ttm_mem_reg evict_mem;
1837 
1838 		evict_mem = bo->mem;
1839 		evict_mem.mm_node = NULL;
1840 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1841 		evict_mem.mem_type = TTM_PL_SYSTEM;
1842 
1843 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1844 		if (unlikely(ret != 0))
1845 			goto out;
1846 	}
1847 
1848 	/**
1849 	 * Make sure BO is idle.
1850 	 */
1851 
1852 	ret = ttm_bo_wait(bo, false, false);
1853 	if (unlikely(ret != 0))
1854 		goto out;
1855 
1856 	ttm_bo_unmap_virtual(bo);
1857 
1858 	/**
1859 	 * Swap out. Buffer will be swapped in again as soon as
1860 	 * anyone tries to access a ttm page.
1861 	 */
1862 
1863 	if (bo->bdev->driver->swap_notify)
1864 		bo->bdev->driver->swap_notify(bo);
1865 
1866 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1867 out:
1868 
1869 	/**
1870 	 *
1871 	 * Unreserve without putting on LRU to avoid swapping out an
1872 	 * already swapped buffer.
1873 	 */
1874 	if (locked)
1875 		dma_resv_unlock(bo->base.resv);
1876 	ttm_bo_put(bo);
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL(ttm_bo_swapout);
1880 
1881 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1882 {
1883 	struct ttm_operation_ctx ctx = {
1884 		.interruptible = false,
1885 		.no_wait_gpu = false
1886 	};
1887 
1888 	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1889 }
1890 EXPORT_SYMBOL(ttm_bo_swapout_all);
1891