xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47 
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 	int i;
60 
61 	for (i = 0; i <= TTM_PL_PRIV5; i++)
62 		if (flags & (1 << i)) {
63 			*mem_type = i;
64 			return 0;
65 		}
66 	return -EINVAL;
67 }
68 
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72 
73 	pr_err("    has_type: %d\n", man->has_type);
74 	pr_err("    use_type: %d\n", man->use_type);
75 	pr_err("    flags: 0x%08X\n", man->flags);
76 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77 	pr_err("    size: %llu\n", man->size);
78 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
79 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
91 	       bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		pr_err("  placement[%d]=0x%08X (%d)\n",
98 		       i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       !ttm_bo_is_reserved(bo));
166 	} else {
167 		wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!ttm_bo_is_reserved(bo));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_read(&bo->reserved) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	atomic_set(&bo->reserved, 1);
253 	if (use_sequence) {
254 		/**
255 		 * Wake up waiters that may need to recheck for deadlock,
256 		 * if we decreased the sequence number.
257 		 */
258 		if (unlikely((bo->val_seq - sequence < (1 << 31))
259 			     || !bo->seq_valid))
260 			wake_up_all(&bo->event_queue);
261 
262 		bo->val_seq = sequence;
263 		bo->seq_valid = true;
264 	} else {
265 		bo->seq_valid = false;
266 	}
267 
268 	return 0;
269 }
270 EXPORT_SYMBOL(ttm_bo_reserve);
271 
272 static void ttm_bo_ref_bug(struct kref *list_kref)
273 {
274 	BUG();
275 }
276 
277 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
278 			 bool never_free)
279 {
280 	kref_sub(&bo->list_kref, count,
281 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
282 }
283 
284 int ttm_bo_reserve(struct ttm_buffer_object *bo,
285 		   bool interruptible,
286 		   bool no_wait, bool use_sequence, uint32_t sequence)
287 {
288 	struct ttm_bo_global *glob = bo->glob;
289 	int put_count = 0;
290 	int ret;
291 
292 	spin_lock(&glob->lru_lock);
293 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
294 				    sequence);
295 	if (likely(ret == 0))
296 		put_count = ttm_bo_del_from_lru(bo);
297 	spin_unlock(&glob->lru_lock);
298 
299 	ttm_bo_list_ref_sub(bo, put_count, true);
300 
301 	return ret;
302 }
303 
304 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
305 {
306 	ttm_bo_add_to_lru(bo);
307 	atomic_set(&bo->reserved, 0);
308 	wake_up_all(&bo->event_queue);
309 }
310 
311 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
312 {
313 	struct ttm_bo_global *glob = bo->glob;
314 
315 	spin_lock(&glob->lru_lock);
316 	ttm_bo_unreserve_locked(bo);
317 	spin_unlock(&glob->lru_lock);
318 }
319 EXPORT_SYMBOL(ttm_bo_unreserve);
320 
321 /*
322  * Call bo->mutex locked.
323  */
324 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
325 {
326 	struct ttm_bo_device *bdev = bo->bdev;
327 	struct ttm_bo_global *glob = bo->glob;
328 	int ret = 0;
329 	uint32_t page_flags = 0;
330 
331 	TTM_ASSERT_LOCKED(&bo->mutex);
332 	bo->ttm = NULL;
333 
334 	if (bdev->need_dma32)
335 		page_flags |= TTM_PAGE_FLAG_DMA32;
336 
337 	switch (bo->type) {
338 	case ttm_bo_type_device:
339 		if (zero_alloc)
340 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
341 	case ttm_bo_type_kernel:
342 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
343 						      page_flags, glob->dummy_read_page);
344 		if (unlikely(bo->ttm == NULL))
345 			ret = -ENOMEM;
346 		break;
347 	case ttm_bo_type_sg:
348 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
349 						      page_flags | TTM_PAGE_FLAG_SG,
350 						      glob->dummy_read_page);
351 		if (unlikely(bo->ttm == NULL)) {
352 			ret = -ENOMEM;
353 			break;
354 		}
355 		bo->ttm->sg = bo->sg;
356 		break;
357 	default:
358 		pr_err("Illegal buffer object type\n");
359 		ret = -EINVAL;
360 		break;
361 	}
362 
363 	return ret;
364 }
365 
366 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
367 				  struct ttm_mem_reg *mem,
368 				  bool evict, bool interruptible,
369 				  bool no_wait_gpu)
370 {
371 	struct ttm_bo_device *bdev = bo->bdev;
372 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
373 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
374 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
375 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
376 	int ret = 0;
377 
378 	if (old_is_pci || new_is_pci ||
379 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
380 		ret = ttm_mem_io_lock(old_man, true);
381 		if (unlikely(ret != 0))
382 			goto out_err;
383 		ttm_bo_unmap_virtual_locked(bo);
384 		ttm_mem_io_unlock(old_man);
385 	}
386 
387 	/*
388 	 * Create and bind a ttm if required.
389 	 */
390 
391 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
392 		if (bo->ttm == NULL) {
393 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
394 			ret = ttm_bo_add_ttm(bo, zero);
395 			if (ret)
396 				goto out_err;
397 		}
398 
399 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
400 		if (ret)
401 			goto out_err;
402 
403 		if (mem->mem_type != TTM_PL_SYSTEM) {
404 			ret = ttm_tt_bind(bo->ttm, mem);
405 			if (ret)
406 				goto out_err;
407 		}
408 
409 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
410 			if (bdev->driver->move_notify)
411 				bdev->driver->move_notify(bo, mem);
412 			bo->mem = *mem;
413 			mem->mm_node = NULL;
414 			goto moved;
415 		}
416 	}
417 
418 	if (bdev->driver->move_notify)
419 		bdev->driver->move_notify(bo, mem);
420 
421 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
422 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
423 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
424 	else if (bdev->driver->move)
425 		ret = bdev->driver->move(bo, evict, interruptible,
426 					 no_wait_gpu, mem);
427 	else
428 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
429 
430 	if (ret) {
431 		if (bdev->driver->move_notify) {
432 			struct ttm_mem_reg tmp_mem = *mem;
433 			*mem = bo->mem;
434 			bo->mem = tmp_mem;
435 			bdev->driver->move_notify(bo, mem);
436 			bo->mem = *mem;
437 		}
438 
439 		goto out_err;
440 	}
441 
442 moved:
443 	if (bo->evicted) {
444 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
445 		if (ret)
446 			pr_err("Can not flush read caches\n");
447 		bo->evicted = false;
448 	}
449 
450 	if (bo->mem.mm_node) {
451 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
452 		    bdev->man[bo->mem.mem_type].gpu_offset;
453 		bo->cur_placement = bo->mem.placement;
454 	} else
455 		bo->offset = 0;
456 
457 	return 0;
458 
459 out_err:
460 	new_man = &bdev->man[bo->mem.mem_type];
461 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
462 		ttm_tt_unbind(bo->ttm);
463 		ttm_tt_destroy(bo->ttm);
464 		bo->ttm = NULL;
465 	}
466 
467 	return ret;
468 }
469 
470 /**
471  * Call bo::reserved.
472  * Will release GPU memory type usage on destruction.
473  * This is the place to put in driver specific hooks to release
474  * driver private resources.
475  * Will release the bo::reserved lock.
476  */
477 
478 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
479 {
480 	if (bo->bdev->driver->move_notify)
481 		bo->bdev->driver->move_notify(bo, NULL);
482 
483 	if (bo->ttm) {
484 		ttm_tt_unbind(bo->ttm);
485 		ttm_tt_destroy(bo->ttm);
486 		bo->ttm = NULL;
487 	}
488 	ttm_bo_mem_put(bo, &bo->mem);
489 
490 	atomic_set(&bo->reserved, 0);
491 	wake_up_all(&bo->event_queue);
492 
493 	/*
494 	 * Since the final reference to this bo may not be dropped by
495 	 * the current task we have to put a memory barrier here to make
496 	 * sure the changes done in this function are always visible.
497 	 *
498 	 * This function only needs protection against the final kref_put.
499 	 */
500 	smp_mb__before_atomic_dec();
501 }
502 
503 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
504 {
505 	struct ttm_bo_device *bdev = bo->bdev;
506 	struct ttm_bo_global *glob = bo->glob;
507 	struct ttm_bo_driver *driver = bdev->driver;
508 	void *sync_obj = NULL;
509 	int put_count;
510 	int ret;
511 
512 	spin_lock(&glob->lru_lock);
513 	ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
514 
515 	spin_lock(&bdev->fence_lock);
516 	(void) ttm_bo_wait(bo, false, false, true);
517 	if (!ret && !bo->sync_obj) {
518 		spin_unlock(&bdev->fence_lock);
519 		put_count = ttm_bo_del_from_lru(bo);
520 
521 		spin_unlock(&glob->lru_lock);
522 		ttm_bo_cleanup_memtype_use(bo);
523 
524 		ttm_bo_list_ref_sub(bo, put_count, true);
525 
526 		return;
527 	}
528 	if (bo->sync_obj)
529 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
530 	spin_unlock(&bdev->fence_lock);
531 
532 	if (!ret) {
533 		atomic_set(&bo->reserved, 0);
534 		wake_up_all(&bo->event_queue);
535 	}
536 
537 	kref_get(&bo->list_kref);
538 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
539 	spin_unlock(&glob->lru_lock);
540 
541 	if (sync_obj) {
542 		driver->sync_obj_flush(sync_obj);
543 		driver->sync_obj_unref(&sync_obj);
544 	}
545 	schedule_delayed_work(&bdev->wq,
546 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
547 }
548 
549 /**
550  * function ttm_bo_cleanup_refs_and_unlock
551  * If bo idle, remove from delayed- and lru lists, and unref.
552  * If not idle, do nothing.
553  *
554  * Must be called with lru_lock and reservation held, this function
555  * will drop both before returning.
556  *
557  * @interruptible         Any sleeps should occur interruptibly.
558  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
559  */
560 
561 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
562 					  bool interruptible,
563 					  bool no_wait_gpu)
564 {
565 	struct ttm_bo_device *bdev = bo->bdev;
566 	struct ttm_bo_driver *driver = bdev->driver;
567 	struct ttm_bo_global *glob = bo->glob;
568 	int put_count;
569 	int ret;
570 
571 	spin_lock(&bdev->fence_lock);
572 	ret = ttm_bo_wait(bo, false, false, true);
573 
574 	if (ret && !no_wait_gpu) {
575 		void *sync_obj;
576 
577 		/*
578 		 * Take a reference to the fence and unreserve,
579 		 * at this point the buffer should be dead, so
580 		 * no new sync objects can be attached.
581 		 */
582 		sync_obj = driver->sync_obj_ref(&bo->sync_obj);
583 		spin_unlock(&bdev->fence_lock);
584 
585 		atomic_set(&bo->reserved, 0);
586 		wake_up_all(&bo->event_queue);
587 		spin_unlock(&glob->lru_lock);
588 
589 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
590 		driver->sync_obj_unref(&sync_obj);
591 		if (ret)
592 			return ret;
593 
594 		/*
595 		 * remove sync_obj with ttm_bo_wait, the wait should be
596 		 * finished, and no new wait object should have been added.
597 		 */
598 		spin_lock(&bdev->fence_lock);
599 		ret = ttm_bo_wait(bo, false, false, true);
600 		WARN_ON(ret);
601 		spin_unlock(&bdev->fence_lock);
602 		if (ret)
603 			return ret;
604 
605 		spin_lock(&glob->lru_lock);
606 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
607 
608 		/*
609 		 * We raced, and lost, someone else holds the reservation now,
610 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
611 		 *
612 		 * Even if it's not the case, because we finished waiting any
613 		 * delayed destruction would succeed, so just return success
614 		 * here.
615 		 */
616 		if (ret) {
617 			spin_unlock(&glob->lru_lock);
618 			return 0;
619 		}
620 	} else
621 		spin_unlock(&bdev->fence_lock);
622 
623 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
624 		atomic_set(&bo->reserved, 0);
625 		wake_up_all(&bo->event_queue);
626 		spin_unlock(&glob->lru_lock);
627 		return ret;
628 	}
629 
630 	put_count = ttm_bo_del_from_lru(bo);
631 	list_del_init(&bo->ddestroy);
632 	++put_count;
633 
634 	spin_unlock(&glob->lru_lock);
635 	ttm_bo_cleanup_memtype_use(bo);
636 
637 	ttm_bo_list_ref_sub(bo, put_count, true);
638 
639 	return 0;
640 }
641 
642 /**
643  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
644  * encountered buffers.
645  */
646 
647 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
648 {
649 	struct ttm_bo_global *glob = bdev->glob;
650 	struct ttm_buffer_object *entry = NULL;
651 	int ret = 0;
652 
653 	spin_lock(&glob->lru_lock);
654 	if (list_empty(&bdev->ddestroy))
655 		goto out_unlock;
656 
657 	entry = list_first_entry(&bdev->ddestroy,
658 		struct ttm_buffer_object, ddestroy);
659 	kref_get(&entry->list_kref);
660 
661 	for (;;) {
662 		struct ttm_buffer_object *nentry = NULL;
663 
664 		if (entry->ddestroy.next != &bdev->ddestroy) {
665 			nentry = list_first_entry(&entry->ddestroy,
666 				struct ttm_buffer_object, ddestroy);
667 			kref_get(&nentry->list_kref);
668 		}
669 
670 		ret = ttm_bo_reserve_locked(entry, false, !remove_all, false, 0);
671 		if (!ret)
672 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
673 							     !remove_all);
674 		else
675 			spin_unlock(&glob->lru_lock);
676 
677 		kref_put(&entry->list_kref, ttm_bo_release_list);
678 		entry = nentry;
679 
680 		if (ret || !entry)
681 			goto out;
682 
683 		spin_lock(&glob->lru_lock);
684 		if (list_empty(&entry->ddestroy))
685 			break;
686 	}
687 
688 out_unlock:
689 	spin_unlock(&glob->lru_lock);
690 out:
691 	if (entry)
692 		kref_put(&entry->list_kref, ttm_bo_release_list);
693 	return ret;
694 }
695 
696 static void ttm_bo_delayed_workqueue(struct work_struct *work)
697 {
698 	struct ttm_bo_device *bdev =
699 	    container_of(work, struct ttm_bo_device, wq.work);
700 
701 	if (ttm_bo_delayed_delete(bdev, false)) {
702 		schedule_delayed_work(&bdev->wq,
703 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
704 	}
705 }
706 
707 static void ttm_bo_release(struct kref *kref)
708 {
709 	struct ttm_buffer_object *bo =
710 	    container_of(kref, struct ttm_buffer_object, kref);
711 	struct ttm_bo_device *bdev = bo->bdev;
712 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
713 
714 	write_lock(&bdev->vm_lock);
715 	if (likely(bo->vm_node != NULL)) {
716 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
717 		drm_mm_put_block(bo->vm_node);
718 		bo->vm_node = NULL;
719 	}
720 	write_unlock(&bdev->vm_lock);
721 	ttm_mem_io_lock(man, false);
722 	ttm_mem_io_free_vm(bo);
723 	ttm_mem_io_unlock(man);
724 	ttm_bo_cleanup_refs_or_queue(bo);
725 	kref_put(&bo->list_kref, ttm_bo_release_list);
726 }
727 
728 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
729 {
730 	struct ttm_buffer_object *bo = *p_bo;
731 
732 	*p_bo = NULL;
733 	kref_put(&bo->kref, ttm_bo_release);
734 }
735 EXPORT_SYMBOL(ttm_bo_unref);
736 
737 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
738 {
739 	return cancel_delayed_work_sync(&bdev->wq);
740 }
741 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
742 
743 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
744 {
745 	if (resched)
746 		schedule_delayed_work(&bdev->wq,
747 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
748 }
749 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
750 
751 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
752 			bool no_wait_gpu)
753 {
754 	struct ttm_bo_device *bdev = bo->bdev;
755 	struct ttm_mem_reg evict_mem;
756 	struct ttm_placement placement;
757 	int ret = 0;
758 
759 	spin_lock(&bdev->fence_lock);
760 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
761 	spin_unlock(&bdev->fence_lock);
762 
763 	if (unlikely(ret != 0)) {
764 		if (ret != -ERESTARTSYS) {
765 			pr_err("Failed to expire sync object before buffer eviction\n");
766 		}
767 		goto out;
768 	}
769 
770 	BUG_ON(!ttm_bo_is_reserved(bo));
771 
772 	evict_mem = bo->mem;
773 	evict_mem.mm_node = NULL;
774 	evict_mem.bus.io_reserved_vm = false;
775 	evict_mem.bus.io_reserved_count = 0;
776 
777 	placement.fpfn = 0;
778 	placement.lpfn = 0;
779 	placement.num_placement = 0;
780 	placement.num_busy_placement = 0;
781 	bdev->driver->evict_flags(bo, &placement);
782 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
783 				no_wait_gpu);
784 	if (ret) {
785 		if (ret != -ERESTARTSYS) {
786 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
787 			       bo);
788 			ttm_bo_mem_space_debug(bo, &placement);
789 		}
790 		goto out;
791 	}
792 
793 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
794 				     no_wait_gpu);
795 	if (ret) {
796 		if (ret != -ERESTARTSYS)
797 			pr_err("Buffer eviction failed\n");
798 		ttm_bo_mem_put(bo, &evict_mem);
799 		goto out;
800 	}
801 	bo->evicted = true;
802 out:
803 	return ret;
804 }
805 
806 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
807 				uint32_t mem_type,
808 				bool interruptible,
809 				bool no_wait_gpu)
810 {
811 	struct ttm_bo_global *glob = bdev->glob;
812 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
813 	struct ttm_buffer_object *bo;
814 	int ret = -EBUSY, put_count;
815 
816 	spin_lock(&glob->lru_lock);
817 	list_for_each_entry(bo, &man->lru, lru) {
818 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
819 		if (!ret)
820 			break;
821 	}
822 
823 	if (ret) {
824 		spin_unlock(&glob->lru_lock);
825 		return ret;
826 	}
827 
828 	kref_get(&bo->list_kref);
829 
830 	if (!list_empty(&bo->ddestroy)) {
831 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
832 						     no_wait_gpu);
833 		kref_put(&bo->list_kref, ttm_bo_release_list);
834 		return ret;
835 	}
836 
837 	put_count = ttm_bo_del_from_lru(bo);
838 	spin_unlock(&glob->lru_lock);
839 
840 	BUG_ON(ret != 0);
841 
842 	ttm_bo_list_ref_sub(bo, put_count, true);
843 
844 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
845 	ttm_bo_unreserve(bo);
846 
847 	kref_put(&bo->list_kref, ttm_bo_release_list);
848 	return ret;
849 }
850 
851 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
852 {
853 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
854 
855 	if (mem->mm_node)
856 		(*man->func->put_node)(man, mem);
857 }
858 EXPORT_SYMBOL(ttm_bo_mem_put);
859 
860 /**
861  * Repeatedly evict memory from the LRU for @mem_type until we create enough
862  * space, or we've evicted everything and there isn't enough space.
863  */
864 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
865 					uint32_t mem_type,
866 					struct ttm_placement *placement,
867 					struct ttm_mem_reg *mem,
868 					bool interruptible,
869 					bool no_wait_gpu)
870 {
871 	struct ttm_bo_device *bdev = bo->bdev;
872 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
873 	int ret;
874 
875 	do {
876 		ret = (*man->func->get_node)(man, bo, placement, mem);
877 		if (unlikely(ret != 0))
878 			return ret;
879 		if (mem->mm_node)
880 			break;
881 		ret = ttm_mem_evict_first(bdev, mem_type,
882 					  interruptible, no_wait_gpu);
883 		if (unlikely(ret != 0))
884 			return ret;
885 	} while (1);
886 	if (mem->mm_node == NULL)
887 		return -ENOMEM;
888 	mem->mem_type = mem_type;
889 	return 0;
890 }
891 
892 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
893 				      uint32_t cur_placement,
894 				      uint32_t proposed_placement)
895 {
896 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
897 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
898 
899 	/**
900 	 * Keep current caching if possible.
901 	 */
902 
903 	if ((cur_placement & caching) != 0)
904 		result |= (cur_placement & caching);
905 	else if ((man->default_caching & caching) != 0)
906 		result |= man->default_caching;
907 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
908 		result |= TTM_PL_FLAG_CACHED;
909 	else if ((TTM_PL_FLAG_WC & caching) != 0)
910 		result |= TTM_PL_FLAG_WC;
911 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
912 		result |= TTM_PL_FLAG_UNCACHED;
913 
914 	return result;
915 }
916 
917 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
918 				 uint32_t mem_type,
919 				 uint32_t proposed_placement,
920 				 uint32_t *masked_placement)
921 {
922 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
923 
924 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
925 		return false;
926 
927 	if ((proposed_placement & man->available_caching) == 0)
928 		return false;
929 
930 	cur_flags |= (proposed_placement & man->available_caching);
931 
932 	*masked_placement = cur_flags;
933 	return true;
934 }
935 
936 /**
937  * Creates space for memory region @mem according to its type.
938  *
939  * This function first searches for free space in compatible memory types in
940  * the priority order defined by the driver.  If free space isn't found, then
941  * ttm_bo_mem_force_space is attempted in priority order to evict and find
942  * space.
943  */
944 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
945 			struct ttm_placement *placement,
946 			struct ttm_mem_reg *mem,
947 			bool interruptible,
948 			bool no_wait_gpu)
949 {
950 	struct ttm_bo_device *bdev = bo->bdev;
951 	struct ttm_mem_type_manager *man;
952 	uint32_t mem_type = TTM_PL_SYSTEM;
953 	uint32_t cur_flags = 0;
954 	bool type_found = false;
955 	bool type_ok = false;
956 	bool has_erestartsys = false;
957 	int i, ret;
958 
959 	mem->mm_node = NULL;
960 	for (i = 0; i < placement->num_placement; ++i) {
961 		ret = ttm_mem_type_from_flags(placement->placement[i],
962 						&mem_type);
963 		if (ret)
964 			return ret;
965 		man = &bdev->man[mem_type];
966 
967 		type_ok = ttm_bo_mt_compatible(man,
968 						mem_type,
969 						placement->placement[i],
970 						&cur_flags);
971 
972 		if (!type_ok)
973 			continue;
974 
975 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
976 						  cur_flags);
977 		/*
978 		 * Use the access and other non-mapping-related flag bits from
979 		 * the memory placement flags to the current flags
980 		 */
981 		ttm_flag_masked(&cur_flags, placement->placement[i],
982 				~TTM_PL_MASK_MEMTYPE);
983 
984 		if (mem_type == TTM_PL_SYSTEM)
985 			break;
986 
987 		if (man->has_type && man->use_type) {
988 			type_found = true;
989 			ret = (*man->func->get_node)(man, bo, placement, mem);
990 			if (unlikely(ret))
991 				return ret;
992 		}
993 		if (mem->mm_node)
994 			break;
995 	}
996 
997 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
998 		mem->mem_type = mem_type;
999 		mem->placement = cur_flags;
1000 		return 0;
1001 	}
1002 
1003 	if (!type_found)
1004 		return -EINVAL;
1005 
1006 	for (i = 0; i < placement->num_busy_placement; ++i) {
1007 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1008 						&mem_type);
1009 		if (ret)
1010 			return ret;
1011 		man = &bdev->man[mem_type];
1012 		if (!man->has_type)
1013 			continue;
1014 		if (!ttm_bo_mt_compatible(man,
1015 						mem_type,
1016 						placement->busy_placement[i],
1017 						&cur_flags))
1018 			continue;
1019 
1020 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1021 						  cur_flags);
1022 		/*
1023 		 * Use the access and other non-mapping-related flag bits from
1024 		 * the memory placement flags to the current flags
1025 		 */
1026 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1027 				~TTM_PL_MASK_MEMTYPE);
1028 
1029 
1030 		if (mem_type == TTM_PL_SYSTEM) {
1031 			mem->mem_type = mem_type;
1032 			mem->placement = cur_flags;
1033 			mem->mm_node = NULL;
1034 			return 0;
1035 		}
1036 
1037 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1038 						interruptible, no_wait_gpu);
1039 		if (ret == 0 && mem->mm_node) {
1040 			mem->placement = cur_flags;
1041 			return 0;
1042 		}
1043 		if (ret == -ERESTARTSYS)
1044 			has_erestartsys = true;
1045 	}
1046 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(ttm_bo_mem_space);
1050 
1051 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1052 			struct ttm_placement *placement,
1053 			bool interruptible,
1054 			bool no_wait_gpu)
1055 {
1056 	int ret = 0;
1057 	struct ttm_mem_reg mem;
1058 	struct ttm_bo_device *bdev = bo->bdev;
1059 
1060 	BUG_ON(!ttm_bo_is_reserved(bo));
1061 
1062 	/*
1063 	 * FIXME: It's possible to pipeline buffer moves.
1064 	 * Have the driver move function wait for idle when necessary,
1065 	 * instead of doing it here.
1066 	 */
1067 	spin_lock(&bdev->fence_lock);
1068 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1069 	spin_unlock(&bdev->fence_lock);
1070 	if (ret)
1071 		return ret;
1072 	mem.num_pages = bo->num_pages;
1073 	mem.size = mem.num_pages << PAGE_SHIFT;
1074 	mem.page_alignment = bo->mem.page_alignment;
1075 	mem.bus.io_reserved_vm = false;
1076 	mem.bus.io_reserved_count = 0;
1077 	/*
1078 	 * Determine where to move the buffer.
1079 	 */
1080 	ret = ttm_bo_mem_space(bo, placement, &mem,
1081 			       interruptible, no_wait_gpu);
1082 	if (ret)
1083 		goto out_unlock;
1084 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1085 				     interruptible, no_wait_gpu);
1086 out_unlock:
1087 	if (ret && mem.mm_node)
1088 		ttm_bo_mem_put(bo, &mem);
1089 	return ret;
1090 }
1091 
1092 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1093 			     struct ttm_mem_reg *mem)
1094 {
1095 	int i;
1096 
1097 	if (mem->mm_node && placement->lpfn != 0 &&
1098 	    (mem->start < placement->fpfn ||
1099 	     mem->start + mem->num_pages > placement->lpfn))
1100 		return -1;
1101 
1102 	for (i = 0; i < placement->num_placement; i++) {
1103 		if ((placement->placement[i] & mem->placement &
1104 			TTM_PL_MASK_CACHING) &&
1105 			(placement->placement[i] & mem->placement &
1106 			TTM_PL_MASK_MEM))
1107 			return i;
1108 	}
1109 	return -1;
1110 }
1111 
1112 int ttm_bo_validate(struct ttm_buffer_object *bo,
1113 			struct ttm_placement *placement,
1114 			bool interruptible,
1115 			bool no_wait_gpu)
1116 {
1117 	int ret;
1118 
1119 	BUG_ON(!ttm_bo_is_reserved(bo));
1120 	/* Check that range is valid */
1121 	if (placement->lpfn || placement->fpfn)
1122 		if (placement->fpfn > placement->lpfn ||
1123 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1124 			return -EINVAL;
1125 	/*
1126 	 * Check whether we need to move buffer.
1127 	 */
1128 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1129 	if (ret < 0) {
1130 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1131 					 no_wait_gpu);
1132 		if (ret)
1133 			return ret;
1134 	} else {
1135 		/*
1136 		 * Use the access and other non-mapping-related flag bits from
1137 		 * the compatible memory placement flags to the active flags
1138 		 */
1139 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1140 				~TTM_PL_MASK_MEMTYPE);
1141 	}
1142 	/*
1143 	 * We might need to add a TTM.
1144 	 */
1145 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1146 		ret = ttm_bo_add_ttm(bo, true);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL(ttm_bo_validate);
1153 
1154 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1155 				struct ttm_placement *placement)
1156 {
1157 	BUG_ON((placement->fpfn || placement->lpfn) &&
1158 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1159 
1160 	return 0;
1161 }
1162 
1163 int ttm_bo_init(struct ttm_bo_device *bdev,
1164 		struct ttm_buffer_object *bo,
1165 		unsigned long size,
1166 		enum ttm_bo_type type,
1167 		struct ttm_placement *placement,
1168 		uint32_t page_alignment,
1169 		bool interruptible,
1170 		struct file *persistent_swap_storage,
1171 		size_t acc_size,
1172 		struct sg_table *sg,
1173 		void (*destroy) (struct ttm_buffer_object *))
1174 {
1175 	int ret = 0;
1176 	unsigned long num_pages;
1177 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1178 
1179 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1180 	if (ret) {
1181 		pr_err("Out of kernel memory\n");
1182 		if (destroy)
1183 			(*destroy)(bo);
1184 		else
1185 			kfree(bo);
1186 		return -ENOMEM;
1187 	}
1188 
1189 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 	if (num_pages == 0) {
1191 		pr_err("Illegal buffer object size\n");
1192 		if (destroy)
1193 			(*destroy)(bo);
1194 		else
1195 			kfree(bo);
1196 		ttm_mem_global_free(mem_glob, acc_size);
1197 		return -EINVAL;
1198 	}
1199 	bo->destroy = destroy;
1200 
1201 	kref_init(&bo->kref);
1202 	kref_init(&bo->list_kref);
1203 	atomic_set(&bo->cpu_writers, 0);
1204 	atomic_set(&bo->reserved, 1);
1205 	init_waitqueue_head(&bo->event_queue);
1206 	INIT_LIST_HEAD(&bo->lru);
1207 	INIT_LIST_HEAD(&bo->ddestroy);
1208 	INIT_LIST_HEAD(&bo->swap);
1209 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1210 	bo->bdev = bdev;
1211 	bo->glob = bdev->glob;
1212 	bo->type = type;
1213 	bo->num_pages = num_pages;
1214 	bo->mem.size = num_pages << PAGE_SHIFT;
1215 	bo->mem.mem_type = TTM_PL_SYSTEM;
1216 	bo->mem.num_pages = bo->num_pages;
1217 	bo->mem.mm_node = NULL;
1218 	bo->mem.page_alignment = page_alignment;
1219 	bo->mem.bus.io_reserved_vm = false;
1220 	bo->mem.bus.io_reserved_count = 0;
1221 	bo->priv_flags = 0;
1222 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1223 	bo->seq_valid = false;
1224 	bo->persistent_swap_storage = persistent_swap_storage;
1225 	bo->acc_size = acc_size;
1226 	bo->sg = sg;
1227 	atomic_inc(&bo->glob->bo_count);
1228 
1229 	ret = ttm_bo_check_placement(bo, placement);
1230 	if (unlikely(ret != 0))
1231 		goto out_err;
1232 
1233 	/*
1234 	 * For ttm_bo_type_device buffers, allocate
1235 	 * address space from the device.
1236 	 */
1237 	if (bo->type == ttm_bo_type_device ||
1238 	    bo->type == ttm_bo_type_sg) {
1239 		ret = ttm_bo_setup_vm(bo);
1240 		if (ret)
1241 			goto out_err;
1242 	}
1243 
1244 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1245 	if (ret)
1246 		goto out_err;
1247 
1248 	ttm_bo_unreserve(bo);
1249 	return 0;
1250 
1251 out_err:
1252 	ttm_bo_unreserve(bo);
1253 	ttm_bo_unref(&bo);
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(ttm_bo_init);
1258 
1259 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1260 		       unsigned long bo_size,
1261 		       unsigned struct_size)
1262 {
1263 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1264 	size_t size = 0;
1265 
1266 	size += ttm_round_pot(struct_size);
1267 	size += PAGE_ALIGN(npages * sizeof(void *));
1268 	size += ttm_round_pot(sizeof(struct ttm_tt));
1269 	return size;
1270 }
1271 EXPORT_SYMBOL(ttm_bo_acc_size);
1272 
1273 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1274 			   unsigned long bo_size,
1275 			   unsigned struct_size)
1276 {
1277 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1278 	size_t size = 0;
1279 
1280 	size += ttm_round_pot(struct_size);
1281 	size += PAGE_ALIGN(npages * sizeof(void *));
1282 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1283 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1284 	return size;
1285 }
1286 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1287 
1288 int ttm_bo_create(struct ttm_bo_device *bdev,
1289 			unsigned long size,
1290 			enum ttm_bo_type type,
1291 			struct ttm_placement *placement,
1292 			uint32_t page_alignment,
1293 			bool interruptible,
1294 			struct file *persistent_swap_storage,
1295 			struct ttm_buffer_object **p_bo)
1296 {
1297 	struct ttm_buffer_object *bo;
1298 	size_t acc_size;
1299 	int ret;
1300 
1301 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1302 	if (unlikely(bo == NULL))
1303 		return -ENOMEM;
1304 
1305 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1306 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1307 			  interruptible, persistent_swap_storage, acc_size,
1308 			  NULL, NULL);
1309 	if (likely(ret == 0))
1310 		*p_bo = bo;
1311 
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL(ttm_bo_create);
1315 
1316 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1317 					unsigned mem_type, bool allow_errors)
1318 {
1319 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1320 	struct ttm_bo_global *glob = bdev->glob;
1321 	int ret;
1322 
1323 	/*
1324 	 * Can't use standard list traversal since we're unlocking.
1325 	 */
1326 
1327 	spin_lock(&glob->lru_lock);
1328 	while (!list_empty(&man->lru)) {
1329 		spin_unlock(&glob->lru_lock);
1330 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1331 		if (ret) {
1332 			if (allow_errors) {
1333 				return ret;
1334 			} else {
1335 				pr_err("Cleanup eviction failed\n");
1336 			}
1337 		}
1338 		spin_lock(&glob->lru_lock);
1339 	}
1340 	spin_unlock(&glob->lru_lock);
1341 	return 0;
1342 }
1343 
1344 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1345 {
1346 	struct ttm_mem_type_manager *man;
1347 	int ret = -EINVAL;
1348 
1349 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1350 		pr_err("Illegal memory type %d\n", mem_type);
1351 		return ret;
1352 	}
1353 	man = &bdev->man[mem_type];
1354 
1355 	if (!man->has_type) {
1356 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1357 		       mem_type);
1358 		return ret;
1359 	}
1360 
1361 	man->use_type = false;
1362 	man->has_type = false;
1363 
1364 	ret = 0;
1365 	if (mem_type > 0) {
1366 		ttm_bo_force_list_clean(bdev, mem_type, false);
1367 
1368 		ret = (*man->func->takedown)(man);
1369 	}
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(ttm_bo_clean_mm);
1374 
1375 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1376 {
1377 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1378 
1379 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1380 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (!man->has_type) {
1385 		pr_err("Memory type %u has not been initialized\n", mem_type);
1386 		return 0;
1387 	}
1388 
1389 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1390 }
1391 EXPORT_SYMBOL(ttm_bo_evict_mm);
1392 
1393 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1394 			unsigned long p_size)
1395 {
1396 	int ret = -EINVAL;
1397 	struct ttm_mem_type_manager *man;
1398 
1399 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1400 	man = &bdev->man[type];
1401 	BUG_ON(man->has_type);
1402 	man->io_reserve_fastpath = true;
1403 	man->use_io_reserve_lru = false;
1404 	mutex_init(&man->io_reserve_mutex);
1405 	INIT_LIST_HEAD(&man->io_reserve_lru);
1406 
1407 	ret = bdev->driver->init_mem_type(bdev, type, man);
1408 	if (ret)
1409 		return ret;
1410 	man->bdev = bdev;
1411 
1412 	ret = 0;
1413 	if (type != TTM_PL_SYSTEM) {
1414 		ret = (*man->func->init)(man, p_size);
1415 		if (ret)
1416 			return ret;
1417 	}
1418 	man->has_type = true;
1419 	man->use_type = true;
1420 	man->size = p_size;
1421 
1422 	INIT_LIST_HEAD(&man->lru);
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL(ttm_bo_init_mm);
1427 
1428 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1429 {
1430 	struct ttm_bo_global *glob =
1431 		container_of(kobj, struct ttm_bo_global, kobj);
1432 
1433 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1434 	__free_page(glob->dummy_read_page);
1435 	kfree(glob);
1436 }
1437 
1438 void ttm_bo_global_release(struct drm_global_reference *ref)
1439 {
1440 	struct ttm_bo_global *glob = ref->object;
1441 
1442 	kobject_del(&glob->kobj);
1443 	kobject_put(&glob->kobj);
1444 }
1445 EXPORT_SYMBOL(ttm_bo_global_release);
1446 
1447 int ttm_bo_global_init(struct drm_global_reference *ref)
1448 {
1449 	struct ttm_bo_global_ref *bo_ref =
1450 		container_of(ref, struct ttm_bo_global_ref, ref);
1451 	struct ttm_bo_global *glob = ref->object;
1452 	int ret;
1453 
1454 	mutex_init(&glob->device_list_mutex);
1455 	spin_lock_init(&glob->lru_lock);
1456 	glob->mem_glob = bo_ref->mem_glob;
1457 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1458 
1459 	if (unlikely(glob->dummy_read_page == NULL)) {
1460 		ret = -ENOMEM;
1461 		goto out_no_drp;
1462 	}
1463 
1464 	INIT_LIST_HEAD(&glob->swap_lru);
1465 	INIT_LIST_HEAD(&glob->device_list);
1466 
1467 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1468 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1469 	if (unlikely(ret != 0)) {
1470 		pr_err("Could not register buffer object swapout\n");
1471 		goto out_no_shrink;
1472 	}
1473 
1474 	atomic_set(&glob->bo_count, 0);
1475 
1476 	ret = kobject_init_and_add(
1477 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1478 	if (unlikely(ret != 0))
1479 		kobject_put(&glob->kobj);
1480 	return ret;
1481 out_no_shrink:
1482 	__free_page(glob->dummy_read_page);
1483 out_no_drp:
1484 	kfree(glob);
1485 	return ret;
1486 }
1487 EXPORT_SYMBOL(ttm_bo_global_init);
1488 
1489 
1490 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1491 {
1492 	int ret = 0;
1493 	unsigned i = TTM_NUM_MEM_TYPES;
1494 	struct ttm_mem_type_manager *man;
1495 	struct ttm_bo_global *glob = bdev->glob;
1496 
1497 	while (i--) {
1498 		man = &bdev->man[i];
1499 		if (man->has_type) {
1500 			man->use_type = false;
1501 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1502 				ret = -EBUSY;
1503 				pr_err("DRM memory manager type %d is not clean\n",
1504 				       i);
1505 			}
1506 			man->has_type = false;
1507 		}
1508 	}
1509 
1510 	mutex_lock(&glob->device_list_mutex);
1511 	list_del(&bdev->device_list);
1512 	mutex_unlock(&glob->device_list_mutex);
1513 
1514 	cancel_delayed_work_sync(&bdev->wq);
1515 
1516 	while (ttm_bo_delayed_delete(bdev, true))
1517 		;
1518 
1519 	spin_lock(&glob->lru_lock);
1520 	if (list_empty(&bdev->ddestroy))
1521 		TTM_DEBUG("Delayed destroy list was clean\n");
1522 
1523 	if (list_empty(&bdev->man[0].lru))
1524 		TTM_DEBUG("Swap list was clean\n");
1525 	spin_unlock(&glob->lru_lock);
1526 
1527 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1528 	write_lock(&bdev->vm_lock);
1529 	drm_mm_takedown(&bdev->addr_space_mm);
1530 	write_unlock(&bdev->vm_lock);
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL(ttm_bo_device_release);
1535 
1536 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1537 		       struct ttm_bo_global *glob,
1538 		       struct ttm_bo_driver *driver,
1539 		       uint64_t file_page_offset,
1540 		       bool need_dma32)
1541 {
1542 	int ret = -EINVAL;
1543 
1544 	rwlock_init(&bdev->vm_lock);
1545 	bdev->driver = driver;
1546 
1547 	memset(bdev->man, 0, sizeof(bdev->man));
1548 
1549 	/*
1550 	 * Initialize the system memory buffer type.
1551 	 * Other types need to be driver / IOCTL initialized.
1552 	 */
1553 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1554 	if (unlikely(ret != 0))
1555 		goto out_no_sys;
1556 
1557 	bdev->addr_space_rb = RB_ROOT;
1558 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1559 	if (unlikely(ret != 0))
1560 		goto out_no_addr_mm;
1561 
1562 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1563 	INIT_LIST_HEAD(&bdev->ddestroy);
1564 	bdev->dev_mapping = NULL;
1565 	bdev->glob = glob;
1566 	bdev->need_dma32 = need_dma32;
1567 	bdev->val_seq = 0;
1568 	spin_lock_init(&bdev->fence_lock);
1569 	mutex_lock(&glob->device_list_mutex);
1570 	list_add_tail(&bdev->device_list, &glob->device_list);
1571 	mutex_unlock(&glob->device_list_mutex);
1572 
1573 	return 0;
1574 out_no_addr_mm:
1575 	ttm_bo_clean_mm(bdev, 0);
1576 out_no_sys:
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL(ttm_bo_device_init);
1580 
1581 /*
1582  * buffer object vm functions.
1583  */
1584 
1585 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1586 {
1587 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1588 
1589 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1590 		if (mem->mem_type == TTM_PL_SYSTEM)
1591 			return false;
1592 
1593 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1594 			return false;
1595 
1596 		if (mem->placement & TTM_PL_FLAG_CACHED)
1597 			return false;
1598 	}
1599 	return true;
1600 }
1601 
1602 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1603 {
1604 	struct ttm_bo_device *bdev = bo->bdev;
1605 	loff_t offset = (loff_t) bo->addr_space_offset;
1606 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1607 
1608 	if (!bdev->dev_mapping)
1609 		return;
1610 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1611 	ttm_mem_io_free_vm(bo);
1612 }
1613 
1614 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1615 {
1616 	struct ttm_bo_device *bdev = bo->bdev;
1617 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1618 
1619 	ttm_mem_io_lock(man, false);
1620 	ttm_bo_unmap_virtual_locked(bo);
1621 	ttm_mem_io_unlock(man);
1622 }
1623 
1624 
1625 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1626 
1627 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1628 {
1629 	struct ttm_bo_device *bdev = bo->bdev;
1630 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1631 	struct rb_node *parent = NULL;
1632 	struct ttm_buffer_object *cur_bo;
1633 	unsigned long offset = bo->vm_node->start;
1634 	unsigned long cur_offset;
1635 
1636 	while (*cur) {
1637 		parent = *cur;
1638 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1639 		cur_offset = cur_bo->vm_node->start;
1640 		if (offset < cur_offset)
1641 			cur = &parent->rb_left;
1642 		else if (offset > cur_offset)
1643 			cur = &parent->rb_right;
1644 		else
1645 			BUG();
1646 	}
1647 
1648 	rb_link_node(&bo->vm_rb, parent, cur);
1649 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1650 }
1651 
1652 /**
1653  * ttm_bo_setup_vm:
1654  *
1655  * @bo: the buffer to allocate address space for
1656  *
1657  * Allocate address space in the drm device so that applications
1658  * can mmap the buffer and access the contents. This only
1659  * applies to ttm_bo_type_device objects as others are not
1660  * placed in the drm device address space.
1661  */
1662 
1663 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1664 {
1665 	struct ttm_bo_device *bdev = bo->bdev;
1666 	int ret;
1667 
1668 retry_pre_get:
1669 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1670 	if (unlikely(ret != 0))
1671 		return ret;
1672 
1673 	write_lock(&bdev->vm_lock);
1674 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1675 					 bo->mem.num_pages, 0, 0);
1676 
1677 	if (unlikely(bo->vm_node == NULL)) {
1678 		ret = -ENOMEM;
1679 		goto out_unlock;
1680 	}
1681 
1682 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1683 					      bo->mem.num_pages, 0);
1684 
1685 	if (unlikely(bo->vm_node == NULL)) {
1686 		write_unlock(&bdev->vm_lock);
1687 		goto retry_pre_get;
1688 	}
1689 
1690 	ttm_bo_vm_insert_rb(bo);
1691 	write_unlock(&bdev->vm_lock);
1692 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1693 
1694 	return 0;
1695 out_unlock:
1696 	write_unlock(&bdev->vm_lock);
1697 	return ret;
1698 }
1699 
1700 int ttm_bo_wait(struct ttm_buffer_object *bo,
1701 		bool lazy, bool interruptible, bool no_wait)
1702 {
1703 	struct ttm_bo_driver *driver = bo->bdev->driver;
1704 	struct ttm_bo_device *bdev = bo->bdev;
1705 	void *sync_obj;
1706 	int ret = 0;
1707 
1708 	if (likely(bo->sync_obj == NULL))
1709 		return 0;
1710 
1711 	while (bo->sync_obj) {
1712 
1713 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1714 			void *tmp_obj = bo->sync_obj;
1715 			bo->sync_obj = NULL;
1716 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1717 			spin_unlock(&bdev->fence_lock);
1718 			driver->sync_obj_unref(&tmp_obj);
1719 			spin_lock(&bdev->fence_lock);
1720 			continue;
1721 		}
1722 
1723 		if (no_wait)
1724 			return -EBUSY;
1725 
1726 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1727 		spin_unlock(&bdev->fence_lock);
1728 		ret = driver->sync_obj_wait(sync_obj,
1729 					    lazy, interruptible);
1730 		if (unlikely(ret != 0)) {
1731 			driver->sync_obj_unref(&sync_obj);
1732 			spin_lock(&bdev->fence_lock);
1733 			return ret;
1734 		}
1735 		spin_lock(&bdev->fence_lock);
1736 		if (likely(bo->sync_obj == sync_obj)) {
1737 			void *tmp_obj = bo->sync_obj;
1738 			bo->sync_obj = NULL;
1739 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1740 				  &bo->priv_flags);
1741 			spin_unlock(&bdev->fence_lock);
1742 			driver->sync_obj_unref(&sync_obj);
1743 			driver->sync_obj_unref(&tmp_obj);
1744 			spin_lock(&bdev->fence_lock);
1745 		} else {
1746 			spin_unlock(&bdev->fence_lock);
1747 			driver->sync_obj_unref(&sync_obj);
1748 			spin_lock(&bdev->fence_lock);
1749 		}
1750 	}
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(ttm_bo_wait);
1754 
1755 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1756 {
1757 	struct ttm_bo_device *bdev = bo->bdev;
1758 	int ret = 0;
1759 
1760 	/*
1761 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1762 	 */
1763 
1764 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1765 	if (unlikely(ret != 0))
1766 		return ret;
1767 	spin_lock(&bdev->fence_lock);
1768 	ret = ttm_bo_wait(bo, false, true, no_wait);
1769 	spin_unlock(&bdev->fence_lock);
1770 	if (likely(ret == 0))
1771 		atomic_inc(&bo->cpu_writers);
1772 	ttm_bo_unreserve(bo);
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1776 
1777 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1778 {
1779 	atomic_dec(&bo->cpu_writers);
1780 }
1781 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782 
1783 /**
1784  * A buffer object shrink method that tries to swap out the first
1785  * buffer object on the bo_global::swap_lru list.
1786  */
1787 
1788 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789 {
1790 	struct ttm_bo_global *glob =
1791 	    container_of(shrink, struct ttm_bo_global, shrink);
1792 	struct ttm_buffer_object *bo;
1793 	int ret = -EBUSY;
1794 	int put_count;
1795 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796 
1797 	spin_lock(&glob->lru_lock);
1798 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1799 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1800 		if (!ret)
1801 			break;
1802 	}
1803 
1804 	if (ret) {
1805 		spin_unlock(&glob->lru_lock);
1806 		return ret;
1807 	}
1808 
1809 	kref_get(&bo->list_kref);
1810 
1811 	if (!list_empty(&bo->ddestroy)) {
1812 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1813 		kref_put(&bo->list_kref, ttm_bo_release_list);
1814 		return ret;
1815 	}
1816 
1817 	put_count = ttm_bo_del_from_lru(bo);
1818 	spin_unlock(&glob->lru_lock);
1819 
1820 	ttm_bo_list_ref_sub(bo, put_count, true);
1821 
1822 	/**
1823 	 * Wait for GPU, then move to system cached.
1824 	 */
1825 
1826 	spin_lock(&bo->bdev->fence_lock);
1827 	ret = ttm_bo_wait(bo, false, false, false);
1828 	spin_unlock(&bo->bdev->fence_lock);
1829 
1830 	if (unlikely(ret != 0))
1831 		goto out;
1832 
1833 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1834 		struct ttm_mem_reg evict_mem;
1835 
1836 		evict_mem = bo->mem;
1837 		evict_mem.mm_node = NULL;
1838 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1839 		evict_mem.mem_type = TTM_PL_SYSTEM;
1840 
1841 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1842 					     false, false);
1843 		if (unlikely(ret != 0))
1844 			goto out;
1845 	}
1846 
1847 	ttm_bo_unmap_virtual(bo);
1848 
1849 	/**
1850 	 * Swap out. Buffer will be swapped in again as soon as
1851 	 * anyone tries to access a ttm page.
1852 	 */
1853 
1854 	if (bo->bdev->driver->swap_notify)
1855 		bo->bdev->driver->swap_notify(bo);
1856 
1857 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1858 out:
1859 
1860 	/**
1861 	 *
1862 	 * Unreserve without putting on LRU to avoid swapping out an
1863 	 * already swapped buffer.
1864 	 */
1865 
1866 	atomic_set(&bo->reserved, 0);
1867 	wake_up_all(&bo->event_queue);
1868 	kref_put(&bo->list_kref, ttm_bo_release_list);
1869 	return ret;
1870 }
1871 
1872 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1873 {
1874 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1875 		;
1876 }
1877 EXPORT_SYMBOL(ttm_bo_swapout_all);
1878