1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 44 #define TTM_ASSERT_LOCKED(param) 45 #define TTM_DEBUG(fmt, arg...) 46 #define TTM_BO_HASH_ORDER 13 47 48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 50 static void ttm_bo_global_kobj_release(struct kobject *kobj); 51 52 static struct attribute ttm_bo_count = { 53 .name = "bo_count", 54 .mode = S_IRUGO 55 }; 56 57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 58 { 59 int i; 60 61 for (i = 0; i <= TTM_PL_PRIV5; i++) 62 if (flags & (1 << i)) { 63 *mem_type = i; 64 return 0; 65 } 66 return -EINVAL; 67 } 68 69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 70 { 71 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 72 73 pr_err(" has_type: %d\n", man->has_type); 74 pr_err(" use_type: %d\n", man->use_type); 75 pr_err(" flags: 0x%08X\n", man->flags); 76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 77 pr_err(" size: %llu\n", man->size); 78 pr_err(" available_caching: 0x%08X\n", man->available_caching); 79 pr_err(" default_caching: 0x%08X\n", man->default_caching); 80 if (mem_type != TTM_PL_SYSTEM) 81 (*man->func->debug)(man, TTM_PFX); 82 } 83 84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 85 struct ttm_placement *placement) 86 { 87 int i, ret, mem_type; 88 89 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 90 bo, bo->mem.num_pages, bo->mem.size >> 10, 91 bo->mem.size >> 20); 92 for (i = 0; i < placement->num_placement; i++) { 93 ret = ttm_mem_type_from_flags(placement->placement[i], 94 &mem_type); 95 if (ret) 96 return; 97 pr_err(" placement[%d]=0x%08X (%d)\n", 98 i, placement->placement[i], mem_type); 99 ttm_mem_type_debug(bo->bdev, mem_type); 100 } 101 } 102 103 static ssize_t ttm_bo_global_show(struct kobject *kobj, 104 struct attribute *attr, 105 char *buffer) 106 { 107 struct ttm_bo_global *glob = 108 container_of(kobj, struct ttm_bo_global, kobj); 109 110 return snprintf(buffer, PAGE_SIZE, "%lu\n", 111 (unsigned long) atomic_read(&glob->bo_count)); 112 } 113 114 static struct attribute *ttm_bo_global_attrs[] = { 115 &ttm_bo_count, 116 NULL 117 }; 118 119 static const struct sysfs_ops ttm_bo_global_ops = { 120 .show = &ttm_bo_global_show 121 }; 122 123 static struct kobj_type ttm_bo_glob_kobj_type = { 124 .release = &ttm_bo_global_kobj_release, 125 .sysfs_ops = &ttm_bo_global_ops, 126 .default_attrs = ttm_bo_global_attrs 127 }; 128 129 130 static inline uint32_t ttm_bo_type_flags(unsigned type) 131 { 132 return 1 << (type); 133 } 134 135 static void ttm_bo_release_list(struct kref *list_kref) 136 { 137 struct ttm_buffer_object *bo = 138 container_of(list_kref, struct ttm_buffer_object, list_kref); 139 struct ttm_bo_device *bdev = bo->bdev; 140 size_t acc_size = bo->acc_size; 141 142 BUG_ON(atomic_read(&bo->list_kref.refcount)); 143 BUG_ON(atomic_read(&bo->kref.refcount)); 144 BUG_ON(atomic_read(&bo->cpu_writers)); 145 BUG_ON(bo->sync_obj != NULL); 146 BUG_ON(bo->mem.mm_node != NULL); 147 BUG_ON(!list_empty(&bo->lru)); 148 BUG_ON(!list_empty(&bo->ddestroy)); 149 150 if (bo->ttm) 151 ttm_tt_destroy(bo->ttm); 152 atomic_dec(&bo->glob->bo_count); 153 if (bo->destroy) 154 bo->destroy(bo); 155 else { 156 kfree(bo); 157 } 158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 159 } 160 161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible) 162 { 163 if (interruptible) { 164 return wait_event_interruptible(bo->event_queue, 165 !ttm_bo_is_reserved(bo)); 166 } else { 167 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo)); 168 return 0; 169 } 170 } 171 EXPORT_SYMBOL(ttm_bo_wait_unreserved); 172 173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 174 { 175 struct ttm_bo_device *bdev = bo->bdev; 176 struct ttm_mem_type_manager *man; 177 178 BUG_ON(!ttm_bo_is_reserved(bo)); 179 180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 181 182 BUG_ON(!list_empty(&bo->lru)); 183 184 man = &bdev->man[bo->mem.mem_type]; 185 list_add_tail(&bo->lru, &man->lru); 186 kref_get(&bo->list_kref); 187 188 if (bo->ttm != NULL) { 189 list_add_tail(&bo->swap, &bo->glob->swap_lru); 190 kref_get(&bo->list_kref); 191 } 192 } 193 } 194 195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 196 { 197 int put_count = 0; 198 199 if (!list_empty(&bo->swap)) { 200 list_del_init(&bo->swap); 201 ++put_count; 202 } 203 if (!list_empty(&bo->lru)) { 204 list_del_init(&bo->lru); 205 ++put_count; 206 } 207 208 /* 209 * TODO: Add a driver hook to delete from 210 * driver-specific LRU's here. 211 */ 212 213 return put_count; 214 } 215 216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo, 217 bool interruptible, 218 bool no_wait, bool use_sequence, uint32_t sequence) 219 { 220 struct ttm_bo_global *glob = bo->glob; 221 int ret; 222 223 while (unlikely(atomic_read(&bo->reserved) != 0)) { 224 /** 225 * Deadlock avoidance for multi-bo reserving. 226 */ 227 if (use_sequence && bo->seq_valid) { 228 /** 229 * We've already reserved this one. 230 */ 231 if (unlikely(sequence == bo->val_seq)) 232 return -EDEADLK; 233 /** 234 * Already reserved by a thread that will not back 235 * off for us. We need to back off. 236 */ 237 if (unlikely(sequence - bo->val_seq < (1 << 31))) 238 return -EAGAIN; 239 } 240 241 if (no_wait) 242 return -EBUSY; 243 244 spin_unlock(&glob->lru_lock); 245 ret = ttm_bo_wait_unreserved(bo, interruptible); 246 spin_lock(&glob->lru_lock); 247 248 if (unlikely(ret)) 249 return ret; 250 } 251 252 atomic_set(&bo->reserved, 1); 253 if (use_sequence) { 254 /** 255 * Wake up waiters that may need to recheck for deadlock, 256 * if we decreased the sequence number. 257 */ 258 if (unlikely((bo->val_seq - sequence < (1 << 31)) 259 || !bo->seq_valid)) 260 wake_up_all(&bo->event_queue); 261 262 bo->val_seq = sequence; 263 bo->seq_valid = true; 264 } else { 265 bo->seq_valid = false; 266 } 267 268 return 0; 269 } 270 EXPORT_SYMBOL(ttm_bo_reserve); 271 272 static void ttm_bo_ref_bug(struct kref *list_kref) 273 { 274 BUG(); 275 } 276 277 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 278 bool never_free) 279 { 280 kref_sub(&bo->list_kref, count, 281 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 282 } 283 284 int ttm_bo_reserve(struct ttm_buffer_object *bo, 285 bool interruptible, 286 bool no_wait, bool use_sequence, uint32_t sequence) 287 { 288 struct ttm_bo_global *glob = bo->glob; 289 int put_count = 0; 290 int ret; 291 292 spin_lock(&glob->lru_lock); 293 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence, 294 sequence); 295 if (likely(ret == 0)) 296 put_count = ttm_bo_del_from_lru(bo); 297 spin_unlock(&glob->lru_lock); 298 299 ttm_bo_list_ref_sub(bo, put_count, true); 300 301 return ret; 302 } 303 304 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 305 { 306 ttm_bo_add_to_lru(bo); 307 atomic_set(&bo->reserved, 0); 308 wake_up_all(&bo->event_queue); 309 } 310 311 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 312 { 313 struct ttm_bo_global *glob = bo->glob; 314 315 spin_lock(&glob->lru_lock); 316 ttm_bo_unreserve_locked(bo); 317 spin_unlock(&glob->lru_lock); 318 } 319 EXPORT_SYMBOL(ttm_bo_unreserve); 320 321 /* 322 * Call bo->mutex locked. 323 */ 324 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 325 { 326 struct ttm_bo_device *bdev = bo->bdev; 327 struct ttm_bo_global *glob = bo->glob; 328 int ret = 0; 329 uint32_t page_flags = 0; 330 331 TTM_ASSERT_LOCKED(&bo->mutex); 332 bo->ttm = NULL; 333 334 if (bdev->need_dma32) 335 page_flags |= TTM_PAGE_FLAG_DMA32; 336 337 switch (bo->type) { 338 case ttm_bo_type_device: 339 if (zero_alloc) 340 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 341 case ttm_bo_type_kernel: 342 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 343 page_flags, glob->dummy_read_page); 344 if (unlikely(bo->ttm == NULL)) 345 ret = -ENOMEM; 346 break; 347 case ttm_bo_type_sg: 348 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 349 page_flags | TTM_PAGE_FLAG_SG, 350 glob->dummy_read_page); 351 if (unlikely(bo->ttm == NULL)) { 352 ret = -ENOMEM; 353 break; 354 } 355 bo->ttm->sg = bo->sg; 356 break; 357 default: 358 pr_err("Illegal buffer object type\n"); 359 ret = -EINVAL; 360 break; 361 } 362 363 return ret; 364 } 365 366 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 367 struct ttm_mem_reg *mem, 368 bool evict, bool interruptible, 369 bool no_wait_gpu) 370 { 371 struct ttm_bo_device *bdev = bo->bdev; 372 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 373 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 374 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 375 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 376 int ret = 0; 377 378 if (old_is_pci || new_is_pci || 379 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 380 ret = ttm_mem_io_lock(old_man, true); 381 if (unlikely(ret != 0)) 382 goto out_err; 383 ttm_bo_unmap_virtual_locked(bo); 384 ttm_mem_io_unlock(old_man); 385 } 386 387 /* 388 * Create and bind a ttm if required. 389 */ 390 391 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 392 if (bo->ttm == NULL) { 393 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 394 ret = ttm_bo_add_ttm(bo, zero); 395 if (ret) 396 goto out_err; 397 } 398 399 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 400 if (ret) 401 goto out_err; 402 403 if (mem->mem_type != TTM_PL_SYSTEM) { 404 ret = ttm_tt_bind(bo->ttm, mem); 405 if (ret) 406 goto out_err; 407 } 408 409 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 410 if (bdev->driver->move_notify) 411 bdev->driver->move_notify(bo, mem); 412 bo->mem = *mem; 413 mem->mm_node = NULL; 414 goto moved; 415 } 416 } 417 418 if (bdev->driver->move_notify) 419 bdev->driver->move_notify(bo, mem); 420 421 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 422 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 423 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 424 else if (bdev->driver->move) 425 ret = bdev->driver->move(bo, evict, interruptible, 426 no_wait_gpu, mem); 427 else 428 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 429 430 if (ret) { 431 if (bdev->driver->move_notify) { 432 struct ttm_mem_reg tmp_mem = *mem; 433 *mem = bo->mem; 434 bo->mem = tmp_mem; 435 bdev->driver->move_notify(bo, mem); 436 bo->mem = *mem; 437 } 438 439 goto out_err; 440 } 441 442 moved: 443 if (bo->evicted) { 444 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 445 if (ret) 446 pr_err("Can not flush read caches\n"); 447 bo->evicted = false; 448 } 449 450 if (bo->mem.mm_node) { 451 bo->offset = (bo->mem.start << PAGE_SHIFT) + 452 bdev->man[bo->mem.mem_type].gpu_offset; 453 bo->cur_placement = bo->mem.placement; 454 } else 455 bo->offset = 0; 456 457 return 0; 458 459 out_err: 460 new_man = &bdev->man[bo->mem.mem_type]; 461 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 462 ttm_tt_unbind(bo->ttm); 463 ttm_tt_destroy(bo->ttm); 464 bo->ttm = NULL; 465 } 466 467 return ret; 468 } 469 470 /** 471 * Call bo::reserved. 472 * Will release GPU memory type usage on destruction. 473 * This is the place to put in driver specific hooks to release 474 * driver private resources. 475 * Will release the bo::reserved lock. 476 */ 477 478 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 479 { 480 if (bo->bdev->driver->move_notify) 481 bo->bdev->driver->move_notify(bo, NULL); 482 483 if (bo->ttm) { 484 ttm_tt_unbind(bo->ttm); 485 ttm_tt_destroy(bo->ttm); 486 bo->ttm = NULL; 487 } 488 ttm_bo_mem_put(bo, &bo->mem); 489 490 atomic_set(&bo->reserved, 0); 491 wake_up_all(&bo->event_queue); 492 493 /* 494 * Since the final reference to this bo may not be dropped by 495 * the current task we have to put a memory barrier here to make 496 * sure the changes done in this function are always visible. 497 * 498 * This function only needs protection against the final kref_put. 499 */ 500 smp_mb__before_atomic_dec(); 501 } 502 503 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 504 { 505 struct ttm_bo_device *bdev = bo->bdev; 506 struct ttm_bo_global *glob = bo->glob; 507 struct ttm_bo_driver *driver = bdev->driver; 508 void *sync_obj = NULL; 509 int put_count; 510 int ret; 511 512 spin_lock(&glob->lru_lock); 513 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 514 515 spin_lock(&bdev->fence_lock); 516 (void) ttm_bo_wait(bo, false, false, true); 517 if (!ret && !bo->sync_obj) { 518 spin_unlock(&bdev->fence_lock); 519 put_count = ttm_bo_del_from_lru(bo); 520 521 spin_unlock(&glob->lru_lock); 522 ttm_bo_cleanup_memtype_use(bo); 523 524 ttm_bo_list_ref_sub(bo, put_count, true); 525 526 return; 527 } 528 if (bo->sync_obj) 529 sync_obj = driver->sync_obj_ref(bo->sync_obj); 530 spin_unlock(&bdev->fence_lock); 531 532 if (!ret) { 533 atomic_set(&bo->reserved, 0); 534 wake_up_all(&bo->event_queue); 535 } 536 537 kref_get(&bo->list_kref); 538 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 539 spin_unlock(&glob->lru_lock); 540 541 if (sync_obj) { 542 driver->sync_obj_flush(sync_obj); 543 driver->sync_obj_unref(&sync_obj); 544 } 545 schedule_delayed_work(&bdev->wq, 546 ((HZ / 100) < 1) ? 1 : HZ / 100); 547 } 548 549 /** 550 * function ttm_bo_cleanup_refs_and_unlock 551 * If bo idle, remove from delayed- and lru lists, and unref. 552 * If not idle, do nothing. 553 * 554 * Must be called with lru_lock and reservation held, this function 555 * will drop both before returning. 556 * 557 * @interruptible Any sleeps should occur interruptibly. 558 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 559 */ 560 561 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 562 bool interruptible, 563 bool no_wait_gpu) 564 { 565 struct ttm_bo_device *bdev = bo->bdev; 566 struct ttm_bo_driver *driver = bdev->driver; 567 struct ttm_bo_global *glob = bo->glob; 568 int put_count; 569 int ret; 570 571 spin_lock(&bdev->fence_lock); 572 ret = ttm_bo_wait(bo, false, false, true); 573 574 if (ret && !no_wait_gpu) { 575 void *sync_obj; 576 577 /* 578 * Take a reference to the fence and unreserve, 579 * at this point the buffer should be dead, so 580 * no new sync objects can be attached. 581 */ 582 sync_obj = driver->sync_obj_ref(&bo->sync_obj); 583 spin_unlock(&bdev->fence_lock); 584 585 atomic_set(&bo->reserved, 0); 586 wake_up_all(&bo->event_queue); 587 spin_unlock(&glob->lru_lock); 588 589 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 590 driver->sync_obj_unref(&sync_obj); 591 if (ret) 592 return ret; 593 594 /* 595 * remove sync_obj with ttm_bo_wait, the wait should be 596 * finished, and no new wait object should have been added. 597 */ 598 spin_lock(&bdev->fence_lock); 599 ret = ttm_bo_wait(bo, false, false, true); 600 WARN_ON(ret); 601 spin_unlock(&bdev->fence_lock); 602 if (ret) 603 return ret; 604 605 spin_lock(&glob->lru_lock); 606 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 607 608 /* 609 * We raced, and lost, someone else holds the reservation now, 610 * and is probably busy in ttm_bo_cleanup_memtype_use. 611 * 612 * Even if it's not the case, because we finished waiting any 613 * delayed destruction would succeed, so just return success 614 * here. 615 */ 616 if (ret) { 617 spin_unlock(&glob->lru_lock); 618 return 0; 619 } 620 } else 621 spin_unlock(&bdev->fence_lock); 622 623 if (ret || unlikely(list_empty(&bo->ddestroy))) { 624 atomic_set(&bo->reserved, 0); 625 wake_up_all(&bo->event_queue); 626 spin_unlock(&glob->lru_lock); 627 return ret; 628 } 629 630 put_count = ttm_bo_del_from_lru(bo); 631 list_del_init(&bo->ddestroy); 632 ++put_count; 633 634 spin_unlock(&glob->lru_lock); 635 ttm_bo_cleanup_memtype_use(bo); 636 637 ttm_bo_list_ref_sub(bo, put_count, true); 638 639 return 0; 640 } 641 642 /** 643 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 644 * encountered buffers. 645 */ 646 647 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 648 { 649 struct ttm_bo_global *glob = bdev->glob; 650 struct ttm_buffer_object *entry = NULL; 651 int ret = 0; 652 653 spin_lock(&glob->lru_lock); 654 if (list_empty(&bdev->ddestroy)) 655 goto out_unlock; 656 657 entry = list_first_entry(&bdev->ddestroy, 658 struct ttm_buffer_object, ddestroy); 659 kref_get(&entry->list_kref); 660 661 for (;;) { 662 struct ttm_buffer_object *nentry = NULL; 663 664 if (entry->ddestroy.next != &bdev->ddestroy) { 665 nentry = list_first_entry(&entry->ddestroy, 666 struct ttm_buffer_object, ddestroy); 667 kref_get(&nentry->list_kref); 668 } 669 670 ret = ttm_bo_reserve_locked(entry, false, !remove_all, false, 0); 671 if (!ret) 672 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 673 !remove_all); 674 else 675 spin_unlock(&glob->lru_lock); 676 677 kref_put(&entry->list_kref, ttm_bo_release_list); 678 entry = nentry; 679 680 if (ret || !entry) 681 goto out; 682 683 spin_lock(&glob->lru_lock); 684 if (list_empty(&entry->ddestroy)) 685 break; 686 } 687 688 out_unlock: 689 spin_unlock(&glob->lru_lock); 690 out: 691 if (entry) 692 kref_put(&entry->list_kref, ttm_bo_release_list); 693 return ret; 694 } 695 696 static void ttm_bo_delayed_workqueue(struct work_struct *work) 697 { 698 struct ttm_bo_device *bdev = 699 container_of(work, struct ttm_bo_device, wq.work); 700 701 if (ttm_bo_delayed_delete(bdev, false)) { 702 schedule_delayed_work(&bdev->wq, 703 ((HZ / 100) < 1) ? 1 : HZ / 100); 704 } 705 } 706 707 static void ttm_bo_release(struct kref *kref) 708 { 709 struct ttm_buffer_object *bo = 710 container_of(kref, struct ttm_buffer_object, kref); 711 struct ttm_bo_device *bdev = bo->bdev; 712 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 713 714 write_lock(&bdev->vm_lock); 715 if (likely(bo->vm_node != NULL)) { 716 rb_erase(&bo->vm_rb, &bdev->addr_space_rb); 717 drm_mm_put_block(bo->vm_node); 718 bo->vm_node = NULL; 719 } 720 write_unlock(&bdev->vm_lock); 721 ttm_mem_io_lock(man, false); 722 ttm_mem_io_free_vm(bo); 723 ttm_mem_io_unlock(man); 724 ttm_bo_cleanup_refs_or_queue(bo); 725 kref_put(&bo->list_kref, ttm_bo_release_list); 726 } 727 728 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 729 { 730 struct ttm_buffer_object *bo = *p_bo; 731 732 *p_bo = NULL; 733 kref_put(&bo->kref, ttm_bo_release); 734 } 735 EXPORT_SYMBOL(ttm_bo_unref); 736 737 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 738 { 739 return cancel_delayed_work_sync(&bdev->wq); 740 } 741 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 742 743 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 744 { 745 if (resched) 746 schedule_delayed_work(&bdev->wq, 747 ((HZ / 100) < 1) ? 1 : HZ / 100); 748 } 749 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 750 751 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 752 bool no_wait_gpu) 753 { 754 struct ttm_bo_device *bdev = bo->bdev; 755 struct ttm_mem_reg evict_mem; 756 struct ttm_placement placement; 757 int ret = 0; 758 759 spin_lock(&bdev->fence_lock); 760 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 761 spin_unlock(&bdev->fence_lock); 762 763 if (unlikely(ret != 0)) { 764 if (ret != -ERESTARTSYS) { 765 pr_err("Failed to expire sync object before buffer eviction\n"); 766 } 767 goto out; 768 } 769 770 BUG_ON(!ttm_bo_is_reserved(bo)); 771 772 evict_mem = bo->mem; 773 evict_mem.mm_node = NULL; 774 evict_mem.bus.io_reserved_vm = false; 775 evict_mem.bus.io_reserved_count = 0; 776 777 placement.fpfn = 0; 778 placement.lpfn = 0; 779 placement.num_placement = 0; 780 placement.num_busy_placement = 0; 781 bdev->driver->evict_flags(bo, &placement); 782 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 783 no_wait_gpu); 784 if (ret) { 785 if (ret != -ERESTARTSYS) { 786 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 787 bo); 788 ttm_bo_mem_space_debug(bo, &placement); 789 } 790 goto out; 791 } 792 793 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 794 no_wait_gpu); 795 if (ret) { 796 if (ret != -ERESTARTSYS) 797 pr_err("Buffer eviction failed\n"); 798 ttm_bo_mem_put(bo, &evict_mem); 799 goto out; 800 } 801 bo->evicted = true; 802 out: 803 return ret; 804 } 805 806 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 807 uint32_t mem_type, 808 bool interruptible, 809 bool no_wait_gpu) 810 { 811 struct ttm_bo_global *glob = bdev->glob; 812 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 813 struct ttm_buffer_object *bo; 814 int ret = -EBUSY, put_count; 815 816 spin_lock(&glob->lru_lock); 817 list_for_each_entry(bo, &man->lru, lru) { 818 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 819 if (!ret) 820 break; 821 } 822 823 if (ret) { 824 spin_unlock(&glob->lru_lock); 825 return ret; 826 } 827 828 kref_get(&bo->list_kref); 829 830 if (!list_empty(&bo->ddestroy)) { 831 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 832 no_wait_gpu); 833 kref_put(&bo->list_kref, ttm_bo_release_list); 834 return ret; 835 } 836 837 put_count = ttm_bo_del_from_lru(bo); 838 spin_unlock(&glob->lru_lock); 839 840 BUG_ON(ret != 0); 841 842 ttm_bo_list_ref_sub(bo, put_count, true); 843 844 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 845 ttm_bo_unreserve(bo); 846 847 kref_put(&bo->list_kref, ttm_bo_release_list); 848 return ret; 849 } 850 851 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 852 { 853 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 854 855 if (mem->mm_node) 856 (*man->func->put_node)(man, mem); 857 } 858 EXPORT_SYMBOL(ttm_bo_mem_put); 859 860 /** 861 * Repeatedly evict memory from the LRU for @mem_type until we create enough 862 * space, or we've evicted everything and there isn't enough space. 863 */ 864 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 865 uint32_t mem_type, 866 struct ttm_placement *placement, 867 struct ttm_mem_reg *mem, 868 bool interruptible, 869 bool no_wait_gpu) 870 { 871 struct ttm_bo_device *bdev = bo->bdev; 872 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 873 int ret; 874 875 do { 876 ret = (*man->func->get_node)(man, bo, placement, mem); 877 if (unlikely(ret != 0)) 878 return ret; 879 if (mem->mm_node) 880 break; 881 ret = ttm_mem_evict_first(bdev, mem_type, 882 interruptible, no_wait_gpu); 883 if (unlikely(ret != 0)) 884 return ret; 885 } while (1); 886 if (mem->mm_node == NULL) 887 return -ENOMEM; 888 mem->mem_type = mem_type; 889 return 0; 890 } 891 892 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 893 uint32_t cur_placement, 894 uint32_t proposed_placement) 895 { 896 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 897 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 898 899 /** 900 * Keep current caching if possible. 901 */ 902 903 if ((cur_placement & caching) != 0) 904 result |= (cur_placement & caching); 905 else if ((man->default_caching & caching) != 0) 906 result |= man->default_caching; 907 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 908 result |= TTM_PL_FLAG_CACHED; 909 else if ((TTM_PL_FLAG_WC & caching) != 0) 910 result |= TTM_PL_FLAG_WC; 911 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 912 result |= TTM_PL_FLAG_UNCACHED; 913 914 return result; 915 } 916 917 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 918 uint32_t mem_type, 919 uint32_t proposed_placement, 920 uint32_t *masked_placement) 921 { 922 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 923 924 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 925 return false; 926 927 if ((proposed_placement & man->available_caching) == 0) 928 return false; 929 930 cur_flags |= (proposed_placement & man->available_caching); 931 932 *masked_placement = cur_flags; 933 return true; 934 } 935 936 /** 937 * Creates space for memory region @mem according to its type. 938 * 939 * This function first searches for free space in compatible memory types in 940 * the priority order defined by the driver. If free space isn't found, then 941 * ttm_bo_mem_force_space is attempted in priority order to evict and find 942 * space. 943 */ 944 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 945 struct ttm_placement *placement, 946 struct ttm_mem_reg *mem, 947 bool interruptible, 948 bool no_wait_gpu) 949 { 950 struct ttm_bo_device *bdev = bo->bdev; 951 struct ttm_mem_type_manager *man; 952 uint32_t mem_type = TTM_PL_SYSTEM; 953 uint32_t cur_flags = 0; 954 bool type_found = false; 955 bool type_ok = false; 956 bool has_erestartsys = false; 957 int i, ret; 958 959 mem->mm_node = NULL; 960 for (i = 0; i < placement->num_placement; ++i) { 961 ret = ttm_mem_type_from_flags(placement->placement[i], 962 &mem_type); 963 if (ret) 964 return ret; 965 man = &bdev->man[mem_type]; 966 967 type_ok = ttm_bo_mt_compatible(man, 968 mem_type, 969 placement->placement[i], 970 &cur_flags); 971 972 if (!type_ok) 973 continue; 974 975 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 976 cur_flags); 977 /* 978 * Use the access and other non-mapping-related flag bits from 979 * the memory placement flags to the current flags 980 */ 981 ttm_flag_masked(&cur_flags, placement->placement[i], 982 ~TTM_PL_MASK_MEMTYPE); 983 984 if (mem_type == TTM_PL_SYSTEM) 985 break; 986 987 if (man->has_type && man->use_type) { 988 type_found = true; 989 ret = (*man->func->get_node)(man, bo, placement, mem); 990 if (unlikely(ret)) 991 return ret; 992 } 993 if (mem->mm_node) 994 break; 995 } 996 997 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 998 mem->mem_type = mem_type; 999 mem->placement = cur_flags; 1000 return 0; 1001 } 1002 1003 if (!type_found) 1004 return -EINVAL; 1005 1006 for (i = 0; i < placement->num_busy_placement; ++i) { 1007 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1008 &mem_type); 1009 if (ret) 1010 return ret; 1011 man = &bdev->man[mem_type]; 1012 if (!man->has_type) 1013 continue; 1014 if (!ttm_bo_mt_compatible(man, 1015 mem_type, 1016 placement->busy_placement[i], 1017 &cur_flags)) 1018 continue; 1019 1020 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1021 cur_flags); 1022 /* 1023 * Use the access and other non-mapping-related flag bits from 1024 * the memory placement flags to the current flags 1025 */ 1026 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1027 ~TTM_PL_MASK_MEMTYPE); 1028 1029 1030 if (mem_type == TTM_PL_SYSTEM) { 1031 mem->mem_type = mem_type; 1032 mem->placement = cur_flags; 1033 mem->mm_node = NULL; 1034 return 0; 1035 } 1036 1037 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1038 interruptible, no_wait_gpu); 1039 if (ret == 0 && mem->mm_node) { 1040 mem->placement = cur_flags; 1041 return 0; 1042 } 1043 if (ret == -ERESTARTSYS) 1044 has_erestartsys = true; 1045 } 1046 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(ttm_bo_mem_space); 1050 1051 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1052 struct ttm_placement *placement, 1053 bool interruptible, 1054 bool no_wait_gpu) 1055 { 1056 int ret = 0; 1057 struct ttm_mem_reg mem; 1058 struct ttm_bo_device *bdev = bo->bdev; 1059 1060 BUG_ON(!ttm_bo_is_reserved(bo)); 1061 1062 /* 1063 * FIXME: It's possible to pipeline buffer moves. 1064 * Have the driver move function wait for idle when necessary, 1065 * instead of doing it here. 1066 */ 1067 spin_lock(&bdev->fence_lock); 1068 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1069 spin_unlock(&bdev->fence_lock); 1070 if (ret) 1071 return ret; 1072 mem.num_pages = bo->num_pages; 1073 mem.size = mem.num_pages << PAGE_SHIFT; 1074 mem.page_alignment = bo->mem.page_alignment; 1075 mem.bus.io_reserved_vm = false; 1076 mem.bus.io_reserved_count = 0; 1077 /* 1078 * Determine where to move the buffer. 1079 */ 1080 ret = ttm_bo_mem_space(bo, placement, &mem, 1081 interruptible, no_wait_gpu); 1082 if (ret) 1083 goto out_unlock; 1084 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1085 interruptible, no_wait_gpu); 1086 out_unlock: 1087 if (ret && mem.mm_node) 1088 ttm_bo_mem_put(bo, &mem); 1089 return ret; 1090 } 1091 1092 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1093 struct ttm_mem_reg *mem) 1094 { 1095 int i; 1096 1097 if (mem->mm_node && placement->lpfn != 0 && 1098 (mem->start < placement->fpfn || 1099 mem->start + mem->num_pages > placement->lpfn)) 1100 return -1; 1101 1102 for (i = 0; i < placement->num_placement; i++) { 1103 if ((placement->placement[i] & mem->placement & 1104 TTM_PL_MASK_CACHING) && 1105 (placement->placement[i] & mem->placement & 1106 TTM_PL_MASK_MEM)) 1107 return i; 1108 } 1109 return -1; 1110 } 1111 1112 int ttm_bo_validate(struct ttm_buffer_object *bo, 1113 struct ttm_placement *placement, 1114 bool interruptible, 1115 bool no_wait_gpu) 1116 { 1117 int ret; 1118 1119 BUG_ON(!ttm_bo_is_reserved(bo)); 1120 /* Check that range is valid */ 1121 if (placement->lpfn || placement->fpfn) 1122 if (placement->fpfn > placement->lpfn || 1123 (placement->lpfn - placement->fpfn) < bo->num_pages) 1124 return -EINVAL; 1125 /* 1126 * Check whether we need to move buffer. 1127 */ 1128 ret = ttm_bo_mem_compat(placement, &bo->mem); 1129 if (ret < 0) { 1130 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1131 no_wait_gpu); 1132 if (ret) 1133 return ret; 1134 } else { 1135 /* 1136 * Use the access and other non-mapping-related flag bits from 1137 * the compatible memory placement flags to the active flags 1138 */ 1139 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1140 ~TTM_PL_MASK_MEMTYPE); 1141 } 1142 /* 1143 * We might need to add a TTM. 1144 */ 1145 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1146 ret = ttm_bo_add_ttm(bo, true); 1147 if (ret) 1148 return ret; 1149 } 1150 return 0; 1151 } 1152 EXPORT_SYMBOL(ttm_bo_validate); 1153 1154 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1155 struct ttm_placement *placement) 1156 { 1157 BUG_ON((placement->fpfn || placement->lpfn) && 1158 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); 1159 1160 return 0; 1161 } 1162 1163 int ttm_bo_init(struct ttm_bo_device *bdev, 1164 struct ttm_buffer_object *bo, 1165 unsigned long size, 1166 enum ttm_bo_type type, 1167 struct ttm_placement *placement, 1168 uint32_t page_alignment, 1169 bool interruptible, 1170 struct file *persistent_swap_storage, 1171 size_t acc_size, 1172 struct sg_table *sg, 1173 void (*destroy) (struct ttm_buffer_object *)) 1174 { 1175 int ret = 0; 1176 unsigned long num_pages; 1177 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1178 1179 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1180 if (ret) { 1181 pr_err("Out of kernel memory\n"); 1182 if (destroy) 1183 (*destroy)(bo); 1184 else 1185 kfree(bo); 1186 return -ENOMEM; 1187 } 1188 1189 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1190 if (num_pages == 0) { 1191 pr_err("Illegal buffer object size\n"); 1192 if (destroy) 1193 (*destroy)(bo); 1194 else 1195 kfree(bo); 1196 ttm_mem_global_free(mem_glob, acc_size); 1197 return -EINVAL; 1198 } 1199 bo->destroy = destroy; 1200 1201 kref_init(&bo->kref); 1202 kref_init(&bo->list_kref); 1203 atomic_set(&bo->cpu_writers, 0); 1204 atomic_set(&bo->reserved, 1); 1205 init_waitqueue_head(&bo->event_queue); 1206 INIT_LIST_HEAD(&bo->lru); 1207 INIT_LIST_HEAD(&bo->ddestroy); 1208 INIT_LIST_HEAD(&bo->swap); 1209 INIT_LIST_HEAD(&bo->io_reserve_lru); 1210 bo->bdev = bdev; 1211 bo->glob = bdev->glob; 1212 bo->type = type; 1213 bo->num_pages = num_pages; 1214 bo->mem.size = num_pages << PAGE_SHIFT; 1215 bo->mem.mem_type = TTM_PL_SYSTEM; 1216 bo->mem.num_pages = bo->num_pages; 1217 bo->mem.mm_node = NULL; 1218 bo->mem.page_alignment = page_alignment; 1219 bo->mem.bus.io_reserved_vm = false; 1220 bo->mem.bus.io_reserved_count = 0; 1221 bo->priv_flags = 0; 1222 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1223 bo->seq_valid = false; 1224 bo->persistent_swap_storage = persistent_swap_storage; 1225 bo->acc_size = acc_size; 1226 bo->sg = sg; 1227 atomic_inc(&bo->glob->bo_count); 1228 1229 ret = ttm_bo_check_placement(bo, placement); 1230 if (unlikely(ret != 0)) 1231 goto out_err; 1232 1233 /* 1234 * For ttm_bo_type_device buffers, allocate 1235 * address space from the device. 1236 */ 1237 if (bo->type == ttm_bo_type_device || 1238 bo->type == ttm_bo_type_sg) { 1239 ret = ttm_bo_setup_vm(bo); 1240 if (ret) 1241 goto out_err; 1242 } 1243 1244 ret = ttm_bo_validate(bo, placement, interruptible, false); 1245 if (ret) 1246 goto out_err; 1247 1248 ttm_bo_unreserve(bo); 1249 return 0; 1250 1251 out_err: 1252 ttm_bo_unreserve(bo); 1253 ttm_bo_unref(&bo); 1254 1255 return ret; 1256 } 1257 EXPORT_SYMBOL(ttm_bo_init); 1258 1259 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1260 unsigned long bo_size, 1261 unsigned struct_size) 1262 { 1263 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1264 size_t size = 0; 1265 1266 size += ttm_round_pot(struct_size); 1267 size += PAGE_ALIGN(npages * sizeof(void *)); 1268 size += ttm_round_pot(sizeof(struct ttm_tt)); 1269 return size; 1270 } 1271 EXPORT_SYMBOL(ttm_bo_acc_size); 1272 1273 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1274 unsigned long bo_size, 1275 unsigned struct_size) 1276 { 1277 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1278 size_t size = 0; 1279 1280 size += ttm_round_pot(struct_size); 1281 size += PAGE_ALIGN(npages * sizeof(void *)); 1282 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1283 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1284 return size; 1285 } 1286 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1287 1288 int ttm_bo_create(struct ttm_bo_device *bdev, 1289 unsigned long size, 1290 enum ttm_bo_type type, 1291 struct ttm_placement *placement, 1292 uint32_t page_alignment, 1293 bool interruptible, 1294 struct file *persistent_swap_storage, 1295 struct ttm_buffer_object **p_bo) 1296 { 1297 struct ttm_buffer_object *bo; 1298 size_t acc_size; 1299 int ret; 1300 1301 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1302 if (unlikely(bo == NULL)) 1303 return -ENOMEM; 1304 1305 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1306 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1307 interruptible, persistent_swap_storage, acc_size, 1308 NULL, NULL); 1309 if (likely(ret == 0)) 1310 *p_bo = bo; 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(ttm_bo_create); 1315 1316 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1317 unsigned mem_type, bool allow_errors) 1318 { 1319 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1320 struct ttm_bo_global *glob = bdev->glob; 1321 int ret; 1322 1323 /* 1324 * Can't use standard list traversal since we're unlocking. 1325 */ 1326 1327 spin_lock(&glob->lru_lock); 1328 while (!list_empty(&man->lru)) { 1329 spin_unlock(&glob->lru_lock); 1330 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1331 if (ret) { 1332 if (allow_errors) { 1333 return ret; 1334 } else { 1335 pr_err("Cleanup eviction failed\n"); 1336 } 1337 } 1338 spin_lock(&glob->lru_lock); 1339 } 1340 spin_unlock(&glob->lru_lock); 1341 return 0; 1342 } 1343 1344 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1345 { 1346 struct ttm_mem_type_manager *man; 1347 int ret = -EINVAL; 1348 1349 if (mem_type >= TTM_NUM_MEM_TYPES) { 1350 pr_err("Illegal memory type %d\n", mem_type); 1351 return ret; 1352 } 1353 man = &bdev->man[mem_type]; 1354 1355 if (!man->has_type) { 1356 pr_err("Trying to take down uninitialized memory manager type %u\n", 1357 mem_type); 1358 return ret; 1359 } 1360 1361 man->use_type = false; 1362 man->has_type = false; 1363 1364 ret = 0; 1365 if (mem_type > 0) { 1366 ttm_bo_force_list_clean(bdev, mem_type, false); 1367 1368 ret = (*man->func->takedown)(man); 1369 } 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(ttm_bo_clean_mm); 1374 1375 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1376 { 1377 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1378 1379 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1380 pr_err("Illegal memory manager memory type %u\n", mem_type); 1381 return -EINVAL; 1382 } 1383 1384 if (!man->has_type) { 1385 pr_err("Memory type %u has not been initialized\n", mem_type); 1386 return 0; 1387 } 1388 1389 return ttm_bo_force_list_clean(bdev, mem_type, true); 1390 } 1391 EXPORT_SYMBOL(ttm_bo_evict_mm); 1392 1393 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1394 unsigned long p_size) 1395 { 1396 int ret = -EINVAL; 1397 struct ttm_mem_type_manager *man; 1398 1399 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1400 man = &bdev->man[type]; 1401 BUG_ON(man->has_type); 1402 man->io_reserve_fastpath = true; 1403 man->use_io_reserve_lru = false; 1404 mutex_init(&man->io_reserve_mutex); 1405 INIT_LIST_HEAD(&man->io_reserve_lru); 1406 1407 ret = bdev->driver->init_mem_type(bdev, type, man); 1408 if (ret) 1409 return ret; 1410 man->bdev = bdev; 1411 1412 ret = 0; 1413 if (type != TTM_PL_SYSTEM) { 1414 ret = (*man->func->init)(man, p_size); 1415 if (ret) 1416 return ret; 1417 } 1418 man->has_type = true; 1419 man->use_type = true; 1420 man->size = p_size; 1421 1422 INIT_LIST_HEAD(&man->lru); 1423 1424 return 0; 1425 } 1426 EXPORT_SYMBOL(ttm_bo_init_mm); 1427 1428 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1429 { 1430 struct ttm_bo_global *glob = 1431 container_of(kobj, struct ttm_bo_global, kobj); 1432 1433 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1434 __free_page(glob->dummy_read_page); 1435 kfree(glob); 1436 } 1437 1438 void ttm_bo_global_release(struct drm_global_reference *ref) 1439 { 1440 struct ttm_bo_global *glob = ref->object; 1441 1442 kobject_del(&glob->kobj); 1443 kobject_put(&glob->kobj); 1444 } 1445 EXPORT_SYMBOL(ttm_bo_global_release); 1446 1447 int ttm_bo_global_init(struct drm_global_reference *ref) 1448 { 1449 struct ttm_bo_global_ref *bo_ref = 1450 container_of(ref, struct ttm_bo_global_ref, ref); 1451 struct ttm_bo_global *glob = ref->object; 1452 int ret; 1453 1454 mutex_init(&glob->device_list_mutex); 1455 spin_lock_init(&glob->lru_lock); 1456 glob->mem_glob = bo_ref->mem_glob; 1457 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1458 1459 if (unlikely(glob->dummy_read_page == NULL)) { 1460 ret = -ENOMEM; 1461 goto out_no_drp; 1462 } 1463 1464 INIT_LIST_HEAD(&glob->swap_lru); 1465 INIT_LIST_HEAD(&glob->device_list); 1466 1467 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1468 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1469 if (unlikely(ret != 0)) { 1470 pr_err("Could not register buffer object swapout\n"); 1471 goto out_no_shrink; 1472 } 1473 1474 atomic_set(&glob->bo_count, 0); 1475 1476 ret = kobject_init_and_add( 1477 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1478 if (unlikely(ret != 0)) 1479 kobject_put(&glob->kobj); 1480 return ret; 1481 out_no_shrink: 1482 __free_page(glob->dummy_read_page); 1483 out_no_drp: 1484 kfree(glob); 1485 return ret; 1486 } 1487 EXPORT_SYMBOL(ttm_bo_global_init); 1488 1489 1490 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1491 { 1492 int ret = 0; 1493 unsigned i = TTM_NUM_MEM_TYPES; 1494 struct ttm_mem_type_manager *man; 1495 struct ttm_bo_global *glob = bdev->glob; 1496 1497 while (i--) { 1498 man = &bdev->man[i]; 1499 if (man->has_type) { 1500 man->use_type = false; 1501 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1502 ret = -EBUSY; 1503 pr_err("DRM memory manager type %d is not clean\n", 1504 i); 1505 } 1506 man->has_type = false; 1507 } 1508 } 1509 1510 mutex_lock(&glob->device_list_mutex); 1511 list_del(&bdev->device_list); 1512 mutex_unlock(&glob->device_list_mutex); 1513 1514 cancel_delayed_work_sync(&bdev->wq); 1515 1516 while (ttm_bo_delayed_delete(bdev, true)) 1517 ; 1518 1519 spin_lock(&glob->lru_lock); 1520 if (list_empty(&bdev->ddestroy)) 1521 TTM_DEBUG("Delayed destroy list was clean\n"); 1522 1523 if (list_empty(&bdev->man[0].lru)) 1524 TTM_DEBUG("Swap list was clean\n"); 1525 spin_unlock(&glob->lru_lock); 1526 1527 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1528 write_lock(&bdev->vm_lock); 1529 drm_mm_takedown(&bdev->addr_space_mm); 1530 write_unlock(&bdev->vm_lock); 1531 1532 return ret; 1533 } 1534 EXPORT_SYMBOL(ttm_bo_device_release); 1535 1536 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1537 struct ttm_bo_global *glob, 1538 struct ttm_bo_driver *driver, 1539 uint64_t file_page_offset, 1540 bool need_dma32) 1541 { 1542 int ret = -EINVAL; 1543 1544 rwlock_init(&bdev->vm_lock); 1545 bdev->driver = driver; 1546 1547 memset(bdev->man, 0, sizeof(bdev->man)); 1548 1549 /* 1550 * Initialize the system memory buffer type. 1551 * Other types need to be driver / IOCTL initialized. 1552 */ 1553 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1554 if (unlikely(ret != 0)) 1555 goto out_no_sys; 1556 1557 bdev->addr_space_rb = RB_ROOT; 1558 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1559 if (unlikely(ret != 0)) 1560 goto out_no_addr_mm; 1561 1562 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1563 INIT_LIST_HEAD(&bdev->ddestroy); 1564 bdev->dev_mapping = NULL; 1565 bdev->glob = glob; 1566 bdev->need_dma32 = need_dma32; 1567 bdev->val_seq = 0; 1568 spin_lock_init(&bdev->fence_lock); 1569 mutex_lock(&glob->device_list_mutex); 1570 list_add_tail(&bdev->device_list, &glob->device_list); 1571 mutex_unlock(&glob->device_list_mutex); 1572 1573 return 0; 1574 out_no_addr_mm: 1575 ttm_bo_clean_mm(bdev, 0); 1576 out_no_sys: 1577 return ret; 1578 } 1579 EXPORT_SYMBOL(ttm_bo_device_init); 1580 1581 /* 1582 * buffer object vm functions. 1583 */ 1584 1585 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1586 { 1587 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1588 1589 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1590 if (mem->mem_type == TTM_PL_SYSTEM) 1591 return false; 1592 1593 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1594 return false; 1595 1596 if (mem->placement & TTM_PL_FLAG_CACHED) 1597 return false; 1598 } 1599 return true; 1600 } 1601 1602 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1603 { 1604 struct ttm_bo_device *bdev = bo->bdev; 1605 loff_t offset = (loff_t) bo->addr_space_offset; 1606 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; 1607 1608 if (!bdev->dev_mapping) 1609 return; 1610 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); 1611 ttm_mem_io_free_vm(bo); 1612 } 1613 1614 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1615 { 1616 struct ttm_bo_device *bdev = bo->bdev; 1617 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1618 1619 ttm_mem_io_lock(man, false); 1620 ttm_bo_unmap_virtual_locked(bo); 1621 ttm_mem_io_unlock(man); 1622 } 1623 1624 1625 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1626 1627 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1628 { 1629 struct ttm_bo_device *bdev = bo->bdev; 1630 struct rb_node **cur = &bdev->addr_space_rb.rb_node; 1631 struct rb_node *parent = NULL; 1632 struct ttm_buffer_object *cur_bo; 1633 unsigned long offset = bo->vm_node->start; 1634 unsigned long cur_offset; 1635 1636 while (*cur) { 1637 parent = *cur; 1638 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); 1639 cur_offset = cur_bo->vm_node->start; 1640 if (offset < cur_offset) 1641 cur = &parent->rb_left; 1642 else if (offset > cur_offset) 1643 cur = &parent->rb_right; 1644 else 1645 BUG(); 1646 } 1647 1648 rb_link_node(&bo->vm_rb, parent, cur); 1649 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); 1650 } 1651 1652 /** 1653 * ttm_bo_setup_vm: 1654 * 1655 * @bo: the buffer to allocate address space for 1656 * 1657 * Allocate address space in the drm device so that applications 1658 * can mmap the buffer and access the contents. This only 1659 * applies to ttm_bo_type_device objects as others are not 1660 * placed in the drm device address space. 1661 */ 1662 1663 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1664 { 1665 struct ttm_bo_device *bdev = bo->bdev; 1666 int ret; 1667 1668 retry_pre_get: 1669 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1670 if (unlikely(ret != 0)) 1671 return ret; 1672 1673 write_lock(&bdev->vm_lock); 1674 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1675 bo->mem.num_pages, 0, 0); 1676 1677 if (unlikely(bo->vm_node == NULL)) { 1678 ret = -ENOMEM; 1679 goto out_unlock; 1680 } 1681 1682 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1683 bo->mem.num_pages, 0); 1684 1685 if (unlikely(bo->vm_node == NULL)) { 1686 write_unlock(&bdev->vm_lock); 1687 goto retry_pre_get; 1688 } 1689 1690 ttm_bo_vm_insert_rb(bo); 1691 write_unlock(&bdev->vm_lock); 1692 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1693 1694 return 0; 1695 out_unlock: 1696 write_unlock(&bdev->vm_lock); 1697 return ret; 1698 } 1699 1700 int ttm_bo_wait(struct ttm_buffer_object *bo, 1701 bool lazy, bool interruptible, bool no_wait) 1702 { 1703 struct ttm_bo_driver *driver = bo->bdev->driver; 1704 struct ttm_bo_device *bdev = bo->bdev; 1705 void *sync_obj; 1706 int ret = 0; 1707 1708 if (likely(bo->sync_obj == NULL)) 1709 return 0; 1710 1711 while (bo->sync_obj) { 1712 1713 if (driver->sync_obj_signaled(bo->sync_obj)) { 1714 void *tmp_obj = bo->sync_obj; 1715 bo->sync_obj = NULL; 1716 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1717 spin_unlock(&bdev->fence_lock); 1718 driver->sync_obj_unref(&tmp_obj); 1719 spin_lock(&bdev->fence_lock); 1720 continue; 1721 } 1722 1723 if (no_wait) 1724 return -EBUSY; 1725 1726 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1727 spin_unlock(&bdev->fence_lock); 1728 ret = driver->sync_obj_wait(sync_obj, 1729 lazy, interruptible); 1730 if (unlikely(ret != 0)) { 1731 driver->sync_obj_unref(&sync_obj); 1732 spin_lock(&bdev->fence_lock); 1733 return ret; 1734 } 1735 spin_lock(&bdev->fence_lock); 1736 if (likely(bo->sync_obj == sync_obj)) { 1737 void *tmp_obj = bo->sync_obj; 1738 bo->sync_obj = NULL; 1739 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1740 &bo->priv_flags); 1741 spin_unlock(&bdev->fence_lock); 1742 driver->sync_obj_unref(&sync_obj); 1743 driver->sync_obj_unref(&tmp_obj); 1744 spin_lock(&bdev->fence_lock); 1745 } else { 1746 spin_unlock(&bdev->fence_lock); 1747 driver->sync_obj_unref(&sync_obj); 1748 spin_lock(&bdev->fence_lock); 1749 } 1750 } 1751 return 0; 1752 } 1753 EXPORT_SYMBOL(ttm_bo_wait); 1754 1755 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1756 { 1757 struct ttm_bo_device *bdev = bo->bdev; 1758 int ret = 0; 1759 1760 /* 1761 * Using ttm_bo_reserve makes sure the lru lists are updated. 1762 */ 1763 1764 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1765 if (unlikely(ret != 0)) 1766 return ret; 1767 spin_lock(&bdev->fence_lock); 1768 ret = ttm_bo_wait(bo, false, true, no_wait); 1769 spin_unlock(&bdev->fence_lock); 1770 if (likely(ret == 0)) 1771 atomic_inc(&bo->cpu_writers); 1772 ttm_bo_unreserve(bo); 1773 return ret; 1774 } 1775 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1776 1777 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1778 { 1779 atomic_dec(&bo->cpu_writers); 1780 } 1781 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1782 1783 /** 1784 * A buffer object shrink method that tries to swap out the first 1785 * buffer object on the bo_global::swap_lru list. 1786 */ 1787 1788 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1789 { 1790 struct ttm_bo_global *glob = 1791 container_of(shrink, struct ttm_bo_global, shrink); 1792 struct ttm_buffer_object *bo; 1793 int ret = -EBUSY; 1794 int put_count; 1795 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1796 1797 spin_lock(&glob->lru_lock); 1798 list_for_each_entry(bo, &glob->swap_lru, swap) { 1799 ret = ttm_bo_reserve_locked(bo, false, true, false, 0); 1800 if (!ret) 1801 break; 1802 } 1803 1804 if (ret) { 1805 spin_unlock(&glob->lru_lock); 1806 return ret; 1807 } 1808 1809 kref_get(&bo->list_kref); 1810 1811 if (!list_empty(&bo->ddestroy)) { 1812 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1813 kref_put(&bo->list_kref, ttm_bo_release_list); 1814 return ret; 1815 } 1816 1817 put_count = ttm_bo_del_from_lru(bo); 1818 spin_unlock(&glob->lru_lock); 1819 1820 ttm_bo_list_ref_sub(bo, put_count, true); 1821 1822 /** 1823 * Wait for GPU, then move to system cached. 1824 */ 1825 1826 spin_lock(&bo->bdev->fence_lock); 1827 ret = ttm_bo_wait(bo, false, false, false); 1828 spin_unlock(&bo->bdev->fence_lock); 1829 1830 if (unlikely(ret != 0)) 1831 goto out; 1832 1833 if ((bo->mem.placement & swap_placement) != swap_placement) { 1834 struct ttm_mem_reg evict_mem; 1835 1836 evict_mem = bo->mem; 1837 evict_mem.mm_node = NULL; 1838 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1839 evict_mem.mem_type = TTM_PL_SYSTEM; 1840 1841 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1842 false, false); 1843 if (unlikely(ret != 0)) 1844 goto out; 1845 } 1846 1847 ttm_bo_unmap_virtual(bo); 1848 1849 /** 1850 * Swap out. Buffer will be swapped in again as soon as 1851 * anyone tries to access a ttm page. 1852 */ 1853 1854 if (bo->bdev->driver->swap_notify) 1855 bo->bdev->driver->swap_notify(bo); 1856 1857 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1858 out: 1859 1860 /** 1861 * 1862 * Unreserve without putting on LRU to avoid swapping out an 1863 * already swapped buffer. 1864 */ 1865 1866 atomic_set(&bo->reserved, 0); 1867 wake_up_all(&bo->event_queue); 1868 kref_put(&bo->list_kref, ttm_bo_release_list); 1869 return ret; 1870 } 1871 1872 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1873 { 1874 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1875 ; 1876 } 1877 EXPORT_SYMBOL(ttm_bo_swapout_all); 1878