xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41 
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45 
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49 
50 static struct attribute ttm_bo_count = {
51 	.name = "bo_count",
52 	.mode = S_IRUGO
53 };
54 
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57 	int i;
58 
59 	for (i = 0; i <= TTM_PL_PRIV5; i++)
60 		if (flags & (1 << i)) {
61 			*mem_type = i;
62 			return 0;
63 		}
64 	return -EINVAL;
65 }
66 
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70 
71 	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72 	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73 	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74 	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75 	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77 		man->available_caching);
78 	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79 		man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 		bo, bo->mem.num_pages, bo->mem.size >> 10,
91 		bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98 			i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 
141 	BUG_ON(atomic_read(&bo->list_kref.refcount));
142 	BUG_ON(atomic_read(&bo->kref.refcount));
143 	BUG_ON(atomic_read(&bo->cpu_writers));
144 	BUG_ON(bo->sync_obj != NULL);
145 	BUG_ON(bo->mem.mm_node != NULL);
146 	BUG_ON(!list_empty(&bo->lru));
147 	BUG_ON(!list_empty(&bo->ddestroy));
148 
149 	if (bo->ttm)
150 		ttm_tt_destroy(bo->ttm);
151 	atomic_dec(&bo->glob->bo_count);
152 	if (bo->destroy)
153 		bo->destroy(bo);
154 	else {
155 		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156 		kfree(bo);
157 	}
158 }
159 
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162 	if (interruptible) {
163 		return wait_event_interruptible(bo->event_queue,
164 					       atomic_read(&bo->reserved) == 0);
165 	} else {
166 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167 		return 0;
168 	}
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171 
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174 	struct ttm_bo_device *bdev = bo->bdev;
175 	struct ttm_mem_type_manager *man;
176 
177 	BUG_ON(!atomic_read(&bo->reserved));
178 
179 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180 
181 		BUG_ON(!list_empty(&bo->lru));
182 
183 		man = &bdev->man[bo->mem.mem_type];
184 		list_add_tail(&bo->lru, &man->lru);
185 		kref_get(&bo->list_kref);
186 
187 		if (bo->ttm != NULL) {
188 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
189 			kref_get(&bo->list_kref);
190 		}
191 	}
192 }
193 
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196 	int put_count = 0;
197 
198 	if (!list_empty(&bo->swap)) {
199 		list_del_init(&bo->swap);
200 		++put_count;
201 	}
202 	if (!list_empty(&bo->lru)) {
203 		list_del_init(&bo->lru);
204 		++put_count;
205 	}
206 
207 	/*
208 	 * TODO: Add a driver hook to delete from
209 	 * driver-specific LRU's here.
210 	 */
211 
212 	return put_count;
213 }
214 
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216 			  bool interruptible,
217 			  bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219 	struct ttm_bo_global *glob = bo->glob;
220 	int ret;
221 
222 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223 		/**
224 		 * Deadlock avoidance for multi-bo reserving.
225 		 */
226 		if (use_sequence && bo->seq_valid) {
227 			/**
228 			 * We've already reserved this one.
229 			 */
230 			if (unlikely(sequence == bo->val_seq))
231 				return -EDEADLK;
232 			/**
233 			 * Already reserved by a thread that will not back
234 			 * off for us. We need to back off.
235 			 */
236 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
237 				return -EAGAIN;
238 		}
239 
240 		if (no_wait)
241 			return -EBUSY;
242 
243 		spin_unlock(&glob->lru_lock);
244 		ret = ttm_bo_wait_unreserved(bo, interruptible);
245 		spin_lock(&glob->lru_lock);
246 
247 		if (unlikely(ret))
248 			return ret;
249 	}
250 
251 	if (use_sequence) {
252 		/**
253 		 * Wake up waiters that may need to recheck for deadlock,
254 		 * if we decreased the sequence number.
255 		 */
256 		if (unlikely((bo->val_seq - sequence < (1 << 31))
257 			     || !bo->seq_valid))
258 			wake_up_all(&bo->event_queue);
259 
260 		bo->val_seq = sequence;
261 		bo->seq_valid = true;
262 	} else {
263 		bo->seq_valid = false;
264 	}
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269 
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272 	BUG();
273 }
274 
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276 			 bool never_free)
277 {
278 	kref_sub(&bo->list_kref, count,
279 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281 
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283 		   bool interruptible,
284 		   bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286 	struct ttm_bo_global *glob = bo->glob;
287 	int put_count = 0;
288 	int ret;
289 
290 	spin_lock(&glob->lru_lock);
291 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292 				    sequence);
293 	if (likely(ret == 0))
294 		put_count = ttm_bo_del_from_lru(bo);
295 	spin_unlock(&glob->lru_lock);
296 
297 	ttm_bo_list_ref_sub(bo, put_count, true);
298 
299 	return ret;
300 }
301 
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304 	ttm_bo_add_to_lru(bo);
305 	atomic_set(&bo->reserved, 0);
306 	wake_up_all(&bo->event_queue);
307 }
308 
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311 	struct ttm_bo_global *glob = bo->glob;
312 
313 	spin_lock(&glob->lru_lock);
314 	ttm_bo_unreserve_locked(bo);
315 	spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318 
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324 	struct ttm_bo_device *bdev = bo->bdev;
325 	struct ttm_bo_global *glob = bo->glob;
326 	int ret = 0;
327 	uint32_t page_flags = 0;
328 
329 	TTM_ASSERT_LOCKED(&bo->mutex);
330 	bo->ttm = NULL;
331 
332 	if (bdev->need_dma32)
333 		page_flags |= TTM_PAGE_FLAG_DMA32;
334 
335 	switch (bo->type) {
336 	case ttm_bo_type_device:
337 		if (zero_alloc)
338 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339 	case ttm_bo_type_kernel:
340 		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341 					page_flags, glob->dummy_read_page);
342 		if (unlikely(bo->ttm == NULL))
343 			ret = -ENOMEM;
344 		break;
345 	case ttm_bo_type_user:
346 		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347 					page_flags | TTM_PAGE_FLAG_USER,
348 					glob->dummy_read_page);
349 		if (unlikely(bo->ttm == NULL)) {
350 			ret = -ENOMEM;
351 			break;
352 		}
353 
354 		ret = ttm_tt_set_user(bo->ttm, current,
355 				      bo->buffer_start, bo->num_pages);
356 		if (unlikely(ret != 0)) {
357 			ttm_tt_destroy(bo->ttm);
358 			bo->ttm = NULL;
359 		}
360 		break;
361 	default:
362 		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
363 		ret = -EINVAL;
364 		break;
365 	}
366 
367 	return ret;
368 }
369 
370 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
371 				  struct ttm_mem_reg *mem,
372 				  bool evict, bool interruptible,
373 				  bool no_wait_reserve, bool no_wait_gpu)
374 {
375 	struct ttm_bo_device *bdev = bo->bdev;
376 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
377 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
378 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
379 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
380 	int ret = 0;
381 
382 	if (old_is_pci || new_is_pci ||
383 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
384 		ret = ttm_mem_io_lock(old_man, true);
385 		if (unlikely(ret != 0))
386 			goto out_err;
387 		ttm_bo_unmap_virtual_locked(bo);
388 		ttm_mem_io_unlock(old_man);
389 	}
390 
391 	/*
392 	 * Create and bind a ttm if required.
393 	 */
394 
395 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
396 		if (bo->ttm == NULL) {
397 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
398 			ret = ttm_bo_add_ttm(bo, zero);
399 			if (ret)
400 				goto out_err;
401 		}
402 
403 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
404 		if (ret)
405 			goto out_err;
406 
407 		if (mem->mem_type != TTM_PL_SYSTEM) {
408 			ret = ttm_tt_bind(bo->ttm, mem);
409 			if (ret)
410 				goto out_err;
411 		}
412 
413 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
414 			if (bdev->driver->move_notify)
415 				bdev->driver->move_notify(bo, mem);
416 			bo->mem = *mem;
417 			mem->mm_node = NULL;
418 			goto moved;
419 		}
420 	}
421 
422 	if (bdev->driver->move_notify)
423 		bdev->driver->move_notify(bo, mem);
424 
425 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
426 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
427 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428 	else if (bdev->driver->move)
429 		ret = bdev->driver->move(bo, evict, interruptible,
430 					 no_wait_reserve, no_wait_gpu, mem);
431 	else
432 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
433 
434 	if (ret)
435 		goto out_err;
436 
437 moved:
438 	if (bo->evicted) {
439 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
440 		if (ret)
441 			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
442 		bo->evicted = false;
443 	}
444 
445 	if (bo->mem.mm_node) {
446 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
447 		    bdev->man[bo->mem.mem_type].gpu_offset;
448 		bo->cur_placement = bo->mem.placement;
449 	} else
450 		bo->offset = 0;
451 
452 	return 0;
453 
454 out_err:
455 	new_man = &bdev->man[bo->mem.mem_type];
456 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
457 		ttm_tt_unbind(bo->ttm);
458 		ttm_tt_destroy(bo->ttm);
459 		bo->ttm = NULL;
460 	}
461 
462 	return ret;
463 }
464 
465 /**
466  * Call bo::reserved.
467  * Will release GPU memory type usage on destruction.
468  * This is the place to put in driver specific hooks to release
469  * driver private resources.
470  * Will release the bo::reserved lock.
471  */
472 
473 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
474 {
475 	if (bo->ttm) {
476 		ttm_tt_unbind(bo->ttm);
477 		ttm_tt_destroy(bo->ttm);
478 		bo->ttm = NULL;
479 	}
480 	ttm_bo_mem_put(bo, &bo->mem);
481 
482 	atomic_set(&bo->reserved, 0);
483 
484 	/*
485 	 * Make processes trying to reserve really pick it up.
486 	 */
487 	smp_mb__after_atomic_dec();
488 	wake_up_all(&bo->event_queue);
489 }
490 
491 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
492 {
493 	struct ttm_bo_device *bdev = bo->bdev;
494 	struct ttm_bo_global *glob = bo->glob;
495 	struct ttm_bo_driver *driver;
496 	void *sync_obj = NULL;
497 	void *sync_obj_arg;
498 	int put_count;
499 	int ret;
500 
501 	spin_lock(&bdev->fence_lock);
502 	(void) ttm_bo_wait(bo, false, false, true);
503 	if (!bo->sync_obj) {
504 
505 		spin_lock(&glob->lru_lock);
506 
507 		/**
508 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
509 		 * but that's OK, since we're only trylocking.
510 		 */
511 
512 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
513 
514 		if (unlikely(ret == -EBUSY))
515 			goto queue;
516 
517 		spin_unlock(&bdev->fence_lock);
518 		put_count = ttm_bo_del_from_lru(bo);
519 
520 		spin_unlock(&glob->lru_lock);
521 		ttm_bo_cleanup_memtype_use(bo);
522 
523 		ttm_bo_list_ref_sub(bo, put_count, true);
524 
525 		return;
526 	} else {
527 		spin_lock(&glob->lru_lock);
528 	}
529 queue:
530 	driver = bdev->driver;
531 	if (bo->sync_obj)
532 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
533 	sync_obj_arg = bo->sync_obj_arg;
534 
535 	kref_get(&bo->list_kref);
536 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
537 	spin_unlock(&glob->lru_lock);
538 	spin_unlock(&bdev->fence_lock);
539 
540 	if (sync_obj) {
541 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
542 		driver->sync_obj_unref(&sync_obj);
543 	}
544 	schedule_delayed_work(&bdev->wq,
545 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
546 }
547 
548 /**
549  * function ttm_bo_cleanup_refs
550  * If bo idle, remove from delayed- and lru lists, and unref.
551  * If not idle, do nothing.
552  *
553  * @interruptible         Any sleeps should occur interruptibly.
554  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
555  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
556  */
557 
558 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
559 			       bool interruptible,
560 			       bool no_wait_reserve,
561 			       bool no_wait_gpu)
562 {
563 	struct ttm_bo_device *bdev = bo->bdev;
564 	struct ttm_bo_global *glob = bo->glob;
565 	int put_count;
566 	int ret = 0;
567 
568 retry:
569 	spin_lock(&bdev->fence_lock);
570 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
571 	spin_unlock(&bdev->fence_lock);
572 
573 	if (unlikely(ret != 0))
574 		return ret;
575 
576 	spin_lock(&glob->lru_lock);
577 	ret = ttm_bo_reserve_locked(bo, interruptible,
578 				    no_wait_reserve, false, 0);
579 
580 	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
581 		spin_unlock(&glob->lru_lock);
582 		return ret;
583 	}
584 
585 	/**
586 	 * We can re-check for sync object without taking
587 	 * the bo::lock since setting the sync object requires
588 	 * also bo::reserved. A busy object at this point may
589 	 * be caused by another thread recently starting an accelerated
590 	 * eviction.
591 	 */
592 
593 	if (unlikely(bo->sync_obj)) {
594 		atomic_set(&bo->reserved, 0);
595 		wake_up_all(&bo->event_queue);
596 		spin_unlock(&glob->lru_lock);
597 		goto retry;
598 	}
599 
600 	put_count = ttm_bo_del_from_lru(bo);
601 	list_del_init(&bo->ddestroy);
602 	++put_count;
603 
604 	spin_unlock(&glob->lru_lock);
605 	ttm_bo_cleanup_memtype_use(bo);
606 
607 	ttm_bo_list_ref_sub(bo, put_count, true);
608 
609 	return 0;
610 }
611 
612 /**
613  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
614  * encountered buffers.
615  */
616 
617 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
618 {
619 	struct ttm_bo_global *glob = bdev->glob;
620 	struct ttm_buffer_object *entry = NULL;
621 	int ret = 0;
622 
623 	spin_lock(&glob->lru_lock);
624 	if (list_empty(&bdev->ddestroy))
625 		goto out_unlock;
626 
627 	entry = list_first_entry(&bdev->ddestroy,
628 		struct ttm_buffer_object, ddestroy);
629 	kref_get(&entry->list_kref);
630 
631 	for (;;) {
632 		struct ttm_buffer_object *nentry = NULL;
633 
634 		if (entry->ddestroy.next != &bdev->ddestroy) {
635 			nentry = list_first_entry(&entry->ddestroy,
636 				struct ttm_buffer_object, ddestroy);
637 			kref_get(&nentry->list_kref);
638 		}
639 
640 		spin_unlock(&glob->lru_lock);
641 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
642 					  !remove_all);
643 		kref_put(&entry->list_kref, ttm_bo_release_list);
644 		entry = nentry;
645 
646 		if (ret || !entry)
647 			goto out;
648 
649 		spin_lock(&glob->lru_lock);
650 		if (list_empty(&entry->ddestroy))
651 			break;
652 	}
653 
654 out_unlock:
655 	spin_unlock(&glob->lru_lock);
656 out:
657 	if (entry)
658 		kref_put(&entry->list_kref, ttm_bo_release_list);
659 	return ret;
660 }
661 
662 static void ttm_bo_delayed_workqueue(struct work_struct *work)
663 {
664 	struct ttm_bo_device *bdev =
665 	    container_of(work, struct ttm_bo_device, wq.work);
666 
667 	if (ttm_bo_delayed_delete(bdev, false)) {
668 		schedule_delayed_work(&bdev->wq,
669 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
670 	}
671 }
672 
673 static void ttm_bo_release(struct kref *kref)
674 {
675 	struct ttm_buffer_object *bo =
676 	    container_of(kref, struct ttm_buffer_object, kref);
677 	struct ttm_bo_device *bdev = bo->bdev;
678 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
679 
680 	if (likely(bo->vm_node != NULL)) {
681 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
682 		drm_mm_put_block(bo->vm_node);
683 		bo->vm_node = NULL;
684 	}
685 	write_unlock(&bdev->vm_lock);
686 	ttm_mem_io_lock(man, false);
687 	ttm_mem_io_free_vm(bo);
688 	ttm_mem_io_unlock(man);
689 	ttm_bo_cleanup_refs_or_queue(bo);
690 	kref_put(&bo->list_kref, ttm_bo_release_list);
691 	write_lock(&bdev->vm_lock);
692 }
693 
694 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
695 {
696 	struct ttm_buffer_object *bo = *p_bo;
697 	struct ttm_bo_device *bdev = bo->bdev;
698 
699 	*p_bo = NULL;
700 	write_lock(&bdev->vm_lock);
701 	kref_put(&bo->kref, ttm_bo_release);
702 	write_unlock(&bdev->vm_lock);
703 }
704 EXPORT_SYMBOL(ttm_bo_unref);
705 
706 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
707 {
708 	return cancel_delayed_work_sync(&bdev->wq);
709 }
710 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
711 
712 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
713 {
714 	if (resched)
715 		schedule_delayed_work(&bdev->wq,
716 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
717 }
718 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
719 
720 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
721 			bool no_wait_reserve, bool no_wait_gpu)
722 {
723 	struct ttm_bo_device *bdev = bo->bdev;
724 	struct ttm_mem_reg evict_mem;
725 	struct ttm_placement placement;
726 	int ret = 0;
727 
728 	spin_lock(&bdev->fence_lock);
729 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
730 	spin_unlock(&bdev->fence_lock);
731 
732 	if (unlikely(ret != 0)) {
733 		if (ret != -ERESTARTSYS) {
734 			printk(KERN_ERR TTM_PFX
735 			       "Failed to expire sync object before "
736 			       "buffer eviction.\n");
737 		}
738 		goto out;
739 	}
740 
741 	BUG_ON(!atomic_read(&bo->reserved));
742 
743 	evict_mem = bo->mem;
744 	evict_mem.mm_node = NULL;
745 	evict_mem.bus.io_reserved_vm = false;
746 	evict_mem.bus.io_reserved_count = 0;
747 
748 	placement.fpfn = 0;
749 	placement.lpfn = 0;
750 	placement.num_placement = 0;
751 	placement.num_busy_placement = 0;
752 	bdev->driver->evict_flags(bo, &placement);
753 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
754 				no_wait_reserve, no_wait_gpu);
755 	if (ret) {
756 		if (ret != -ERESTARTSYS) {
757 			printk(KERN_ERR TTM_PFX
758 			       "Failed to find memory space for "
759 			       "buffer 0x%p eviction.\n", bo);
760 			ttm_bo_mem_space_debug(bo, &placement);
761 		}
762 		goto out;
763 	}
764 
765 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
766 				     no_wait_reserve, no_wait_gpu);
767 	if (ret) {
768 		if (ret != -ERESTARTSYS)
769 			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
770 		ttm_bo_mem_put(bo, &evict_mem);
771 		goto out;
772 	}
773 	bo->evicted = true;
774 out:
775 	return ret;
776 }
777 
778 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
779 				uint32_t mem_type,
780 				bool interruptible, bool no_wait_reserve,
781 				bool no_wait_gpu)
782 {
783 	struct ttm_bo_global *glob = bdev->glob;
784 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
785 	struct ttm_buffer_object *bo;
786 	int ret, put_count = 0;
787 
788 retry:
789 	spin_lock(&glob->lru_lock);
790 	if (list_empty(&man->lru)) {
791 		spin_unlock(&glob->lru_lock);
792 		return -EBUSY;
793 	}
794 
795 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
796 	kref_get(&bo->list_kref);
797 
798 	if (!list_empty(&bo->ddestroy)) {
799 		spin_unlock(&glob->lru_lock);
800 		ret = ttm_bo_cleanup_refs(bo, interruptible,
801 					  no_wait_reserve, no_wait_gpu);
802 		kref_put(&bo->list_kref, ttm_bo_release_list);
803 
804 		if (likely(ret == 0 || ret == -ERESTARTSYS))
805 			return ret;
806 
807 		goto retry;
808 	}
809 
810 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
811 
812 	if (unlikely(ret == -EBUSY)) {
813 		spin_unlock(&glob->lru_lock);
814 		if (likely(!no_wait_gpu))
815 			ret = ttm_bo_wait_unreserved(bo, interruptible);
816 
817 		kref_put(&bo->list_kref, ttm_bo_release_list);
818 
819 		/**
820 		 * We *need* to retry after releasing the lru lock.
821 		 */
822 
823 		if (unlikely(ret != 0))
824 			return ret;
825 		goto retry;
826 	}
827 
828 	put_count = ttm_bo_del_from_lru(bo);
829 	spin_unlock(&glob->lru_lock);
830 
831 	BUG_ON(ret != 0);
832 
833 	ttm_bo_list_ref_sub(bo, put_count, true);
834 
835 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
836 	ttm_bo_unreserve(bo);
837 
838 	kref_put(&bo->list_kref, ttm_bo_release_list);
839 	return ret;
840 }
841 
842 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
843 {
844 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
845 
846 	if (mem->mm_node)
847 		(*man->func->put_node)(man, mem);
848 }
849 EXPORT_SYMBOL(ttm_bo_mem_put);
850 
851 /**
852  * Repeatedly evict memory from the LRU for @mem_type until we create enough
853  * space, or we've evicted everything and there isn't enough space.
854  */
855 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
856 					uint32_t mem_type,
857 					struct ttm_placement *placement,
858 					struct ttm_mem_reg *mem,
859 					bool interruptible,
860 					bool no_wait_reserve,
861 					bool no_wait_gpu)
862 {
863 	struct ttm_bo_device *bdev = bo->bdev;
864 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865 	int ret;
866 
867 	do {
868 		ret = (*man->func->get_node)(man, bo, placement, mem);
869 		if (unlikely(ret != 0))
870 			return ret;
871 		if (mem->mm_node)
872 			break;
873 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
874 						no_wait_reserve, no_wait_gpu);
875 		if (unlikely(ret != 0))
876 			return ret;
877 	} while (1);
878 	if (mem->mm_node == NULL)
879 		return -ENOMEM;
880 	mem->mem_type = mem_type;
881 	return 0;
882 }
883 
884 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
885 				      uint32_t cur_placement,
886 				      uint32_t proposed_placement)
887 {
888 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
889 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
890 
891 	/**
892 	 * Keep current caching if possible.
893 	 */
894 
895 	if ((cur_placement & caching) != 0)
896 		result |= (cur_placement & caching);
897 	else if ((man->default_caching & caching) != 0)
898 		result |= man->default_caching;
899 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
900 		result |= TTM_PL_FLAG_CACHED;
901 	else if ((TTM_PL_FLAG_WC & caching) != 0)
902 		result |= TTM_PL_FLAG_WC;
903 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
904 		result |= TTM_PL_FLAG_UNCACHED;
905 
906 	return result;
907 }
908 
909 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
910 				 bool disallow_fixed,
911 				 uint32_t mem_type,
912 				 uint32_t proposed_placement,
913 				 uint32_t *masked_placement)
914 {
915 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
916 
917 	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
918 		return false;
919 
920 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
921 		return false;
922 
923 	if ((proposed_placement & man->available_caching) == 0)
924 		return false;
925 
926 	cur_flags |= (proposed_placement & man->available_caching);
927 
928 	*masked_placement = cur_flags;
929 	return true;
930 }
931 
932 /**
933  * Creates space for memory region @mem according to its type.
934  *
935  * This function first searches for free space in compatible memory types in
936  * the priority order defined by the driver.  If free space isn't found, then
937  * ttm_bo_mem_force_space is attempted in priority order to evict and find
938  * space.
939  */
940 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
941 			struct ttm_placement *placement,
942 			struct ttm_mem_reg *mem,
943 			bool interruptible, bool no_wait_reserve,
944 			bool no_wait_gpu)
945 {
946 	struct ttm_bo_device *bdev = bo->bdev;
947 	struct ttm_mem_type_manager *man;
948 	uint32_t mem_type = TTM_PL_SYSTEM;
949 	uint32_t cur_flags = 0;
950 	bool type_found = false;
951 	bool type_ok = false;
952 	bool has_erestartsys = false;
953 	int i, ret;
954 
955 	mem->mm_node = NULL;
956 	for (i = 0; i < placement->num_placement; ++i) {
957 		ret = ttm_mem_type_from_flags(placement->placement[i],
958 						&mem_type);
959 		if (ret)
960 			return ret;
961 		man = &bdev->man[mem_type];
962 
963 		type_ok = ttm_bo_mt_compatible(man,
964 						bo->type == ttm_bo_type_user,
965 						mem_type,
966 						placement->placement[i],
967 						&cur_flags);
968 
969 		if (!type_ok)
970 			continue;
971 
972 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
973 						  cur_flags);
974 		/*
975 		 * Use the access and other non-mapping-related flag bits from
976 		 * the memory placement flags to the current flags
977 		 */
978 		ttm_flag_masked(&cur_flags, placement->placement[i],
979 				~TTM_PL_MASK_MEMTYPE);
980 
981 		if (mem_type == TTM_PL_SYSTEM)
982 			break;
983 
984 		if (man->has_type && man->use_type) {
985 			type_found = true;
986 			ret = (*man->func->get_node)(man, bo, placement, mem);
987 			if (unlikely(ret))
988 				return ret;
989 		}
990 		if (mem->mm_node)
991 			break;
992 	}
993 
994 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
995 		mem->mem_type = mem_type;
996 		mem->placement = cur_flags;
997 		return 0;
998 	}
999 
1000 	if (!type_found)
1001 		return -EINVAL;
1002 
1003 	for (i = 0; i < placement->num_busy_placement; ++i) {
1004 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005 						&mem_type);
1006 		if (ret)
1007 			return ret;
1008 		man = &bdev->man[mem_type];
1009 		if (!man->has_type)
1010 			continue;
1011 		if (!ttm_bo_mt_compatible(man,
1012 						bo->type == ttm_bo_type_user,
1013 						mem_type,
1014 						placement->busy_placement[i],
1015 						&cur_flags))
1016 			continue;
1017 
1018 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019 						  cur_flags);
1020 		/*
1021 		 * Use the access and other non-mapping-related flag bits from
1022 		 * the memory placement flags to the current flags
1023 		 */
1024 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025 				~TTM_PL_MASK_MEMTYPE);
1026 
1027 
1028 		if (mem_type == TTM_PL_SYSTEM) {
1029 			mem->mem_type = mem_type;
1030 			mem->placement = cur_flags;
1031 			mem->mm_node = NULL;
1032 			return 0;
1033 		}
1034 
1035 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036 						interruptible, no_wait_reserve, no_wait_gpu);
1037 		if (ret == 0 && mem->mm_node) {
1038 			mem->placement = cur_flags;
1039 			return 0;
1040 		}
1041 		if (ret == -ERESTARTSYS)
1042 			has_erestartsys = true;
1043 	}
1044 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045 	return ret;
1046 }
1047 EXPORT_SYMBOL(ttm_bo_mem_space);
1048 
1049 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050 {
1051 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052 		return -EBUSY;
1053 
1054 	return wait_event_interruptible(bo->event_queue,
1055 					atomic_read(&bo->cpu_writers) == 0);
1056 }
1057 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058 
1059 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060 			struct ttm_placement *placement,
1061 			bool interruptible, bool no_wait_reserve,
1062 			bool no_wait_gpu)
1063 {
1064 	int ret = 0;
1065 	struct ttm_mem_reg mem;
1066 	struct ttm_bo_device *bdev = bo->bdev;
1067 
1068 	BUG_ON(!atomic_read(&bo->reserved));
1069 
1070 	/*
1071 	 * FIXME: It's possible to pipeline buffer moves.
1072 	 * Have the driver move function wait for idle when necessary,
1073 	 * instead of doing it here.
1074 	 */
1075 	spin_lock(&bdev->fence_lock);
1076 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077 	spin_unlock(&bdev->fence_lock);
1078 	if (ret)
1079 		return ret;
1080 	mem.num_pages = bo->num_pages;
1081 	mem.size = mem.num_pages << PAGE_SHIFT;
1082 	mem.page_alignment = bo->mem.page_alignment;
1083 	mem.bus.io_reserved_vm = false;
1084 	mem.bus.io_reserved_count = 0;
1085 	/*
1086 	 * Determine where to move the buffer.
1087 	 */
1088 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1089 	if (ret)
1090 		goto out_unlock;
1091 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1092 out_unlock:
1093 	if (ret && mem.mm_node)
1094 		ttm_bo_mem_put(bo, &mem);
1095 	return ret;
1096 }
1097 
1098 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099 			     struct ttm_mem_reg *mem)
1100 {
1101 	int i;
1102 
1103 	if (mem->mm_node && placement->lpfn != 0 &&
1104 	    (mem->start < placement->fpfn ||
1105 	     mem->start + mem->num_pages > placement->lpfn))
1106 		return -1;
1107 
1108 	for (i = 0; i < placement->num_placement; i++) {
1109 		if ((placement->placement[i] & mem->placement &
1110 			TTM_PL_MASK_CACHING) &&
1111 			(placement->placement[i] & mem->placement &
1112 			TTM_PL_MASK_MEM))
1113 			return i;
1114 	}
1115 	return -1;
1116 }
1117 
1118 int ttm_bo_validate(struct ttm_buffer_object *bo,
1119 			struct ttm_placement *placement,
1120 			bool interruptible, bool no_wait_reserve,
1121 			bool no_wait_gpu)
1122 {
1123 	int ret;
1124 
1125 	BUG_ON(!atomic_read(&bo->reserved));
1126 	/* Check that range is valid */
1127 	if (placement->lpfn || placement->fpfn)
1128 		if (placement->fpfn > placement->lpfn ||
1129 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130 			return -EINVAL;
1131 	/*
1132 	 * Check whether we need to move buffer.
1133 	 */
1134 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135 	if (ret < 0) {
1136 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137 		if (ret)
1138 			return ret;
1139 	} else {
1140 		/*
1141 		 * Use the access and other non-mapping-related flag bits from
1142 		 * the compatible memory placement flags to the active flags
1143 		 */
1144 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145 				~TTM_PL_MASK_MEMTYPE);
1146 	}
1147 	/*
1148 	 * We might need to add a TTM.
1149 	 */
1150 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151 		ret = ttm_bo_add_ttm(bo, true);
1152 		if (ret)
1153 			return ret;
1154 	}
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL(ttm_bo_validate);
1158 
1159 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160 				struct ttm_placement *placement)
1161 {
1162 	BUG_ON((placement->fpfn || placement->lpfn) &&
1163 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164 
1165 	return 0;
1166 }
1167 
1168 int ttm_bo_init(struct ttm_bo_device *bdev,
1169 		struct ttm_buffer_object *bo,
1170 		unsigned long size,
1171 		enum ttm_bo_type type,
1172 		struct ttm_placement *placement,
1173 		uint32_t page_alignment,
1174 		unsigned long buffer_start,
1175 		bool interruptible,
1176 		struct file *persistent_swap_storage,
1177 		size_t acc_size,
1178 		void (*destroy) (struct ttm_buffer_object *))
1179 {
1180 	int ret = 0;
1181 	unsigned long num_pages;
1182 
1183 	size += buffer_start & ~PAGE_MASK;
1184 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185 	if (num_pages == 0) {
1186 		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187 		if (destroy)
1188 			(*destroy)(bo);
1189 		else
1190 			kfree(bo);
1191 		return -EINVAL;
1192 	}
1193 	bo->destroy = destroy;
1194 
1195 	kref_init(&bo->kref);
1196 	kref_init(&bo->list_kref);
1197 	atomic_set(&bo->cpu_writers, 0);
1198 	atomic_set(&bo->reserved, 1);
1199 	init_waitqueue_head(&bo->event_queue);
1200 	INIT_LIST_HEAD(&bo->lru);
1201 	INIT_LIST_HEAD(&bo->ddestroy);
1202 	INIT_LIST_HEAD(&bo->swap);
1203 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1204 	bo->bdev = bdev;
1205 	bo->glob = bdev->glob;
1206 	bo->type = type;
1207 	bo->num_pages = num_pages;
1208 	bo->mem.size = num_pages << PAGE_SHIFT;
1209 	bo->mem.mem_type = TTM_PL_SYSTEM;
1210 	bo->mem.num_pages = bo->num_pages;
1211 	bo->mem.mm_node = NULL;
1212 	bo->mem.page_alignment = page_alignment;
1213 	bo->mem.bus.io_reserved_vm = false;
1214 	bo->mem.bus.io_reserved_count = 0;
1215 	bo->buffer_start = buffer_start & PAGE_MASK;
1216 	bo->priv_flags = 0;
1217 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218 	bo->seq_valid = false;
1219 	bo->persistent_swap_storage = persistent_swap_storage;
1220 	bo->acc_size = acc_size;
1221 	atomic_inc(&bo->glob->bo_count);
1222 
1223 	ret = ttm_bo_check_placement(bo, placement);
1224 	if (unlikely(ret != 0))
1225 		goto out_err;
1226 
1227 	/*
1228 	 * For ttm_bo_type_device buffers, allocate
1229 	 * address space from the device.
1230 	 */
1231 	if (bo->type == ttm_bo_type_device) {
1232 		ret = ttm_bo_setup_vm(bo);
1233 		if (ret)
1234 			goto out_err;
1235 	}
1236 
1237 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238 	if (ret)
1239 		goto out_err;
1240 
1241 	ttm_bo_unreserve(bo);
1242 	return 0;
1243 
1244 out_err:
1245 	ttm_bo_unreserve(bo);
1246 	ttm_bo_unref(&bo);
1247 
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(ttm_bo_init);
1251 
1252 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253 				 unsigned long num_pages)
1254 {
1255 	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256 	    PAGE_MASK;
1257 
1258 	return glob->ttm_bo_size + 2 * page_array_size;
1259 }
1260 
1261 int ttm_bo_create(struct ttm_bo_device *bdev,
1262 			unsigned long size,
1263 			enum ttm_bo_type type,
1264 			struct ttm_placement *placement,
1265 			uint32_t page_alignment,
1266 			unsigned long buffer_start,
1267 			bool interruptible,
1268 			struct file *persistent_swap_storage,
1269 			struct ttm_buffer_object **p_bo)
1270 {
1271 	struct ttm_buffer_object *bo;
1272 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273 	int ret;
1274 
1275 	size_t acc_size =
1276 	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278 	if (unlikely(ret != 0))
1279 		return ret;
1280 
1281 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282 
1283 	if (unlikely(bo == NULL)) {
1284 		ttm_mem_global_free(mem_glob, acc_size);
1285 		return -ENOMEM;
1286 	}
1287 
1288 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289 				buffer_start, interruptible,
1290 				persistent_swap_storage, acc_size, NULL);
1291 	if (likely(ret == 0))
1292 		*p_bo = bo;
1293 
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(ttm_bo_create);
1297 
1298 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1299 					unsigned mem_type, bool allow_errors)
1300 {
1301 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1302 	struct ttm_bo_global *glob = bdev->glob;
1303 	int ret;
1304 
1305 	/*
1306 	 * Can't use standard list traversal since we're unlocking.
1307 	 */
1308 
1309 	spin_lock(&glob->lru_lock);
1310 	while (!list_empty(&man->lru)) {
1311 		spin_unlock(&glob->lru_lock);
1312 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1313 		if (ret) {
1314 			if (allow_errors) {
1315 				return ret;
1316 			} else {
1317 				printk(KERN_ERR TTM_PFX
1318 					"Cleanup eviction failed\n");
1319 			}
1320 		}
1321 		spin_lock(&glob->lru_lock);
1322 	}
1323 	spin_unlock(&glob->lru_lock);
1324 	return 0;
1325 }
1326 
1327 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1328 {
1329 	struct ttm_mem_type_manager *man;
1330 	int ret = -EINVAL;
1331 
1332 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1333 		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1334 		return ret;
1335 	}
1336 	man = &bdev->man[mem_type];
1337 
1338 	if (!man->has_type) {
1339 		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1340 		       "memory manager type %u\n", mem_type);
1341 		return ret;
1342 	}
1343 
1344 	man->use_type = false;
1345 	man->has_type = false;
1346 
1347 	ret = 0;
1348 	if (mem_type > 0) {
1349 		ttm_bo_force_list_clean(bdev, mem_type, false);
1350 
1351 		ret = (*man->func->takedown)(man);
1352 	}
1353 
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL(ttm_bo_clean_mm);
1357 
1358 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1359 {
1360 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1361 
1362 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1363 		printk(KERN_ERR TTM_PFX
1364 		       "Illegal memory manager memory type %u.\n",
1365 		       mem_type);
1366 		return -EINVAL;
1367 	}
1368 
1369 	if (!man->has_type) {
1370 		printk(KERN_ERR TTM_PFX
1371 		       "Memory type %u has not been initialized.\n",
1372 		       mem_type);
1373 		return 0;
1374 	}
1375 
1376 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1377 }
1378 EXPORT_SYMBOL(ttm_bo_evict_mm);
1379 
1380 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1381 			unsigned long p_size)
1382 {
1383 	int ret = -EINVAL;
1384 	struct ttm_mem_type_manager *man;
1385 
1386 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1387 	man = &bdev->man[type];
1388 	BUG_ON(man->has_type);
1389 	man->io_reserve_fastpath = true;
1390 	man->use_io_reserve_lru = false;
1391 	mutex_init(&man->io_reserve_mutex);
1392 	INIT_LIST_HEAD(&man->io_reserve_lru);
1393 
1394 	ret = bdev->driver->init_mem_type(bdev, type, man);
1395 	if (ret)
1396 		return ret;
1397 	man->bdev = bdev;
1398 
1399 	ret = 0;
1400 	if (type != TTM_PL_SYSTEM) {
1401 		ret = (*man->func->init)(man, p_size);
1402 		if (ret)
1403 			return ret;
1404 	}
1405 	man->has_type = true;
1406 	man->use_type = true;
1407 	man->size = p_size;
1408 
1409 	INIT_LIST_HEAD(&man->lru);
1410 
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL(ttm_bo_init_mm);
1414 
1415 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1416 {
1417 	struct ttm_bo_global *glob =
1418 		container_of(kobj, struct ttm_bo_global, kobj);
1419 
1420 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1421 	__free_page(glob->dummy_read_page);
1422 	kfree(glob);
1423 }
1424 
1425 void ttm_bo_global_release(struct drm_global_reference *ref)
1426 {
1427 	struct ttm_bo_global *glob = ref->object;
1428 
1429 	kobject_del(&glob->kobj);
1430 	kobject_put(&glob->kobj);
1431 }
1432 EXPORT_SYMBOL(ttm_bo_global_release);
1433 
1434 int ttm_bo_global_init(struct drm_global_reference *ref)
1435 {
1436 	struct ttm_bo_global_ref *bo_ref =
1437 		container_of(ref, struct ttm_bo_global_ref, ref);
1438 	struct ttm_bo_global *glob = ref->object;
1439 	int ret;
1440 
1441 	mutex_init(&glob->device_list_mutex);
1442 	spin_lock_init(&glob->lru_lock);
1443 	glob->mem_glob = bo_ref->mem_glob;
1444 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1445 
1446 	if (unlikely(glob->dummy_read_page == NULL)) {
1447 		ret = -ENOMEM;
1448 		goto out_no_drp;
1449 	}
1450 
1451 	INIT_LIST_HEAD(&glob->swap_lru);
1452 	INIT_LIST_HEAD(&glob->device_list);
1453 
1454 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1455 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1456 	if (unlikely(ret != 0)) {
1457 		printk(KERN_ERR TTM_PFX
1458 		       "Could not register buffer object swapout.\n");
1459 		goto out_no_shrink;
1460 	}
1461 
1462 	glob->ttm_bo_extra_size =
1463 		ttm_round_pot(sizeof(struct ttm_tt)) +
1464 		ttm_round_pot(sizeof(struct ttm_backend));
1465 
1466 	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1467 		ttm_round_pot(sizeof(struct ttm_buffer_object));
1468 
1469 	atomic_set(&glob->bo_count, 0);
1470 
1471 	ret = kobject_init_and_add(
1472 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1473 	if (unlikely(ret != 0))
1474 		kobject_put(&glob->kobj);
1475 	return ret;
1476 out_no_shrink:
1477 	__free_page(glob->dummy_read_page);
1478 out_no_drp:
1479 	kfree(glob);
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL(ttm_bo_global_init);
1483 
1484 
1485 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1486 {
1487 	int ret = 0;
1488 	unsigned i = TTM_NUM_MEM_TYPES;
1489 	struct ttm_mem_type_manager *man;
1490 	struct ttm_bo_global *glob = bdev->glob;
1491 
1492 	while (i--) {
1493 		man = &bdev->man[i];
1494 		if (man->has_type) {
1495 			man->use_type = false;
1496 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1497 				ret = -EBUSY;
1498 				printk(KERN_ERR TTM_PFX
1499 				       "DRM memory manager type %d "
1500 				       "is not clean.\n", i);
1501 			}
1502 			man->has_type = false;
1503 		}
1504 	}
1505 
1506 	mutex_lock(&glob->device_list_mutex);
1507 	list_del(&bdev->device_list);
1508 	mutex_unlock(&glob->device_list_mutex);
1509 
1510 	cancel_delayed_work_sync(&bdev->wq);
1511 
1512 	while (ttm_bo_delayed_delete(bdev, true))
1513 		;
1514 
1515 	spin_lock(&glob->lru_lock);
1516 	if (list_empty(&bdev->ddestroy))
1517 		TTM_DEBUG("Delayed destroy list was clean\n");
1518 
1519 	if (list_empty(&bdev->man[0].lru))
1520 		TTM_DEBUG("Swap list was clean\n");
1521 	spin_unlock(&glob->lru_lock);
1522 
1523 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1524 	write_lock(&bdev->vm_lock);
1525 	drm_mm_takedown(&bdev->addr_space_mm);
1526 	write_unlock(&bdev->vm_lock);
1527 
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL(ttm_bo_device_release);
1531 
1532 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1533 		       struct ttm_bo_global *glob,
1534 		       struct ttm_bo_driver *driver,
1535 		       uint64_t file_page_offset,
1536 		       bool need_dma32)
1537 {
1538 	int ret = -EINVAL;
1539 
1540 	rwlock_init(&bdev->vm_lock);
1541 	bdev->driver = driver;
1542 
1543 	memset(bdev->man, 0, sizeof(bdev->man));
1544 
1545 	/*
1546 	 * Initialize the system memory buffer type.
1547 	 * Other types need to be driver / IOCTL initialized.
1548 	 */
1549 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1550 	if (unlikely(ret != 0))
1551 		goto out_no_sys;
1552 
1553 	bdev->addr_space_rb = RB_ROOT;
1554 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1555 	if (unlikely(ret != 0))
1556 		goto out_no_addr_mm;
1557 
1558 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1559 	bdev->nice_mode = true;
1560 	INIT_LIST_HEAD(&bdev->ddestroy);
1561 	bdev->dev_mapping = NULL;
1562 	bdev->glob = glob;
1563 	bdev->need_dma32 = need_dma32;
1564 	bdev->val_seq = 0;
1565 	spin_lock_init(&bdev->fence_lock);
1566 	mutex_lock(&glob->device_list_mutex);
1567 	list_add_tail(&bdev->device_list, &glob->device_list);
1568 	mutex_unlock(&glob->device_list_mutex);
1569 
1570 	return 0;
1571 out_no_addr_mm:
1572 	ttm_bo_clean_mm(bdev, 0);
1573 out_no_sys:
1574 	return ret;
1575 }
1576 EXPORT_SYMBOL(ttm_bo_device_init);
1577 
1578 /*
1579  * buffer object vm functions.
1580  */
1581 
1582 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1583 {
1584 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1585 
1586 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1587 		if (mem->mem_type == TTM_PL_SYSTEM)
1588 			return false;
1589 
1590 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1591 			return false;
1592 
1593 		if (mem->placement & TTM_PL_FLAG_CACHED)
1594 			return false;
1595 	}
1596 	return true;
1597 }
1598 
1599 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1600 {
1601 	struct ttm_bo_device *bdev = bo->bdev;
1602 	loff_t offset = (loff_t) bo->addr_space_offset;
1603 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1604 
1605 	if (!bdev->dev_mapping)
1606 		return;
1607 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1608 	ttm_mem_io_free_vm(bo);
1609 }
1610 
1611 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1612 {
1613 	struct ttm_bo_device *bdev = bo->bdev;
1614 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1615 
1616 	ttm_mem_io_lock(man, false);
1617 	ttm_bo_unmap_virtual_locked(bo);
1618 	ttm_mem_io_unlock(man);
1619 }
1620 
1621 
1622 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1623 
1624 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1625 {
1626 	struct ttm_bo_device *bdev = bo->bdev;
1627 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1628 	struct rb_node *parent = NULL;
1629 	struct ttm_buffer_object *cur_bo;
1630 	unsigned long offset = bo->vm_node->start;
1631 	unsigned long cur_offset;
1632 
1633 	while (*cur) {
1634 		parent = *cur;
1635 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1636 		cur_offset = cur_bo->vm_node->start;
1637 		if (offset < cur_offset)
1638 			cur = &parent->rb_left;
1639 		else if (offset > cur_offset)
1640 			cur = &parent->rb_right;
1641 		else
1642 			BUG();
1643 	}
1644 
1645 	rb_link_node(&bo->vm_rb, parent, cur);
1646 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1647 }
1648 
1649 /**
1650  * ttm_bo_setup_vm:
1651  *
1652  * @bo: the buffer to allocate address space for
1653  *
1654  * Allocate address space in the drm device so that applications
1655  * can mmap the buffer and access the contents. This only
1656  * applies to ttm_bo_type_device objects as others are not
1657  * placed in the drm device address space.
1658  */
1659 
1660 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1661 {
1662 	struct ttm_bo_device *bdev = bo->bdev;
1663 	int ret;
1664 
1665 retry_pre_get:
1666 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1667 	if (unlikely(ret != 0))
1668 		return ret;
1669 
1670 	write_lock(&bdev->vm_lock);
1671 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1672 					 bo->mem.num_pages, 0, 0);
1673 
1674 	if (unlikely(bo->vm_node == NULL)) {
1675 		ret = -ENOMEM;
1676 		goto out_unlock;
1677 	}
1678 
1679 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1680 					      bo->mem.num_pages, 0);
1681 
1682 	if (unlikely(bo->vm_node == NULL)) {
1683 		write_unlock(&bdev->vm_lock);
1684 		goto retry_pre_get;
1685 	}
1686 
1687 	ttm_bo_vm_insert_rb(bo);
1688 	write_unlock(&bdev->vm_lock);
1689 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1690 
1691 	return 0;
1692 out_unlock:
1693 	write_unlock(&bdev->vm_lock);
1694 	return ret;
1695 }
1696 
1697 int ttm_bo_wait(struct ttm_buffer_object *bo,
1698 		bool lazy, bool interruptible, bool no_wait)
1699 {
1700 	struct ttm_bo_driver *driver = bo->bdev->driver;
1701 	struct ttm_bo_device *bdev = bo->bdev;
1702 	void *sync_obj;
1703 	void *sync_obj_arg;
1704 	int ret = 0;
1705 
1706 	if (likely(bo->sync_obj == NULL))
1707 		return 0;
1708 
1709 	while (bo->sync_obj) {
1710 
1711 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1712 			void *tmp_obj = bo->sync_obj;
1713 			bo->sync_obj = NULL;
1714 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1715 			spin_unlock(&bdev->fence_lock);
1716 			driver->sync_obj_unref(&tmp_obj);
1717 			spin_lock(&bdev->fence_lock);
1718 			continue;
1719 		}
1720 
1721 		if (no_wait)
1722 			return -EBUSY;
1723 
1724 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1725 		sync_obj_arg = bo->sync_obj_arg;
1726 		spin_unlock(&bdev->fence_lock);
1727 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1728 					    lazy, interruptible);
1729 		if (unlikely(ret != 0)) {
1730 			driver->sync_obj_unref(&sync_obj);
1731 			spin_lock(&bdev->fence_lock);
1732 			return ret;
1733 		}
1734 		spin_lock(&bdev->fence_lock);
1735 		if (likely(bo->sync_obj == sync_obj &&
1736 			   bo->sync_obj_arg == sync_obj_arg)) {
1737 			void *tmp_obj = bo->sync_obj;
1738 			bo->sync_obj = NULL;
1739 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1740 				  &bo->priv_flags);
1741 			spin_unlock(&bdev->fence_lock);
1742 			driver->sync_obj_unref(&sync_obj);
1743 			driver->sync_obj_unref(&tmp_obj);
1744 			spin_lock(&bdev->fence_lock);
1745 		} else {
1746 			spin_unlock(&bdev->fence_lock);
1747 			driver->sync_obj_unref(&sync_obj);
1748 			spin_lock(&bdev->fence_lock);
1749 		}
1750 	}
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(ttm_bo_wait);
1754 
1755 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1756 {
1757 	struct ttm_bo_device *bdev = bo->bdev;
1758 	int ret = 0;
1759 
1760 	/*
1761 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1762 	 */
1763 
1764 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1765 	if (unlikely(ret != 0))
1766 		return ret;
1767 	spin_lock(&bdev->fence_lock);
1768 	ret = ttm_bo_wait(bo, false, true, no_wait);
1769 	spin_unlock(&bdev->fence_lock);
1770 	if (likely(ret == 0))
1771 		atomic_inc(&bo->cpu_writers);
1772 	ttm_bo_unreserve(bo);
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1776 
1777 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1778 {
1779 	if (atomic_dec_and_test(&bo->cpu_writers))
1780 		wake_up_all(&bo->event_queue);
1781 }
1782 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1783 
1784 /**
1785  * A buffer object shrink method that tries to swap out the first
1786  * buffer object on the bo_global::swap_lru list.
1787  */
1788 
1789 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1790 {
1791 	struct ttm_bo_global *glob =
1792 	    container_of(shrink, struct ttm_bo_global, shrink);
1793 	struct ttm_buffer_object *bo;
1794 	int ret = -EBUSY;
1795 	int put_count;
1796 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1797 
1798 	spin_lock(&glob->lru_lock);
1799 	while (ret == -EBUSY) {
1800 		if (unlikely(list_empty(&glob->swap_lru))) {
1801 			spin_unlock(&glob->lru_lock);
1802 			return -EBUSY;
1803 		}
1804 
1805 		bo = list_first_entry(&glob->swap_lru,
1806 				      struct ttm_buffer_object, swap);
1807 		kref_get(&bo->list_kref);
1808 
1809 		if (!list_empty(&bo->ddestroy)) {
1810 			spin_unlock(&glob->lru_lock);
1811 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1812 			kref_put(&bo->list_kref, ttm_bo_release_list);
1813 			continue;
1814 		}
1815 
1816 		/**
1817 		 * Reserve buffer. Since we unlock while sleeping, we need
1818 		 * to re-check that nobody removed us from the swap-list while
1819 		 * we slept.
1820 		 */
1821 
1822 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1823 		if (unlikely(ret == -EBUSY)) {
1824 			spin_unlock(&glob->lru_lock);
1825 			ttm_bo_wait_unreserved(bo, false);
1826 			kref_put(&bo->list_kref, ttm_bo_release_list);
1827 			spin_lock(&glob->lru_lock);
1828 		}
1829 	}
1830 
1831 	BUG_ON(ret != 0);
1832 	put_count = ttm_bo_del_from_lru(bo);
1833 	spin_unlock(&glob->lru_lock);
1834 
1835 	ttm_bo_list_ref_sub(bo, put_count, true);
1836 
1837 	/**
1838 	 * Wait for GPU, then move to system cached.
1839 	 */
1840 
1841 	spin_lock(&bo->bdev->fence_lock);
1842 	ret = ttm_bo_wait(bo, false, false, false);
1843 	spin_unlock(&bo->bdev->fence_lock);
1844 
1845 	if (unlikely(ret != 0))
1846 		goto out;
1847 
1848 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1849 		struct ttm_mem_reg evict_mem;
1850 
1851 		evict_mem = bo->mem;
1852 		evict_mem.mm_node = NULL;
1853 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1854 		evict_mem.mem_type = TTM_PL_SYSTEM;
1855 
1856 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1857 					     false, false, false);
1858 		if (unlikely(ret != 0))
1859 			goto out;
1860 	}
1861 
1862 	ttm_bo_unmap_virtual(bo);
1863 
1864 	/**
1865 	 * Swap out. Buffer will be swapped in again as soon as
1866 	 * anyone tries to access a ttm page.
1867 	 */
1868 
1869 	if (bo->bdev->driver->swap_notify)
1870 		bo->bdev->driver->swap_notify(bo);
1871 
1872 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1873 out:
1874 
1875 	/**
1876 	 *
1877 	 * Unreserve without putting on LRU to avoid swapping out an
1878 	 * already swapped buffer.
1879 	 */
1880 
1881 	atomic_set(&bo->reserved, 0);
1882 	wake_up_all(&bo->event_queue);
1883 	kref_put(&bo->list_kref, ttm_bo_release_list);
1884 	return ret;
1885 }
1886 
1887 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1888 {
1889 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1890 		;
1891 }
1892 EXPORT_SYMBOL(ttm_bo_swapout_all);
1893