1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 /* Notes: 31 * 32 * We store bo pointer in drm_mm_node struct so we know which bo own a 33 * specific node. There is no protection on the pointer, thus to make 34 * sure things don't go berserk you have to access this pointer while 35 * holding the global lru lock and make sure anytime you free a node you 36 * reset the pointer to NULL. 37 */ 38 39 #include "ttm/ttm_module.h" 40 #include "ttm/ttm_bo_driver.h" 41 #include "ttm/ttm_placement.h" 42 #include <linux/jiffies.h> 43 #include <linux/slab.h> 44 #include <linux/sched.h> 45 #include <linux/mm.h> 46 #include <linux/file.h> 47 #include <linux/module.h> 48 49 #define TTM_ASSERT_LOCKED(param) 50 #define TTM_DEBUG(fmt, arg...) 51 #define TTM_BO_HASH_ORDER 13 52 53 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 54 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 55 static void ttm_bo_global_kobj_release(struct kobject *kobj); 56 57 static struct attribute ttm_bo_count = { 58 .name = "bo_count", 59 .mode = S_IRUGO 60 }; 61 62 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 63 { 64 int i; 65 66 for (i = 0; i <= TTM_PL_PRIV5; i++) 67 if (flags & (1 << i)) { 68 *mem_type = i; 69 return 0; 70 } 71 return -EINVAL; 72 } 73 74 static void ttm_mem_type_manager_debug(struct ttm_bo_global *glob, 75 struct ttm_mem_type_manager *man) 76 { 77 printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type); 78 printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type); 79 printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags); 80 printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset); 81 printk(KERN_ERR TTM_PFX " io_offset: 0x%08lX\n", man->io_offset); 82 printk(KERN_ERR TTM_PFX " io_size: %ld\n", man->io_size); 83 printk(KERN_ERR TTM_PFX " size: %ld\n", (unsigned long)man->size); 84 printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n", 85 man->available_caching); 86 printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n", 87 man->default_caching); 88 spin_lock(&glob->lru_lock); 89 drm_mm_debug_table(&man->manager, TTM_PFX); 90 spin_unlock(&glob->lru_lock); 91 } 92 93 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 94 struct ttm_placement *placement) 95 { 96 struct ttm_bo_device *bdev = bo->bdev; 97 struct ttm_bo_global *glob = bo->glob; 98 struct ttm_mem_type_manager *man; 99 int i, ret, mem_type; 100 101 printk(KERN_ERR TTM_PFX "No space for %p (%ld pages, %ldK, %ldM)\n", 102 bo, bo->mem.num_pages, bo->mem.size >> 10, 103 bo->mem.size >> 20); 104 for (i = 0; i < placement->num_placement; i++) { 105 ret = ttm_mem_type_from_flags(placement->placement[i], 106 &mem_type); 107 if (ret) 108 return; 109 man = &bdev->man[mem_type]; 110 printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n", 111 i, placement->placement[i], mem_type); 112 ttm_mem_type_manager_debug(glob, man); 113 } 114 } 115 116 static ssize_t ttm_bo_global_show(struct kobject *kobj, 117 struct attribute *attr, 118 char *buffer) 119 { 120 struct ttm_bo_global *glob = 121 container_of(kobj, struct ttm_bo_global, kobj); 122 123 return snprintf(buffer, PAGE_SIZE, "%lu\n", 124 (unsigned long) atomic_read(&glob->bo_count)); 125 } 126 127 static struct attribute *ttm_bo_global_attrs[] = { 128 &ttm_bo_count, 129 NULL 130 }; 131 132 static struct sysfs_ops ttm_bo_global_ops = { 133 .show = &ttm_bo_global_show 134 }; 135 136 static struct kobj_type ttm_bo_glob_kobj_type = { 137 .release = &ttm_bo_global_kobj_release, 138 .sysfs_ops = &ttm_bo_global_ops, 139 .default_attrs = ttm_bo_global_attrs 140 }; 141 142 143 static inline uint32_t ttm_bo_type_flags(unsigned type) 144 { 145 return 1 << (type); 146 } 147 148 static void ttm_bo_release_list(struct kref *list_kref) 149 { 150 struct ttm_buffer_object *bo = 151 container_of(list_kref, struct ttm_buffer_object, list_kref); 152 struct ttm_bo_device *bdev = bo->bdev; 153 154 BUG_ON(atomic_read(&bo->list_kref.refcount)); 155 BUG_ON(atomic_read(&bo->kref.refcount)); 156 BUG_ON(atomic_read(&bo->cpu_writers)); 157 BUG_ON(bo->sync_obj != NULL); 158 BUG_ON(bo->mem.mm_node != NULL); 159 BUG_ON(!list_empty(&bo->lru)); 160 BUG_ON(!list_empty(&bo->ddestroy)); 161 162 if (bo->ttm) 163 ttm_tt_destroy(bo->ttm); 164 atomic_dec(&bo->glob->bo_count); 165 if (bo->destroy) 166 bo->destroy(bo); 167 else { 168 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size); 169 kfree(bo); 170 } 171 } 172 173 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible) 174 { 175 176 if (interruptible) { 177 int ret = 0; 178 179 ret = wait_event_interruptible(bo->event_queue, 180 atomic_read(&bo->reserved) == 0); 181 if (unlikely(ret != 0)) 182 return ret; 183 } else { 184 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0); 185 } 186 return 0; 187 } 188 EXPORT_SYMBOL(ttm_bo_wait_unreserved); 189 190 static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 191 { 192 struct ttm_bo_device *bdev = bo->bdev; 193 struct ttm_mem_type_manager *man; 194 195 BUG_ON(!atomic_read(&bo->reserved)); 196 197 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 198 199 BUG_ON(!list_empty(&bo->lru)); 200 201 man = &bdev->man[bo->mem.mem_type]; 202 list_add_tail(&bo->lru, &man->lru); 203 kref_get(&bo->list_kref); 204 205 if (bo->ttm != NULL) { 206 list_add_tail(&bo->swap, &bo->glob->swap_lru); 207 kref_get(&bo->list_kref); 208 } 209 } 210 } 211 212 /** 213 * Call with the lru_lock held. 214 */ 215 216 static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 217 { 218 int put_count = 0; 219 220 if (!list_empty(&bo->swap)) { 221 list_del_init(&bo->swap); 222 ++put_count; 223 } 224 if (!list_empty(&bo->lru)) { 225 list_del_init(&bo->lru); 226 ++put_count; 227 } 228 229 /* 230 * TODO: Add a driver hook to delete from 231 * driver-specific LRU's here. 232 */ 233 234 return put_count; 235 } 236 237 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo, 238 bool interruptible, 239 bool no_wait, bool use_sequence, uint32_t sequence) 240 { 241 struct ttm_bo_global *glob = bo->glob; 242 int ret; 243 244 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { 245 if (use_sequence && bo->seq_valid && 246 (sequence - bo->val_seq < (1 << 31))) { 247 return -EAGAIN; 248 } 249 250 if (no_wait) 251 return -EBUSY; 252 253 spin_unlock(&glob->lru_lock); 254 ret = ttm_bo_wait_unreserved(bo, interruptible); 255 spin_lock(&glob->lru_lock); 256 257 if (unlikely(ret)) 258 return ret; 259 } 260 261 if (use_sequence) { 262 bo->val_seq = sequence; 263 bo->seq_valid = true; 264 } else { 265 bo->seq_valid = false; 266 } 267 268 return 0; 269 } 270 EXPORT_SYMBOL(ttm_bo_reserve); 271 272 static void ttm_bo_ref_bug(struct kref *list_kref) 273 { 274 BUG(); 275 } 276 277 int ttm_bo_reserve(struct ttm_buffer_object *bo, 278 bool interruptible, 279 bool no_wait, bool use_sequence, uint32_t sequence) 280 { 281 struct ttm_bo_global *glob = bo->glob; 282 int put_count = 0; 283 int ret; 284 285 spin_lock(&glob->lru_lock); 286 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence, 287 sequence); 288 if (likely(ret == 0)) 289 put_count = ttm_bo_del_from_lru(bo); 290 spin_unlock(&glob->lru_lock); 291 292 while (put_count--) 293 kref_put(&bo->list_kref, ttm_bo_ref_bug); 294 295 return ret; 296 } 297 298 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 299 { 300 struct ttm_bo_global *glob = bo->glob; 301 302 spin_lock(&glob->lru_lock); 303 ttm_bo_add_to_lru(bo); 304 atomic_set(&bo->reserved, 0); 305 wake_up_all(&bo->event_queue); 306 spin_unlock(&glob->lru_lock); 307 } 308 EXPORT_SYMBOL(ttm_bo_unreserve); 309 310 /* 311 * Call bo->mutex locked. 312 */ 313 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 314 { 315 struct ttm_bo_device *bdev = bo->bdev; 316 struct ttm_bo_global *glob = bo->glob; 317 int ret = 0; 318 uint32_t page_flags = 0; 319 320 TTM_ASSERT_LOCKED(&bo->mutex); 321 bo->ttm = NULL; 322 323 if (bdev->need_dma32) 324 page_flags |= TTM_PAGE_FLAG_DMA32; 325 326 switch (bo->type) { 327 case ttm_bo_type_device: 328 if (zero_alloc) 329 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 330 case ttm_bo_type_kernel: 331 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 332 page_flags, glob->dummy_read_page); 333 if (unlikely(bo->ttm == NULL)) 334 ret = -ENOMEM; 335 break; 336 case ttm_bo_type_user: 337 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 338 page_flags | TTM_PAGE_FLAG_USER, 339 glob->dummy_read_page); 340 if (unlikely(bo->ttm == NULL)) { 341 ret = -ENOMEM; 342 break; 343 } 344 345 ret = ttm_tt_set_user(bo->ttm, current, 346 bo->buffer_start, bo->num_pages); 347 if (unlikely(ret != 0)) 348 ttm_tt_destroy(bo->ttm); 349 break; 350 default: 351 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n"); 352 ret = -EINVAL; 353 break; 354 } 355 356 return ret; 357 } 358 359 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 360 struct ttm_mem_reg *mem, 361 bool evict, bool interruptible, bool no_wait) 362 { 363 struct ttm_bo_device *bdev = bo->bdev; 364 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 365 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 366 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 367 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 368 int ret = 0; 369 370 if (old_is_pci || new_is_pci || 371 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) 372 ttm_bo_unmap_virtual(bo); 373 374 /* 375 * Create and bind a ttm if required. 376 */ 377 378 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) { 379 ret = ttm_bo_add_ttm(bo, false); 380 if (ret) 381 goto out_err; 382 383 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 384 if (ret) 385 goto out_err; 386 387 if (mem->mem_type != TTM_PL_SYSTEM) { 388 ret = ttm_tt_bind(bo->ttm, mem); 389 if (ret) 390 goto out_err; 391 } 392 393 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 394 bo->mem = *mem; 395 mem->mm_node = NULL; 396 goto moved; 397 } 398 399 } 400 401 if (bdev->driver->move_notify) 402 bdev->driver->move_notify(bo, mem); 403 404 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 405 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 406 ret = ttm_bo_move_ttm(bo, evict, no_wait, mem); 407 else if (bdev->driver->move) 408 ret = bdev->driver->move(bo, evict, interruptible, 409 no_wait, mem); 410 else 411 ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem); 412 413 if (ret) 414 goto out_err; 415 416 moved: 417 if (bo->evicted) { 418 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 419 if (ret) 420 printk(KERN_ERR TTM_PFX "Can not flush read caches\n"); 421 bo->evicted = false; 422 } 423 424 if (bo->mem.mm_node) { 425 spin_lock(&bo->lock); 426 bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) + 427 bdev->man[bo->mem.mem_type].gpu_offset; 428 bo->cur_placement = bo->mem.placement; 429 spin_unlock(&bo->lock); 430 } 431 432 return 0; 433 434 out_err: 435 new_man = &bdev->man[bo->mem.mem_type]; 436 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 437 ttm_tt_unbind(bo->ttm); 438 ttm_tt_destroy(bo->ttm); 439 bo->ttm = NULL; 440 } 441 442 return ret; 443 } 444 445 /** 446 * If bo idle, remove from delayed- and lru lists, and unref. 447 * If not idle, and already on delayed list, do nothing. 448 * If not idle, and not on delayed list, put on delayed list, 449 * up the list_kref and schedule a delayed list check. 450 */ 451 452 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all) 453 { 454 struct ttm_bo_device *bdev = bo->bdev; 455 struct ttm_bo_global *glob = bo->glob; 456 struct ttm_bo_driver *driver = bdev->driver; 457 int ret; 458 459 spin_lock(&bo->lock); 460 (void) ttm_bo_wait(bo, false, false, !remove_all); 461 462 if (!bo->sync_obj) { 463 int put_count; 464 465 spin_unlock(&bo->lock); 466 467 spin_lock(&glob->lru_lock); 468 ret = ttm_bo_reserve_locked(bo, false, false, false, 0); 469 BUG_ON(ret); 470 if (bo->ttm) 471 ttm_tt_unbind(bo->ttm); 472 473 if (!list_empty(&bo->ddestroy)) { 474 list_del_init(&bo->ddestroy); 475 kref_put(&bo->list_kref, ttm_bo_ref_bug); 476 } 477 if (bo->mem.mm_node) { 478 bo->mem.mm_node->private = NULL; 479 drm_mm_put_block(bo->mem.mm_node); 480 bo->mem.mm_node = NULL; 481 } 482 put_count = ttm_bo_del_from_lru(bo); 483 spin_unlock(&glob->lru_lock); 484 485 atomic_set(&bo->reserved, 0); 486 487 while (put_count--) 488 kref_put(&bo->list_kref, ttm_bo_release_list); 489 490 return 0; 491 } 492 493 spin_lock(&glob->lru_lock); 494 if (list_empty(&bo->ddestroy)) { 495 void *sync_obj = bo->sync_obj; 496 void *sync_obj_arg = bo->sync_obj_arg; 497 498 kref_get(&bo->list_kref); 499 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 500 spin_unlock(&glob->lru_lock); 501 spin_unlock(&bo->lock); 502 503 if (sync_obj) 504 driver->sync_obj_flush(sync_obj, sync_obj_arg); 505 schedule_delayed_work(&bdev->wq, 506 ((HZ / 100) < 1) ? 1 : HZ / 100); 507 ret = 0; 508 509 } else { 510 spin_unlock(&glob->lru_lock); 511 spin_unlock(&bo->lock); 512 ret = -EBUSY; 513 } 514 515 return ret; 516 } 517 518 /** 519 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 520 * encountered buffers. 521 */ 522 523 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 524 { 525 struct ttm_bo_global *glob = bdev->glob; 526 struct ttm_buffer_object *entry, *nentry; 527 struct list_head *list, *next; 528 int ret; 529 530 spin_lock(&glob->lru_lock); 531 list_for_each_safe(list, next, &bdev->ddestroy) { 532 entry = list_entry(list, struct ttm_buffer_object, ddestroy); 533 nentry = NULL; 534 535 /* 536 * Protect the next list entry from destruction while we 537 * unlock the lru_lock. 538 */ 539 540 if (next != &bdev->ddestroy) { 541 nentry = list_entry(next, struct ttm_buffer_object, 542 ddestroy); 543 kref_get(&nentry->list_kref); 544 } 545 kref_get(&entry->list_kref); 546 547 spin_unlock(&glob->lru_lock); 548 ret = ttm_bo_cleanup_refs(entry, remove_all); 549 kref_put(&entry->list_kref, ttm_bo_release_list); 550 551 spin_lock(&glob->lru_lock); 552 if (nentry) { 553 bool next_onlist = !list_empty(next); 554 spin_unlock(&glob->lru_lock); 555 kref_put(&nentry->list_kref, ttm_bo_release_list); 556 spin_lock(&glob->lru_lock); 557 /* 558 * Someone might have raced us and removed the 559 * next entry from the list. We don't bother restarting 560 * list traversal. 561 */ 562 563 if (!next_onlist) 564 break; 565 } 566 if (ret) 567 break; 568 } 569 ret = !list_empty(&bdev->ddestroy); 570 spin_unlock(&glob->lru_lock); 571 572 return ret; 573 } 574 575 static void ttm_bo_delayed_workqueue(struct work_struct *work) 576 { 577 struct ttm_bo_device *bdev = 578 container_of(work, struct ttm_bo_device, wq.work); 579 580 if (ttm_bo_delayed_delete(bdev, false)) { 581 schedule_delayed_work(&bdev->wq, 582 ((HZ / 100) < 1) ? 1 : HZ / 100); 583 } 584 } 585 586 static void ttm_bo_release(struct kref *kref) 587 { 588 struct ttm_buffer_object *bo = 589 container_of(kref, struct ttm_buffer_object, kref); 590 struct ttm_bo_device *bdev = bo->bdev; 591 592 if (likely(bo->vm_node != NULL)) { 593 rb_erase(&bo->vm_rb, &bdev->addr_space_rb); 594 drm_mm_put_block(bo->vm_node); 595 bo->vm_node = NULL; 596 } 597 write_unlock(&bdev->vm_lock); 598 ttm_bo_cleanup_refs(bo, false); 599 kref_put(&bo->list_kref, ttm_bo_release_list); 600 write_lock(&bdev->vm_lock); 601 } 602 603 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 604 { 605 struct ttm_buffer_object *bo = *p_bo; 606 struct ttm_bo_device *bdev = bo->bdev; 607 608 *p_bo = NULL; 609 write_lock(&bdev->vm_lock); 610 kref_put(&bo->kref, ttm_bo_release); 611 write_unlock(&bdev->vm_lock); 612 } 613 EXPORT_SYMBOL(ttm_bo_unref); 614 615 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 616 bool no_wait) 617 { 618 struct ttm_bo_device *bdev = bo->bdev; 619 struct ttm_bo_global *glob = bo->glob; 620 struct ttm_mem_reg evict_mem; 621 struct ttm_placement placement; 622 int ret = 0; 623 624 spin_lock(&bo->lock); 625 ret = ttm_bo_wait(bo, false, interruptible, no_wait); 626 spin_unlock(&bo->lock); 627 628 if (unlikely(ret != 0)) { 629 if (ret != -ERESTARTSYS) { 630 printk(KERN_ERR TTM_PFX 631 "Failed to expire sync object before " 632 "buffer eviction.\n"); 633 } 634 goto out; 635 } 636 637 BUG_ON(!atomic_read(&bo->reserved)); 638 639 evict_mem = bo->mem; 640 evict_mem.mm_node = NULL; 641 642 placement.fpfn = 0; 643 placement.lpfn = 0; 644 placement.num_placement = 0; 645 placement.num_busy_placement = 0; 646 bdev->driver->evict_flags(bo, &placement); 647 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 648 no_wait); 649 if (ret) { 650 if (ret != -ERESTARTSYS) { 651 printk(KERN_ERR TTM_PFX 652 "Failed to find memory space for " 653 "buffer 0x%p eviction.\n", bo); 654 ttm_bo_mem_space_debug(bo, &placement); 655 } 656 goto out; 657 } 658 659 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 660 no_wait); 661 if (ret) { 662 if (ret != -ERESTARTSYS) 663 printk(KERN_ERR TTM_PFX "Buffer eviction failed\n"); 664 spin_lock(&glob->lru_lock); 665 if (evict_mem.mm_node) { 666 evict_mem.mm_node->private = NULL; 667 drm_mm_put_block(evict_mem.mm_node); 668 evict_mem.mm_node = NULL; 669 } 670 spin_unlock(&glob->lru_lock); 671 goto out; 672 } 673 bo->evicted = true; 674 out: 675 return ret; 676 } 677 678 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 679 uint32_t mem_type, 680 bool interruptible, bool no_wait) 681 { 682 struct ttm_bo_global *glob = bdev->glob; 683 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 684 struct ttm_buffer_object *bo; 685 int ret, put_count = 0; 686 687 spin_lock(&glob->lru_lock); 688 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru); 689 kref_get(&bo->list_kref); 690 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, false, 0); 691 if (likely(ret == 0)) 692 put_count = ttm_bo_del_from_lru(bo); 693 spin_unlock(&glob->lru_lock); 694 if (unlikely(ret != 0)) 695 return ret; 696 while (put_count--) 697 kref_put(&bo->list_kref, ttm_bo_ref_bug); 698 ret = ttm_bo_evict(bo, interruptible, no_wait); 699 ttm_bo_unreserve(bo); 700 kref_put(&bo->list_kref, ttm_bo_release_list); 701 return ret; 702 } 703 704 static int ttm_bo_man_get_node(struct ttm_buffer_object *bo, 705 struct ttm_mem_type_manager *man, 706 struct ttm_placement *placement, 707 struct ttm_mem_reg *mem, 708 struct drm_mm_node **node) 709 { 710 struct ttm_bo_global *glob = bo->glob; 711 unsigned long lpfn; 712 int ret; 713 714 lpfn = placement->lpfn; 715 if (!lpfn) 716 lpfn = man->size; 717 *node = NULL; 718 do { 719 ret = drm_mm_pre_get(&man->manager); 720 if (unlikely(ret)) 721 return ret; 722 723 spin_lock(&glob->lru_lock); 724 *node = drm_mm_search_free_in_range(&man->manager, 725 mem->num_pages, mem->page_alignment, 726 placement->fpfn, lpfn, 1); 727 if (unlikely(*node == NULL)) { 728 spin_unlock(&glob->lru_lock); 729 return 0; 730 } 731 *node = drm_mm_get_block_atomic_range(*node, mem->num_pages, 732 mem->page_alignment, 733 placement->fpfn, 734 lpfn); 735 spin_unlock(&glob->lru_lock); 736 } while (*node == NULL); 737 return 0; 738 } 739 740 /** 741 * Repeatedly evict memory from the LRU for @mem_type until we create enough 742 * space, or we've evicted everything and there isn't enough space. 743 */ 744 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 745 uint32_t mem_type, 746 struct ttm_placement *placement, 747 struct ttm_mem_reg *mem, 748 bool interruptible, bool no_wait) 749 { 750 struct ttm_bo_device *bdev = bo->bdev; 751 struct ttm_bo_global *glob = bdev->glob; 752 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 753 struct drm_mm_node *node; 754 int ret; 755 756 do { 757 ret = ttm_bo_man_get_node(bo, man, placement, mem, &node); 758 if (unlikely(ret != 0)) 759 return ret; 760 if (node) 761 break; 762 spin_lock(&glob->lru_lock); 763 if (list_empty(&man->lru)) { 764 spin_unlock(&glob->lru_lock); 765 break; 766 } 767 spin_unlock(&glob->lru_lock); 768 ret = ttm_mem_evict_first(bdev, mem_type, interruptible, 769 no_wait); 770 if (unlikely(ret != 0)) 771 return ret; 772 } while (1); 773 if (node == NULL) 774 return -ENOMEM; 775 mem->mm_node = node; 776 mem->mem_type = mem_type; 777 return 0; 778 } 779 780 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 781 uint32_t cur_placement, 782 uint32_t proposed_placement) 783 { 784 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 785 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 786 787 /** 788 * Keep current caching if possible. 789 */ 790 791 if ((cur_placement & caching) != 0) 792 result |= (cur_placement & caching); 793 else if ((man->default_caching & caching) != 0) 794 result |= man->default_caching; 795 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 796 result |= TTM_PL_FLAG_CACHED; 797 else if ((TTM_PL_FLAG_WC & caching) != 0) 798 result |= TTM_PL_FLAG_WC; 799 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 800 result |= TTM_PL_FLAG_UNCACHED; 801 802 return result; 803 } 804 805 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 806 bool disallow_fixed, 807 uint32_t mem_type, 808 uint32_t proposed_placement, 809 uint32_t *masked_placement) 810 { 811 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 812 813 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed) 814 return false; 815 816 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 817 return false; 818 819 if ((proposed_placement & man->available_caching) == 0) 820 return false; 821 822 cur_flags |= (proposed_placement & man->available_caching); 823 824 *masked_placement = cur_flags; 825 return true; 826 } 827 828 /** 829 * Creates space for memory region @mem according to its type. 830 * 831 * This function first searches for free space in compatible memory types in 832 * the priority order defined by the driver. If free space isn't found, then 833 * ttm_bo_mem_force_space is attempted in priority order to evict and find 834 * space. 835 */ 836 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 837 struct ttm_placement *placement, 838 struct ttm_mem_reg *mem, 839 bool interruptible, bool no_wait) 840 { 841 struct ttm_bo_device *bdev = bo->bdev; 842 struct ttm_mem_type_manager *man; 843 uint32_t mem_type = TTM_PL_SYSTEM; 844 uint32_t cur_flags = 0; 845 bool type_found = false; 846 bool type_ok = false; 847 bool has_erestartsys = false; 848 struct drm_mm_node *node = NULL; 849 int i, ret; 850 851 mem->mm_node = NULL; 852 for (i = 0; i <= placement->num_placement; ++i) { 853 ret = ttm_mem_type_from_flags(placement->placement[i], 854 &mem_type); 855 if (ret) 856 return ret; 857 man = &bdev->man[mem_type]; 858 859 type_ok = ttm_bo_mt_compatible(man, 860 bo->type == ttm_bo_type_user, 861 mem_type, 862 placement->placement[i], 863 &cur_flags); 864 865 if (!type_ok) 866 continue; 867 868 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 869 cur_flags); 870 /* 871 * Use the access and other non-mapping-related flag bits from 872 * the memory placement flags to the current flags 873 */ 874 ttm_flag_masked(&cur_flags, placement->placement[i], 875 ~TTM_PL_MASK_MEMTYPE); 876 877 if (mem_type == TTM_PL_SYSTEM) 878 break; 879 880 if (man->has_type && man->use_type) { 881 type_found = true; 882 ret = ttm_bo_man_get_node(bo, man, placement, mem, 883 &node); 884 if (unlikely(ret)) 885 return ret; 886 } 887 if (node) 888 break; 889 } 890 891 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) { 892 mem->mm_node = node; 893 mem->mem_type = mem_type; 894 mem->placement = cur_flags; 895 if (node) 896 node->private = bo; 897 return 0; 898 } 899 900 if (!type_found) 901 return -EINVAL; 902 903 for (i = 0; i <= placement->num_busy_placement; ++i) { 904 ret = ttm_mem_type_from_flags(placement->placement[i], 905 &mem_type); 906 if (ret) 907 return ret; 908 man = &bdev->man[mem_type]; 909 if (!man->has_type) 910 continue; 911 if (!ttm_bo_mt_compatible(man, 912 bo->type == ttm_bo_type_user, 913 mem_type, 914 placement->placement[i], 915 &cur_flags)) 916 continue; 917 918 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 919 cur_flags); 920 /* 921 * Use the access and other non-mapping-related flag bits from 922 * the memory placement flags to the current flags 923 */ 924 ttm_flag_masked(&cur_flags, placement->placement[i], 925 ~TTM_PL_MASK_MEMTYPE); 926 927 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 928 interruptible, no_wait); 929 if (ret == 0 && mem->mm_node) { 930 mem->placement = cur_flags; 931 mem->mm_node->private = bo; 932 return 0; 933 } 934 if (ret == -ERESTARTSYS) 935 has_erestartsys = true; 936 } 937 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 938 return ret; 939 } 940 EXPORT_SYMBOL(ttm_bo_mem_space); 941 942 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait) 943 { 944 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait) 945 return -EBUSY; 946 947 return wait_event_interruptible(bo->event_queue, 948 atomic_read(&bo->cpu_writers) == 0); 949 } 950 EXPORT_SYMBOL(ttm_bo_wait_cpu); 951 952 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 953 struct ttm_placement *placement, 954 bool interruptible, bool no_wait) 955 { 956 struct ttm_bo_global *glob = bo->glob; 957 int ret = 0; 958 struct ttm_mem_reg mem; 959 960 BUG_ON(!atomic_read(&bo->reserved)); 961 962 /* 963 * FIXME: It's possible to pipeline buffer moves. 964 * Have the driver move function wait for idle when necessary, 965 * instead of doing it here. 966 */ 967 spin_lock(&bo->lock); 968 ret = ttm_bo_wait(bo, false, interruptible, no_wait); 969 spin_unlock(&bo->lock); 970 if (ret) 971 return ret; 972 mem.num_pages = bo->num_pages; 973 mem.size = mem.num_pages << PAGE_SHIFT; 974 mem.page_alignment = bo->mem.page_alignment; 975 /* 976 * Determine where to move the buffer. 977 */ 978 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait); 979 if (ret) 980 goto out_unlock; 981 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait); 982 out_unlock: 983 if (ret && mem.mm_node) { 984 spin_lock(&glob->lru_lock); 985 mem.mm_node->private = NULL; 986 drm_mm_put_block(mem.mm_node); 987 spin_unlock(&glob->lru_lock); 988 } 989 return ret; 990 } 991 992 static int ttm_bo_mem_compat(struct ttm_placement *placement, 993 struct ttm_mem_reg *mem) 994 { 995 int i; 996 997 for (i = 0; i < placement->num_placement; i++) { 998 if ((placement->placement[i] & mem->placement & 999 TTM_PL_MASK_CACHING) && 1000 (placement->placement[i] & mem->placement & 1001 TTM_PL_MASK_MEM)) 1002 return i; 1003 } 1004 return -1; 1005 } 1006 1007 int ttm_bo_validate(struct ttm_buffer_object *bo, 1008 struct ttm_placement *placement, 1009 bool interruptible, bool no_wait) 1010 { 1011 int ret; 1012 1013 BUG_ON(!atomic_read(&bo->reserved)); 1014 /* Check that range is valid */ 1015 if (placement->lpfn || placement->fpfn) 1016 if (placement->fpfn > placement->lpfn || 1017 (placement->lpfn - placement->fpfn) < bo->num_pages) 1018 return -EINVAL; 1019 /* 1020 * Check whether we need to move buffer. 1021 */ 1022 ret = ttm_bo_mem_compat(placement, &bo->mem); 1023 if (ret < 0) { 1024 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait); 1025 if (ret) 1026 return ret; 1027 } else { 1028 /* 1029 * Use the access and other non-mapping-related flag bits from 1030 * the compatible memory placement flags to the active flags 1031 */ 1032 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1033 ~TTM_PL_MASK_MEMTYPE); 1034 } 1035 /* 1036 * We might need to add a TTM. 1037 */ 1038 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1039 ret = ttm_bo_add_ttm(bo, true); 1040 if (ret) 1041 return ret; 1042 } 1043 return 0; 1044 } 1045 EXPORT_SYMBOL(ttm_bo_validate); 1046 1047 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1048 struct ttm_placement *placement) 1049 { 1050 int i; 1051 1052 if (placement->fpfn || placement->lpfn) { 1053 if (bo->mem.num_pages > (placement->lpfn - placement->fpfn)) { 1054 printk(KERN_ERR TTM_PFX "Page number range to small " 1055 "Need %lu pages, range is [%u, %u]\n", 1056 bo->mem.num_pages, placement->fpfn, 1057 placement->lpfn); 1058 return -EINVAL; 1059 } 1060 } 1061 for (i = 0; i < placement->num_placement; i++) { 1062 if (!capable(CAP_SYS_ADMIN)) { 1063 if (placement->placement[i] & TTM_PL_FLAG_NO_EVICT) { 1064 printk(KERN_ERR TTM_PFX "Need to be root to " 1065 "modify NO_EVICT status.\n"); 1066 return -EINVAL; 1067 } 1068 } 1069 } 1070 for (i = 0; i < placement->num_busy_placement; i++) { 1071 if (!capable(CAP_SYS_ADMIN)) { 1072 if (placement->busy_placement[i] & TTM_PL_FLAG_NO_EVICT) { 1073 printk(KERN_ERR TTM_PFX "Need to be root to " 1074 "modify NO_EVICT status.\n"); 1075 return -EINVAL; 1076 } 1077 } 1078 } 1079 return 0; 1080 } 1081 1082 int ttm_bo_init(struct ttm_bo_device *bdev, 1083 struct ttm_buffer_object *bo, 1084 unsigned long size, 1085 enum ttm_bo_type type, 1086 struct ttm_placement *placement, 1087 uint32_t page_alignment, 1088 unsigned long buffer_start, 1089 bool interruptible, 1090 struct file *persistant_swap_storage, 1091 size_t acc_size, 1092 void (*destroy) (struct ttm_buffer_object *)) 1093 { 1094 int ret = 0; 1095 unsigned long num_pages; 1096 1097 size += buffer_start & ~PAGE_MASK; 1098 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1099 if (num_pages == 0) { 1100 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n"); 1101 return -EINVAL; 1102 } 1103 bo->destroy = destroy; 1104 1105 spin_lock_init(&bo->lock); 1106 kref_init(&bo->kref); 1107 kref_init(&bo->list_kref); 1108 atomic_set(&bo->cpu_writers, 0); 1109 atomic_set(&bo->reserved, 1); 1110 init_waitqueue_head(&bo->event_queue); 1111 INIT_LIST_HEAD(&bo->lru); 1112 INIT_LIST_HEAD(&bo->ddestroy); 1113 INIT_LIST_HEAD(&bo->swap); 1114 bo->bdev = bdev; 1115 bo->glob = bdev->glob; 1116 bo->type = type; 1117 bo->num_pages = num_pages; 1118 bo->mem.mem_type = TTM_PL_SYSTEM; 1119 bo->mem.num_pages = bo->num_pages; 1120 bo->mem.mm_node = NULL; 1121 bo->mem.page_alignment = page_alignment; 1122 bo->buffer_start = buffer_start & PAGE_MASK; 1123 bo->priv_flags = 0; 1124 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1125 bo->seq_valid = false; 1126 bo->persistant_swap_storage = persistant_swap_storage; 1127 bo->acc_size = acc_size; 1128 atomic_inc(&bo->glob->bo_count); 1129 1130 ret = ttm_bo_check_placement(bo, placement); 1131 if (unlikely(ret != 0)) 1132 goto out_err; 1133 1134 /* 1135 * For ttm_bo_type_device buffers, allocate 1136 * address space from the device. 1137 */ 1138 if (bo->type == ttm_bo_type_device) { 1139 ret = ttm_bo_setup_vm(bo); 1140 if (ret) 1141 goto out_err; 1142 } 1143 1144 ret = ttm_bo_validate(bo, placement, interruptible, false); 1145 if (ret) 1146 goto out_err; 1147 1148 ttm_bo_unreserve(bo); 1149 return 0; 1150 1151 out_err: 1152 ttm_bo_unreserve(bo); 1153 ttm_bo_unref(&bo); 1154 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(ttm_bo_init); 1158 1159 static inline size_t ttm_bo_size(struct ttm_bo_global *glob, 1160 unsigned long num_pages) 1161 { 1162 size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) & 1163 PAGE_MASK; 1164 1165 return glob->ttm_bo_size + 2 * page_array_size; 1166 } 1167 1168 int ttm_bo_create(struct ttm_bo_device *bdev, 1169 unsigned long size, 1170 enum ttm_bo_type type, 1171 struct ttm_placement *placement, 1172 uint32_t page_alignment, 1173 unsigned long buffer_start, 1174 bool interruptible, 1175 struct file *persistant_swap_storage, 1176 struct ttm_buffer_object **p_bo) 1177 { 1178 struct ttm_buffer_object *bo; 1179 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1180 int ret; 1181 1182 size_t acc_size = 1183 ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1184 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1185 if (unlikely(ret != 0)) 1186 return ret; 1187 1188 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1189 1190 if (unlikely(bo == NULL)) { 1191 ttm_mem_global_free(mem_glob, acc_size); 1192 return -ENOMEM; 1193 } 1194 1195 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1196 buffer_start, interruptible, 1197 persistant_swap_storage, acc_size, NULL); 1198 if (likely(ret == 0)) 1199 *p_bo = bo; 1200 1201 return ret; 1202 } 1203 1204 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1205 unsigned mem_type, bool allow_errors) 1206 { 1207 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1208 struct ttm_bo_global *glob = bdev->glob; 1209 int ret; 1210 1211 /* 1212 * Can't use standard list traversal since we're unlocking. 1213 */ 1214 1215 spin_lock(&glob->lru_lock); 1216 while (!list_empty(&man->lru)) { 1217 spin_unlock(&glob->lru_lock); 1218 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1219 if (ret) { 1220 if (allow_errors) { 1221 return ret; 1222 } else { 1223 printk(KERN_ERR TTM_PFX 1224 "Cleanup eviction failed\n"); 1225 } 1226 } 1227 spin_lock(&glob->lru_lock); 1228 } 1229 spin_unlock(&glob->lru_lock); 1230 return 0; 1231 } 1232 1233 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1234 { 1235 struct ttm_bo_global *glob = bdev->glob; 1236 struct ttm_mem_type_manager *man; 1237 int ret = -EINVAL; 1238 1239 if (mem_type >= TTM_NUM_MEM_TYPES) { 1240 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type); 1241 return ret; 1242 } 1243 man = &bdev->man[mem_type]; 1244 1245 if (!man->has_type) { 1246 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized " 1247 "memory manager type %u\n", mem_type); 1248 return ret; 1249 } 1250 1251 man->use_type = false; 1252 man->has_type = false; 1253 1254 ret = 0; 1255 if (mem_type > 0) { 1256 ttm_bo_force_list_clean(bdev, mem_type, false); 1257 1258 spin_lock(&glob->lru_lock); 1259 if (drm_mm_clean(&man->manager)) 1260 drm_mm_takedown(&man->manager); 1261 else 1262 ret = -EBUSY; 1263 1264 spin_unlock(&glob->lru_lock); 1265 } 1266 1267 return ret; 1268 } 1269 EXPORT_SYMBOL(ttm_bo_clean_mm); 1270 1271 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1272 { 1273 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1274 1275 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1276 printk(KERN_ERR TTM_PFX 1277 "Illegal memory manager memory type %u.\n", 1278 mem_type); 1279 return -EINVAL; 1280 } 1281 1282 if (!man->has_type) { 1283 printk(KERN_ERR TTM_PFX 1284 "Memory type %u has not been initialized.\n", 1285 mem_type); 1286 return 0; 1287 } 1288 1289 return ttm_bo_force_list_clean(bdev, mem_type, true); 1290 } 1291 EXPORT_SYMBOL(ttm_bo_evict_mm); 1292 1293 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1294 unsigned long p_size) 1295 { 1296 int ret = -EINVAL; 1297 struct ttm_mem_type_manager *man; 1298 1299 if (type >= TTM_NUM_MEM_TYPES) { 1300 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type); 1301 return ret; 1302 } 1303 1304 man = &bdev->man[type]; 1305 if (man->has_type) { 1306 printk(KERN_ERR TTM_PFX 1307 "Memory manager already initialized for type %d\n", 1308 type); 1309 return ret; 1310 } 1311 1312 ret = bdev->driver->init_mem_type(bdev, type, man); 1313 if (ret) 1314 return ret; 1315 1316 ret = 0; 1317 if (type != TTM_PL_SYSTEM) { 1318 if (!p_size) { 1319 printk(KERN_ERR TTM_PFX 1320 "Zero size memory manager type %d\n", 1321 type); 1322 return ret; 1323 } 1324 ret = drm_mm_init(&man->manager, 0, p_size); 1325 if (ret) 1326 return ret; 1327 } 1328 man->has_type = true; 1329 man->use_type = true; 1330 man->size = p_size; 1331 1332 INIT_LIST_HEAD(&man->lru); 1333 1334 return 0; 1335 } 1336 EXPORT_SYMBOL(ttm_bo_init_mm); 1337 1338 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1339 { 1340 struct ttm_bo_global *glob = 1341 container_of(kobj, struct ttm_bo_global, kobj); 1342 1343 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1344 __free_page(glob->dummy_read_page); 1345 kfree(glob); 1346 } 1347 1348 void ttm_bo_global_release(struct ttm_global_reference *ref) 1349 { 1350 struct ttm_bo_global *glob = ref->object; 1351 1352 kobject_del(&glob->kobj); 1353 kobject_put(&glob->kobj); 1354 } 1355 EXPORT_SYMBOL(ttm_bo_global_release); 1356 1357 int ttm_bo_global_init(struct ttm_global_reference *ref) 1358 { 1359 struct ttm_bo_global_ref *bo_ref = 1360 container_of(ref, struct ttm_bo_global_ref, ref); 1361 struct ttm_bo_global *glob = ref->object; 1362 int ret; 1363 1364 mutex_init(&glob->device_list_mutex); 1365 spin_lock_init(&glob->lru_lock); 1366 glob->mem_glob = bo_ref->mem_glob; 1367 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1368 1369 if (unlikely(glob->dummy_read_page == NULL)) { 1370 ret = -ENOMEM; 1371 goto out_no_drp; 1372 } 1373 1374 INIT_LIST_HEAD(&glob->swap_lru); 1375 INIT_LIST_HEAD(&glob->device_list); 1376 1377 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1378 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1379 if (unlikely(ret != 0)) { 1380 printk(KERN_ERR TTM_PFX 1381 "Could not register buffer object swapout.\n"); 1382 goto out_no_shrink; 1383 } 1384 1385 glob->ttm_bo_extra_size = 1386 ttm_round_pot(sizeof(struct ttm_tt)) + 1387 ttm_round_pot(sizeof(struct ttm_backend)); 1388 1389 glob->ttm_bo_size = glob->ttm_bo_extra_size + 1390 ttm_round_pot(sizeof(struct ttm_buffer_object)); 1391 1392 atomic_set(&glob->bo_count, 0); 1393 1394 kobject_init(&glob->kobj, &ttm_bo_glob_kobj_type); 1395 ret = kobject_add(&glob->kobj, ttm_get_kobj(), "buffer_objects"); 1396 if (unlikely(ret != 0)) 1397 kobject_put(&glob->kobj); 1398 return ret; 1399 out_no_shrink: 1400 __free_page(glob->dummy_read_page); 1401 out_no_drp: 1402 kfree(glob); 1403 return ret; 1404 } 1405 EXPORT_SYMBOL(ttm_bo_global_init); 1406 1407 1408 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1409 { 1410 int ret = 0; 1411 unsigned i = TTM_NUM_MEM_TYPES; 1412 struct ttm_mem_type_manager *man; 1413 struct ttm_bo_global *glob = bdev->glob; 1414 1415 while (i--) { 1416 man = &bdev->man[i]; 1417 if (man->has_type) { 1418 man->use_type = false; 1419 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1420 ret = -EBUSY; 1421 printk(KERN_ERR TTM_PFX 1422 "DRM memory manager type %d " 1423 "is not clean.\n", i); 1424 } 1425 man->has_type = false; 1426 } 1427 } 1428 1429 mutex_lock(&glob->device_list_mutex); 1430 list_del(&bdev->device_list); 1431 mutex_unlock(&glob->device_list_mutex); 1432 1433 if (!cancel_delayed_work(&bdev->wq)) 1434 flush_scheduled_work(); 1435 1436 while (ttm_bo_delayed_delete(bdev, true)) 1437 ; 1438 1439 spin_lock(&glob->lru_lock); 1440 if (list_empty(&bdev->ddestroy)) 1441 TTM_DEBUG("Delayed destroy list was clean\n"); 1442 1443 if (list_empty(&bdev->man[0].lru)) 1444 TTM_DEBUG("Swap list was clean\n"); 1445 spin_unlock(&glob->lru_lock); 1446 1447 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1448 write_lock(&bdev->vm_lock); 1449 drm_mm_takedown(&bdev->addr_space_mm); 1450 write_unlock(&bdev->vm_lock); 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(ttm_bo_device_release); 1455 1456 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1457 struct ttm_bo_global *glob, 1458 struct ttm_bo_driver *driver, 1459 uint64_t file_page_offset, 1460 bool need_dma32) 1461 { 1462 int ret = -EINVAL; 1463 1464 rwlock_init(&bdev->vm_lock); 1465 bdev->driver = driver; 1466 1467 memset(bdev->man, 0, sizeof(bdev->man)); 1468 1469 /* 1470 * Initialize the system memory buffer type. 1471 * Other types need to be driver / IOCTL initialized. 1472 */ 1473 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1474 if (unlikely(ret != 0)) 1475 goto out_no_sys; 1476 1477 bdev->addr_space_rb = RB_ROOT; 1478 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1479 if (unlikely(ret != 0)) 1480 goto out_no_addr_mm; 1481 1482 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1483 bdev->nice_mode = true; 1484 INIT_LIST_HEAD(&bdev->ddestroy); 1485 bdev->dev_mapping = NULL; 1486 bdev->glob = glob; 1487 bdev->need_dma32 = need_dma32; 1488 1489 mutex_lock(&glob->device_list_mutex); 1490 list_add_tail(&bdev->device_list, &glob->device_list); 1491 mutex_unlock(&glob->device_list_mutex); 1492 1493 return 0; 1494 out_no_addr_mm: 1495 ttm_bo_clean_mm(bdev, 0); 1496 out_no_sys: 1497 return ret; 1498 } 1499 EXPORT_SYMBOL(ttm_bo_device_init); 1500 1501 /* 1502 * buffer object vm functions. 1503 */ 1504 1505 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1506 { 1507 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1508 1509 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1510 if (mem->mem_type == TTM_PL_SYSTEM) 1511 return false; 1512 1513 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1514 return false; 1515 1516 if (mem->placement & TTM_PL_FLAG_CACHED) 1517 return false; 1518 } 1519 return true; 1520 } 1521 1522 int ttm_bo_pci_offset(struct ttm_bo_device *bdev, 1523 struct ttm_mem_reg *mem, 1524 unsigned long *bus_base, 1525 unsigned long *bus_offset, unsigned long *bus_size) 1526 { 1527 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1528 1529 *bus_size = 0; 1530 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 1531 return -EINVAL; 1532 1533 if (ttm_mem_reg_is_pci(bdev, mem)) { 1534 *bus_offset = mem->mm_node->start << PAGE_SHIFT; 1535 *bus_size = mem->num_pages << PAGE_SHIFT; 1536 *bus_base = man->io_offset; 1537 } 1538 1539 return 0; 1540 } 1541 1542 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1543 { 1544 struct ttm_bo_device *bdev = bo->bdev; 1545 loff_t offset = (loff_t) bo->addr_space_offset; 1546 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; 1547 1548 if (!bdev->dev_mapping) 1549 return; 1550 1551 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); 1552 } 1553 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1554 1555 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1556 { 1557 struct ttm_bo_device *bdev = bo->bdev; 1558 struct rb_node **cur = &bdev->addr_space_rb.rb_node; 1559 struct rb_node *parent = NULL; 1560 struct ttm_buffer_object *cur_bo; 1561 unsigned long offset = bo->vm_node->start; 1562 unsigned long cur_offset; 1563 1564 while (*cur) { 1565 parent = *cur; 1566 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); 1567 cur_offset = cur_bo->vm_node->start; 1568 if (offset < cur_offset) 1569 cur = &parent->rb_left; 1570 else if (offset > cur_offset) 1571 cur = &parent->rb_right; 1572 else 1573 BUG(); 1574 } 1575 1576 rb_link_node(&bo->vm_rb, parent, cur); 1577 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); 1578 } 1579 1580 /** 1581 * ttm_bo_setup_vm: 1582 * 1583 * @bo: the buffer to allocate address space for 1584 * 1585 * Allocate address space in the drm device so that applications 1586 * can mmap the buffer and access the contents. This only 1587 * applies to ttm_bo_type_device objects as others are not 1588 * placed in the drm device address space. 1589 */ 1590 1591 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1592 { 1593 struct ttm_bo_device *bdev = bo->bdev; 1594 int ret; 1595 1596 retry_pre_get: 1597 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1598 if (unlikely(ret != 0)) 1599 return ret; 1600 1601 write_lock(&bdev->vm_lock); 1602 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1603 bo->mem.num_pages, 0, 0); 1604 1605 if (unlikely(bo->vm_node == NULL)) { 1606 ret = -ENOMEM; 1607 goto out_unlock; 1608 } 1609 1610 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1611 bo->mem.num_pages, 0); 1612 1613 if (unlikely(bo->vm_node == NULL)) { 1614 write_unlock(&bdev->vm_lock); 1615 goto retry_pre_get; 1616 } 1617 1618 ttm_bo_vm_insert_rb(bo); 1619 write_unlock(&bdev->vm_lock); 1620 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1621 1622 return 0; 1623 out_unlock: 1624 write_unlock(&bdev->vm_lock); 1625 return ret; 1626 } 1627 1628 int ttm_bo_wait(struct ttm_buffer_object *bo, 1629 bool lazy, bool interruptible, bool no_wait) 1630 { 1631 struct ttm_bo_driver *driver = bo->bdev->driver; 1632 void *sync_obj; 1633 void *sync_obj_arg; 1634 int ret = 0; 1635 1636 if (likely(bo->sync_obj == NULL)) 1637 return 0; 1638 1639 while (bo->sync_obj) { 1640 1641 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) { 1642 void *tmp_obj = bo->sync_obj; 1643 bo->sync_obj = NULL; 1644 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1645 spin_unlock(&bo->lock); 1646 driver->sync_obj_unref(&tmp_obj); 1647 spin_lock(&bo->lock); 1648 continue; 1649 } 1650 1651 if (no_wait) 1652 return -EBUSY; 1653 1654 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1655 sync_obj_arg = bo->sync_obj_arg; 1656 spin_unlock(&bo->lock); 1657 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg, 1658 lazy, interruptible); 1659 if (unlikely(ret != 0)) { 1660 driver->sync_obj_unref(&sync_obj); 1661 spin_lock(&bo->lock); 1662 return ret; 1663 } 1664 spin_lock(&bo->lock); 1665 if (likely(bo->sync_obj == sync_obj && 1666 bo->sync_obj_arg == sync_obj_arg)) { 1667 void *tmp_obj = bo->sync_obj; 1668 bo->sync_obj = NULL; 1669 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1670 &bo->priv_flags); 1671 spin_unlock(&bo->lock); 1672 driver->sync_obj_unref(&sync_obj); 1673 driver->sync_obj_unref(&tmp_obj); 1674 spin_lock(&bo->lock); 1675 } else { 1676 spin_unlock(&bo->lock); 1677 driver->sync_obj_unref(&sync_obj); 1678 spin_lock(&bo->lock); 1679 } 1680 } 1681 return 0; 1682 } 1683 EXPORT_SYMBOL(ttm_bo_wait); 1684 1685 void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo) 1686 { 1687 atomic_set(&bo->reserved, 0); 1688 wake_up_all(&bo->event_queue); 1689 } 1690 1691 int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible, 1692 bool no_wait) 1693 { 1694 int ret; 1695 1696 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { 1697 if (no_wait) 1698 return -EBUSY; 1699 else if (interruptible) { 1700 ret = wait_event_interruptible 1701 (bo->event_queue, atomic_read(&bo->reserved) == 0); 1702 if (unlikely(ret != 0)) 1703 return ret; 1704 } else { 1705 wait_event(bo->event_queue, 1706 atomic_read(&bo->reserved) == 0); 1707 } 1708 } 1709 return 0; 1710 } 1711 1712 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1713 { 1714 int ret = 0; 1715 1716 /* 1717 * Using ttm_bo_reserve instead of ttm_bo_block_reservation 1718 * makes sure the lru lists are updated. 1719 */ 1720 1721 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1722 if (unlikely(ret != 0)) 1723 return ret; 1724 spin_lock(&bo->lock); 1725 ret = ttm_bo_wait(bo, false, true, no_wait); 1726 spin_unlock(&bo->lock); 1727 if (likely(ret == 0)) 1728 atomic_inc(&bo->cpu_writers); 1729 ttm_bo_unreserve(bo); 1730 return ret; 1731 } 1732 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1733 1734 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1735 { 1736 if (atomic_dec_and_test(&bo->cpu_writers)) 1737 wake_up_all(&bo->event_queue); 1738 } 1739 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1740 1741 /** 1742 * A buffer object shrink method that tries to swap out the first 1743 * buffer object on the bo_global::swap_lru list. 1744 */ 1745 1746 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1747 { 1748 struct ttm_bo_global *glob = 1749 container_of(shrink, struct ttm_bo_global, shrink); 1750 struct ttm_buffer_object *bo; 1751 int ret = -EBUSY; 1752 int put_count; 1753 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1754 1755 spin_lock(&glob->lru_lock); 1756 while (ret == -EBUSY) { 1757 if (unlikely(list_empty(&glob->swap_lru))) { 1758 spin_unlock(&glob->lru_lock); 1759 return -EBUSY; 1760 } 1761 1762 bo = list_first_entry(&glob->swap_lru, 1763 struct ttm_buffer_object, swap); 1764 kref_get(&bo->list_kref); 1765 1766 /** 1767 * Reserve buffer. Since we unlock while sleeping, we need 1768 * to re-check that nobody removed us from the swap-list while 1769 * we slept. 1770 */ 1771 1772 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 1773 if (unlikely(ret == -EBUSY)) { 1774 spin_unlock(&glob->lru_lock); 1775 ttm_bo_wait_unreserved(bo, false); 1776 kref_put(&bo->list_kref, ttm_bo_release_list); 1777 spin_lock(&glob->lru_lock); 1778 } 1779 } 1780 1781 BUG_ON(ret != 0); 1782 put_count = ttm_bo_del_from_lru(bo); 1783 spin_unlock(&glob->lru_lock); 1784 1785 while (put_count--) 1786 kref_put(&bo->list_kref, ttm_bo_ref_bug); 1787 1788 /** 1789 * Wait for GPU, then move to system cached. 1790 */ 1791 1792 spin_lock(&bo->lock); 1793 ret = ttm_bo_wait(bo, false, false, false); 1794 spin_unlock(&bo->lock); 1795 1796 if (unlikely(ret != 0)) 1797 goto out; 1798 1799 if ((bo->mem.placement & swap_placement) != swap_placement) { 1800 struct ttm_mem_reg evict_mem; 1801 1802 evict_mem = bo->mem; 1803 evict_mem.mm_node = NULL; 1804 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1805 evict_mem.mem_type = TTM_PL_SYSTEM; 1806 1807 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1808 false, false); 1809 if (unlikely(ret != 0)) 1810 goto out; 1811 } 1812 1813 ttm_bo_unmap_virtual(bo); 1814 1815 /** 1816 * Swap out. Buffer will be swapped in again as soon as 1817 * anyone tries to access a ttm page. 1818 */ 1819 1820 ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage); 1821 out: 1822 1823 /** 1824 * 1825 * Unreserve without putting on LRU to avoid swapping out an 1826 * already swapped buffer. 1827 */ 1828 1829 atomic_set(&bo->reserved, 0); 1830 wake_up_all(&bo->event_queue); 1831 kref_put(&bo->list_kref, ttm_bo_release_list); 1832 return ret; 1833 } 1834 1835 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1836 { 1837 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1838 ; 1839 } 1840