1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DRM driver for Pervasive Displays RePaper branded e-ink panels 4 * 5 * Copyright 2013-2017 Pervasive Displays, Inc. 6 * Copyright 2017 Noralf Trønnes 7 * 8 * The driver supports: 9 * Material Film: Aurora Mb (V231) 10 * Driver IC: G2 (eTC) 11 * 12 * The controller code was taken from the userspace driver: 13 * https://github.com/repaper/gratis 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/module.h> 19 #include <linux/property.h> 20 #include <linux/sched/clock.h> 21 #include <linux/spi/spi.h> 22 #include <linux/thermal.h> 23 24 #include <drm/clients/drm_client_setup.h> 25 #include <drm/drm_atomic_helper.h> 26 #include <drm/drm_connector.h> 27 #include <drm/drm_damage_helper.h> 28 #include <drm/drm_drv.h> 29 #include <drm/drm_fb_dma_helper.h> 30 #include <drm/drm_fbdev_dma.h> 31 #include <drm/drm_format_helper.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_gem_atomic_helper.h> 34 #include <drm/drm_gem_dma_helper.h> 35 #include <drm/drm_gem_framebuffer_helper.h> 36 #include <drm/drm_managed.h> 37 #include <drm/drm_modes.h> 38 #include <drm/drm_rect.h> 39 #include <drm/drm_print.h> 40 #include <drm/drm_probe_helper.h> 41 #include <drm/drm_simple_kms_helper.h> 42 43 #define REPAPER_RID_G2_COG_ID 0x12 44 45 enum repaper_model { 46 /* 0 is reserved to avoid clashing with NULL */ 47 E1144CS021 = 1, 48 E1190CS021, 49 E2200CS021, 50 E2271CS021, 51 }; 52 53 enum repaper_stage { /* Image pixel -> Display pixel */ 54 REPAPER_COMPENSATE, /* B -> W, W -> B (Current Image) */ 55 REPAPER_WHITE, /* B -> N, W -> W (Current Image) */ 56 REPAPER_INVERSE, /* B -> N, W -> B (New Image) */ 57 REPAPER_NORMAL /* B -> B, W -> W (New Image) */ 58 }; 59 60 enum repaper_epd_border_byte { 61 REPAPER_BORDER_BYTE_NONE, 62 REPAPER_BORDER_BYTE_ZERO, 63 REPAPER_BORDER_BYTE_SET, 64 }; 65 66 struct repaper_epd { 67 struct drm_device drm; 68 struct drm_simple_display_pipe pipe; 69 const struct drm_display_mode *mode; 70 struct drm_connector connector; 71 struct spi_device *spi; 72 73 struct gpio_desc *panel_on; 74 struct gpio_desc *border; 75 struct gpio_desc *discharge; 76 struct gpio_desc *reset; 77 struct gpio_desc *busy; 78 79 struct thermal_zone_device *thermal; 80 81 unsigned int height; 82 unsigned int width; 83 unsigned int bytes_per_scan; 84 const u8 *channel_select; 85 unsigned int stage_time; 86 unsigned int factored_stage_time; 87 bool middle_scan; 88 bool pre_border_byte; 89 enum repaper_epd_border_byte border_byte; 90 91 u8 *line_buffer; 92 void *current_frame; 93 94 bool cleared; 95 bool partial; 96 }; 97 98 static inline struct repaper_epd *drm_to_epd(struct drm_device *drm) 99 { 100 return container_of(drm, struct repaper_epd, drm); 101 } 102 103 static int repaper_spi_transfer(struct spi_device *spi, u8 header, 104 const void *tx, void *rx, size_t len) 105 { 106 void *txbuf = NULL, *rxbuf = NULL; 107 struct spi_transfer tr[2] = {}; 108 u8 *headerbuf; 109 int ret; 110 111 headerbuf = kmalloc(1, GFP_KERNEL); 112 if (!headerbuf) 113 return -ENOMEM; 114 115 headerbuf[0] = header; 116 tr[0].tx_buf = headerbuf; 117 tr[0].len = 1; 118 119 /* Stack allocated tx? */ 120 if (tx && len <= 32) { 121 txbuf = kmemdup(tx, len, GFP_KERNEL); 122 if (!txbuf) { 123 ret = -ENOMEM; 124 goto out_free; 125 } 126 } 127 128 if (rx) { 129 rxbuf = kmalloc(len, GFP_KERNEL); 130 if (!rxbuf) { 131 ret = -ENOMEM; 132 goto out_free; 133 } 134 } 135 136 tr[1].tx_buf = txbuf ? txbuf : tx; 137 tr[1].rx_buf = rxbuf; 138 tr[1].len = len; 139 140 ndelay(80); 141 ret = spi_sync_transfer(spi, tr, 2); 142 if (rx && !ret) 143 memcpy(rx, rxbuf, len); 144 145 out_free: 146 kfree(headerbuf); 147 kfree(txbuf); 148 kfree(rxbuf); 149 150 return ret; 151 } 152 153 static int repaper_write_buf(struct spi_device *spi, u8 reg, 154 const u8 *buf, size_t len) 155 { 156 int ret; 157 158 ret = repaper_spi_transfer(spi, 0x70, ®, NULL, 1); 159 if (ret) 160 return ret; 161 162 return repaper_spi_transfer(spi, 0x72, buf, NULL, len); 163 } 164 165 static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val) 166 { 167 return repaper_write_buf(spi, reg, &val, 1); 168 } 169 170 static int repaper_read_val(struct spi_device *spi, u8 reg) 171 { 172 int ret; 173 u8 val; 174 175 ret = repaper_spi_transfer(spi, 0x70, ®, NULL, 1); 176 if (ret) 177 return ret; 178 179 ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1); 180 181 return ret ? ret : val; 182 } 183 184 static int repaper_read_id(struct spi_device *spi) 185 { 186 int ret; 187 u8 id; 188 189 ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1); 190 191 return ret ? ret : id; 192 } 193 194 static void repaper_spi_mosi_low(struct spi_device *spi) 195 { 196 const u8 buf[1] = { 0 }; 197 198 spi_write(spi, buf, 1); 199 } 200 201 /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */ 202 static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp, 203 const u8 *data, u8 fixed_value, const u8 *mask, 204 enum repaper_stage stage) 205 { 206 unsigned int b; 207 208 for (b = 0; b < (epd->width / 8); b++) { 209 if (data) { 210 u8 pixels = data[b] & 0xaa; 211 u8 pixel_mask = 0xff; 212 u8 p1, p2, p3, p4; 213 214 if (mask) { 215 pixel_mask = (mask[b] ^ pixels) & 0xaa; 216 pixel_mask |= pixel_mask >> 1; 217 } 218 219 switch (stage) { 220 case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */ 221 pixels = 0xaa | ((pixels ^ 0xaa) >> 1); 222 break; 223 case REPAPER_WHITE: /* B -> N, W -> W (Current) */ 224 pixels = 0x55 + ((pixels ^ 0xaa) >> 1); 225 break; 226 case REPAPER_INVERSE: /* B -> N, W -> B (New) */ 227 pixels = 0x55 | (pixels ^ 0xaa); 228 break; 229 case REPAPER_NORMAL: /* B -> B, W -> W (New) */ 230 pixels = 0xaa | (pixels >> 1); 231 break; 232 } 233 234 pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55); 235 p1 = (pixels >> 6) & 0x03; 236 p2 = (pixels >> 4) & 0x03; 237 p3 = (pixels >> 2) & 0x03; 238 p4 = (pixels >> 0) & 0x03; 239 pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6); 240 *(*pp)++ = pixels; 241 } else { 242 *(*pp)++ = fixed_value; 243 } 244 } 245 } 246 247 /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */ 248 static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp, 249 const u8 *data, u8 fixed_value, const u8 *mask, 250 enum repaper_stage stage) 251 { 252 unsigned int b; 253 254 for (b = epd->width / 8; b > 0; b--) { 255 if (data) { 256 u8 pixels = data[b - 1] & 0x55; 257 u8 pixel_mask = 0xff; 258 259 if (mask) { 260 pixel_mask = (mask[b - 1] ^ pixels) & 0x55; 261 pixel_mask |= pixel_mask << 1; 262 } 263 264 switch (stage) { 265 case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */ 266 pixels = 0xaa | (pixels ^ 0x55); 267 break; 268 case REPAPER_WHITE: /* B -> N, W -> W (Current) */ 269 pixels = 0x55 + (pixels ^ 0x55); 270 break; 271 case REPAPER_INVERSE: /* B -> N, W -> B (New) */ 272 pixels = 0x55 | ((pixels ^ 0x55) << 1); 273 break; 274 case REPAPER_NORMAL: /* B -> B, W -> W (New) */ 275 pixels = 0xaa | pixels; 276 break; 277 } 278 279 pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55); 280 *(*pp)++ = pixels; 281 } else { 282 *(*pp)++ = fixed_value; 283 } 284 } 285 } 286 287 /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */ 288 static inline u16 repaper_interleave_bits(u16 value) 289 { 290 value = (value | (value << 4)) & 0x0f0f; 291 value = (value | (value << 2)) & 0x3333; 292 value = (value | (value << 1)) & 0x5555; 293 294 return value; 295 } 296 297 /* pixels on display are numbered from 1 */ 298 static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp, 299 const u8 *data, u8 fixed_value, const u8 *mask, 300 enum repaper_stage stage) 301 { 302 unsigned int b; 303 304 for (b = epd->width / 8; b > 0; b--) { 305 if (data) { 306 u16 pixels = repaper_interleave_bits(data[b - 1]); 307 u16 pixel_mask = 0xffff; 308 309 if (mask) { 310 pixel_mask = repaper_interleave_bits(mask[b - 1]); 311 312 pixel_mask = (pixel_mask ^ pixels) & 0x5555; 313 pixel_mask |= pixel_mask << 1; 314 } 315 316 switch (stage) { 317 case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */ 318 pixels = 0xaaaa | (pixels ^ 0x5555); 319 break; 320 case REPAPER_WHITE: /* B -> N, W -> W (Current) */ 321 pixels = 0x5555 + (pixels ^ 0x5555); 322 break; 323 case REPAPER_INVERSE: /* B -> N, W -> B (New) */ 324 pixels = 0x5555 | ((pixels ^ 0x5555) << 1); 325 break; 326 case REPAPER_NORMAL: /* B -> B, W -> W (New) */ 327 pixels = 0xaaaa | pixels; 328 break; 329 } 330 331 pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555); 332 *(*pp)++ = pixels >> 8; 333 *(*pp)++ = pixels; 334 } else { 335 *(*pp)++ = fixed_value; 336 *(*pp)++ = fixed_value; 337 } 338 } 339 } 340 341 /* output one line of scan and data bytes to the display */ 342 static void repaper_one_line(struct repaper_epd *epd, unsigned int line, 343 const u8 *data, u8 fixed_value, const u8 *mask, 344 enum repaper_stage stage) 345 { 346 u8 *p = epd->line_buffer; 347 unsigned int b; 348 349 repaper_spi_mosi_low(epd->spi); 350 351 if (epd->pre_border_byte) 352 *p++ = 0x00; 353 354 if (epd->middle_scan) { 355 /* data bytes */ 356 repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage); 357 358 /* scan line */ 359 for (b = epd->bytes_per_scan; b > 0; b--) { 360 if (line / 4 == b - 1) 361 *p++ = 0x03 << (2 * (line & 0x03)); 362 else 363 *p++ = 0x00; 364 } 365 366 /* data bytes */ 367 repaper_even_pixels(epd, &p, data, fixed_value, mask, stage); 368 } else { 369 /* 370 * even scan line, but as lines on display are numbered from 1, 371 * line: 1,3,5,... 372 */ 373 for (b = 0; b < epd->bytes_per_scan; b++) { 374 if (0 != (line & 0x01) && line / 8 == b) 375 *p++ = 0xc0 >> (line & 0x06); 376 else 377 *p++ = 0x00; 378 } 379 380 /* data bytes */ 381 repaper_all_pixels(epd, &p, data, fixed_value, mask, stage); 382 383 /* 384 * odd scan line, but as lines on display are numbered from 1, 385 * line: 0,2,4,6,... 386 */ 387 for (b = epd->bytes_per_scan; b > 0; b--) { 388 if (0 == (line & 0x01) && line / 8 == b - 1) 389 *p++ = 0x03 << (line & 0x06); 390 else 391 *p++ = 0x00; 392 } 393 } 394 395 switch (epd->border_byte) { 396 case REPAPER_BORDER_BYTE_NONE: 397 break; 398 399 case REPAPER_BORDER_BYTE_ZERO: 400 *p++ = 0x00; 401 break; 402 403 case REPAPER_BORDER_BYTE_SET: 404 switch (stage) { 405 case REPAPER_COMPENSATE: 406 case REPAPER_WHITE: 407 case REPAPER_INVERSE: 408 *p++ = 0x00; 409 break; 410 case REPAPER_NORMAL: 411 *p++ = 0xaa; 412 break; 413 } 414 break; 415 } 416 417 repaper_write_buf(epd->spi, 0x0a, epd->line_buffer, 418 p - epd->line_buffer); 419 420 /* Output data to panel */ 421 repaper_write_val(epd->spi, 0x02, 0x07); 422 423 repaper_spi_mosi_low(epd->spi); 424 } 425 426 static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value, 427 enum repaper_stage stage) 428 { 429 unsigned int line; 430 431 for (line = 0; line < epd->height; line++) 432 repaper_one_line(epd, line, NULL, fixed_value, NULL, stage); 433 } 434 435 static void repaper_frame_data(struct repaper_epd *epd, const u8 *image, 436 const u8 *mask, enum repaper_stage stage) 437 { 438 unsigned int line; 439 440 if (!mask) { 441 for (line = 0; line < epd->height; line++) { 442 repaper_one_line(epd, line, 443 &image[line * (epd->width / 8)], 444 0, NULL, stage); 445 } 446 } else { 447 for (line = 0; line < epd->height; line++) { 448 size_t n = line * epd->width / 8; 449 450 repaper_one_line(epd, line, &image[n], 0, &mask[n], 451 stage); 452 } 453 } 454 } 455 456 static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value, 457 enum repaper_stage stage) 458 { 459 u64 start = local_clock(); 460 u64 end = start + ((u64)epd->factored_stage_time * 1000 * 1000); 461 462 do { 463 repaper_frame_fixed(epd, fixed_value, stage); 464 } while (local_clock() < end); 465 } 466 467 static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image, 468 const u8 *mask, enum repaper_stage stage) 469 { 470 u64 start = local_clock(); 471 u64 end = start + ((u64)epd->factored_stage_time * 1000 * 1000); 472 473 do { 474 repaper_frame_data(epd, image, mask, stage); 475 } while (local_clock() < end); 476 } 477 478 static void repaper_get_temperature(struct repaper_epd *epd) 479 { 480 int ret, temperature = 0; 481 unsigned int factor10x; 482 483 if (!epd->thermal) 484 return; 485 486 ret = thermal_zone_get_temp(epd->thermal, &temperature); 487 if (ret) { 488 DRM_DEV_ERROR(&epd->spi->dev, "Failed to get temperature (%d)\n", ret); 489 return; 490 } 491 492 temperature /= 1000; 493 494 if (temperature <= -10) 495 factor10x = 170; 496 else if (temperature <= -5) 497 factor10x = 120; 498 else if (temperature <= 5) 499 factor10x = 80; 500 else if (temperature <= 10) 501 factor10x = 40; 502 else if (temperature <= 15) 503 factor10x = 30; 504 else if (temperature <= 20) 505 factor10x = 20; 506 else if (temperature <= 40) 507 factor10x = 10; 508 else 509 factor10x = 7; 510 511 epd->factored_stage_time = epd->stage_time * factor10x / 10; 512 } 513 514 static int repaper_fb_dirty(struct drm_framebuffer *fb, const struct iosys_map *vmap, 515 struct drm_format_conv_state *fmtcnv_state) 516 { 517 struct repaper_epd *epd = drm_to_epd(fb->dev); 518 unsigned int dst_pitch = 0; 519 struct iosys_map dst; 520 struct drm_rect clip; 521 int idx, ret = 0; 522 u8 *buf = NULL; 523 524 if (!drm_dev_enter(fb->dev, &idx)) 525 return -ENODEV; 526 527 /* repaper can't do partial updates */ 528 clip.x1 = 0; 529 clip.x2 = fb->width; 530 clip.y1 = 0; 531 clip.y2 = fb->height; 532 533 repaper_get_temperature(epd); 534 535 DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id, 536 epd->factored_stage_time); 537 538 buf = kmalloc(fb->width * fb->height / 8, GFP_KERNEL); 539 if (!buf) { 540 ret = -ENOMEM; 541 goto out_exit; 542 } 543 544 ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE); 545 if (ret) 546 goto out_free; 547 548 iosys_map_set_vaddr(&dst, buf); 549 drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, vmap, fb, &clip, fmtcnv_state); 550 551 drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE); 552 553 if (epd->partial) { 554 repaper_frame_data_repeat(epd, buf, epd->current_frame, 555 REPAPER_NORMAL); 556 } else if (epd->cleared) { 557 repaper_frame_data_repeat(epd, epd->current_frame, NULL, 558 REPAPER_COMPENSATE); 559 repaper_frame_data_repeat(epd, epd->current_frame, NULL, 560 REPAPER_WHITE); 561 repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE); 562 repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL); 563 564 epd->partial = true; 565 } else { 566 /* Clear display (anything -> white) */ 567 repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE); 568 repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE); 569 repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE); 570 repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL); 571 572 /* Assuming a clear (white) screen output an image */ 573 repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE); 574 repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE); 575 repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE); 576 repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL); 577 578 epd->cleared = true; 579 epd->partial = true; 580 } 581 582 memcpy(epd->current_frame, buf, fb->width * fb->height / 8); 583 584 /* 585 * An extra frame write is needed if pixels are set in the bottom line, 586 * or else grey lines rises up from the pixels 587 */ 588 if (epd->pre_border_byte) { 589 unsigned int x; 590 591 for (x = 0; x < (fb->width / 8); x++) 592 if (buf[x + (fb->width * (fb->height - 1) / 8)]) { 593 repaper_frame_data_repeat(epd, buf, 594 epd->current_frame, 595 REPAPER_NORMAL); 596 break; 597 } 598 } 599 600 out_free: 601 kfree(buf); 602 out_exit: 603 drm_dev_exit(idx); 604 605 return ret; 606 } 607 608 static void power_off(struct repaper_epd *epd) 609 { 610 /* Turn off power and all signals */ 611 gpiod_set_value_cansleep(epd->reset, 0); 612 gpiod_set_value_cansleep(epd->panel_on, 0); 613 if (epd->border) 614 gpiod_set_value_cansleep(epd->border, 0); 615 616 /* Ensure SPI MOSI and CLOCK are Low before CS Low */ 617 repaper_spi_mosi_low(epd->spi); 618 619 /* Discharge pulse */ 620 gpiod_set_value_cansleep(epd->discharge, 1); 621 msleep(150); 622 gpiod_set_value_cansleep(epd->discharge, 0); 623 } 624 625 static enum drm_mode_status repaper_pipe_mode_valid(struct drm_simple_display_pipe *pipe, 626 const struct drm_display_mode *mode) 627 { 628 struct drm_crtc *crtc = &pipe->crtc; 629 struct repaper_epd *epd = drm_to_epd(crtc->dev); 630 631 return drm_crtc_helper_mode_valid_fixed(crtc, mode, epd->mode); 632 } 633 634 static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe, 635 struct drm_crtc_state *crtc_state, 636 struct drm_plane_state *plane_state) 637 { 638 struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev); 639 struct spi_device *spi = epd->spi; 640 struct device *dev = &spi->dev; 641 bool dc_ok = false; 642 int i, ret, idx; 643 644 if (!drm_dev_enter(pipe->crtc.dev, &idx)) 645 return; 646 647 DRM_DEBUG_DRIVER("\n"); 648 649 /* Power up sequence */ 650 gpiod_set_value_cansleep(epd->reset, 0); 651 gpiod_set_value_cansleep(epd->panel_on, 0); 652 gpiod_set_value_cansleep(epd->discharge, 0); 653 if (epd->border) 654 gpiod_set_value_cansleep(epd->border, 0); 655 repaper_spi_mosi_low(spi); 656 usleep_range(5000, 10000); 657 658 gpiod_set_value_cansleep(epd->panel_on, 1); 659 /* 660 * This delay comes from the repaper.org userspace driver, it's not 661 * mentioned in the datasheet. 662 */ 663 usleep_range(10000, 15000); 664 gpiod_set_value_cansleep(epd->reset, 1); 665 if (epd->border) 666 gpiod_set_value_cansleep(epd->border, 1); 667 usleep_range(5000, 10000); 668 gpiod_set_value_cansleep(epd->reset, 0); 669 usleep_range(5000, 10000); 670 gpiod_set_value_cansleep(epd->reset, 1); 671 usleep_range(5000, 10000); 672 673 /* Wait for COG to become ready */ 674 for (i = 100; i > 0; i--) { 675 if (!gpiod_get_value_cansleep(epd->busy)) 676 break; 677 678 usleep_range(10, 100); 679 } 680 681 if (!i) { 682 DRM_DEV_ERROR(dev, "timeout waiting for panel to become ready.\n"); 683 power_off(epd); 684 goto out_exit; 685 } 686 687 repaper_read_id(spi); 688 ret = repaper_read_id(spi); 689 if (ret != REPAPER_RID_G2_COG_ID) { 690 if (ret < 0) 691 dev_err(dev, "failed to read chip (%d)\n", ret); 692 else 693 dev_err(dev, "wrong COG ID 0x%02x\n", ret); 694 power_off(epd); 695 goto out_exit; 696 } 697 698 /* Disable OE */ 699 repaper_write_val(spi, 0x02, 0x40); 700 701 ret = repaper_read_val(spi, 0x0f); 702 if (ret < 0 || !(ret & 0x80)) { 703 if (ret < 0) 704 DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret); 705 else 706 DRM_DEV_ERROR(dev, "panel is reported broken\n"); 707 power_off(epd); 708 goto out_exit; 709 } 710 711 /* Power saving mode */ 712 repaper_write_val(spi, 0x0b, 0x02); 713 /* Channel select */ 714 repaper_write_buf(spi, 0x01, epd->channel_select, 8); 715 /* High power mode osc */ 716 repaper_write_val(spi, 0x07, 0xd1); 717 /* Power setting */ 718 repaper_write_val(spi, 0x08, 0x02); 719 /* Vcom level */ 720 repaper_write_val(spi, 0x09, 0xc2); 721 /* Power setting */ 722 repaper_write_val(spi, 0x04, 0x03); 723 /* Driver latch on */ 724 repaper_write_val(spi, 0x03, 0x01); 725 /* Driver latch off */ 726 repaper_write_val(spi, 0x03, 0x00); 727 usleep_range(5000, 10000); 728 729 /* Start chargepump */ 730 for (i = 0; i < 4; ++i) { 731 /* Charge pump positive voltage on - VGH/VDL on */ 732 repaper_write_val(spi, 0x05, 0x01); 733 msleep(240); 734 735 /* Charge pump negative voltage on - VGL/VDL on */ 736 repaper_write_val(spi, 0x05, 0x03); 737 msleep(40); 738 739 /* Charge pump Vcom on - Vcom driver on */ 740 repaper_write_val(spi, 0x05, 0x0f); 741 msleep(40); 742 743 /* check DC/DC */ 744 ret = repaper_read_val(spi, 0x0f); 745 if (ret < 0) { 746 DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret); 747 power_off(epd); 748 goto out_exit; 749 } 750 751 if (ret & 0x40) { 752 dc_ok = true; 753 break; 754 } 755 } 756 757 if (!dc_ok) { 758 DRM_DEV_ERROR(dev, "dc/dc failed\n"); 759 power_off(epd); 760 goto out_exit; 761 } 762 763 /* 764 * Output enable to disable 765 * The userspace driver sets this to 0x04, but the datasheet says 0x06 766 */ 767 repaper_write_val(spi, 0x02, 0x04); 768 769 epd->partial = false; 770 out_exit: 771 drm_dev_exit(idx); 772 } 773 774 static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe) 775 { 776 struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev); 777 struct spi_device *spi = epd->spi; 778 unsigned int line; 779 780 /* 781 * This callback is not protected by drm_dev_enter/exit since we want to 782 * turn off the display on regular driver unload. It's highly unlikely 783 * that the underlying SPI controller is gone should this be called after 784 * unplug. 785 */ 786 787 DRM_DEBUG_DRIVER("\n"); 788 789 /* Nothing frame */ 790 for (line = 0; line < epd->height; line++) 791 repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL, 792 REPAPER_COMPENSATE); 793 794 /* 2.7" */ 795 if (epd->border) { 796 /* Dummy line */ 797 repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL, 798 REPAPER_COMPENSATE); 799 msleep(25); 800 gpiod_set_value_cansleep(epd->border, 0); 801 msleep(200); 802 gpiod_set_value_cansleep(epd->border, 1); 803 } else { 804 /* Border dummy line */ 805 repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL, 806 REPAPER_NORMAL); 807 msleep(200); 808 } 809 810 /* not described in datasheet */ 811 repaper_write_val(spi, 0x0b, 0x00); 812 /* Latch reset turn on */ 813 repaper_write_val(spi, 0x03, 0x01); 814 /* Power off charge pump Vcom */ 815 repaper_write_val(spi, 0x05, 0x03); 816 /* Power off charge pump neg voltage */ 817 repaper_write_val(spi, 0x05, 0x01); 818 msleep(120); 819 /* Discharge internal */ 820 repaper_write_val(spi, 0x04, 0x80); 821 /* turn off all charge pumps */ 822 repaper_write_val(spi, 0x05, 0x00); 823 /* Turn off osc */ 824 repaper_write_val(spi, 0x07, 0x01); 825 msleep(50); 826 827 power_off(epd); 828 } 829 830 static void repaper_pipe_update(struct drm_simple_display_pipe *pipe, 831 struct drm_plane_state *old_state) 832 { 833 struct drm_plane_state *state = pipe->plane.state; 834 struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(state); 835 struct drm_rect rect; 836 837 if (!pipe->crtc.state->active) 838 return; 839 840 if (drm_atomic_helper_damage_merged(old_state, state, &rect)) 841 repaper_fb_dirty(state->fb, shadow_plane_state->data, 842 &shadow_plane_state->fmtcnv_state); 843 } 844 845 static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = { 846 .mode_valid = repaper_pipe_mode_valid, 847 .enable = repaper_pipe_enable, 848 .disable = repaper_pipe_disable, 849 .update = repaper_pipe_update, 850 DRM_GEM_SIMPLE_DISPLAY_PIPE_SHADOW_PLANE_FUNCS, 851 }; 852 853 static int repaper_connector_get_modes(struct drm_connector *connector) 854 { 855 struct repaper_epd *epd = drm_to_epd(connector->dev); 856 857 return drm_connector_helper_get_modes_fixed(connector, epd->mode); 858 } 859 860 static const struct drm_connector_helper_funcs repaper_connector_hfuncs = { 861 .get_modes = repaper_connector_get_modes, 862 }; 863 864 static const struct drm_connector_funcs repaper_connector_funcs = { 865 .reset = drm_atomic_helper_connector_reset, 866 .fill_modes = drm_helper_probe_single_connector_modes, 867 .destroy = drm_connector_cleanup, 868 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 869 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 870 }; 871 872 static const struct drm_mode_config_funcs repaper_mode_config_funcs = { 873 .fb_create = drm_gem_fb_create_with_dirty, 874 .atomic_check = drm_atomic_helper_check, 875 .atomic_commit = drm_atomic_helper_commit, 876 }; 877 878 static const uint32_t repaper_formats[] = { 879 DRM_FORMAT_XRGB8888, 880 }; 881 882 static const struct drm_display_mode repaper_e1144cs021_mode = { 883 DRM_SIMPLE_MODE(128, 96, 29, 22), 884 }; 885 886 static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00, 887 0x00, 0x0f, 0xff, 0x00 }; 888 889 static const struct drm_display_mode repaper_e1190cs021_mode = { 890 DRM_SIMPLE_MODE(144, 128, 36, 32), 891 }; 892 893 static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03, 894 0xfc, 0x00, 0x00, 0xff }; 895 896 static const struct drm_display_mode repaper_e2200cs021_mode = { 897 DRM_SIMPLE_MODE(200, 96, 46, 22), 898 }; 899 900 static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00, 901 0x01, 0xff, 0xe0, 0x00 }; 902 903 static const struct drm_display_mode repaper_e2271cs021_mode = { 904 DRM_SIMPLE_MODE(264, 176, 57, 38), 905 }; 906 907 static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f, 908 0xff, 0xfe, 0x00, 0x00 }; 909 910 DEFINE_DRM_GEM_DMA_FOPS(repaper_fops); 911 912 static const struct drm_driver repaper_driver = { 913 .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC, 914 .fops = &repaper_fops, 915 DRM_GEM_DMA_DRIVER_OPS_VMAP, 916 DRM_FBDEV_DMA_DRIVER_OPS, 917 .name = "repaper", 918 .desc = "Pervasive Displays RePaper e-ink panels", 919 .major = 1, 920 .minor = 0, 921 }; 922 923 static const struct of_device_id repaper_of_match[] = { 924 { .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 }, 925 { .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 }, 926 { .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 }, 927 { .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 }, 928 {}, 929 }; 930 MODULE_DEVICE_TABLE(of, repaper_of_match); 931 932 static const struct spi_device_id repaper_id[] = { 933 { "e1144cs021", E1144CS021 }, 934 { "e1190cs021", E1190CS021 }, 935 { "e2200cs021", E2200CS021 }, 936 { "e2271cs021", E2271CS021 }, 937 { }, 938 }; 939 MODULE_DEVICE_TABLE(spi, repaper_id); 940 941 static int repaper_probe(struct spi_device *spi) 942 { 943 const struct drm_display_mode *mode; 944 const struct spi_device_id *spi_id; 945 struct device *dev = &spi->dev; 946 enum repaper_model model; 947 const char *thermal_zone; 948 struct repaper_epd *epd; 949 size_t line_buffer_size; 950 struct drm_device *drm; 951 const void *match; 952 int ret; 953 954 match = device_get_match_data(dev); 955 if (match) { 956 model = (enum repaper_model)(uintptr_t)match; 957 } else { 958 spi_id = spi_get_device_id(spi); 959 model = (enum repaper_model)spi_id->driver_data; 960 } 961 962 /* The SPI device is used to allocate dma memory */ 963 if (!dev->coherent_dma_mask) { 964 ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32)); 965 if (ret) { 966 dev_warn(dev, "Failed to set dma mask %d\n", ret); 967 return ret; 968 } 969 } 970 971 epd = devm_drm_dev_alloc(dev, &repaper_driver, 972 struct repaper_epd, drm); 973 if (IS_ERR(epd)) 974 return PTR_ERR(epd); 975 976 drm = &epd->drm; 977 978 ret = drmm_mode_config_init(drm); 979 if (ret) 980 return ret; 981 drm->mode_config.funcs = &repaper_mode_config_funcs; 982 983 epd->spi = spi; 984 985 epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW); 986 if (IS_ERR(epd->panel_on)) { 987 ret = PTR_ERR(epd->panel_on); 988 if (ret != -EPROBE_DEFER) 989 DRM_DEV_ERROR(dev, "Failed to get gpio 'panel-on'\n"); 990 return ret; 991 } 992 993 epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW); 994 if (IS_ERR(epd->discharge)) { 995 ret = PTR_ERR(epd->discharge); 996 if (ret != -EPROBE_DEFER) 997 DRM_DEV_ERROR(dev, "Failed to get gpio 'discharge'\n"); 998 return ret; 999 } 1000 1001 epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); 1002 if (IS_ERR(epd->reset)) { 1003 ret = PTR_ERR(epd->reset); 1004 if (ret != -EPROBE_DEFER) 1005 DRM_DEV_ERROR(dev, "Failed to get gpio 'reset'\n"); 1006 return ret; 1007 } 1008 1009 epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN); 1010 if (IS_ERR(epd->busy)) { 1011 ret = PTR_ERR(epd->busy); 1012 if (ret != -EPROBE_DEFER) 1013 DRM_DEV_ERROR(dev, "Failed to get gpio 'busy'\n"); 1014 return ret; 1015 } 1016 1017 if (!device_property_read_string(dev, "pervasive,thermal-zone", 1018 &thermal_zone)) { 1019 epd->thermal = thermal_zone_get_zone_by_name(thermal_zone); 1020 if (IS_ERR(epd->thermal)) { 1021 DRM_DEV_ERROR(dev, "Failed to get thermal zone: %s\n", thermal_zone); 1022 return PTR_ERR(epd->thermal); 1023 } 1024 } 1025 1026 switch (model) { 1027 case E1144CS021: 1028 mode = &repaper_e1144cs021_mode; 1029 epd->channel_select = repaper_e1144cs021_cs; 1030 epd->stage_time = 480; 1031 epd->bytes_per_scan = 96 / 4; 1032 epd->middle_scan = true; /* data-scan-data */ 1033 epd->pre_border_byte = false; 1034 epd->border_byte = REPAPER_BORDER_BYTE_ZERO; 1035 break; 1036 1037 case E1190CS021: 1038 mode = &repaper_e1190cs021_mode; 1039 epd->channel_select = repaper_e1190cs021_cs; 1040 epd->stage_time = 480; 1041 epd->bytes_per_scan = 128 / 4 / 2; 1042 epd->middle_scan = false; /* scan-data-scan */ 1043 epd->pre_border_byte = false; 1044 epd->border_byte = REPAPER_BORDER_BYTE_SET; 1045 break; 1046 1047 case E2200CS021: 1048 mode = &repaper_e2200cs021_mode; 1049 epd->channel_select = repaper_e2200cs021_cs; 1050 epd->stage_time = 480; 1051 epd->bytes_per_scan = 96 / 4; 1052 epd->middle_scan = true; /* data-scan-data */ 1053 epd->pre_border_byte = true; 1054 epd->border_byte = REPAPER_BORDER_BYTE_NONE; 1055 break; 1056 1057 case E2271CS021: 1058 epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW); 1059 if (IS_ERR(epd->border)) { 1060 ret = PTR_ERR(epd->border); 1061 if (ret != -EPROBE_DEFER) 1062 DRM_DEV_ERROR(dev, "Failed to get gpio 'border'\n"); 1063 return ret; 1064 } 1065 1066 mode = &repaper_e2271cs021_mode; 1067 epd->channel_select = repaper_e2271cs021_cs; 1068 epd->stage_time = 630; 1069 epd->bytes_per_scan = 176 / 4; 1070 epd->middle_scan = true; /* data-scan-data */ 1071 epd->pre_border_byte = true; 1072 epd->border_byte = REPAPER_BORDER_BYTE_NONE; 1073 break; 1074 1075 default: 1076 return -ENODEV; 1077 } 1078 1079 epd->mode = mode; 1080 epd->width = mode->hdisplay; 1081 epd->height = mode->vdisplay; 1082 epd->factored_stage_time = epd->stage_time; 1083 1084 line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2; 1085 epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL); 1086 if (!epd->line_buffer) 1087 return -ENOMEM; 1088 1089 epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8, 1090 GFP_KERNEL); 1091 if (!epd->current_frame) 1092 return -ENOMEM; 1093 1094 drm->mode_config.min_width = mode->hdisplay; 1095 drm->mode_config.max_width = mode->hdisplay; 1096 drm->mode_config.min_height = mode->vdisplay; 1097 drm->mode_config.max_height = mode->vdisplay; 1098 1099 drm_connector_helper_add(&epd->connector, &repaper_connector_hfuncs); 1100 ret = drm_connector_init(drm, &epd->connector, &repaper_connector_funcs, 1101 DRM_MODE_CONNECTOR_SPI); 1102 if (ret) 1103 return ret; 1104 1105 ret = drm_simple_display_pipe_init(drm, &epd->pipe, &repaper_pipe_funcs, 1106 repaper_formats, ARRAY_SIZE(repaper_formats), 1107 NULL, &epd->connector); 1108 if (ret) 1109 return ret; 1110 1111 drm_mode_config_reset(drm); 1112 1113 ret = drm_dev_register(drm, 0); 1114 if (ret) 1115 return ret; 1116 1117 spi_set_drvdata(spi, drm); 1118 1119 DRM_DEBUG_DRIVER("SPI speed: %uMHz\n", spi->max_speed_hz / 1000000); 1120 1121 drm_client_setup(drm, NULL); 1122 1123 return 0; 1124 } 1125 1126 static void repaper_remove(struct spi_device *spi) 1127 { 1128 struct drm_device *drm = spi_get_drvdata(spi); 1129 1130 drm_dev_unplug(drm); 1131 drm_atomic_helper_shutdown(drm); 1132 } 1133 1134 static void repaper_shutdown(struct spi_device *spi) 1135 { 1136 drm_atomic_helper_shutdown(spi_get_drvdata(spi)); 1137 } 1138 1139 static struct spi_driver repaper_spi_driver = { 1140 .driver = { 1141 .name = "repaper", 1142 .of_match_table = repaper_of_match, 1143 }, 1144 .id_table = repaper_id, 1145 .probe = repaper_probe, 1146 .remove = repaper_remove, 1147 .shutdown = repaper_shutdown, 1148 }; 1149 module_spi_driver(repaper_spi_driver); 1150 1151 MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver"); 1152 MODULE_AUTHOR("Noralf Trønnes"); 1153 MODULE_LICENSE("GPL"); 1154