1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 #include <linux/dma-resv.h> 44 45 #include "ttm_module.h" 46 47 /* default destructor */ 48 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 49 { 50 kfree(bo); 51 } 52 53 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 54 struct ttm_placement *placement) 55 { 56 struct drm_printer p = drm_debug_printer(TTM_PFX); 57 struct ttm_resource_manager *man; 58 int i, mem_type; 59 60 drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n", 61 bo, bo->mem.num_pages, bo->base.size >> 10, 62 bo->base.size >> 20); 63 for (i = 0; i < placement->num_placement; i++) { 64 mem_type = placement->placement[i].mem_type; 65 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 66 i, placement->placement[i].flags, mem_type); 67 man = ttm_manager_type(bo->bdev, mem_type); 68 ttm_resource_manager_debug(man, &p); 69 } 70 } 71 72 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 73 { 74 struct ttm_device *bdev = bo->bdev; 75 76 list_del_init(&bo->lru); 77 78 if (bdev->funcs->del_from_lru_notify) 79 bdev->funcs->del_from_lru_notify(bo); 80 } 81 82 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 83 struct ttm_buffer_object *bo) 84 { 85 if (!pos->first) 86 pos->first = bo; 87 pos->last = bo; 88 } 89 90 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 91 struct ttm_resource *mem, 92 struct ttm_lru_bulk_move *bulk) 93 { 94 struct ttm_device *bdev = bo->bdev; 95 struct ttm_resource_manager *man; 96 97 if (!bo->deleted) 98 dma_resv_assert_held(bo->base.resv); 99 100 if (bo->pin_count) { 101 ttm_bo_del_from_lru(bo); 102 return; 103 } 104 105 man = ttm_manager_type(bdev, mem->mem_type); 106 list_move_tail(&bo->lru, &man->lru[bo->priority]); 107 108 if (bdev->funcs->del_from_lru_notify) 109 bdev->funcs->del_from_lru_notify(bo); 110 111 if (bulk && !bo->pin_count) { 112 switch (bo->mem.mem_type) { 113 case TTM_PL_TT: 114 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 115 break; 116 117 case TTM_PL_VRAM: 118 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 119 break; 120 } 121 } 122 } 123 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 124 125 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 126 { 127 unsigned i; 128 129 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 130 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 131 struct ttm_resource_manager *man; 132 133 if (!pos->first) 134 continue; 135 136 dma_resv_assert_held(pos->first->base.resv); 137 dma_resv_assert_held(pos->last->base.resv); 138 139 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 140 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 141 &pos->last->lru); 142 } 143 144 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 145 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 146 struct ttm_resource_manager *man; 147 148 if (!pos->first) 149 continue; 150 151 dma_resv_assert_held(pos->first->base.resv); 152 dma_resv_assert_held(pos->last->base.resv); 153 154 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 155 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 156 &pos->last->lru); 157 } 158 } 159 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 160 161 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 162 struct ttm_resource *mem, bool evict, 163 struct ttm_operation_ctx *ctx, 164 struct ttm_place *hop) 165 { 166 struct ttm_device *bdev = bo->bdev; 167 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 168 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 169 int ret; 170 171 ttm_bo_unmap_virtual(bo); 172 173 /* 174 * Create and bind a ttm if required. 175 */ 176 177 if (new_man->use_tt) { 178 /* Zero init the new TTM structure if the old location should 179 * have used one as well. 180 */ 181 ret = ttm_tt_create(bo, old_man->use_tt); 182 if (ret) 183 goto out_err; 184 185 if (mem->mem_type != TTM_PL_SYSTEM) { 186 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 187 if (ret) 188 goto out_err; 189 } 190 } 191 192 ret = bdev->funcs->move(bo, evict, ctx, mem, hop); 193 if (ret) { 194 if (ret == -EMULTIHOP) 195 return ret; 196 goto out_err; 197 } 198 199 ctx->bytes_moved += bo->base.size; 200 return 0; 201 202 out_err: 203 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 204 if (!new_man->use_tt) 205 ttm_bo_tt_destroy(bo); 206 207 return ret; 208 } 209 210 /* 211 * Call bo::reserved. 212 * Will release GPU memory type usage on destruction. 213 * This is the place to put in driver specific hooks to release 214 * driver private resources. 215 * Will release the bo::reserved lock. 216 */ 217 218 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 219 { 220 if (bo->bdev->funcs->delete_mem_notify) 221 bo->bdev->funcs->delete_mem_notify(bo); 222 223 ttm_bo_tt_destroy(bo); 224 ttm_resource_free(bo, &bo->mem); 225 } 226 227 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 228 { 229 int r; 230 231 if (bo->base.resv == &bo->base._resv) 232 return 0; 233 234 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 235 236 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 237 dma_resv_unlock(&bo->base._resv); 238 if (r) 239 return r; 240 241 if (bo->type != ttm_bo_type_sg) { 242 /* This works because the BO is about to be destroyed and nobody 243 * reference it any more. The only tricky case is the trylock on 244 * the resv object while holding the lru_lock. 245 */ 246 spin_lock(&bo->bdev->lru_lock); 247 bo->base.resv = &bo->base._resv; 248 spin_unlock(&bo->bdev->lru_lock); 249 } 250 251 return r; 252 } 253 254 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 255 { 256 struct dma_resv *resv = &bo->base._resv; 257 struct dma_resv_list *fobj; 258 struct dma_fence *fence; 259 int i; 260 261 rcu_read_lock(); 262 fobj = rcu_dereference(resv->fence); 263 fence = rcu_dereference(resv->fence_excl); 264 if (fence && !fence->ops->signaled) 265 dma_fence_enable_sw_signaling(fence); 266 267 for (i = 0; fobj && i < fobj->shared_count; ++i) { 268 fence = rcu_dereference(fobj->shared[i]); 269 270 if (!fence->ops->signaled) 271 dma_fence_enable_sw_signaling(fence); 272 } 273 rcu_read_unlock(); 274 } 275 276 /** 277 * function ttm_bo_cleanup_refs 278 * If bo idle, remove from lru lists, and unref. 279 * If not idle, block if possible. 280 * 281 * Must be called with lru_lock and reservation held, this function 282 * will drop the lru lock and optionally the reservation lock before returning. 283 * 284 * @bo: The buffer object to clean-up 285 * @interruptible: Any sleeps should occur interruptibly. 286 * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead. 287 * @unlock_resv: Unlock the reservation lock as well. 288 */ 289 290 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 291 bool interruptible, bool no_wait_gpu, 292 bool unlock_resv) 293 { 294 struct dma_resv *resv = &bo->base._resv; 295 int ret; 296 297 if (dma_resv_test_signaled_rcu(resv, true)) 298 ret = 0; 299 else 300 ret = -EBUSY; 301 302 if (ret && !no_wait_gpu) { 303 long lret; 304 305 if (unlock_resv) 306 dma_resv_unlock(bo->base.resv); 307 spin_unlock(&bo->bdev->lru_lock); 308 309 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 310 30 * HZ); 311 312 if (lret < 0) 313 return lret; 314 else if (lret == 0) 315 return -EBUSY; 316 317 spin_lock(&bo->bdev->lru_lock); 318 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 319 /* 320 * We raced, and lost, someone else holds the reservation now, 321 * and is probably busy in ttm_bo_cleanup_memtype_use. 322 * 323 * Even if it's not the case, because we finished waiting any 324 * delayed destruction would succeed, so just return success 325 * here. 326 */ 327 spin_unlock(&bo->bdev->lru_lock); 328 return 0; 329 } 330 ret = 0; 331 } 332 333 if (ret || unlikely(list_empty(&bo->ddestroy))) { 334 if (unlock_resv) 335 dma_resv_unlock(bo->base.resv); 336 spin_unlock(&bo->bdev->lru_lock); 337 return ret; 338 } 339 340 ttm_bo_del_from_lru(bo); 341 list_del_init(&bo->ddestroy); 342 spin_unlock(&bo->bdev->lru_lock); 343 ttm_bo_cleanup_memtype_use(bo); 344 345 if (unlock_resv) 346 dma_resv_unlock(bo->base.resv); 347 348 ttm_bo_put(bo); 349 350 return 0; 351 } 352 353 /* 354 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 355 * encountered buffers. 356 */ 357 bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all) 358 { 359 struct list_head removed; 360 bool empty; 361 362 INIT_LIST_HEAD(&removed); 363 364 spin_lock(&bdev->lru_lock); 365 while (!list_empty(&bdev->ddestroy)) { 366 struct ttm_buffer_object *bo; 367 368 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 369 ddestroy); 370 list_move_tail(&bo->ddestroy, &removed); 371 if (!ttm_bo_get_unless_zero(bo)) 372 continue; 373 374 if (remove_all || bo->base.resv != &bo->base._resv) { 375 spin_unlock(&bdev->lru_lock); 376 dma_resv_lock(bo->base.resv, NULL); 377 378 spin_lock(&bdev->lru_lock); 379 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 380 381 } else if (dma_resv_trylock(bo->base.resv)) { 382 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 383 } else { 384 spin_unlock(&bdev->lru_lock); 385 } 386 387 ttm_bo_put(bo); 388 spin_lock(&bdev->lru_lock); 389 } 390 list_splice_tail(&removed, &bdev->ddestroy); 391 empty = list_empty(&bdev->ddestroy); 392 spin_unlock(&bdev->lru_lock); 393 394 return empty; 395 } 396 397 static void ttm_bo_release(struct kref *kref) 398 { 399 struct ttm_buffer_object *bo = 400 container_of(kref, struct ttm_buffer_object, kref); 401 struct ttm_device *bdev = bo->bdev; 402 int ret; 403 404 if (!bo->deleted) { 405 ret = ttm_bo_individualize_resv(bo); 406 if (ret) { 407 /* Last resort, if we fail to allocate memory for the 408 * fences block for the BO to become idle 409 */ 410 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 411 30 * HZ); 412 } 413 414 if (bo->bdev->funcs->release_notify) 415 bo->bdev->funcs->release_notify(bo); 416 417 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 418 ttm_mem_io_free(bdev, &bo->mem); 419 } 420 421 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 422 !dma_resv_trylock(bo->base.resv)) { 423 /* The BO is not idle, resurrect it for delayed destroy */ 424 ttm_bo_flush_all_fences(bo); 425 bo->deleted = true; 426 427 spin_lock(&bo->bdev->lru_lock); 428 429 /* 430 * Make pinned bos immediately available to 431 * shrinkers, now that they are queued for 432 * destruction. 433 * 434 * FIXME: QXL is triggering this. Can be removed when the 435 * driver is fixed. 436 */ 437 if (WARN_ON_ONCE(bo->pin_count)) { 438 bo->pin_count = 0; 439 ttm_bo_move_to_lru_tail(bo, &bo->mem, NULL); 440 } 441 442 kref_init(&bo->kref); 443 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 444 spin_unlock(&bo->bdev->lru_lock); 445 446 schedule_delayed_work(&bdev->wq, 447 ((HZ / 100) < 1) ? 1 : HZ / 100); 448 return; 449 } 450 451 spin_lock(&bo->bdev->lru_lock); 452 ttm_bo_del_from_lru(bo); 453 list_del(&bo->ddestroy); 454 spin_unlock(&bo->bdev->lru_lock); 455 456 ttm_bo_cleanup_memtype_use(bo); 457 dma_resv_unlock(bo->base.resv); 458 459 atomic_dec(&ttm_glob.bo_count); 460 dma_fence_put(bo->moving); 461 if (!ttm_bo_uses_embedded_gem_object(bo)) 462 dma_resv_fini(&bo->base._resv); 463 bo->destroy(bo); 464 } 465 466 void ttm_bo_put(struct ttm_buffer_object *bo) 467 { 468 kref_put(&bo->kref, ttm_bo_release); 469 } 470 EXPORT_SYMBOL(ttm_bo_put); 471 472 int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev) 473 { 474 return cancel_delayed_work_sync(&bdev->wq); 475 } 476 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 477 478 void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched) 479 { 480 if (resched) 481 schedule_delayed_work(&bdev->wq, 482 ((HZ / 100) < 1) ? 1 : HZ / 100); 483 } 484 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 485 486 static int ttm_bo_evict(struct ttm_buffer_object *bo, 487 struct ttm_operation_ctx *ctx) 488 { 489 struct ttm_device *bdev = bo->bdev; 490 struct ttm_resource evict_mem; 491 struct ttm_placement placement; 492 struct ttm_place hop; 493 int ret = 0; 494 495 memset(&hop, 0, sizeof(hop)); 496 497 dma_resv_assert_held(bo->base.resv); 498 499 placement.num_placement = 0; 500 placement.num_busy_placement = 0; 501 bdev->funcs->evict_flags(bo, &placement); 502 503 if (!placement.num_placement && !placement.num_busy_placement) { 504 ttm_bo_wait(bo, false, false); 505 506 ttm_bo_cleanup_memtype_use(bo); 507 return ttm_tt_create(bo, false); 508 } 509 510 evict_mem = bo->mem; 511 evict_mem.mm_node = NULL; 512 evict_mem.bus.offset = 0; 513 evict_mem.bus.addr = NULL; 514 515 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 516 if (ret) { 517 if (ret != -ERESTARTSYS) { 518 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 519 bo); 520 ttm_bo_mem_space_debug(bo, &placement); 521 } 522 goto out; 523 } 524 525 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx, &hop); 526 if (unlikely(ret)) { 527 WARN(ret == -EMULTIHOP, "Unexpected multihop in eviction - likely driver bug\n"); 528 if (ret != -ERESTARTSYS) 529 pr_err("Buffer eviction failed\n"); 530 ttm_resource_free(bo, &evict_mem); 531 } 532 out: 533 return ret; 534 } 535 536 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 537 const struct ttm_place *place) 538 { 539 /* Don't evict this BO if it's outside of the 540 * requested placement range 541 */ 542 if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || 543 (place->lpfn && place->lpfn <= bo->mem.start)) 544 return false; 545 546 return true; 547 } 548 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 549 550 /* 551 * Check the target bo is allowable to be evicted or swapout, including cases: 552 * 553 * a. if share same reservation object with ctx->resv, have assumption 554 * reservation objects should already be locked, so not lock again and 555 * return true directly when either the opreation allow_reserved_eviction 556 * or the target bo already is in delayed free list; 557 * 558 * b. Otherwise, trylock it. 559 */ 560 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 561 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 562 { 563 bool ret = false; 564 565 if (bo->base.resv == ctx->resv) { 566 dma_resv_assert_held(bo->base.resv); 567 if (ctx->allow_res_evict) 568 ret = true; 569 *locked = false; 570 if (busy) 571 *busy = false; 572 } else { 573 ret = dma_resv_trylock(bo->base.resv); 574 *locked = ret; 575 if (busy) 576 *busy = !ret; 577 } 578 579 return ret; 580 } 581 582 /** 583 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 584 * 585 * @busy_bo: BO which couldn't be locked with trylock 586 * @ctx: operation context 587 * @ticket: acquire ticket 588 * 589 * Try to lock a busy buffer object to avoid failing eviction. 590 */ 591 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 592 struct ttm_operation_ctx *ctx, 593 struct ww_acquire_ctx *ticket) 594 { 595 int r; 596 597 if (!busy_bo || !ticket) 598 return -EBUSY; 599 600 if (ctx->interruptible) 601 r = dma_resv_lock_interruptible(busy_bo->base.resv, 602 ticket); 603 else 604 r = dma_resv_lock(busy_bo->base.resv, ticket); 605 606 /* 607 * TODO: It would be better to keep the BO locked until allocation is at 608 * least tried one more time, but that would mean a much larger rework 609 * of TTM. 610 */ 611 if (!r) 612 dma_resv_unlock(busy_bo->base.resv); 613 614 return r == -EDEADLK ? -EBUSY : r; 615 } 616 617 int ttm_mem_evict_first(struct ttm_device *bdev, 618 struct ttm_resource_manager *man, 619 const struct ttm_place *place, 620 struct ttm_operation_ctx *ctx, 621 struct ww_acquire_ctx *ticket) 622 { 623 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 624 bool locked = false; 625 unsigned i; 626 int ret; 627 628 spin_lock(&bdev->lru_lock); 629 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 630 list_for_each_entry(bo, &man->lru[i], lru) { 631 bool busy; 632 633 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 634 &busy)) { 635 if (busy && !busy_bo && ticket != 636 dma_resv_locking_ctx(bo->base.resv)) 637 busy_bo = bo; 638 continue; 639 } 640 641 if (place && !bdev->funcs->eviction_valuable(bo, 642 place)) { 643 if (locked) 644 dma_resv_unlock(bo->base.resv); 645 continue; 646 } 647 if (!ttm_bo_get_unless_zero(bo)) { 648 if (locked) 649 dma_resv_unlock(bo->base.resv); 650 continue; 651 } 652 break; 653 } 654 655 /* If the inner loop terminated early, we have our candidate */ 656 if (&bo->lru != &man->lru[i]) 657 break; 658 659 bo = NULL; 660 } 661 662 if (!bo) { 663 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 664 busy_bo = NULL; 665 spin_unlock(&bdev->lru_lock); 666 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 667 if (busy_bo) 668 ttm_bo_put(busy_bo); 669 return ret; 670 } 671 672 if (bo->deleted) { 673 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 674 ctx->no_wait_gpu, locked); 675 ttm_bo_put(bo); 676 return ret; 677 } 678 679 spin_unlock(&bdev->lru_lock); 680 681 ret = ttm_bo_evict(bo, ctx); 682 if (locked) 683 ttm_bo_unreserve(bo); 684 685 ttm_bo_put(bo); 686 return ret; 687 } 688 689 /* 690 * Add the last move fence to the BO and reserve a new shared slot. 691 */ 692 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 693 struct ttm_resource_manager *man, 694 struct ttm_resource *mem, 695 bool no_wait_gpu) 696 { 697 struct dma_fence *fence; 698 int ret; 699 700 spin_lock(&man->move_lock); 701 fence = dma_fence_get(man->move); 702 spin_unlock(&man->move_lock); 703 704 if (!fence) 705 return 0; 706 707 if (no_wait_gpu) { 708 dma_fence_put(fence); 709 return -EBUSY; 710 } 711 712 dma_resv_add_shared_fence(bo->base.resv, fence); 713 714 ret = dma_resv_reserve_shared(bo->base.resv, 1); 715 if (unlikely(ret)) { 716 dma_fence_put(fence); 717 return ret; 718 } 719 720 dma_fence_put(bo->moving); 721 bo->moving = fence; 722 return 0; 723 } 724 725 /* 726 * Repeatedly evict memory from the LRU for @mem_type until we create enough 727 * space, or we've evicted everything and there isn't enough space. 728 */ 729 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 730 const struct ttm_place *place, 731 struct ttm_resource *mem, 732 struct ttm_operation_ctx *ctx) 733 { 734 struct ttm_device *bdev = bo->bdev; 735 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 736 struct ww_acquire_ctx *ticket; 737 int ret; 738 739 ticket = dma_resv_locking_ctx(bo->base.resv); 740 do { 741 ret = ttm_resource_alloc(bo, place, mem); 742 if (likely(!ret)) 743 break; 744 if (unlikely(ret != -ENOSPC)) 745 return ret; 746 ret = ttm_mem_evict_first(bdev, man, place, ctx, 747 ticket); 748 if (unlikely(ret != 0)) 749 return ret; 750 } while (1); 751 752 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 753 } 754 755 /** 756 * ttm_bo_mem_placement - check if placement is compatible 757 * @bo: BO to find memory for 758 * @place: where to search 759 * @mem: the memory object to fill in 760 * 761 * Check if placement is compatible and fill in mem structure. 762 * Returns -EBUSY if placement won't work or negative error code. 763 * 0 when placement can be used. 764 */ 765 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 766 const struct ttm_place *place, 767 struct ttm_resource *mem) 768 { 769 struct ttm_device *bdev = bo->bdev; 770 struct ttm_resource_manager *man; 771 772 man = ttm_manager_type(bdev, place->mem_type); 773 if (!man || !ttm_resource_manager_used(man)) 774 return -EBUSY; 775 776 mem->mem_type = place->mem_type; 777 mem->placement = place->flags; 778 779 spin_lock(&bo->bdev->lru_lock); 780 ttm_bo_move_to_lru_tail(bo, mem, NULL); 781 spin_unlock(&bo->bdev->lru_lock); 782 return 0; 783 } 784 785 /* 786 * Creates space for memory region @mem according to its type. 787 * 788 * This function first searches for free space in compatible memory types in 789 * the priority order defined by the driver. If free space isn't found, then 790 * ttm_bo_mem_force_space is attempted in priority order to evict and find 791 * space. 792 */ 793 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 794 struct ttm_placement *placement, 795 struct ttm_resource *mem, 796 struct ttm_operation_ctx *ctx) 797 { 798 struct ttm_device *bdev = bo->bdev; 799 bool type_found = false; 800 int i, ret; 801 802 ret = dma_resv_reserve_shared(bo->base.resv, 1); 803 if (unlikely(ret)) 804 return ret; 805 806 for (i = 0; i < placement->num_placement; ++i) { 807 const struct ttm_place *place = &placement->placement[i]; 808 struct ttm_resource_manager *man; 809 810 ret = ttm_bo_mem_placement(bo, place, mem); 811 if (ret) 812 continue; 813 814 type_found = true; 815 ret = ttm_resource_alloc(bo, place, mem); 816 if (ret == -ENOSPC) 817 continue; 818 if (unlikely(ret)) 819 goto error; 820 821 man = ttm_manager_type(bdev, mem->mem_type); 822 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 823 if (unlikely(ret)) { 824 ttm_resource_free(bo, mem); 825 if (ret == -EBUSY) 826 continue; 827 828 goto error; 829 } 830 return 0; 831 } 832 833 for (i = 0; i < placement->num_busy_placement; ++i) { 834 const struct ttm_place *place = &placement->busy_placement[i]; 835 836 ret = ttm_bo_mem_placement(bo, place, mem); 837 if (ret) 838 continue; 839 840 type_found = true; 841 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 842 if (likely(!ret)) 843 return 0; 844 845 if (ret && ret != -EBUSY) 846 goto error; 847 } 848 849 ret = -ENOMEM; 850 if (!type_found) { 851 pr_err(TTM_PFX "No compatible memory type found\n"); 852 ret = -EINVAL; 853 } 854 855 error: 856 if (bo->mem.mem_type == TTM_PL_SYSTEM && !bo->pin_count) 857 ttm_bo_move_to_lru_tail_unlocked(bo); 858 859 return ret; 860 } 861 EXPORT_SYMBOL(ttm_bo_mem_space); 862 863 static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo, 864 struct ttm_resource *mem, 865 struct ttm_operation_ctx *ctx, 866 struct ttm_place *hop) 867 { 868 struct ttm_placement hop_placement; 869 int ret; 870 struct ttm_resource hop_mem = *mem; 871 872 hop_mem.mm_node = NULL; 873 hop_mem.mem_type = TTM_PL_SYSTEM; 874 hop_mem.placement = 0; 875 876 hop_placement.num_placement = hop_placement.num_busy_placement = 1; 877 hop_placement.placement = hop_placement.busy_placement = hop; 878 879 /* find space in the bounce domain */ 880 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx); 881 if (ret) 882 return ret; 883 /* move to the bounce domain */ 884 ret = ttm_bo_handle_move_mem(bo, &hop_mem, false, ctx, NULL); 885 if (ret) { 886 ttm_resource_free(bo, &hop_mem); 887 return ret; 888 } 889 return 0; 890 } 891 892 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 893 struct ttm_placement *placement, 894 struct ttm_operation_ctx *ctx) 895 { 896 int ret = 0; 897 struct ttm_place hop; 898 struct ttm_resource mem; 899 900 dma_resv_assert_held(bo->base.resv); 901 902 memset(&hop, 0, sizeof(hop)); 903 904 mem.num_pages = PAGE_ALIGN(bo->base.size) >> PAGE_SHIFT; 905 mem.page_alignment = bo->mem.page_alignment; 906 mem.bus.offset = 0; 907 mem.bus.addr = NULL; 908 mem.mm_node = NULL; 909 910 /* 911 * Determine where to move the buffer. 912 * 913 * If driver determines move is going to need 914 * an extra step then it will return -EMULTIHOP 915 * and the buffer will be moved to the temporary 916 * stop and the driver will be called to make 917 * the second hop. 918 */ 919 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 920 if (ret) 921 return ret; 922 bounce: 923 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx, &hop); 924 if (ret == -EMULTIHOP) { 925 ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop); 926 if (ret) 927 goto out; 928 /* try and move to final place now. */ 929 goto bounce; 930 } 931 out: 932 if (ret) 933 ttm_resource_free(bo, &mem); 934 return ret; 935 } 936 937 static bool ttm_bo_places_compat(const struct ttm_place *places, 938 unsigned num_placement, 939 struct ttm_resource *mem, 940 uint32_t *new_flags) 941 { 942 unsigned i; 943 944 for (i = 0; i < num_placement; i++) { 945 const struct ttm_place *heap = &places[i]; 946 947 if ((mem->start < heap->fpfn || 948 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 949 continue; 950 951 *new_flags = heap->flags; 952 if ((mem->mem_type == heap->mem_type) && 953 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 954 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 955 return true; 956 } 957 return false; 958 } 959 960 bool ttm_bo_mem_compat(struct ttm_placement *placement, 961 struct ttm_resource *mem, 962 uint32_t *new_flags) 963 { 964 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 965 mem, new_flags)) 966 return true; 967 968 if ((placement->busy_placement != placement->placement || 969 placement->num_busy_placement > placement->num_placement) && 970 ttm_bo_places_compat(placement->busy_placement, 971 placement->num_busy_placement, 972 mem, new_flags)) 973 return true; 974 975 return false; 976 } 977 EXPORT_SYMBOL(ttm_bo_mem_compat); 978 979 int ttm_bo_validate(struct ttm_buffer_object *bo, 980 struct ttm_placement *placement, 981 struct ttm_operation_ctx *ctx) 982 { 983 int ret; 984 uint32_t new_flags; 985 986 dma_resv_assert_held(bo->base.resv); 987 988 /* 989 * Remove the backing store if no placement is given. 990 */ 991 if (!placement->num_placement && !placement->num_busy_placement) { 992 ret = ttm_bo_pipeline_gutting(bo); 993 if (ret) 994 return ret; 995 996 return ttm_tt_create(bo, false); 997 } 998 999 /* 1000 * Check whether we need to move buffer. 1001 */ 1002 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1003 ret = ttm_bo_move_buffer(bo, placement, ctx); 1004 if (ret) 1005 return ret; 1006 } 1007 /* 1008 * We might need to add a TTM. 1009 */ 1010 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1011 ret = ttm_tt_create(bo, true); 1012 if (ret) 1013 return ret; 1014 } 1015 return 0; 1016 } 1017 EXPORT_SYMBOL(ttm_bo_validate); 1018 1019 int ttm_bo_init_reserved(struct ttm_device *bdev, 1020 struct ttm_buffer_object *bo, 1021 size_t size, 1022 enum ttm_bo_type type, 1023 struct ttm_placement *placement, 1024 uint32_t page_alignment, 1025 struct ttm_operation_ctx *ctx, 1026 struct sg_table *sg, 1027 struct dma_resv *resv, 1028 void (*destroy) (struct ttm_buffer_object *)) 1029 { 1030 bool locked; 1031 int ret = 0; 1032 1033 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1034 1035 kref_init(&bo->kref); 1036 INIT_LIST_HEAD(&bo->lru); 1037 INIT_LIST_HEAD(&bo->ddestroy); 1038 bo->bdev = bdev; 1039 bo->type = type; 1040 bo->mem.mem_type = TTM_PL_SYSTEM; 1041 bo->mem.num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1042 bo->mem.mm_node = NULL; 1043 bo->mem.page_alignment = page_alignment; 1044 bo->mem.bus.offset = 0; 1045 bo->mem.bus.addr = NULL; 1046 bo->moving = NULL; 1047 bo->mem.placement = 0; 1048 bo->pin_count = 0; 1049 bo->sg = sg; 1050 if (resv) { 1051 bo->base.resv = resv; 1052 dma_resv_assert_held(bo->base.resv); 1053 } else { 1054 bo->base.resv = &bo->base._resv; 1055 } 1056 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1057 /* 1058 * bo.base is not initialized, so we have to setup the 1059 * struct elements we want use regardless. 1060 */ 1061 bo->base.size = size; 1062 dma_resv_init(&bo->base._resv); 1063 drm_vma_node_reset(&bo->base.vma_node); 1064 } 1065 atomic_inc(&ttm_glob.bo_count); 1066 1067 /* 1068 * For ttm_bo_type_device buffers, allocate 1069 * address space from the device. 1070 */ 1071 if (bo->type == ttm_bo_type_device || 1072 bo->type == ttm_bo_type_sg) 1073 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1074 bo->mem.num_pages); 1075 1076 /* passed reservation objects should already be locked, 1077 * since otherwise lockdep will be angered in radeon. 1078 */ 1079 if (!resv) { 1080 locked = dma_resv_trylock(bo->base.resv); 1081 WARN_ON(!locked); 1082 } 1083 1084 if (likely(!ret)) 1085 ret = ttm_bo_validate(bo, placement, ctx); 1086 1087 if (unlikely(ret)) { 1088 if (!resv) 1089 ttm_bo_unreserve(bo); 1090 1091 ttm_bo_put(bo); 1092 return ret; 1093 } 1094 1095 ttm_bo_move_to_lru_tail_unlocked(bo); 1096 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(ttm_bo_init_reserved); 1100 1101 int ttm_bo_init(struct ttm_device *bdev, 1102 struct ttm_buffer_object *bo, 1103 size_t size, 1104 enum ttm_bo_type type, 1105 struct ttm_placement *placement, 1106 uint32_t page_alignment, 1107 bool interruptible, 1108 struct sg_table *sg, 1109 struct dma_resv *resv, 1110 void (*destroy) (struct ttm_buffer_object *)) 1111 { 1112 struct ttm_operation_ctx ctx = { interruptible, false }; 1113 int ret; 1114 1115 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1116 page_alignment, &ctx, sg, resv, destroy); 1117 if (ret) 1118 return ret; 1119 1120 if (!resv) 1121 ttm_bo_unreserve(bo); 1122 1123 return 0; 1124 } 1125 EXPORT_SYMBOL(ttm_bo_init); 1126 1127 /* 1128 * buffer object vm functions. 1129 */ 1130 1131 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1132 { 1133 struct ttm_device *bdev = bo->bdev; 1134 1135 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1136 ttm_mem_io_free(bdev, &bo->mem); 1137 } 1138 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1139 1140 int ttm_bo_wait(struct ttm_buffer_object *bo, 1141 bool interruptible, bool no_wait) 1142 { 1143 long timeout = 15 * HZ; 1144 1145 if (no_wait) { 1146 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1147 return 0; 1148 else 1149 return -EBUSY; 1150 } 1151 1152 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1153 interruptible, timeout); 1154 if (timeout < 0) 1155 return timeout; 1156 1157 if (timeout == 0) 1158 return -EBUSY; 1159 1160 dma_resv_add_excl_fence(bo->base.resv, NULL); 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(ttm_bo_wait); 1164 1165 int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, 1166 gfp_t gfp_flags) 1167 { 1168 bool locked; 1169 int ret; 1170 1171 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, NULL)) 1172 return -EBUSY; 1173 1174 if (!ttm_bo_get_unless_zero(bo)) { 1175 if (locked) 1176 dma_resv_unlock(bo->base.resv); 1177 return -EBUSY; 1178 } 1179 1180 if (bo->deleted) { 1181 ttm_bo_cleanup_refs(bo, false, false, locked); 1182 ttm_bo_put(bo); 1183 return 0; 1184 } 1185 1186 ttm_bo_del_from_lru(bo); 1187 /* TODO: Cleanup the locking */ 1188 spin_unlock(&bo->bdev->lru_lock); 1189 1190 /* 1191 * Move to system cached 1192 */ 1193 if (bo->mem.mem_type != TTM_PL_SYSTEM) { 1194 struct ttm_operation_ctx ctx = { false, false }; 1195 struct ttm_resource evict_mem; 1196 struct ttm_place hop; 1197 1198 memset(&hop, 0, sizeof(hop)); 1199 1200 evict_mem = bo->mem; 1201 evict_mem.mm_node = NULL; 1202 evict_mem.placement = 0; 1203 evict_mem.mem_type = TTM_PL_SYSTEM; 1204 1205 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx, &hop); 1206 if (unlikely(ret != 0)) { 1207 WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n"); 1208 goto out; 1209 } 1210 } 1211 1212 /* 1213 * Make sure BO is idle. 1214 */ 1215 ret = ttm_bo_wait(bo, false, false); 1216 if (unlikely(ret != 0)) 1217 goto out; 1218 1219 ttm_bo_unmap_virtual(bo); 1220 1221 /* 1222 * Swap out. Buffer will be swapped in again as soon as 1223 * anyone tries to access a ttm page. 1224 */ 1225 if (bo->bdev->funcs->swap_notify) 1226 bo->bdev->funcs->swap_notify(bo); 1227 1228 ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags); 1229 out: 1230 1231 /* 1232 * Unreserve without putting on LRU to avoid swapping out an 1233 * already swapped buffer. 1234 */ 1235 if (locked) 1236 dma_resv_unlock(bo->base.resv); 1237 ttm_bo_put(bo); 1238 return ret; 1239 } 1240 1241 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1242 { 1243 if (bo->ttm == NULL) 1244 return; 1245 1246 ttm_tt_destroy(bo->bdev, bo->ttm); 1247 bo->ttm = NULL; 1248 } 1249