xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47 
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 	int i;
60 
61 	for (i = 0; i <= TTM_PL_PRIV5; i++)
62 		if (flags & (1 << i)) {
63 			*mem_type = i;
64 			return 0;
65 		}
66 	return -EINVAL;
67 }
68 
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72 
73 	pr_err("    has_type: %d\n", man->has_type);
74 	pr_err("    use_type: %d\n", man->use_type);
75 	pr_err("    flags: 0x%08X\n", man->flags);
76 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77 	pr_err("    size: %llu\n", man->size);
78 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
79 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
91 	       bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		pr_err("  placement[%d]=0x%08X (%d)\n",
98 		       i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       atomic_read(&bo->reserved) == 0);
166 	} else {
167 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!atomic_read(&bo->reserved));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	if (use_sequence) {
253 		/**
254 		 * Wake up waiters that may need to recheck for deadlock,
255 		 * if we decreased the sequence number.
256 		 */
257 		if (unlikely((bo->val_seq - sequence < (1 << 31))
258 			     || !bo->seq_valid))
259 			wake_up_all(&bo->event_queue);
260 
261 		bo->val_seq = sequence;
262 		bo->seq_valid = true;
263 	} else {
264 		bo->seq_valid = false;
265 	}
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270 
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 	BUG();
274 }
275 
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 			 bool never_free)
278 {
279 	kref_sub(&bo->list_kref, count,
280 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282 
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 		   bool interruptible,
285 		   bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 	struct ttm_bo_global *glob = bo->glob;
288 	int put_count = 0;
289 	int ret;
290 
291 	spin_lock(&glob->lru_lock);
292 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 				    sequence);
294 	if (likely(ret == 0))
295 		put_count = ttm_bo_del_from_lru(bo);
296 	spin_unlock(&glob->lru_lock);
297 
298 	ttm_bo_list_ref_sub(bo, put_count, true);
299 
300 	return ret;
301 }
302 
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 	ttm_bo_add_to_lru(bo);
306 	atomic_set(&bo->reserved, 0);
307 	wake_up_all(&bo->event_queue);
308 }
309 
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 	struct ttm_bo_global *glob = bo->glob;
313 
314 	spin_lock(&glob->lru_lock);
315 	ttm_bo_unreserve_locked(bo);
316 	spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319 
320 /*
321  * Call bo->mutex locked.
322  */
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 	struct ttm_bo_device *bdev = bo->bdev;
326 	struct ttm_bo_global *glob = bo->glob;
327 	int ret = 0;
328 	uint32_t page_flags = 0;
329 
330 	TTM_ASSERT_LOCKED(&bo->mutex);
331 	bo->ttm = NULL;
332 
333 	if (bdev->need_dma32)
334 		page_flags |= TTM_PAGE_FLAG_DMA32;
335 
336 	switch (bo->type) {
337 	case ttm_bo_type_device:
338 		if (zero_alloc)
339 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 	case ttm_bo_type_kernel:
341 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 						      page_flags, glob->dummy_read_page);
343 		if (unlikely(bo->ttm == NULL))
344 			ret = -ENOMEM;
345 		break;
346 	case ttm_bo_type_sg:
347 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
348 						      page_flags | TTM_PAGE_FLAG_SG,
349 						      glob->dummy_read_page);
350 		if (unlikely(bo->ttm == NULL)) {
351 			ret = -ENOMEM;
352 			break;
353 		}
354 		bo->ttm->sg = bo->sg;
355 		break;
356 	default:
357 		pr_err("Illegal buffer object type\n");
358 		ret = -EINVAL;
359 		break;
360 	}
361 
362 	return ret;
363 }
364 
365 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
366 				  struct ttm_mem_reg *mem,
367 				  bool evict, bool interruptible,
368 				  bool no_wait_reserve, bool no_wait_gpu)
369 {
370 	struct ttm_bo_device *bdev = bo->bdev;
371 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
372 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
373 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
374 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
375 	int ret = 0;
376 
377 	if (old_is_pci || new_is_pci ||
378 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
379 		ret = ttm_mem_io_lock(old_man, true);
380 		if (unlikely(ret != 0))
381 			goto out_err;
382 		ttm_bo_unmap_virtual_locked(bo);
383 		ttm_mem_io_unlock(old_man);
384 	}
385 
386 	/*
387 	 * Create and bind a ttm if required.
388 	 */
389 
390 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
391 		if (bo->ttm == NULL) {
392 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
393 			ret = ttm_bo_add_ttm(bo, zero);
394 			if (ret)
395 				goto out_err;
396 		}
397 
398 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399 		if (ret)
400 			goto out_err;
401 
402 		if (mem->mem_type != TTM_PL_SYSTEM) {
403 			ret = ttm_tt_bind(bo->ttm, mem);
404 			if (ret)
405 				goto out_err;
406 		}
407 
408 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409 			if (bdev->driver->move_notify)
410 				bdev->driver->move_notify(bo, mem);
411 			bo->mem = *mem;
412 			mem->mm_node = NULL;
413 			goto moved;
414 		}
415 	}
416 
417 	if (bdev->driver->move_notify)
418 		bdev->driver->move_notify(bo, mem);
419 
420 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423 	else if (bdev->driver->move)
424 		ret = bdev->driver->move(bo, evict, interruptible,
425 					 no_wait_reserve, no_wait_gpu, mem);
426 	else
427 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428 
429 	if (ret) {
430 		if (bdev->driver->move_notify) {
431 			struct ttm_mem_reg tmp_mem = *mem;
432 			*mem = bo->mem;
433 			bo->mem = tmp_mem;
434 			bdev->driver->move_notify(bo, mem);
435 			bo->mem = *mem;
436 		}
437 
438 		goto out_err;
439 	}
440 
441 moved:
442 	if (bo->evicted) {
443 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
444 		if (ret)
445 			pr_err("Can not flush read caches\n");
446 		bo->evicted = false;
447 	}
448 
449 	if (bo->mem.mm_node) {
450 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
451 		    bdev->man[bo->mem.mem_type].gpu_offset;
452 		bo->cur_placement = bo->mem.placement;
453 	} else
454 		bo->offset = 0;
455 
456 	return 0;
457 
458 out_err:
459 	new_man = &bdev->man[bo->mem.mem_type];
460 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
461 		ttm_tt_unbind(bo->ttm);
462 		ttm_tt_destroy(bo->ttm);
463 		bo->ttm = NULL;
464 	}
465 
466 	return ret;
467 }
468 
469 /**
470  * Call bo::reserved.
471  * Will release GPU memory type usage on destruction.
472  * This is the place to put in driver specific hooks to release
473  * driver private resources.
474  * Will release the bo::reserved lock.
475  */
476 
477 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
478 {
479 	if (bo->bdev->driver->move_notify)
480 		bo->bdev->driver->move_notify(bo, NULL);
481 
482 	if (bo->ttm) {
483 		ttm_tt_unbind(bo->ttm);
484 		ttm_tt_destroy(bo->ttm);
485 		bo->ttm = NULL;
486 	}
487 	ttm_bo_mem_put(bo, &bo->mem);
488 
489 	atomic_set(&bo->reserved, 0);
490 
491 	/*
492 	 * Make processes trying to reserve really pick it up.
493 	 */
494 	smp_mb__after_atomic_dec();
495 	wake_up_all(&bo->event_queue);
496 }
497 
498 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
499 {
500 	struct ttm_bo_device *bdev = bo->bdev;
501 	struct ttm_bo_global *glob = bo->glob;
502 	struct ttm_bo_driver *driver;
503 	void *sync_obj = NULL;
504 	void *sync_obj_arg;
505 	int put_count;
506 	int ret;
507 
508 	spin_lock(&bdev->fence_lock);
509 	(void) ttm_bo_wait(bo, false, false, true);
510 	if (!bo->sync_obj) {
511 
512 		spin_lock(&glob->lru_lock);
513 
514 		/**
515 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
516 		 * but that's OK, since we're only trylocking.
517 		 */
518 
519 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
520 
521 		if (unlikely(ret == -EBUSY))
522 			goto queue;
523 
524 		spin_unlock(&bdev->fence_lock);
525 		put_count = ttm_bo_del_from_lru(bo);
526 
527 		spin_unlock(&glob->lru_lock);
528 		ttm_bo_cleanup_memtype_use(bo);
529 
530 		ttm_bo_list_ref_sub(bo, put_count, true);
531 
532 		return;
533 	} else {
534 		spin_lock(&glob->lru_lock);
535 	}
536 queue:
537 	driver = bdev->driver;
538 	if (bo->sync_obj)
539 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
540 	sync_obj_arg = bo->sync_obj_arg;
541 
542 	kref_get(&bo->list_kref);
543 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
544 	spin_unlock(&glob->lru_lock);
545 	spin_unlock(&bdev->fence_lock);
546 
547 	if (sync_obj) {
548 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
549 		driver->sync_obj_unref(&sync_obj);
550 	}
551 	schedule_delayed_work(&bdev->wq,
552 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
553 }
554 
555 /**
556  * function ttm_bo_cleanup_refs
557  * If bo idle, remove from delayed- and lru lists, and unref.
558  * If not idle, do nothing.
559  *
560  * @interruptible         Any sleeps should occur interruptibly.
561  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
562  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
563  */
564 
565 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
566 			       bool interruptible,
567 			       bool no_wait_reserve,
568 			       bool no_wait_gpu)
569 {
570 	struct ttm_bo_device *bdev = bo->bdev;
571 	struct ttm_bo_global *glob = bo->glob;
572 	int put_count;
573 	int ret = 0;
574 
575 retry:
576 	spin_lock(&bdev->fence_lock);
577 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
578 	spin_unlock(&bdev->fence_lock);
579 
580 	if (unlikely(ret != 0))
581 		return ret;
582 
583 	spin_lock(&glob->lru_lock);
584 
585 	if (unlikely(list_empty(&bo->ddestroy))) {
586 		spin_unlock(&glob->lru_lock);
587 		return 0;
588 	}
589 
590 	ret = ttm_bo_reserve_locked(bo, interruptible,
591 				    no_wait_reserve, false, 0);
592 
593 	if (unlikely(ret != 0)) {
594 		spin_unlock(&glob->lru_lock);
595 		return ret;
596 	}
597 
598 	/**
599 	 * We can re-check for sync object without taking
600 	 * the bo::lock since setting the sync object requires
601 	 * also bo::reserved. A busy object at this point may
602 	 * be caused by another thread recently starting an accelerated
603 	 * eviction.
604 	 */
605 
606 	if (unlikely(bo->sync_obj)) {
607 		atomic_set(&bo->reserved, 0);
608 		wake_up_all(&bo->event_queue);
609 		spin_unlock(&glob->lru_lock);
610 		goto retry;
611 	}
612 
613 	put_count = ttm_bo_del_from_lru(bo);
614 	list_del_init(&bo->ddestroy);
615 	++put_count;
616 
617 	spin_unlock(&glob->lru_lock);
618 	ttm_bo_cleanup_memtype_use(bo);
619 
620 	ttm_bo_list_ref_sub(bo, put_count, true);
621 
622 	return 0;
623 }
624 
625 /**
626  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
627  * encountered buffers.
628  */
629 
630 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
631 {
632 	struct ttm_bo_global *glob = bdev->glob;
633 	struct ttm_buffer_object *entry = NULL;
634 	int ret = 0;
635 
636 	spin_lock(&glob->lru_lock);
637 	if (list_empty(&bdev->ddestroy))
638 		goto out_unlock;
639 
640 	entry = list_first_entry(&bdev->ddestroy,
641 		struct ttm_buffer_object, ddestroy);
642 	kref_get(&entry->list_kref);
643 
644 	for (;;) {
645 		struct ttm_buffer_object *nentry = NULL;
646 
647 		if (entry->ddestroy.next != &bdev->ddestroy) {
648 			nentry = list_first_entry(&entry->ddestroy,
649 				struct ttm_buffer_object, ddestroy);
650 			kref_get(&nentry->list_kref);
651 		}
652 
653 		spin_unlock(&glob->lru_lock);
654 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
655 					  !remove_all);
656 		kref_put(&entry->list_kref, ttm_bo_release_list);
657 		entry = nentry;
658 
659 		if (ret || !entry)
660 			goto out;
661 
662 		spin_lock(&glob->lru_lock);
663 		if (list_empty(&entry->ddestroy))
664 			break;
665 	}
666 
667 out_unlock:
668 	spin_unlock(&glob->lru_lock);
669 out:
670 	if (entry)
671 		kref_put(&entry->list_kref, ttm_bo_release_list);
672 	return ret;
673 }
674 
675 static void ttm_bo_delayed_workqueue(struct work_struct *work)
676 {
677 	struct ttm_bo_device *bdev =
678 	    container_of(work, struct ttm_bo_device, wq.work);
679 
680 	if (ttm_bo_delayed_delete(bdev, false)) {
681 		schedule_delayed_work(&bdev->wq,
682 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
683 	}
684 }
685 
686 static void ttm_bo_release(struct kref *kref)
687 {
688 	struct ttm_buffer_object *bo =
689 	    container_of(kref, struct ttm_buffer_object, kref);
690 	struct ttm_bo_device *bdev = bo->bdev;
691 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
692 
693 	if (likely(bo->vm_node != NULL)) {
694 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
695 		drm_mm_put_block(bo->vm_node);
696 		bo->vm_node = NULL;
697 	}
698 	write_unlock(&bdev->vm_lock);
699 	ttm_mem_io_lock(man, false);
700 	ttm_mem_io_free_vm(bo);
701 	ttm_mem_io_unlock(man);
702 	ttm_bo_cleanup_refs_or_queue(bo);
703 	kref_put(&bo->list_kref, ttm_bo_release_list);
704 	write_lock(&bdev->vm_lock);
705 }
706 
707 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
708 {
709 	struct ttm_buffer_object *bo = *p_bo;
710 	struct ttm_bo_device *bdev = bo->bdev;
711 
712 	*p_bo = NULL;
713 	write_lock(&bdev->vm_lock);
714 	kref_put(&bo->kref, ttm_bo_release);
715 	write_unlock(&bdev->vm_lock);
716 }
717 EXPORT_SYMBOL(ttm_bo_unref);
718 
719 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
720 {
721 	return cancel_delayed_work_sync(&bdev->wq);
722 }
723 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
724 
725 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
726 {
727 	if (resched)
728 		schedule_delayed_work(&bdev->wq,
729 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
730 }
731 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
732 
733 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
734 			bool no_wait_reserve, bool no_wait_gpu)
735 {
736 	struct ttm_bo_device *bdev = bo->bdev;
737 	struct ttm_mem_reg evict_mem;
738 	struct ttm_placement placement;
739 	int ret = 0;
740 
741 	spin_lock(&bdev->fence_lock);
742 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
743 	spin_unlock(&bdev->fence_lock);
744 
745 	if (unlikely(ret != 0)) {
746 		if (ret != -ERESTARTSYS) {
747 			pr_err("Failed to expire sync object before buffer eviction\n");
748 		}
749 		goto out;
750 	}
751 
752 	BUG_ON(!atomic_read(&bo->reserved));
753 
754 	evict_mem = bo->mem;
755 	evict_mem.mm_node = NULL;
756 	evict_mem.bus.io_reserved_vm = false;
757 	evict_mem.bus.io_reserved_count = 0;
758 
759 	placement.fpfn = 0;
760 	placement.lpfn = 0;
761 	placement.num_placement = 0;
762 	placement.num_busy_placement = 0;
763 	bdev->driver->evict_flags(bo, &placement);
764 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
765 				no_wait_reserve, no_wait_gpu);
766 	if (ret) {
767 		if (ret != -ERESTARTSYS) {
768 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
769 			       bo);
770 			ttm_bo_mem_space_debug(bo, &placement);
771 		}
772 		goto out;
773 	}
774 
775 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
776 				     no_wait_reserve, no_wait_gpu);
777 	if (ret) {
778 		if (ret != -ERESTARTSYS)
779 			pr_err("Buffer eviction failed\n");
780 		ttm_bo_mem_put(bo, &evict_mem);
781 		goto out;
782 	}
783 	bo->evicted = true;
784 out:
785 	return ret;
786 }
787 
788 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
789 				uint32_t mem_type,
790 				bool interruptible, bool no_wait_reserve,
791 				bool no_wait_gpu)
792 {
793 	struct ttm_bo_global *glob = bdev->glob;
794 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
795 	struct ttm_buffer_object *bo;
796 	int ret, put_count = 0;
797 
798 retry:
799 	spin_lock(&glob->lru_lock);
800 	if (list_empty(&man->lru)) {
801 		spin_unlock(&glob->lru_lock);
802 		return -EBUSY;
803 	}
804 
805 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
806 	kref_get(&bo->list_kref);
807 
808 	if (!list_empty(&bo->ddestroy)) {
809 		spin_unlock(&glob->lru_lock);
810 		ret = ttm_bo_cleanup_refs(bo, interruptible,
811 					  no_wait_reserve, no_wait_gpu);
812 		kref_put(&bo->list_kref, ttm_bo_release_list);
813 
814 		if (likely(ret == 0 || ret == -ERESTARTSYS))
815 			return ret;
816 
817 		goto retry;
818 	}
819 
820 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
821 
822 	if (unlikely(ret == -EBUSY)) {
823 		spin_unlock(&glob->lru_lock);
824 		if (likely(!no_wait_gpu))
825 			ret = ttm_bo_wait_unreserved(bo, interruptible);
826 
827 		kref_put(&bo->list_kref, ttm_bo_release_list);
828 
829 		/**
830 		 * We *need* to retry after releasing the lru lock.
831 		 */
832 
833 		if (unlikely(ret != 0))
834 			return ret;
835 		goto retry;
836 	}
837 
838 	put_count = ttm_bo_del_from_lru(bo);
839 	spin_unlock(&glob->lru_lock);
840 
841 	BUG_ON(ret != 0);
842 
843 	ttm_bo_list_ref_sub(bo, put_count, true);
844 
845 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
846 	ttm_bo_unreserve(bo);
847 
848 	kref_put(&bo->list_kref, ttm_bo_release_list);
849 	return ret;
850 }
851 
852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853 {
854 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855 
856 	if (mem->mm_node)
857 		(*man->func->put_node)(man, mem);
858 }
859 EXPORT_SYMBOL(ttm_bo_mem_put);
860 
861 /**
862  * Repeatedly evict memory from the LRU for @mem_type until we create enough
863  * space, or we've evicted everything and there isn't enough space.
864  */
865 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
866 					uint32_t mem_type,
867 					struct ttm_placement *placement,
868 					struct ttm_mem_reg *mem,
869 					bool interruptible,
870 					bool no_wait_reserve,
871 					bool no_wait_gpu)
872 {
873 	struct ttm_bo_device *bdev = bo->bdev;
874 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
875 	int ret;
876 
877 	do {
878 		ret = (*man->func->get_node)(man, bo, placement, mem);
879 		if (unlikely(ret != 0))
880 			return ret;
881 		if (mem->mm_node)
882 			break;
883 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
884 						no_wait_reserve, no_wait_gpu);
885 		if (unlikely(ret != 0))
886 			return ret;
887 	} while (1);
888 	if (mem->mm_node == NULL)
889 		return -ENOMEM;
890 	mem->mem_type = mem_type;
891 	return 0;
892 }
893 
894 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
895 				      uint32_t cur_placement,
896 				      uint32_t proposed_placement)
897 {
898 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
899 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
900 
901 	/**
902 	 * Keep current caching if possible.
903 	 */
904 
905 	if ((cur_placement & caching) != 0)
906 		result |= (cur_placement & caching);
907 	else if ((man->default_caching & caching) != 0)
908 		result |= man->default_caching;
909 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
910 		result |= TTM_PL_FLAG_CACHED;
911 	else if ((TTM_PL_FLAG_WC & caching) != 0)
912 		result |= TTM_PL_FLAG_WC;
913 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
914 		result |= TTM_PL_FLAG_UNCACHED;
915 
916 	return result;
917 }
918 
919 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
920 				 uint32_t mem_type,
921 				 uint32_t proposed_placement,
922 				 uint32_t *masked_placement)
923 {
924 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
925 
926 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
927 		return false;
928 
929 	if ((proposed_placement & man->available_caching) == 0)
930 		return false;
931 
932 	cur_flags |= (proposed_placement & man->available_caching);
933 
934 	*masked_placement = cur_flags;
935 	return true;
936 }
937 
938 /**
939  * Creates space for memory region @mem according to its type.
940  *
941  * This function first searches for free space in compatible memory types in
942  * the priority order defined by the driver.  If free space isn't found, then
943  * ttm_bo_mem_force_space is attempted in priority order to evict and find
944  * space.
945  */
946 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
947 			struct ttm_placement *placement,
948 			struct ttm_mem_reg *mem,
949 			bool interruptible, bool no_wait_reserve,
950 			bool no_wait_gpu)
951 {
952 	struct ttm_bo_device *bdev = bo->bdev;
953 	struct ttm_mem_type_manager *man;
954 	uint32_t mem_type = TTM_PL_SYSTEM;
955 	uint32_t cur_flags = 0;
956 	bool type_found = false;
957 	bool type_ok = false;
958 	bool has_erestartsys = false;
959 	int i, ret;
960 
961 	mem->mm_node = NULL;
962 	for (i = 0; i < placement->num_placement; ++i) {
963 		ret = ttm_mem_type_from_flags(placement->placement[i],
964 						&mem_type);
965 		if (ret)
966 			return ret;
967 		man = &bdev->man[mem_type];
968 
969 		type_ok = ttm_bo_mt_compatible(man,
970 						mem_type,
971 						placement->placement[i],
972 						&cur_flags);
973 
974 		if (!type_ok)
975 			continue;
976 
977 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
978 						  cur_flags);
979 		/*
980 		 * Use the access and other non-mapping-related flag bits from
981 		 * the memory placement flags to the current flags
982 		 */
983 		ttm_flag_masked(&cur_flags, placement->placement[i],
984 				~TTM_PL_MASK_MEMTYPE);
985 
986 		if (mem_type == TTM_PL_SYSTEM)
987 			break;
988 
989 		if (man->has_type && man->use_type) {
990 			type_found = true;
991 			ret = (*man->func->get_node)(man, bo, placement, mem);
992 			if (unlikely(ret))
993 				return ret;
994 		}
995 		if (mem->mm_node)
996 			break;
997 	}
998 
999 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1000 		mem->mem_type = mem_type;
1001 		mem->placement = cur_flags;
1002 		return 0;
1003 	}
1004 
1005 	if (!type_found)
1006 		return -EINVAL;
1007 
1008 	for (i = 0; i < placement->num_busy_placement; ++i) {
1009 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1010 						&mem_type);
1011 		if (ret)
1012 			return ret;
1013 		man = &bdev->man[mem_type];
1014 		if (!man->has_type)
1015 			continue;
1016 		if (!ttm_bo_mt_compatible(man,
1017 						mem_type,
1018 						placement->busy_placement[i],
1019 						&cur_flags))
1020 			continue;
1021 
1022 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1023 						  cur_flags);
1024 		/*
1025 		 * Use the access and other non-mapping-related flag bits from
1026 		 * the memory placement flags to the current flags
1027 		 */
1028 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1029 				~TTM_PL_MASK_MEMTYPE);
1030 
1031 
1032 		if (mem_type == TTM_PL_SYSTEM) {
1033 			mem->mem_type = mem_type;
1034 			mem->placement = cur_flags;
1035 			mem->mm_node = NULL;
1036 			return 0;
1037 		}
1038 
1039 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1040 						interruptible, no_wait_reserve, no_wait_gpu);
1041 		if (ret == 0 && mem->mm_node) {
1042 			mem->placement = cur_flags;
1043 			return 0;
1044 		}
1045 		if (ret == -ERESTARTSYS)
1046 			has_erestartsys = true;
1047 	}
1048 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL(ttm_bo_mem_space);
1052 
1053 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1054 {
1055 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1056 		return -EBUSY;
1057 
1058 	return wait_event_interruptible(bo->event_queue,
1059 					atomic_read(&bo->cpu_writers) == 0);
1060 }
1061 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1062 
1063 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1064 			struct ttm_placement *placement,
1065 			bool interruptible, bool no_wait_reserve,
1066 			bool no_wait_gpu)
1067 {
1068 	int ret = 0;
1069 	struct ttm_mem_reg mem;
1070 	struct ttm_bo_device *bdev = bo->bdev;
1071 
1072 	BUG_ON(!atomic_read(&bo->reserved));
1073 
1074 	/*
1075 	 * FIXME: It's possible to pipeline buffer moves.
1076 	 * Have the driver move function wait for idle when necessary,
1077 	 * instead of doing it here.
1078 	 */
1079 	spin_lock(&bdev->fence_lock);
1080 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1081 	spin_unlock(&bdev->fence_lock);
1082 	if (ret)
1083 		return ret;
1084 	mem.num_pages = bo->num_pages;
1085 	mem.size = mem.num_pages << PAGE_SHIFT;
1086 	mem.page_alignment = bo->mem.page_alignment;
1087 	mem.bus.io_reserved_vm = false;
1088 	mem.bus.io_reserved_count = 0;
1089 	/*
1090 	 * Determine where to move the buffer.
1091 	 */
1092 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1093 	if (ret)
1094 		goto out_unlock;
1095 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1096 out_unlock:
1097 	if (ret && mem.mm_node)
1098 		ttm_bo_mem_put(bo, &mem);
1099 	return ret;
1100 }
1101 
1102 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1103 			     struct ttm_mem_reg *mem)
1104 {
1105 	int i;
1106 
1107 	if (mem->mm_node && placement->lpfn != 0 &&
1108 	    (mem->start < placement->fpfn ||
1109 	     mem->start + mem->num_pages > placement->lpfn))
1110 		return -1;
1111 
1112 	for (i = 0; i < placement->num_placement; i++) {
1113 		if ((placement->placement[i] & mem->placement &
1114 			TTM_PL_MASK_CACHING) &&
1115 			(placement->placement[i] & mem->placement &
1116 			TTM_PL_MASK_MEM))
1117 			return i;
1118 	}
1119 	return -1;
1120 }
1121 
1122 int ttm_bo_validate(struct ttm_buffer_object *bo,
1123 			struct ttm_placement *placement,
1124 			bool interruptible, bool no_wait_reserve,
1125 			bool no_wait_gpu)
1126 {
1127 	int ret;
1128 
1129 	BUG_ON(!atomic_read(&bo->reserved));
1130 	/* Check that range is valid */
1131 	if (placement->lpfn || placement->fpfn)
1132 		if (placement->fpfn > placement->lpfn ||
1133 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1134 			return -EINVAL;
1135 	/*
1136 	 * Check whether we need to move buffer.
1137 	 */
1138 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1139 	if (ret < 0) {
1140 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141 		if (ret)
1142 			return ret;
1143 	} else {
1144 		/*
1145 		 * Use the access and other non-mapping-related flag bits from
1146 		 * the compatible memory placement flags to the active flags
1147 		 */
1148 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1149 				~TTM_PL_MASK_MEMTYPE);
1150 	}
1151 	/*
1152 	 * We might need to add a TTM.
1153 	 */
1154 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155 		ret = ttm_bo_add_ttm(bo, true);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(ttm_bo_validate);
1162 
1163 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164 				struct ttm_placement *placement)
1165 {
1166 	BUG_ON((placement->fpfn || placement->lpfn) &&
1167 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168 
1169 	return 0;
1170 }
1171 
1172 int ttm_bo_init(struct ttm_bo_device *bdev,
1173 		struct ttm_buffer_object *bo,
1174 		unsigned long size,
1175 		enum ttm_bo_type type,
1176 		struct ttm_placement *placement,
1177 		uint32_t page_alignment,
1178 		unsigned long buffer_start,
1179 		bool interruptible,
1180 		struct file *persistent_swap_storage,
1181 		size_t acc_size,
1182 		struct sg_table *sg,
1183 		void (*destroy) (struct ttm_buffer_object *))
1184 {
1185 	int ret = 0;
1186 	unsigned long num_pages;
1187 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1188 
1189 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1190 	if (ret) {
1191 		pr_err("Out of kernel memory\n");
1192 		if (destroy)
1193 			(*destroy)(bo);
1194 		else
1195 			kfree(bo);
1196 		return -ENOMEM;
1197 	}
1198 
1199 	size += buffer_start & ~PAGE_MASK;
1200 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201 	if (num_pages == 0) {
1202 		pr_err("Illegal buffer object size\n");
1203 		if (destroy)
1204 			(*destroy)(bo);
1205 		else
1206 			kfree(bo);
1207 		ttm_mem_global_free(mem_glob, acc_size);
1208 		return -EINVAL;
1209 	}
1210 	bo->destroy = destroy;
1211 
1212 	kref_init(&bo->kref);
1213 	kref_init(&bo->list_kref);
1214 	atomic_set(&bo->cpu_writers, 0);
1215 	atomic_set(&bo->reserved, 1);
1216 	init_waitqueue_head(&bo->event_queue);
1217 	INIT_LIST_HEAD(&bo->lru);
1218 	INIT_LIST_HEAD(&bo->ddestroy);
1219 	INIT_LIST_HEAD(&bo->swap);
1220 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1221 	bo->bdev = bdev;
1222 	bo->glob = bdev->glob;
1223 	bo->type = type;
1224 	bo->num_pages = num_pages;
1225 	bo->mem.size = num_pages << PAGE_SHIFT;
1226 	bo->mem.mem_type = TTM_PL_SYSTEM;
1227 	bo->mem.num_pages = bo->num_pages;
1228 	bo->mem.mm_node = NULL;
1229 	bo->mem.page_alignment = page_alignment;
1230 	bo->mem.bus.io_reserved_vm = false;
1231 	bo->mem.bus.io_reserved_count = 0;
1232 	bo->buffer_start = buffer_start & PAGE_MASK;
1233 	bo->priv_flags = 0;
1234 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1235 	bo->seq_valid = false;
1236 	bo->persistent_swap_storage = persistent_swap_storage;
1237 	bo->acc_size = acc_size;
1238 	bo->sg = sg;
1239 	atomic_inc(&bo->glob->bo_count);
1240 
1241 	ret = ttm_bo_check_placement(bo, placement);
1242 	if (unlikely(ret != 0))
1243 		goto out_err;
1244 
1245 	/*
1246 	 * For ttm_bo_type_device buffers, allocate
1247 	 * address space from the device.
1248 	 */
1249 	if (bo->type == ttm_bo_type_device ||
1250 	    bo->type == ttm_bo_type_sg) {
1251 		ret = ttm_bo_setup_vm(bo);
1252 		if (ret)
1253 			goto out_err;
1254 	}
1255 
1256 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1257 	if (ret)
1258 		goto out_err;
1259 
1260 	ttm_bo_unreserve(bo);
1261 	return 0;
1262 
1263 out_err:
1264 	ttm_bo_unreserve(bo);
1265 	ttm_bo_unref(&bo);
1266 
1267 	return ret;
1268 }
1269 EXPORT_SYMBOL(ttm_bo_init);
1270 
1271 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1272 		       unsigned long bo_size,
1273 		       unsigned struct_size)
1274 {
1275 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1276 	size_t size = 0;
1277 
1278 	size += ttm_round_pot(struct_size);
1279 	size += PAGE_ALIGN(npages * sizeof(void *));
1280 	size += ttm_round_pot(sizeof(struct ttm_tt));
1281 	return size;
1282 }
1283 EXPORT_SYMBOL(ttm_bo_acc_size);
1284 
1285 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1286 			   unsigned long bo_size,
1287 			   unsigned struct_size)
1288 {
1289 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1290 	size_t size = 0;
1291 
1292 	size += ttm_round_pot(struct_size);
1293 	size += PAGE_ALIGN(npages * sizeof(void *));
1294 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1295 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1296 	return size;
1297 }
1298 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1299 
1300 int ttm_bo_create(struct ttm_bo_device *bdev,
1301 			unsigned long size,
1302 			enum ttm_bo_type type,
1303 			struct ttm_placement *placement,
1304 			uint32_t page_alignment,
1305 			unsigned long buffer_start,
1306 			bool interruptible,
1307 			struct file *persistent_swap_storage,
1308 			struct ttm_buffer_object **p_bo)
1309 {
1310 	struct ttm_buffer_object *bo;
1311 	size_t acc_size;
1312 	int ret;
1313 
1314 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1315 	if (unlikely(bo == NULL))
1316 		return -ENOMEM;
1317 
1318 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1319 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1320 				buffer_start, interruptible,
1321 			  persistent_swap_storage, acc_size, NULL, NULL);
1322 	if (likely(ret == 0))
1323 		*p_bo = bo;
1324 
1325 	return ret;
1326 }
1327 EXPORT_SYMBOL(ttm_bo_create);
1328 
1329 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1330 					unsigned mem_type, bool allow_errors)
1331 {
1332 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1333 	struct ttm_bo_global *glob = bdev->glob;
1334 	int ret;
1335 
1336 	/*
1337 	 * Can't use standard list traversal since we're unlocking.
1338 	 */
1339 
1340 	spin_lock(&glob->lru_lock);
1341 	while (!list_empty(&man->lru)) {
1342 		spin_unlock(&glob->lru_lock);
1343 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1344 		if (ret) {
1345 			if (allow_errors) {
1346 				return ret;
1347 			} else {
1348 				pr_err("Cleanup eviction failed\n");
1349 			}
1350 		}
1351 		spin_lock(&glob->lru_lock);
1352 	}
1353 	spin_unlock(&glob->lru_lock);
1354 	return 0;
1355 }
1356 
1357 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358 {
1359 	struct ttm_mem_type_manager *man;
1360 	int ret = -EINVAL;
1361 
1362 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1363 		pr_err("Illegal memory type %d\n", mem_type);
1364 		return ret;
1365 	}
1366 	man = &bdev->man[mem_type];
1367 
1368 	if (!man->has_type) {
1369 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1370 		       mem_type);
1371 		return ret;
1372 	}
1373 
1374 	man->use_type = false;
1375 	man->has_type = false;
1376 
1377 	ret = 0;
1378 	if (mem_type > 0) {
1379 		ttm_bo_force_list_clean(bdev, mem_type, false);
1380 
1381 		ret = (*man->func->takedown)(man);
1382 	}
1383 
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL(ttm_bo_clean_mm);
1387 
1388 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389 {
1390 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1391 
1392 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1393 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1394 		return -EINVAL;
1395 	}
1396 
1397 	if (!man->has_type) {
1398 		pr_err("Memory type %u has not been initialized\n", mem_type);
1399 		return 0;
1400 	}
1401 
1402 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1403 }
1404 EXPORT_SYMBOL(ttm_bo_evict_mm);
1405 
1406 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1407 			unsigned long p_size)
1408 {
1409 	int ret = -EINVAL;
1410 	struct ttm_mem_type_manager *man;
1411 
1412 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1413 	man = &bdev->man[type];
1414 	BUG_ON(man->has_type);
1415 	man->io_reserve_fastpath = true;
1416 	man->use_io_reserve_lru = false;
1417 	mutex_init(&man->io_reserve_mutex);
1418 	INIT_LIST_HEAD(&man->io_reserve_lru);
1419 
1420 	ret = bdev->driver->init_mem_type(bdev, type, man);
1421 	if (ret)
1422 		return ret;
1423 	man->bdev = bdev;
1424 
1425 	ret = 0;
1426 	if (type != TTM_PL_SYSTEM) {
1427 		ret = (*man->func->init)(man, p_size);
1428 		if (ret)
1429 			return ret;
1430 	}
1431 	man->has_type = true;
1432 	man->use_type = true;
1433 	man->size = p_size;
1434 
1435 	INIT_LIST_HEAD(&man->lru);
1436 
1437 	return 0;
1438 }
1439 EXPORT_SYMBOL(ttm_bo_init_mm);
1440 
1441 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1442 {
1443 	struct ttm_bo_global *glob =
1444 		container_of(kobj, struct ttm_bo_global, kobj);
1445 
1446 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1447 	__free_page(glob->dummy_read_page);
1448 	kfree(glob);
1449 }
1450 
1451 void ttm_bo_global_release(struct drm_global_reference *ref)
1452 {
1453 	struct ttm_bo_global *glob = ref->object;
1454 
1455 	kobject_del(&glob->kobj);
1456 	kobject_put(&glob->kobj);
1457 }
1458 EXPORT_SYMBOL(ttm_bo_global_release);
1459 
1460 int ttm_bo_global_init(struct drm_global_reference *ref)
1461 {
1462 	struct ttm_bo_global_ref *bo_ref =
1463 		container_of(ref, struct ttm_bo_global_ref, ref);
1464 	struct ttm_bo_global *glob = ref->object;
1465 	int ret;
1466 
1467 	mutex_init(&glob->device_list_mutex);
1468 	spin_lock_init(&glob->lru_lock);
1469 	glob->mem_glob = bo_ref->mem_glob;
1470 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1471 
1472 	if (unlikely(glob->dummy_read_page == NULL)) {
1473 		ret = -ENOMEM;
1474 		goto out_no_drp;
1475 	}
1476 
1477 	INIT_LIST_HEAD(&glob->swap_lru);
1478 	INIT_LIST_HEAD(&glob->device_list);
1479 
1480 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1481 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1482 	if (unlikely(ret != 0)) {
1483 		pr_err("Could not register buffer object swapout\n");
1484 		goto out_no_shrink;
1485 	}
1486 
1487 	atomic_set(&glob->bo_count, 0);
1488 
1489 	ret = kobject_init_and_add(
1490 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1491 	if (unlikely(ret != 0))
1492 		kobject_put(&glob->kobj);
1493 	return ret;
1494 out_no_shrink:
1495 	__free_page(glob->dummy_read_page);
1496 out_no_drp:
1497 	kfree(glob);
1498 	return ret;
1499 }
1500 EXPORT_SYMBOL(ttm_bo_global_init);
1501 
1502 
1503 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1504 {
1505 	int ret = 0;
1506 	unsigned i = TTM_NUM_MEM_TYPES;
1507 	struct ttm_mem_type_manager *man;
1508 	struct ttm_bo_global *glob = bdev->glob;
1509 
1510 	while (i--) {
1511 		man = &bdev->man[i];
1512 		if (man->has_type) {
1513 			man->use_type = false;
1514 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1515 				ret = -EBUSY;
1516 				pr_err("DRM memory manager type %d is not clean\n",
1517 				       i);
1518 			}
1519 			man->has_type = false;
1520 		}
1521 	}
1522 
1523 	mutex_lock(&glob->device_list_mutex);
1524 	list_del(&bdev->device_list);
1525 	mutex_unlock(&glob->device_list_mutex);
1526 
1527 	cancel_delayed_work_sync(&bdev->wq);
1528 
1529 	while (ttm_bo_delayed_delete(bdev, true))
1530 		;
1531 
1532 	spin_lock(&glob->lru_lock);
1533 	if (list_empty(&bdev->ddestroy))
1534 		TTM_DEBUG("Delayed destroy list was clean\n");
1535 
1536 	if (list_empty(&bdev->man[0].lru))
1537 		TTM_DEBUG("Swap list was clean\n");
1538 	spin_unlock(&glob->lru_lock);
1539 
1540 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1541 	write_lock(&bdev->vm_lock);
1542 	drm_mm_takedown(&bdev->addr_space_mm);
1543 	write_unlock(&bdev->vm_lock);
1544 
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL(ttm_bo_device_release);
1548 
1549 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1550 		       struct ttm_bo_global *glob,
1551 		       struct ttm_bo_driver *driver,
1552 		       uint64_t file_page_offset,
1553 		       bool need_dma32)
1554 {
1555 	int ret = -EINVAL;
1556 
1557 	rwlock_init(&bdev->vm_lock);
1558 	bdev->driver = driver;
1559 
1560 	memset(bdev->man, 0, sizeof(bdev->man));
1561 
1562 	/*
1563 	 * Initialize the system memory buffer type.
1564 	 * Other types need to be driver / IOCTL initialized.
1565 	 */
1566 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1567 	if (unlikely(ret != 0))
1568 		goto out_no_sys;
1569 
1570 	bdev->addr_space_rb = RB_ROOT;
1571 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1572 	if (unlikely(ret != 0))
1573 		goto out_no_addr_mm;
1574 
1575 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1576 	bdev->nice_mode = true;
1577 	INIT_LIST_HEAD(&bdev->ddestroy);
1578 	bdev->dev_mapping = NULL;
1579 	bdev->glob = glob;
1580 	bdev->need_dma32 = need_dma32;
1581 	bdev->val_seq = 0;
1582 	spin_lock_init(&bdev->fence_lock);
1583 	mutex_lock(&glob->device_list_mutex);
1584 	list_add_tail(&bdev->device_list, &glob->device_list);
1585 	mutex_unlock(&glob->device_list_mutex);
1586 
1587 	return 0;
1588 out_no_addr_mm:
1589 	ttm_bo_clean_mm(bdev, 0);
1590 out_no_sys:
1591 	return ret;
1592 }
1593 EXPORT_SYMBOL(ttm_bo_device_init);
1594 
1595 /*
1596  * buffer object vm functions.
1597  */
1598 
1599 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1600 {
1601 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1602 
1603 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1604 		if (mem->mem_type == TTM_PL_SYSTEM)
1605 			return false;
1606 
1607 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1608 			return false;
1609 
1610 		if (mem->placement & TTM_PL_FLAG_CACHED)
1611 			return false;
1612 	}
1613 	return true;
1614 }
1615 
1616 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1617 {
1618 	struct ttm_bo_device *bdev = bo->bdev;
1619 	loff_t offset = (loff_t) bo->addr_space_offset;
1620 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1621 
1622 	if (!bdev->dev_mapping)
1623 		return;
1624 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1625 	ttm_mem_io_free_vm(bo);
1626 }
1627 
1628 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1629 {
1630 	struct ttm_bo_device *bdev = bo->bdev;
1631 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1632 
1633 	ttm_mem_io_lock(man, false);
1634 	ttm_bo_unmap_virtual_locked(bo);
1635 	ttm_mem_io_unlock(man);
1636 }
1637 
1638 
1639 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1640 
1641 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1642 {
1643 	struct ttm_bo_device *bdev = bo->bdev;
1644 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1645 	struct rb_node *parent = NULL;
1646 	struct ttm_buffer_object *cur_bo;
1647 	unsigned long offset = bo->vm_node->start;
1648 	unsigned long cur_offset;
1649 
1650 	while (*cur) {
1651 		parent = *cur;
1652 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1653 		cur_offset = cur_bo->vm_node->start;
1654 		if (offset < cur_offset)
1655 			cur = &parent->rb_left;
1656 		else if (offset > cur_offset)
1657 			cur = &parent->rb_right;
1658 		else
1659 			BUG();
1660 	}
1661 
1662 	rb_link_node(&bo->vm_rb, parent, cur);
1663 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1664 }
1665 
1666 /**
1667  * ttm_bo_setup_vm:
1668  *
1669  * @bo: the buffer to allocate address space for
1670  *
1671  * Allocate address space in the drm device so that applications
1672  * can mmap the buffer and access the contents. This only
1673  * applies to ttm_bo_type_device objects as others are not
1674  * placed in the drm device address space.
1675  */
1676 
1677 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1678 {
1679 	struct ttm_bo_device *bdev = bo->bdev;
1680 	int ret;
1681 
1682 retry_pre_get:
1683 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1684 	if (unlikely(ret != 0))
1685 		return ret;
1686 
1687 	write_lock(&bdev->vm_lock);
1688 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1689 					 bo->mem.num_pages, 0, 0);
1690 
1691 	if (unlikely(bo->vm_node == NULL)) {
1692 		ret = -ENOMEM;
1693 		goto out_unlock;
1694 	}
1695 
1696 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1697 					      bo->mem.num_pages, 0);
1698 
1699 	if (unlikely(bo->vm_node == NULL)) {
1700 		write_unlock(&bdev->vm_lock);
1701 		goto retry_pre_get;
1702 	}
1703 
1704 	ttm_bo_vm_insert_rb(bo);
1705 	write_unlock(&bdev->vm_lock);
1706 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1707 
1708 	return 0;
1709 out_unlock:
1710 	write_unlock(&bdev->vm_lock);
1711 	return ret;
1712 }
1713 
1714 int ttm_bo_wait(struct ttm_buffer_object *bo,
1715 		bool lazy, bool interruptible, bool no_wait)
1716 {
1717 	struct ttm_bo_driver *driver = bo->bdev->driver;
1718 	struct ttm_bo_device *bdev = bo->bdev;
1719 	void *sync_obj;
1720 	void *sync_obj_arg;
1721 	int ret = 0;
1722 
1723 	if (likely(bo->sync_obj == NULL))
1724 		return 0;
1725 
1726 	while (bo->sync_obj) {
1727 
1728 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1729 			void *tmp_obj = bo->sync_obj;
1730 			bo->sync_obj = NULL;
1731 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1732 			spin_unlock(&bdev->fence_lock);
1733 			driver->sync_obj_unref(&tmp_obj);
1734 			spin_lock(&bdev->fence_lock);
1735 			continue;
1736 		}
1737 
1738 		if (no_wait)
1739 			return -EBUSY;
1740 
1741 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1742 		sync_obj_arg = bo->sync_obj_arg;
1743 		spin_unlock(&bdev->fence_lock);
1744 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1745 					    lazy, interruptible);
1746 		if (unlikely(ret != 0)) {
1747 			driver->sync_obj_unref(&sync_obj);
1748 			spin_lock(&bdev->fence_lock);
1749 			return ret;
1750 		}
1751 		spin_lock(&bdev->fence_lock);
1752 		if (likely(bo->sync_obj == sync_obj &&
1753 			   bo->sync_obj_arg == sync_obj_arg)) {
1754 			void *tmp_obj = bo->sync_obj;
1755 			bo->sync_obj = NULL;
1756 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757 				  &bo->priv_flags);
1758 			spin_unlock(&bdev->fence_lock);
1759 			driver->sync_obj_unref(&sync_obj);
1760 			driver->sync_obj_unref(&tmp_obj);
1761 			spin_lock(&bdev->fence_lock);
1762 		} else {
1763 			spin_unlock(&bdev->fence_lock);
1764 			driver->sync_obj_unref(&sync_obj);
1765 			spin_lock(&bdev->fence_lock);
1766 		}
1767 	}
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(ttm_bo_wait);
1771 
1772 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1773 {
1774 	struct ttm_bo_device *bdev = bo->bdev;
1775 	int ret = 0;
1776 
1777 	/*
1778 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1779 	 */
1780 
1781 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1782 	if (unlikely(ret != 0))
1783 		return ret;
1784 	spin_lock(&bdev->fence_lock);
1785 	ret = ttm_bo_wait(bo, false, true, no_wait);
1786 	spin_unlock(&bdev->fence_lock);
1787 	if (likely(ret == 0))
1788 		atomic_inc(&bo->cpu_writers);
1789 	ttm_bo_unreserve(bo);
1790 	return ret;
1791 }
1792 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1793 
1794 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795 {
1796 	if (atomic_dec_and_test(&bo->cpu_writers))
1797 		wake_up_all(&bo->event_queue);
1798 }
1799 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800 
1801 /**
1802  * A buffer object shrink method that tries to swap out the first
1803  * buffer object on the bo_global::swap_lru list.
1804  */
1805 
1806 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807 {
1808 	struct ttm_bo_global *glob =
1809 	    container_of(shrink, struct ttm_bo_global, shrink);
1810 	struct ttm_buffer_object *bo;
1811 	int ret = -EBUSY;
1812 	int put_count;
1813 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814 
1815 	spin_lock(&glob->lru_lock);
1816 	while (ret == -EBUSY) {
1817 		if (unlikely(list_empty(&glob->swap_lru))) {
1818 			spin_unlock(&glob->lru_lock);
1819 			return -EBUSY;
1820 		}
1821 
1822 		bo = list_first_entry(&glob->swap_lru,
1823 				      struct ttm_buffer_object, swap);
1824 		kref_get(&bo->list_kref);
1825 
1826 		if (!list_empty(&bo->ddestroy)) {
1827 			spin_unlock(&glob->lru_lock);
1828 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1829 			kref_put(&bo->list_kref, ttm_bo_release_list);
1830 			spin_lock(&glob->lru_lock);
1831 			continue;
1832 		}
1833 
1834 		/**
1835 		 * Reserve buffer. Since we unlock while sleeping, we need
1836 		 * to re-check that nobody removed us from the swap-list while
1837 		 * we slept.
1838 		 */
1839 
1840 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1841 		if (unlikely(ret == -EBUSY)) {
1842 			spin_unlock(&glob->lru_lock);
1843 			ttm_bo_wait_unreserved(bo, false);
1844 			kref_put(&bo->list_kref, ttm_bo_release_list);
1845 			spin_lock(&glob->lru_lock);
1846 		}
1847 	}
1848 
1849 	BUG_ON(ret != 0);
1850 	put_count = ttm_bo_del_from_lru(bo);
1851 	spin_unlock(&glob->lru_lock);
1852 
1853 	ttm_bo_list_ref_sub(bo, put_count, true);
1854 
1855 	/**
1856 	 * Wait for GPU, then move to system cached.
1857 	 */
1858 
1859 	spin_lock(&bo->bdev->fence_lock);
1860 	ret = ttm_bo_wait(bo, false, false, false);
1861 	spin_unlock(&bo->bdev->fence_lock);
1862 
1863 	if (unlikely(ret != 0))
1864 		goto out;
1865 
1866 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1867 		struct ttm_mem_reg evict_mem;
1868 
1869 		evict_mem = bo->mem;
1870 		evict_mem.mm_node = NULL;
1871 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1872 		evict_mem.mem_type = TTM_PL_SYSTEM;
1873 
1874 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1875 					     false, false, false);
1876 		if (unlikely(ret != 0))
1877 			goto out;
1878 	}
1879 
1880 	ttm_bo_unmap_virtual(bo);
1881 
1882 	/**
1883 	 * Swap out. Buffer will be swapped in again as soon as
1884 	 * anyone tries to access a ttm page.
1885 	 */
1886 
1887 	if (bo->bdev->driver->swap_notify)
1888 		bo->bdev->driver->swap_notify(bo);
1889 
1890 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1891 out:
1892 
1893 	/**
1894 	 *
1895 	 * Unreserve without putting on LRU to avoid swapping out an
1896 	 * already swapped buffer.
1897 	 */
1898 
1899 	atomic_set(&bo->reserved, 0);
1900 	wake_up_all(&bo->event_queue);
1901 	kref_put(&bo->list_kref, ttm_bo_release_list);
1902 	return ret;
1903 }
1904 
1905 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1906 {
1907 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1908 		;
1909 }
1910 EXPORT_SYMBOL(ttm_bo_swapout_all);
1911