xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 EXPORT_SYMBOL(ttm_bo_glob);
55 
56 static struct attribute ttm_bo_count = {
57 	.name = "bo_count",
58 	.mode = S_IRUGO
59 };
60 
61 /* default destructor */
62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
63 {
64 	kfree(bo);
65 }
66 
67 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
68 					  uint32_t *mem_type)
69 {
70 	int pos;
71 
72 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
73 	if (unlikely(!pos))
74 		return -EINVAL;
75 
76 	*mem_type = pos - 1;
77 	return 0;
78 }
79 
80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
81 			       int mem_type)
82 {
83 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
84 
85 	drm_printf(p, "    has_type: %d\n", man->has_type);
86 	drm_printf(p, "    use_type: %d\n", man->use_type);
87 	drm_printf(p, "    flags: 0x%08X\n", man->flags);
88 	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
89 	drm_printf(p, "    size: %llu\n", man->size);
90 	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
91 	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
92 	if (mem_type != TTM_PL_SYSTEM)
93 		(*man->func->debug)(man, p);
94 }
95 
96 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
97 					struct ttm_placement *placement)
98 {
99 	struct drm_printer p = drm_debug_printer(TTM_PFX);
100 	int i, ret, mem_type;
101 
102 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
103 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
104 		   bo->mem.size >> 20);
105 	for (i = 0; i < placement->num_placement; i++) {
106 		ret = ttm_mem_type_from_place(&placement->placement[i],
107 						&mem_type);
108 		if (ret)
109 			return;
110 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
111 			   i, placement->placement[i].flags, mem_type);
112 		ttm_mem_type_debug(bo->bdev, &p, mem_type);
113 	}
114 }
115 
116 static ssize_t ttm_bo_global_show(struct kobject *kobj,
117 				  struct attribute *attr,
118 				  char *buffer)
119 {
120 	struct ttm_bo_global *glob =
121 		container_of(kobj, struct ttm_bo_global, kobj);
122 
123 	return snprintf(buffer, PAGE_SIZE, "%d\n",
124 				atomic_read(&glob->bo_count));
125 }
126 
127 static struct attribute *ttm_bo_global_attrs[] = {
128 	&ttm_bo_count,
129 	NULL
130 };
131 
132 static const struct sysfs_ops ttm_bo_global_ops = {
133 	.show = &ttm_bo_global_show
134 };
135 
136 static struct kobj_type ttm_bo_glob_kobj_type  = {
137 	.release = &ttm_bo_global_kobj_release,
138 	.sysfs_ops = &ttm_bo_global_ops,
139 	.default_attrs = ttm_bo_global_attrs
140 };
141 
142 
143 static inline uint32_t ttm_bo_type_flags(unsigned type)
144 {
145 	return 1 << (type);
146 }
147 
148 static void ttm_bo_release_list(struct kref *list_kref)
149 {
150 	struct ttm_buffer_object *bo =
151 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
152 	size_t acc_size = bo->acc_size;
153 
154 	BUG_ON(kref_read(&bo->list_kref));
155 	BUG_ON(kref_read(&bo->kref));
156 	BUG_ON(bo->mem.mm_node != NULL);
157 	BUG_ON(!list_empty(&bo->lru));
158 	BUG_ON(!list_empty(&bo->ddestroy));
159 	ttm_tt_destroy(bo->ttm);
160 	atomic_dec(&ttm_bo_glob.bo_count);
161 	dma_fence_put(bo->moving);
162 	if (!ttm_bo_uses_embedded_gem_object(bo))
163 		dma_resv_fini(&bo->base._resv);
164 	bo->destroy(bo);
165 	ttm_mem_global_free(&ttm_mem_glob, acc_size);
166 }
167 
168 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
169 				  struct ttm_mem_reg *mem)
170 {
171 	struct ttm_bo_device *bdev = bo->bdev;
172 	struct ttm_mem_type_manager *man;
173 
174 	dma_resv_assert_held(bo->base.resv);
175 
176 	if (!list_empty(&bo->lru))
177 		return;
178 
179 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
180 		return;
181 
182 	man = &bdev->man[mem->mem_type];
183 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
184 	kref_get(&bo->list_kref);
185 
186 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
187 	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
188 				     TTM_PAGE_FLAG_SWAPPED))) {
189 		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
190 		kref_get(&bo->list_kref);
191 	}
192 }
193 
194 static void ttm_bo_ref_bug(struct kref *list_kref)
195 {
196 	BUG();
197 }
198 
199 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
200 {
201 	struct ttm_bo_device *bdev = bo->bdev;
202 	bool notify = false;
203 
204 	if (!list_empty(&bo->swap)) {
205 		list_del_init(&bo->swap);
206 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
207 		notify = true;
208 	}
209 	if (!list_empty(&bo->lru)) {
210 		list_del_init(&bo->lru);
211 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
212 		notify = true;
213 	}
214 
215 	if (notify && bdev->driver->del_from_lru_notify)
216 		bdev->driver->del_from_lru_notify(bo);
217 }
218 
219 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
220 				     struct ttm_buffer_object *bo)
221 {
222 	if (!pos->first)
223 		pos->first = bo;
224 	pos->last = bo;
225 }
226 
227 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
228 			     struct ttm_lru_bulk_move *bulk)
229 {
230 	dma_resv_assert_held(bo->base.resv);
231 
232 	ttm_bo_del_from_lru(bo);
233 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
234 
235 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
236 		switch (bo->mem.mem_type) {
237 		case TTM_PL_TT:
238 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
239 			break;
240 
241 		case TTM_PL_VRAM:
242 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
243 			break;
244 		}
245 		if (bo->ttm && !(bo->ttm->page_flags &
246 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
247 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
248 	}
249 }
250 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
251 
252 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
253 {
254 	unsigned i;
255 
256 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
257 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
258 		struct ttm_mem_type_manager *man;
259 
260 		if (!pos->first)
261 			continue;
262 
263 		dma_resv_assert_held(pos->first->base.resv);
264 		dma_resv_assert_held(pos->last->base.resv);
265 
266 		man = &pos->first->bdev->man[TTM_PL_TT];
267 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
268 				    &pos->last->lru);
269 	}
270 
271 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
272 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
273 		struct ttm_mem_type_manager *man;
274 
275 		if (!pos->first)
276 			continue;
277 
278 		dma_resv_assert_held(pos->first->base.resv);
279 		dma_resv_assert_held(pos->last->base.resv);
280 
281 		man = &pos->first->bdev->man[TTM_PL_VRAM];
282 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
283 				    &pos->last->lru);
284 	}
285 
286 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
287 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
288 		struct list_head *lru;
289 
290 		if (!pos->first)
291 			continue;
292 
293 		dma_resv_assert_held(pos->first->base.resv);
294 		dma_resv_assert_held(pos->last->base.resv);
295 
296 		lru = &ttm_bo_glob.swap_lru[i];
297 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
298 	}
299 }
300 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
301 
302 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
303 				  struct ttm_mem_reg *mem, bool evict,
304 				  struct ttm_operation_ctx *ctx)
305 {
306 	struct ttm_bo_device *bdev = bo->bdev;
307 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
308 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
309 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
310 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
311 	int ret = 0;
312 
313 	if (old_is_pci || new_is_pci ||
314 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
315 		ret = ttm_mem_io_lock(old_man, true);
316 		if (unlikely(ret != 0))
317 			goto out_err;
318 		ttm_bo_unmap_virtual_locked(bo);
319 		ttm_mem_io_unlock(old_man);
320 	}
321 
322 	/*
323 	 * Create and bind a ttm if required.
324 	 */
325 
326 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
327 		if (bo->ttm == NULL) {
328 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
329 			ret = ttm_tt_create(bo, zero);
330 			if (ret)
331 				goto out_err;
332 		}
333 
334 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
335 		if (ret)
336 			goto out_err;
337 
338 		if (mem->mem_type != TTM_PL_SYSTEM) {
339 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
340 			if (ret)
341 				goto out_err;
342 		}
343 
344 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
345 			if (bdev->driver->move_notify)
346 				bdev->driver->move_notify(bo, evict, mem);
347 			bo->mem = *mem;
348 			mem->mm_node = NULL;
349 			goto moved;
350 		}
351 	}
352 
353 	if (bdev->driver->move_notify)
354 		bdev->driver->move_notify(bo, evict, mem);
355 
356 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
357 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
358 		ret = ttm_bo_move_ttm(bo, ctx, mem);
359 	else if (bdev->driver->move)
360 		ret = bdev->driver->move(bo, evict, ctx, mem);
361 	else
362 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
363 
364 	if (ret) {
365 		if (bdev->driver->move_notify) {
366 			swap(*mem, bo->mem);
367 			bdev->driver->move_notify(bo, false, mem);
368 			swap(*mem, bo->mem);
369 		}
370 
371 		goto out_err;
372 	}
373 
374 moved:
375 	if (bo->evicted) {
376 		if (bdev->driver->invalidate_caches) {
377 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
378 			if (ret)
379 				pr_err("Can not flush read caches\n");
380 		}
381 		bo->evicted = false;
382 	}
383 
384 	if (bo->mem.mm_node)
385 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
386 		    bdev->man[bo->mem.mem_type].gpu_offset;
387 	else
388 		bo->offset = 0;
389 
390 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
391 	return 0;
392 
393 out_err:
394 	new_man = &bdev->man[bo->mem.mem_type];
395 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
396 		ttm_tt_destroy(bo->ttm);
397 		bo->ttm = NULL;
398 	}
399 
400 	return ret;
401 }
402 
403 /**
404  * Call bo::reserved.
405  * Will release GPU memory type usage on destruction.
406  * This is the place to put in driver specific hooks to release
407  * driver private resources.
408  * Will release the bo::reserved lock.
409  */
410 
411 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
412 {
413 	if (bo->bdev->driver->move_notify)
414 		bo->bdev->driver->move_notify(bo, false, NULL);
415 
416 	ttm_tt_destroy(bo->ttm);
417 	bo->ttm = NULL;
418 	ttm_bo_mem_put(bo, &bo->mem);
419 }
420 
421 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
422 {
423 	int r;
424 
425 	if (bo->base.resv == &bo->base._resv)
426 		return 0;
427 
428 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
429 
430 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
431 	if (r)
432 		dma_resv_unlock(&bo->base._resv);
433 
434 	return r;
435 }
436 
437 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
438 {
439 	struct dma_resv_list *fobj;
440 	struct dma_fence *fence;
441 	int i;
442 
443 	fobj = dma_resv_get_list(&bo->base._resv);
444 	fence = dma_resv_get_excl(&bo->base._resv);
445 	if (fence && !fence->ops->signaled)
446 		dma_fence_enable_sw_signaling(fence);
447 
448 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
449 		fence = rcu_dereference_protected(fobj->shared[i],
450 					dma_resv_held(bo->base.resv));
451 
452 		if (!fence->ops->signaled)
453 			dma_fence_enable_sw_signaling(fence);
454 	}
455 }
456 
457 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
458 {
459 	struct ttm_bo_device *bdev = bo->bdev;
460 	int ret;
461 
462 	ret = ttm_bo_individualize_resv(bo);
463 	if (ret) {
464 		/* Last resort, if we fail to allocate memory for the
465 		 * fences block for the BO to become idle
466 		 */
467 		dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
468 						    30 * HZ);
469 		spin_lock(&ttm_bo_glob.lru_lock);
470 		goto error;
471 	}
472 
473 	spin_lock(&ttm_bo_glob.lru_lock);
474 	ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
475 	if (!ret) {
476 		if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
477 			ttm_bo_del_from_lru(bo);
478 			spin_unlock(&ttm_bo_glob.lru_lock);
479 			if (bo->base.resv != &bo->base._resv)
480 				dma_resv_unlock(&bo->base._resv);
481 
482 			ttm_bo_cleanup_memtype_use(bo);
483 			dma_resv_unlock(bo->base.resv);
484 			return;
485 		}
486 
487 		ttm_bo_flush_all_fences(bo);
488 
489 		/*
490 		 * Make NO_EVICT bos immediately available to
491 		 * shrinkers, now that they are queued for
492 		 * destruction.
493 		 */
494 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
495 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
496 			ttm_bo_move_to_lru_tail(bo, NULL);
497 		}
498 
499 		dma_resv_unlock(bo->base.resv);
500 	}
501 	if (bo->base.resv != &bo->base._resv)
502 		dma_resv_unlock(&bo->base._resv);
503 
504 error:
505 	kref_get(&bo->list_kref);
506 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
507 	spin_unlock(&ttm_bo_glob.lru_lock);
508 
509 	schedule_delayed_work(&bdev->wq,
510 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
511 }
512 
513 /**
514  * function ttm_bo_cleanup_refs
515  * If bo idle, remove from delayed- and lru lists, and unref.
516  * If not idle, do nothing.
517  *
518  * Must be called with lru_lock and reservation held, this function
519  * will drop the lru lock and optionally the reservation lock before returning.
520  *
521  * @interruptible         Any sleeps should occur interruptibly.
522  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
523  * @unlock_resv           Unlock the reservation lock as well.
524  */
525 
526 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
527 			       bool interruptible, bool no_wait_gpu,
528 			       bool unlock_resv)
529 {
530 	struct dma_resv *resv;
531 	int ret;
532 
533 	if (unlikely(list_empty(&bo->ddestroy)))
534 		resv = bo->base.resv;
535 	else
536 		resv = &bo->base._resv;
537 
538 	if (dma_resv_test_signaled_rcu(resv, true))
539 		ret = 0;
540 	else
541 		ret = -EBUSY;
542 
543 	if (ret && !no_wait_gpu) {
544 		long lret;
545 
546 		if (unlock_resv)
547 			dma_resv_unlock(bo->base.resv);
548 		spin_unlock(&ttm_bo_glob.lru_lock);
549 
550 		lret = dma_resv_wait_timeout_rcu(resv, true,
551 							   interruptible,
552 							   30 * HZ);
553 
554 		if (lret < 0)
555 			return lret;
556 		else if (lret == 0)
557 			return -EBUSY;
558 
559 		spin_lock(&ttm_bo_glob.lru_lock);
560 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
561 			/*
562 			 * We raced, and lost, someone else holds the reservation now,
563 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
564 			 *
565 			 * Even if it's not the case, because we finished waiting any
566 			 * delayed destruction would succeed, so just return success
567 			 * here.
568 			 */
569 			spin_unlock(&ttm_bo_glob.lru_lock);
570 			return 0;
571 		}
572 		ret = 0;
573 	}
574 
575 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
576 		if (unlock_resv)
577 			dma_resv_unlock(bo->base.resv);
578 		spin_unlock(&ttm_bo_glob.lru_lock);
579 		return ret;
580 	}
581 
582 	ttm_bo_del_from_lru(bo);
583 	list_del_init(&bo->ddestroy);
584 	kref_put(&bo->list_kref, ttm_bo_ref_bug);
585 
586 	spin_unlock(&ttm_bo_glob.lru_lock);
587 	ttm_bo_cleanup_memtype_use(bo);
588 
589 	if (unlock_resv)
590 		dma_resv_unlock(bo->base.resv);
591 
592 	return 0;
593 }
594 
595 /**
596  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
597  * encountered buffers.
598  */
599 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
600 {
601 	struct ttm_bo_global *glob = &ttm_bo_glob;
602 	struct list_head removed;
603 	bool empty;
604 
605 	INIT_LIST_HEAD(&removed);
606 
607 	spin_lock(&glob->lru_lock);
608 	while (!list_empty(&bdev->ddestroy)) {
609 		struct ttm_buffer_object *bo;
610 
611 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
612 				      ddestroy);
613 		kref_get(&bo->list_kref);
614 		list_move_tail(&bo->ddestroy, &removed);
615 
616 		if (remove_all || bo->base.resv != &bo->base._resv) {
617 			spin_unlock(&glob->lru_lock);
618 			dma_resv_lock(bo->base.resv, NULL);
619 
620 			spin_lock(&glob->lru_lock);
621 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
622 
623 		} else if (dma_resv_trylock(bo->base.resv)) {
624 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
625 		} else {
626 			spin_unlock(&glob->lru_lock);
627 		}
628 
629 		kref_put(&bo->list_kref, ttm_bo_release_list);
630 		spin_lock(&glob->lru_lock);
631 	}
632 	list_splice_tail(&removed, &bdev->ddestroy);
633 	empty = list_empty(&bdev->ddestroy);
634 	spin_unlock(&glob->lru_lock);
635 
636 	return empty;
637 }
638 
639 static void ttm_bo_delayed_workqueue(struct work_struct *work)
640 {
641 	struct ttm_bo_device *bdev =
642 	    container_of(work, struct ttm_bo_device, wq.work);
643 
644 	if (!ttm_bo_delayed_delete(bdev, false))
645 		schedule_delayed_work(&bdev->wq,
646 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
647 }
648 
649 static void ttm_bo_release(struct kref *kref)
650 {
651 	struct ttm_buffer_object *bo =
652 	    container_of(kref, struct ttm_buffer_object, kref);
653 	struct ttm_bo_device *bdev = bo->bdev;
654 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
655 
656 	if (bo->bdev->driver->release_notify)
657 		bo->bdev->driver->release_notify(bo);
658 
659 	drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
660 	ttm_mem_io_lock(man, false);
661 	ttm_mem_io_free_vm(bo);
662 	ttm_mem_io_unlock(man);
663 	ttm_bo_cleanup_refs_or_queue(bo);
664 	kref_put(&bo->list_kref, ttm_bo_release_list);
665 }
666 
667 void ttm_bo_put(struct ttm_buffer_object *bo)
668 {
669 	kref_put(&bo->kref, ttm_bo_release);
670 }
671 EXPORT_SYMBOL(ttm_bo_put);
672 
673 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
674 {
675 	return cancel_delayed_work_sync(&bdev->wq);
676 }
677 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
678 
679 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
680 {
681 	if (resched)
682 		schedule_delayed_work(&bdev->wq,
683 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
684 }
685 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
686 
687 static int ttm_bo_evict(struct ttm_buffer_object *bo,
688 			struct ttm_operation_ctx *ctx)
689 {
690 	struct ttm_bo_device *bdev = bo->bdev;
691 	struct ttm_mem_reg evict_mem;
692 	struct ttm_placement placement;
693 	int ret = 0;
694 
695 	dma_resv_assert_held(bo->base.resv);
696 
697 	placement.num_placement = 0;
698 	placement.num_busy_placement = 0;
699 	bdev->driver->evict_flags(bo, &placement);
700 
701 	if (!placement.num_placement && !placement.num_busy_placement) {
702 		ret = ttm_bo_pipeline_gutting(bo);
703 		if (ret)
704 			return ret;
705 
706 		return ttm_tt_create(bo, false);
707 	}
708 
709 	evict_mem = bo->mem;
710 	evict_mem.mm_node = NULL;
711 	evict_mem.bus.io_reserved_vm = false;
712 	evict_mem.bus.io_reserved_count = 0;
713 
714 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
715 	if (ret) {
716 		if (ret != -ERESTARTSYS) {
717 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
718 			       bo);
719 			ttm_bo_mem_space_debug(bo, &placement);
720 		}
721 		goto out;
722 	}
723 
724 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
725 	if (unlikely(ret)) {
726 		if (ret != -ERESTARTSYS)
727 			pr_err("Buffer eviction failed\n");
728 		ttm_bo_mem_put(bo, &evict_mem);
729 		goto out;
730 	}
731 	bo->evicted = true;
732 out:
733 	return ret;
734 }
735 
736 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
737 			      const struct ttm_place *place)
738 {
739 	/* Don't evict this BO if it's outside of the
740 	 * requested placement range
741 	 */
742 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
743 	    (place->lpfn && place->lpfn <= bo->mem.start))
744 		return false;
745 
746 	return true;
747 }
748 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
749 
750 /**
751  * Check the target bo is allowable to be evicted or swapout, including cases:
752  *
753  * a. if share same reservation object with ctx->resv, have assumption
754  * reservation objects should already be locked, so not lock again and
755  * return true directly when either the opreation allow_reserved_eviction
756  * or the target bo already is in delayed free list;
757  *
758  * b. Otherwise, trylock it.
759  */
760 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
761 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
762 {
763 	bool ret = false;
764 
765 	if (bo->base.resv == ctx->resv) {
766 		dma_resv_assert_held(bo->base.resv);
767 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
768 		    || !list_empty(&bo->ddestroy))
769 			ret = true;
770 		*locked = false;
771 		if (busy)
772 			*busy = false;
773 	} else {
774 		ret = dma_resv_trylock(bo->base.resv);
775 		*locked = ret;
776 		if (busy)
777 			*busy = !ret;
778 	}
779 
780 	return ret;
781 }
782 
783 /**
784  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
785  *
786  * @busy_bo: BO which couldn't be locked with trylock
787  * @ctx: operation context
788  * @ticket: acquire ticket
789  *
790  * Try to lock a busy buffer object to avoid failing eviction.
791  */
792 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
793 				   struct ttm_operation_ctx *ctx,
794 				   struct ww_acquire_ctx *ticket)
795 {
796 	int r;
797 
798 	if (!busy_bo || !ticket)
799 		return -EBUSY;
800 
801 	if (ctx->interruptible)
802 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
803 							  ticket);
804 	else
805 		r = dma_resv_lock(busy_bo->base.resv, ticket);
806 
807 	/*
808 	 * TODO: It would be better to keep the BO locked until allocation is at
809 	 * least tried one more time, but that would mean a much larger rework
810 	 * of TTM.
811 	 */
812 	if (!r)
813 		dma_resv_unlock(busy_bo->base.resv);
814 
815 	return r == -EDEADLK ? -EBUSY : r;
816 }
817 
818 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
819 			       uint32_t mem_type,
820 			       const struct ttm_place *place,
821 			       struct ttm_operation_ctx *ctx,
822 			       struct ww_acquire_ctx *ticket)
823 {
824 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
825 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
826 	bool locked = false;
827 	unsigned i;
828 	int ret;
829 
830 	spin_lock(&ttm_bo_glob.lru_lock);
831 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
832 		list_for_each_entry(bo, &man->lru[i], lru) {
833 			bool busy;
834 
835 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
836 							    &busy)) {
837 				if (busy && !busy_bo && ticket !=
838 				    dma_resv_locking_ctx(bo->base.resv))
839 					busy_bo = bo;
840 				continue;
841 			}
842 
843 			if (place && !bdev->driver->eviction_valuable(bo,
844 								      place)) {
845 				if (locked)
846 					dma_resv_unlock(bo->base.resv);
847 				continue;
848 			}
849 			break;
850 		}
851 
852 		/* If the inner loop terminated early, we have our candidate */
853 		if (&bo->lru != &man->lru[i])
854 			break;
855 
856 		bo = NULL;
857 	}
858 
859 	if (!bo) {
860 		if (busy_bo)
861 			kref_get(&busy_bo->list_kref);
862 		spin_unlock(&ttm_bo_glob.lru_lock);
863 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
864 		if (busy_bo)
865 			kref_put(&busy_bo->list_kref, ttm_bo_release_list);
866 		return ret;
867 	}
868 
869 	kref_get(&bo->list_kref);
870 
871 	if (!list_empty(&bo->ddestroy)) {
872 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
873 					  ctx->no_wait_gpu, locked);
874 		kref_put(&bo->list_kref, ttm_bo_release_list);
875 		return ret;
876 	}
877 
878 	spin_unlock(&ttm_bo_glob.lru_lock);
879 
880 	ret = ttm_bo_evict(bo, ctx);
881 	if (locked)
882 		ttm_bo_unreserve(bo);
883 
884 	kref_put(&bo->list_kref, ttm_bo_release_list);
885 	return ret;
886 }
887 
888 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
889 {
890 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
891 
892 	if (mem->mm_node)
893 		(*man->func->put_node)(man, mem);
894 }
895 EXPORT_SYMBOL(ttm_bo_mem_put);
896 
897 /**
898  * Add the last move fence to the BO and reserve a new shared slot.
899  */
900 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
901 				 struct ttm_mem_type_manager *man,
902 				 struct ttm_mem_reg *mem,
903 				 bool no_wait_gpu)
904 {
905 	struct dma_fence *fence;
906 	int ret;
907 
908 	spin_lock(&man->move_lock);
909 	fence = dma_fence_get(man->move);
910 	spin_unlock(&man->move_lock);
911 
912 	if (!fence)
913 		return 0;
914 
915 	if (no_wait_gpu)
916 		return -EBUSY;
917 
918 	dma_resv_add_shared_fence(bo->base.resv, fence);
919 
920 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
921 	if (unlikely(ret)) {
922 		dma_fence_put(fence);
923 		return ret;
924 	}
925 
926 	dma_fence_put(bo->moving);
927 	bo->moving = fence;
928 	return 0;
929 }
930 
931 /**
932  * Repeatedly evict memory from the LRU for @mem_type until we create enough
933  * space, or we've evicted everything and there isn't enough space.
934  */
935 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
936 				  const struct ttm_place *place,
937 				  struct ttm_mem_reg *mem,
938 				  struct ttm_operation_ctx *ctx)
939 {
940 	struct ttm_bo_device *bdev = bo->bdev;
941 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
942 	struct ww_acquire_ctx *ticket;
943 	int ret;
944 
945 	ticket = dma_resv_locking_ctx(bo->base.resv);
946 	do {
947 		ret = (*man->func->get_node)(man, bo, place, mem);
948 		if (unlikely(ret != 0))
949 			return ret;
950 		if (mem->mm_node)
951 			break;
952 		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
953 					  ticket);
954 		if (unlikely(ret != 0))
955 			return ret;
956 	} while (1);
957 
958 	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
959 }
960 
961 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
962 				      uint32_t cur_placement,
963 				      uint32_t proposed_placement)
964 {
965 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
966 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
967 
968 	/**
969 	 * Keep current caching if possible.
970 	 */
971 
972 	if ((cur_placement & caching) != 0)
973 		result |= (cur_placement & caching);
974 	else if ((man->default_caching & caching) != 0)
975 		result |= man->default_caching;
976 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
977 		result |= TTM_PL_FLAG_CACHED;
978 	else if ((TTM_PL_FLAG_WC & caching) != 0)
979 		result |= TTM_PL_FLAG_WC;
980 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
981 		result |= TTM_PL_FLAG_UNCACHED;
982 
983 	return result;
984 }
985 
986 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
987 				 uint32_t mem_type,
988 				 const struct ttm_place *place,
989 				 uint32_t *masked_placement)
990 {
991 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
992 
993 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
994 		return false;
995 
996 	if ((place->flags & man->available_caching) == 0)
997 		return false;
998 
999 	cur_flags |= (place->flags & man->available_caching);
1000 
1001 	*masked_placement = cur_flags;
1002 	return true;
1003 }
1004 
1005 /**
1006  * ttm_bo_mem_placement - check if placement is compatible
1007  * @bo: BO to find memory for
1008  * @place: where to search
1009  * @mem: the memory object to fill in
1010  * @ctx: operation context
1011  *
1012  * Check if placement is compatible and fill in mem structure.
1013  * Returns -EBUSY if placement won't work or negative error code.
1014  * 0 when placement can be used.
1015  */
1016 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1017 				const struct ttm_place *place,
1018 				struct ttm_mem_reg *mem,
1019 				struct ttm_operation_ctx *ctx)
1020 {
1021 	struct ttm_bo_device *bdev = bo->bdev;
1022 	uint32_t mem_type = TTM_PL_SYSTEM;
1023 	struct ttm_mem_type_manager *man;
1024 	uint32_t cur_flags = 0;
1025 	int ret;
1026 
1027 	ret = ttm_mem_type_from_place(place, &mem_type);
1028 	if (ret)
1029 		return ret;
1030 
1031 	man = &bdev->man[mem_type];
1032 	if (!man->has_type || !man->use_type)
1033 		return -EBUSY;
1034 
1035 	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1036 		return -EBUSY;
1037 
1038 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1039 	/*
1040 	 * Use the access and other non-mapping-related flag bits from
1041 	 * the memory placement flags to the current flags
1042 	 */
1043 	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1044 
1045 	mem->mem_type = mem_type;
1046 	mem->placement = cur_flags;
1047 
1048 	spin_lock(&ttm_bo_glob.lru_lock);
1049 	ttm_bo_del_from_lru(bo);
1050 	ttm_bo_add_mem_to_lru(bo, mem);
1051 	spin_unlock(&ttm_bo_glob.lru_lock);
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * Creates space for memory region @mem according to its type.
1058  *
1059  * This function first searches for free space in compatible memory types in
1060  * the priority order defined by the driver.  If free space isn't found, then
1061  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1062  * space.
1063  */
1064 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1065 			struct ttm_placement *placement,
1066 			struct ttm_mem_reg *mem,
1067 			struct ttm_operation_ctx *ctx)
1068 {
1069 	struct ttm_bo_device *bdev = bo->bdev;
1070 	bool type_found = false;
1071 	int i, ret;
1072 
1073 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1074 	if (unlikely(ret))
1075 		return ret;
1076 
1077 	mem->mm_node = NULL;
1078 	for (i = 0; i < placement->num_placement; ++i) {
1079 		const struct ttm_place *place = &placement->placement[i];
1080 		struct ttm_mem_type_manager *man;
1081 
1082 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1083 		if (ret == -EBUSY)
1084 			continue;
1085 		if (ret)
1086 			goto error;
1087 
1088 		type_found = true;
1089 		mem->mm_node = NULL;
1090 		if (mem->mem_type == TTM_PL_SYSTEM)
1091 			return 0;
1092 
1093 		man = &bdev->man[mem->mem_type];
1094 		ret = (*man->func->get_node)(man, bo, place, mem);
1095 		if (unlikely(ret))
1096 			goto error;
1097 
1098 		if (!mem->mm_node)
1099 			continue;
1100 
1101 		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1102 		if (unlikely(ret)) {
1103 			(*man->func->put_node)(man, mem);
1104 			if (ret == -EBUSY)
1105 				continue;
1106 
1107 			goto error;
1108 		}
1109 		return 0;
1110 	}
1111 
1112 	for (i = 0; i < placement->num_busy_placement; ++i) {
1113 		const struct ttm_place *place = &placement->busy_placement[i];
1114 
1115 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1116 		if (ret == -EBUSY)
1117 			continue;
1118 		if (ret)
1119 			goto error;
1120 
1121 		type_found = true;
1122 		mem->mm_node = NULL;
1123 		if (mem->mem_type == TTM_PL_SYSTEM)
1124 			return 0;
1125 
1126 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1127 		if (ret == 0 && mem->mm_node)
1128 			return 0;
1129 
1130 		if (ret && ret != -EBUSY)
1131 			goto error;
1132 	}
1133 
1134 	ret = -ENOMEM;
1135 	if (!type_found) {
1136 		pr_err(TTM_PFX "No compatible memory type found\n");
1137 		ret = -EINVAL;
1138 	}
1139 
1140 error:
1141 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1142 		spin_lock(&ttm_bo_glob.lru_lock);
1143 		ttm_bo_move_to_lru_tail(bo, NULL);
1144 		spin_unlock(&ttm_bo_glob.lru_lock);
1145 	}
1146 
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(ttm_bo_mem_space);
1150 
1151 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1152 			      struct ttm_placement *placement,
1153 			      struct ttm_operation_ctx *ctx)
1154 {
1155 	int ret = 0;
1156 	struct ttm_mem_reg mem;
1157 
1158 	dma_resv_assert_held(bo->base.resv);
1159 
1160 	mem.num_pages = bo->num_pages;
1161 	mem.size = mem.num_pages << PAGE_SHIFT;
1162 	mem.page_alignment = bo->mem.page_alignment;
1163 	mem.bus.io_reserved_vm = false;
1164 	mem.bus.io_reserved_count = 0;
1165 	/*
1166 	 * Determine where to move the buffer.
1167 	 */
1168 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1169 	if (ret)
1170 		goto out_unlock;
1171 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1172 out_unlock:
1173 	if (ret && mem.mm_node)
1174 		ttm_bo_mem_put(bo, &mem);
1175 	return ret;
1176 }
1177 
1178 static bool ttm_bo_places_compat(const struct ttm_place *places,
1179 				 unsigned num_placement,
1180 				 struct ttm_mem_reg *mem,
1181 				 uint32_t *new_flags)
1182 {
1183 	unsigned i;
1184 
1185 	for (i = 0; i < num_placement; i++) {
1186 		const struct ttm_place *heap = &places[i];
1187 
1188 		if (mem->mm_node && (mem->start < heap->fpfn ||
1189 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1190 			continue;
1191 
1192 		*new_flags = heap->flags;
1193 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1194 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1195 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1196 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1197 			return true;
1198 	}
1199 	return false;
1200 }
1201 
1202 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1203 		       struct ttm_mem_reg *mem,
1204 		       uint32_t *new_flags)
1205 {
1206 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1207 				 mem, new_flags))
1208 		return true;
1209 
1210 	if ((placement->busy_placement != placement->placement ||
1211 	     placement->num_busy_placement > placement->num_placement) &&
1212 	    ttm_bo_places_compat(placement->busy_placement,
1213 				 placement->num_busy_placement,
1214 				 mem, new_flags))
1215 		return true;
1216 
1217 	return false;
1218 }
1219 EXPORT_SYMBOL(ttm_bo_mem_compat);
1220 
1221 int ttm_bo_validate(struct ttm_buffer_object *bo,
1222 		    struct ttm_placement *placement,
1223 		    struct ttm_operation_ctx *ctx)
1224 {
1225 	int ret;
1226 	uint32_t new_flags;
1227 
1228 	dma_resv_assert_held(bo->base.resv);
1229 	/*
1230 	 * Check whether we need to move buffer.
1231 	 */
1232 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1233 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1234 		if (ret)
1235 			return ret;
1236 	} else {
1237 		/*
1238 		 * Use the access and other non-mapping-related flag bits from
1239 		 * the compatible memory placement flags to the active flags
1240 		 */
1241 		ttm_flag_masked(&bo->mem.placement, new_flags,
1242 				~TTM_PL_MASK_MEMTYPE);
1243 	}
1244 	/*
1245 	 * We might need to add a TTM.
1246 	 */
1247 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1248 		ret = ttm_tt_create(bo, true);
1249 		if (ret)
1250 			return ret;
1251 	}
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL(ttm_bo_validate);
1255 
1256 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1257 			 struct ttm_buffer_object *bo,
1258 			 unsigned long size,
1259 			 enum ttm_bo_type type,
1260 			 struct ttm_placement *placement,
1261 			 uint32_t page_alignment,
1262 			 struct ttm_operation_ctx *ctx,
1263 			 size_t acc_size,
1264 			 struct sg_table *sg,
1265 			 struct dma_resv *resv,
1266 			 void (*destroy) (struct ttm_buffer_object *))
1267 {
1268 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1269 	int ret = 0;
1270 	unsigned long num_pages;
1271 	bool locked;
1272 
1273 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1274 	if (ret) {
1275 		pr_err("Out of kernel memory\n");
1276 		if (destroy)
1277 			(*destroy)(bo);
1278 		else
1279 			kfree(bo);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1284 	if (num_pages == 0) {
1285 		pr_err("Illegal buffer object size\n");
1286 		if (destroy)
1287 			(*destroy)(bo);
1288 		else
1289 			kfree(bo);
1290 		ttm_mem_global_free(mem_glob, acc_size);
1291 		return -EINVAL;
1292 	}
1293 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1294 
1295 	kref_init(&bo->kref);
1296 	kref_init(&bo->list_kref);
1297 	INIT_LIST_HEAD(&bo->lru);
1298 	INIT_LIST_HEAD(&bo->ddestroy);
1299 	INIT_LIST_HEAD(&bo->swap);
1300 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1301 	bo->bdev = bdev;
1302 	bo->type = type;
1303 	bo->num_pages = num_pages;
1304 	bo->mem.size = num_pages << PAGE_SHIFT;
1305 	bo->mem.mem_type = TTM_PL_SYSTEM;
1306 	bo->mem.num_pages = bo->num_pages;
1307 	bo->mem.mm_node = NULL;
1308 	bo->mem.page_alignment = page_alignment;
1309 	bo->mem.bus.io_reserved_vm = false;
1310 	bo->mem.bus.io_reserved_count = 0;
1311 	bo->moving = NULL;
1312 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1313 	bo->acc_size = acc_size;
1314 	bo->sg = sg;
1315 	if (resv) {
1316 		bo->base.resv = resv;
1317 		dma_resv_assert_held(bo->base.resv);
1318 	} else {
1319 		bo->base.resv = &bo->base._resv;
1320 	}
1321 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1322 		/*
1323 		 * bo.gem is not initialized, so we have to setup the
1324 		 * struct elements we want use regardless.
1325 		 */
1326 		dma_resv_init(&bo->base._resv);
1327 		drm_vma_node_reset(&bo->base.vma_node);
1328 	}
1329 	atomic_inc(&ttm_bo_glob.bo_count);
1330 
1331 	/*
1332 	 * For ttm_bo_type_device buffers, allocate
1333 	 * address space from the device.
1334 	 */
1335 	if (bo->type == ttm_bo_type_device ||
1336 	    bo->type == ttm_bo_type_sg)
1337 		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1338 					 bo->mem.num_pages);
1339 
1340 	/* passed reservation objects should already be locked,
1341 	 * since otherwise lockdep will be angered in radeon.
1342 	 */
1343 	if (!resv) {
1344 		locked = dma_resv_trylock(bo->base.resv);
1345 		WARN_ON(!locked);
1346 	}
1347 
1348 	if (likely(!ret))
1349 		ret = ttm_bo_validate(bo, placement, ctx);
1350 
1351 	if (unlikely(ret)) {
1352 		if (!resv)
1353 			ttm_bo_unreserve(bo);
1354 
1355 		ttm_bo_put(bo);
1356 		return ret;
1357 	}
1358 
1359 	spin_lock(&ttm_bo_glob.lru_lock);
1360 	ttm_bo_move_to_lru_tail(bo, NULL);
1361 	spin_unlock(&ttm_bo_glob.lru_lock);
1362 
1363 	return ret;
1364 }
1365 EXPORT_SYMBOL(ttm_bo_init_reserved);
1366 
1367 int ttm_bo_init(struct ttm_bo_device *bdev,
1368 		struct ttm_buffer_object *bo,
1369 		unsigned long size,
1370 		enum ttm_bo_type type,
1371 		struct ttm_placement *placement,
1372 		uint32_t page_alignment,
1373 		bool interruptible,
1374 		size_t acc_size,
1375 		struct sg_table *sg,
1376 		struct dma_resv *resv,
1377 		void (*destroy) (struct ttm_buffer_object *))
1378 {
1379 	struct ttm_operation_ctx ctx = { interruptible, false };
1380 	int ret;
1381 
1382 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1383 				   page_alignment, &ctx, acc_size,
1384 				   sg, resv, destroy);
1385 	if (ret)
1386 		return ret;
1387 
1388 	if (!resv)
1389 		ttm_bo_unreserve(bo);
1390 
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL(ttm_bo_init);
1394 
1395 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1396 		       unsigned long bo_size,
1397 		       unsigned struct_size)
1398 {
1399 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1400 	size_t size = 0;
1401 
1402 	size += ttm_round_pot(struct_size);
1403 	size += ttm_round_pot(npages * sizeof(void *));
1404 	size += ttm_round_pot(sizeof(struct ttm_tt));
1405 	return size;
1406 }
1407 EXPORT_SYMBOL(ttm_bo_acc_size);
1408 
1409 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1410 			   unsigned long bo_size,
1411 			   unsigned struct_size)
1412 {
1413 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1414 	size_t size = 0;
1415 
1416 	size += ttm_round_pot(struct_size);
1417 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1418 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1419 	return size;
1420 }
1421 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1422 
1423 int ttm_bo_create(struct ttm_bo_device *bdev,
1424 			unsigned long size,
1425 			enum ttm_bo_type type,
1426 			struct ttm_placement *placement,
1427 			uint32_t page_alignment,
1428 			bool interruptible,
1429 			struct ttm_buffer_object **p_bo)
1430 {
1431 	struct ttm_buffer_object *bo;
1432 	size_t acc_size;
1433 	int ret;
1434 
1435 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1436 	if (unlikely(bo == NULL))
1437 		return -ENOMEM;
1438 
1439 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1440 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1441 			  interruptible, acc_size,
1442 			  NULL, NULL, NULL);
1443 	if (likely(ret == 0))
1444 		*p_bo = bo;
1445 
1446 	return ret;
1447 }
1448 EXPORT_SYMBOL(ttm_bo_create);
1449 
1450 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1451 				   unsigned mem_type)
1452 {
1453 	struct ttm_operation_ctx ctx = {
1454 		.interruptible = false,
1455 		.no_wait_gpu = false,
1456 		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1457 	};
1458 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1459 	struct ttm_bo_global *glob = &ttm_bo_glob;
1460 	struct dma_fence *fence;
1461 	int ret;
1462 	unsigned i;
1463 
1464 	/*
1465 	 * Can't use standard list traversal since we're unlocking.
1466 	 */
1467 
1468 	spin_lock(&glob->lru_lock);
1469 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1470 		while (!list_empty(&man->lru[i])) {
1471 			spin_unlock(&glob->lru_lock);
1472 			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1473 						  NULL);
1474 			if (ret)
1475 				return ret;
1476 			spin_lock(&glob->lru_lock);
1477 		}
1478 	}
1479 	spin_unlock(&glob->lru_lock);
1480 
1481 	spin_lock(&man->move_lock);
1482 	fence = dma_fence_get(man->move);
1483 	spin_unlock(&man->move_lock);
1484 
1485 	if (fence) {
1486 		ret = dma_fence_wait(fence, false);
1487 		dma_fence_put(fence);
1488 		if (ret)
1489 			return ret;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1496 {
1497 	struct ttm_mem_type_manager *man;
1498 	int ret = -EINVAL;
1499 
1500 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1501 		pr_err("Illegal memory type %d\n", mem_type);
1502 		return ret;
1503 	}
1504 	man = &bdev->man[mem_type];
1505 
1506 	if (!man->has_type) {
1507 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1508 		       mem_type);
1509 		return ret;
1510 	}
1511 
1512 	man->use_type = false;
1513 	man->has_type = false;
1514 
1515 	ret = 0;
1516 	if (mem_type > 0) {
1517 		ret = ttm_bo_force_list_clean(bdev, mem_type);
1518 		if (ret) {
1519 			pr_err("Cleanup eviction failed\n");
1520 			return ret;
1521 		}
1522 
1523 		ret = (*man->func->takedown)(man);
1524 	}
1525 
1526 	dma_fence_put(man->move);
1527 	man->move = NULL;
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(ttm_bo_clean_mm);
1532 
1533 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1534 {
1535 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1536 
1537 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1538 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1539 		return -EINVAL;
1540 	}
1541 
1542 	if (!man->has_type) {
1543 		pr_err("Memory type %u has not been initialized\n", mem_type);
1544 		return 0;
1545 	}
1546 
1547 	return ttm_bo_force_list_clean(bdev, mem_type);
1548 }
1549 EXPORT_SYMBOL(ttm_bo_evict_mm);
1550 
1551 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1552 			unsigned long p_size)
1553 {
1554 	int ret;
1555 	struct ttm_mem_type_manager *man;
1556 	unsigned i;
1557 
1558 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1559 	man = &bdev->man[type];
1560 	BUG_ON(man->has_type);
1561 	man->io_reserve_fastpath = true;
1562 	man->use_io_reserve_lru = false;
1563 	mutex_init(&man->io_reserve_mutex);
1564 	spin_lock_init(&man->move_lock);
1565 	INIT_LIST_HEAD(&man->io_reserve_lru);
1566 
1567 	ret = bdev->driver->init_mem_type(bdev, type, man);
1568 	if (ret)
1569 		return ret;
1570 	man->bdev = bdev;
1571 
1572 	if (type != TTM_PL_SYSTEM) {
1573 		ret = (*man->func->init)(man, p_size);
1574 		if (ret)
1575 			return ret;
1576 	}
1577 	man->has_type = true;
1578 	man->use_type = true;
1579 	man->size = p_size;
1580 
1581 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1582 		INIT_LIST_HEAD(&man->lru[i]);
1583 	man->move = NULL;
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(ttm_bo_init_mm);
1588 
1589 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1590 {
1591 	struct ttm_bo_global *glob =
1592 		container_of(kobj, struct ttm_bo_global, kobj);
1593 
1594 	__free_page(glob->dummy_read_page);
1595 }
1596 
1597 static void ttm_bo_global_release(void)
1598 {
1599 	struct ttm_bo_global *glob = &ttm_bo_glob;
1600 
1601 	mutex_lock(&ttm_global_mutex);
1602 	if (--ttm_bo_glob_use_count > 0)
1603 		goto out;
1604 
1605 	kobject_del(&glob->kobj);
1606 	kobject_put(&glob->kobj);
1607 	ttm_mem_global_release(&ttm_mem_glob);
1608 	memset(glob, 0, sizeof(*glob));
1609 out:
1610 	mutex_unlock(&ttm_global_mutex);
1611 }
1612 
1613 static int ttm_bo_global_init(void)
1614 {
1615 	struct ttm_bo_global *glob = &ttm_bo_glob;
1616 	int ret = 0;
1617 	unsigned i;
1618 
1619 	mutex_lock(&ttm_global_mutex);
1620 	if (++ttm_bo_glob_use_count > 1)
1621 		goto out;
1622 
1623 	ret = ttm_mem_global_init(&ttm_mem_glob);
1624 	if (ret)
1625 		goto out;
1626 
1627 	spin_lock_init(&glob->lru_lock);
1628 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1629 
1630 	if (unlikely(glob->dummy_read_page == NULL)) {
1631 		ret = -ENOMEM;
1632 		goto out;
1633 	}
1634 
1635 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1636 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1637 	INIT_LIST_HEAD(&glob->device_list);
1638 	atomic_set(&glob->bo_count, 0);
1639 
1640 	ret = kobject_init_and_add(
1641 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1642 	if (unlikely(ret != 0))
1643 		kobject_put(&glob->kobj);
1644 out:
1645 	mutex_unlock(&ttm_global_mutex);
1646 	return ret;
1647 }
1648 
1649 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1650 {
1651 	struct ttm_bo_global *glob = &ttm_bo_glob;
1652 	int ret = 0;
1653 	unsigned i = TTM_NUM_MEM_TYPES;
1654 	struct ttm_mem_type_manager *man;
1655 
1656 	while (i--) {
1657 		man = &bdev->man[i];
1658 		if (man->has_type) {
1659 			man->use_type = false;
1660 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1661 				ret = -EBUSY;
1662 				pr_err("DRM memory manager type %d is not clean\n",
1663 				       i);
1664 			}
1665 			man->has_type = false;
1666 		}
1667 	}
1668 
1669 	mutex_lock(&ttm_global_mutex);
1670 	list_del(&bdev->device_list);
1671 	mutex_unlock(&ttm_global_mutex);
1672 
1673 	cancel_delayed_work_sync(&bdev->wq);
1674 
1675 	if (ttm_bo_delayed_delete(bdev, true))
1676 		pr_debug("Delayed destroy list was clean\n");
1677 
1678 	spin_lock(&glob->lru_lock);
1679 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1680 		if (list_empty(&bdev->man[0].lru[0]))
1681 			pr_debug("Swap list %d was clean\n", i);
1682 	spin_unlock(&glob->lru_lock);
1683 
1684 	if (!ret)
1685 		ttm_bo_global_release();
1686 
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(ttm_bo_device_release);
1690 
1691 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1692 		       struct ttm_bo_driver *driver,
1693 		       struct address_space *mapping,
1694 		       struct drm_vma_offset_manager *vma_manager,
1695 		       bool need_dma32)
1696 {
1697 	struct ttm_bo_global *glob = &ttm_bo_glob;
1698 	int ret;
1699 
1700 	if (WARN_ON(vma_manager == NULL))
1701 		return -EINVAL;
1702 
1703 	ret = ttm_bo_global_init();
1704 	if (ret)
1705 		return ret;
1706 
1707 	bdev->driver = driver;
1708 
1709 	memset(bdev->man, 0, sizeof(bdev->man));
1710 
1711 	/*
1712 	 * Initialize the system memory buffer type.
1713 	 * Other types need to be driver / IOCTL initialized.
1714 	 */
1715 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1716 	if (unlikely(ret != 0))
1717 		goto out_no_sys;
1718 
1719 	bdev->vma_manager = vma_manager;
1720 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1721 	INIT_LIST_HEAD(&bdev->ddestroy);
1722 	bdev->dev_mapping = mapping;
1723 	bdev->need_dma32 = need_dma32;
1724 	mutex_lock(&ttm_global_mutex);
1725 	list_add_tail(&bdev->device_list, &glob->device_list);
1726 	mutex_unlock(&ttm_global_mutex);
1727 
1728 	return 0;
1729 out_no_sys:
1730 	ttm_bo_global_release();
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL(ttm_bo_device_init);
1734 
1735 /*
1736  * buffer object vm functions.
1737  */
1738 
1739 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1740 {
1741 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1742 
1743 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1744 		if (mem->mem_type == TTM_PL_SYSTEM)
1745 			return false;
1746 
1747 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1748 			return false;
1749 
1750 		if (mem->placement & TTM_PL_FLAG_CACHED)
1751 			return false;
1752 	}
1753 	return true;
1754 }
1755 
1756 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1757 {
1758 	struct ttm_bo_device *bdev = bo->bdev;
1759 
1760 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1761 	ttm_mem_io_free_vm(bo);
1762 }
1763 
1764 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1765 {
1766 	struct ttm_bo_device *bdev = bo->bdev;
1767 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1768 
1769 	ttm_mem_io_lock(man, false);
1770 	ttm_bo_unmap_virtual_locked(bo);
1771 	ttm_mem_io_unlock(man);
1772 }
1773 
1774 
1775 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1776 
1777 int ttm_bo_wait(struct ttm_buffer_object *bo,
1778 		bool interruptible, bool no_wait)
1779 {
1780 	long timeout = 15 * HZ;
1781 
1782 	if (no_wait) {
1783 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1784 			return 0;
1785 		else
1786 			return -EBUSY;
1787 	}
1788 
1789 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1790 						      interruptible, timeout);
1791 	if (timeout < 0)
1792 		return timeout;
1793 
1794 	if (timeout == 0)
1795 		return -EBUSY;
1796 
1797 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(ttm_bo_wait);
1801 
1802 /**
1803  * A buffer object shrink method that tries to swap out the first
1804  * buffer object on the bo_global::swap_lru list.
1805  */
1806 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1807 {
1808 	struct ttm_buffer_object *bo;
1809 	int ret = -EBUSY;
1810 	bool locked;
1811 	unsigned i;
1812 
1813 	spin_lock(&glob->lru_lock);
1814 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1815 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1816 			if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1817 							   NULL)) {
1818 				ret = 0;
1819 				break;
1820 			}
1821 		}
1822 		if (!ret)
1823 			break;
1824 	}
1825 
1826 	if (ret) {
1827 		spin_unlock(&glob->lru_lock);
1828 		return ret;
1829 	}
1830 
1831 	kref_get(&bo->list_kref);
1832 
1833 	if (!list_empty(&bo->ddestroy)) {
1834 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1835 		kref_put(&bo->list_kref, ttm_bo_release_list);
1836 		return ret;
1837 	}
1838 
1839 	ttm_bo_del_from_lru(bo);
1840 	spin_unlock(&glob->lru_lock);
1841 
1842 	/**
1843 	 * Move to system cached
1844 	 */
1845 
1846 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1847 	    bo->ttm->caching_state != tt_cached) {
1848 		struct ttm_operation_ctx ctx = { false, false };
1849 		struct ttm_mem_reg evict_mem;
1850 
1851 		evict_mem = bo->mem;
1852 		evict_mem.mm_node = NULL;
1853 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1854 		evict_mem.mem_type = TTM_PL_SYSTEM;
1855 
1856 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1857 		if (unlikely(ret != 0))
1858 			goto out;
1859 	}
1860 
1861 	/**
1862 	 * Make sure BO is idle.
1863 	 */
1864 
1865 	ret = ttm_bo_wait(bo, false, false);
1866 	if (unlikely(ret != 0))
1867 		goto out;
1868 
1869 	ttm_bo_unmap_virtual(bo);
1870 
1871 	/**
1872 	 * Swap out. Buffer will be swapped in again as soon as
1873 	 * anyone tries to access a ttm page.
1874 	 */
1875 
1876 	if (bo->bdev->driver->swap_notify)
1877 		bo->bdev->driver->swap_notify(bo);
1878 
1879 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1880 out:
1881 
1882 	/**
1883 	 *
1884 	 * Unreserve without putting on LRU to avoid swapping out an
1885 	 * already swapped buffer.
1886 	 */
1887 	if (locked)
1888 		dma_resv_unlock(bo->base.resv);
1889 	kref_put(&bo->list_kref, ttm_bo_release_list);
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL(ttm_bo_swapout);
1893 
1894 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1895 {
1896 	struct ttm_operation_ctx ctx = {
1897 		.interruptible = false,
1898 		.no_wait_gpu = false
1899 	};
1900 
1901 	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1902 }
1903 EXPORT_SYMBOL(ttm_bo_swapout_all);
1904