xref: /linux/drivers/gpu/drm/tiny/repaper.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DRM driver for Pervasive Displays RePaper branded e-ink panels
4  *
5  * Copyright 2013-2017 Pervasive Displays, Inc.
6  * Copyright 2017 Noralf Trønnes
7  *
8  * The driver supports:
9  * Material Film: Aurora Mb (V231)
10  * Driver IC: G2 (eTC)
11  *
12  * The controller code was taken from the userspace driver:
13  * https://github.com/repaper/gratis
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/sched/clock.h>
21 #include <linux/spi/spi.h>
22 #include <linux/thermal.h>
23 
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_client_setup.h>
26 #include <drm/drm_connector.h>
27 #include <drm/drm_damage_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_fb_dma_helper.h>
30 #include <drm/drm_fbdev_dma.h>
31 #include <drm/drm_format_helper.h>
32 #include <drm/drm_framebuffer.h>
33 #include <drm/drm_gem_atomic_helper.h>
34 #include <drm/drm_gem_dma_helper.h>
35 #include <drm/drm_gem_framebuffer_helper.h>
36 #include <drm/drm_managed.h>
37 #include <drm/drm_modes.h>
38 #include <drm/drm_rect.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41 
42 #define REPAPER_RID_G2_COG_ID	0x12
43 
44 enum repaper_model {
45 	/* 0 is reserved to avoid clashing with NULL */
46 	E1144CS021 = 1,
47 	E1190CS021,
48 	E2200CS021,
49 	E2271CS021,
50 };
51 
52 enum repaper_stage {         /* Image pixel -> Display pixel */
53 	REPAPER_COMPENSATE,  /* B -> W, W -> B (Current Image) */
54 	REPAPER_WHITE,       /* B -> N, W -> W (Current Image) */
55 	REPAPER_INVERSE,     /* B -> N, W -> B (New Image) */
56 	REPAPER_NORMAL       /* B -> B, W -> W (New Image) */
57 };
58 
59 enum repaper_epd_border_byte {
60 	REPAPER_BORDER_BYTE_NONE,
61 	REPAPER_BORDER_BYTE_ZERO,
62 	REPAPER_BORDER_BYTE_SET,
63 };
64 
65 struct repaper_epd {
66 	struct drm_device drm;
67 	struct drm_simple_display_pipe pipe;
68 	const struct drm_display_mode *mode;
69 	struct drm_connector connector;
70 	struct spi_device *spi;
71 
72 	struct gpio_desc *panel_on;
73 	struct gpio_desc *border;
74 	struct gpio_desc *discharge;
75 	struct gpio_desc *reset;
76 	struct gpio_desc *busy;
77 
78 	struct thermal_zone_device *thermal;
79 
80 	unsigned int height;
81 	unsigned int width;
82 	unsigned int bytes_per_scan;
83 	const u8 *channel_select;
84 	unsigned int stage_time;
85 	unsigned int factored_stage_time;
86 	bool middle_scan;
87 	bool pre_border_byte;
88 	enum repaper_epd_border_byte border_byte;
89 
90 	u8 *line_buffer;
91 	void *current_frame;
92 
93 	bool cleared;
94 	bool partial;
95 };
96 
97 static inline struct repaper_epd *drm_to_epd(struct drm_device *drm)
98 {
99 	return container_of(drm, struct repaper_epd, drm);
100 }
101 
102 static int repaper_spi_transfer(struct spi_device *spi, u8 header,
103 				const void *tx, void *rx, size_t len)
104 {
105 	void *txbuf = NULL, *rxbuf = NULL;
106 	struct spi_transfer tr[2] = {};
107 	u8 *headerbuf;
108 	int ret;
109 
110 	headerbuf = kmalloc(1, GFP_KERNEL);
111 	if (!headerbuf)
112 		return -ENOMEM;
113 
114 	headerbuf[0] = header;
115 	tr[0].tx_buf = headerbuf;
116 	tr[0].len = 1;
117 
118 	/* Stack allocated tx? */
119 	if (tx && len <= 32) {
120 		txbuf = kmemdup(tx, len, GFP_KERNEL);
121 		if (!txbuf) {
122 			ret = -ENOMEM;
123 			goto out_free;
124 		}
125 	}
126 
127 	if (rx) {
128 		rxbuf = kmalloc(len, GFP_KERNEL);
129 		if (!rxbuf) {
130 			ret = -ENOMEM;
131 			goto out_free;
132 		}
133 	}
134 
135 	tr[1].tx_buf = txbuf ? txbuf : tx;
136 	tr[1].rx_buf = rxbuf;
137 	tr[1].len = len;
138 
139 	ndelay(80);
140 	ret = spi_sync_transfer(spi, tr, 2);
141 	if (rx && !ret)
142 		memcpy(rx, rxbuf, len);
143 
144 out_free:
145 	kfree(headerbuf);
146 	kfree(txbuf);
147 	kfree(rxbuf);
148 
149 	return ret;
150 }
151 
152 static int repaper_write_buf(struct spi_device *spi, u8 reg,
153 			     const u8 *buf, size_t len)
154 {
155 	int ret;
156 
157 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
158 	if (ret)
159 		return ret;
160 
161 	return repaper_spi_transfer(spi, 0x72, buf, NULL, len);
162 }
163 
164 static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val)
165 {
166 	return repaper_write_buf(spi, reg, &val, 1);
167 }
168 
169 static int repaper_read_val(struct spi_device *spi, u8 reg)
170 {
171 	int ret;
172 	u8 val;
173 
174 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
175 	if (ret)
176 		return ret;
177 
178 	ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1);
179 
180 	return ret ? ret : val;
181 }
182 
183 static int repaper_read_id(struct spi_device *spi)
184 {
185 	int ret;
186 	u8 id;
187 
188 	ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1);
189 
190 	return ret ? ret : id;
191 }
192 
193 static void repaper_spi_mosi_low(struct spi_device *spi)
194 {
195 	const u8 buf[1] = { 0 };
196 
197 	spi_write(spi, buf, 1);
198 }
199 
200 /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */
201 static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp,
202 				const u8 *data, u8 fixed_value, const u8 *mask,
203 				enum repaper_stage stage)
204 {
205 	unsigned int b;
206 
207 	for (b = 0; b < (epd->width / 8); b++) {
208 		if (data) {
209 			u8 pixels = data[b] & 0xaa;
210 			u8 pixel_mask = 0xff;
211 			u8 p1, p2, p3, p4;
212 
213 			if (mask) {
214 				pixel_mask = (mask[b] ^ pixels) & 0xaa;
215 				pixel_mask |= pixel_mask >> 1;
216 			}
217 
218 			switch (stage) {
219 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
220 				pixels = 0xaa | ((pixels ^ 0xaa) >> 1);
221 				break;
222 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
223 				pixels = 0x55 + ((pixels ^ 0xaa) >> 1);
224 				break;
225 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
226 				pixels = 0x55 | (pixels ^ 0xaa);
227 				break;
228 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
229 				pixels = 0xaa | (pixels >> 1);
230 				break;
231 			}
232 
233 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
234 			p1 = (pixels >> 6) & 0x03;
235 			p2 = (pixels >> 4) & 0x03;
236 			p3 = (pixels >> 2) & 0x03;
237 			p4 = (pixels >> 0) & 0x03;
238 			pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6);
239 			*(*pp)++ = pixels;
240 		} else {
241 			*(*pp)++ = fixed_value;
242 		}
243 	}
244 }
245 
246 /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */
247 static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp,
248 			       const u8 *data, u8 fixed_value, const u8 *mask,
249 			       enum repaper_stage stage)
250 {
251 	unsigned int b;
252 
253 	for (b = epd->width / 8; b > 0; b--) {
254 		if (data) {
255 			u8 pixels = data[b - 1] & 0x55;
256 			u8 pixel_mask = 0xff;
257 
258 			if (mask) {
259 				pixel_mask = (mask[b - 1] ^ pixels) & 0x55;
260 				pixel_mask |= pixel_mask << 1;
261 			}
262 
263 			switch (stage) {
264 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
265 				pixels = 0xaa | (pixels ^ 0x55);
266 				break;
267 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
268 				pixels = 0x55 + (pixels ^ 0x55);
269 				break;
270 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
271 				pixels = 0x55 | ((pixels ^ 0x55) << 1);
272 				break;
273 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
274 				pixels = 0xaa | pixels;
275 				break;
276 			}
277 
278 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
279 			*(*pp)++ = pixels;
280 		} else {
281 			*(*pp)++ = fixed_value;
282 		}
283 	}
284 }
285 
286 /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */
287 static inline u16 repaper_interleave_bits(u16 value)
288 {
289 	value = (value | (value << 4)) & 0x0f0f;
290 	value = (value | (value << 2)) & 0x3333;
291 	value = (value | (value << 1)) & 0x5555;
292 
293 	return value;
294 }
295 
296 /* pixels on display are numbered from 1 */
297 static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp,
298 			       const u8 *data, u8 fixed_value, const u8 *mask,
299 			       enum repaper_stage stage)
300 {
301 	unsigned int b;
302 
303 	for (b = epd->width / 8; b > 0; b--) {
304 		if (data) {
305 			u16 pixels = repaper_interleave_bits(data[b - 1]);
306 			u16 pixel_mask = 0xffff;
307 
308 			if (mask) {
309 				pixel_mask = repaper_interleave_bits(mask[b - 1]);
310 
311 				pixel_mask = (pixel_mask ^ pixels) & 0x5555;
312 				pixel_mask |= pixel_mask << 1;
313 			}
314 
315 			switch (stage) {
316 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
317 				pixels = 0xaaaa | (pixels ^ 0x5555);
318 				break;
319 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
320 				pixels = 0x5555 + (pixels ^ 0x5555);
321 				break;
322 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
323 				pixels = 0x5555 | ((pixels ^ 0x5555) << 1);
324 				break;
325 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
326 				pixels = 0xaaaa | pixels;
327 				break;
328 			}
329 
330 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555);
331 			*(*pp)++ = pixels >> 8;
332 			*(*pp)++ = pixels;
333 		} else {
334 			*(*pp)++ = fixed_value;
335 			*(*pp)++ = fixed_value;
336 		}
337 	}
338 }
339 
340 /* output one line of scan and data bytes to the display */
341 static void repaper_one_line(struct repaper_epd *epd, unsigned int line,
342 			     const u8 *data, u8 fixed_value, const u8 *mask,
343 			     enum repaper_stage stage)
344 {
345 	u8 *p = epd->line_buffer;
346 	unsigned int b;
347 
348 	repaper_spi_mosi_low(epd->spi);
349 
350 	if (epd->pre_border_byte)
351 		*p++ = 0x00;
352 
353 	if (epd->middle_scan) {
354 		/* data bytes */
355 		repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage);
356 
357 		/* scan line */
358 		for (b = epd->bytes_per_scan; b > 0; b--) {
359 			if (line / 4 == b - 1)
360 				*p++ = 0x03 << (2 * (line & 0x03));
361 			else
362 				*p++ = 0x00;
363 		}
364 
365 		/* data bytes */
366 		repaper_even_pixels(epd, &p, data, fixed_value, mask, stage);
367 	} else {
368 		/*
369 		 * even scan line, but as lines on display are numbered from 1,
370 		 * line: 1,3,5,...
371 		 */
372 		for (b = 0; b < epd->bytes_per_scan; b++) {
373 			if (0 != (line & 0x01) && line / 8 == b)
374 				*p++ = 0xc0 >> (line & 0x06);
375 			else
376 				*p++ = 0x00;
377 		}
378 
379 		/* data bytes */
380 		repaper_all_pixels(epd, &p, data, fixed_value, mask, stage);
381 
382 		/*
383 		 * odd scan line, but as lines on display are numbered from 1,
384 		 * line: 0,2,4,6,...
385 		 */
386 		for (b = epd->bytes_per_scan; b > 0; b--) {
387 			if (0 == (line & 0x01) && line / 8 == b - 1)
388 				*p++ = 0x03 << (line & 0x06);
389 			else
390 				*p++ = 0x00;
391 		}
392 	}
393 
394 	switch (epd->border_byte) {
395 	case REPAPER_BORDER_BYTE_NONE:
396 		break;
397 
398 	case REPAPER_BORDER_BYTE_ZERO:
399 		*p++ = 0x00;
400 		break;
401 
402 	case REPAPER_BORDER_BYTE_SET:
403 		switch (stage) {
404 		case REPAPER_COMPENSATE:
405 		case REPAPER_WHITE:
406 		case REPAPER_INVERSE:
407 			*p++ = 0x00;
408 			break;
409 		case REPAPER_NORMAL:
410 			*p++ = 0xaa;
411 			break;
412 		}
413 		break;
414 	}
415 
416 	repaper_write_buf(epd->spi, 0x0a, epd->line_buffer,
417 			  p - epd->line_buffer);
418 
419 	/* Output data to panel */
420 	repaper_write_val(epd->spi, 0x02, 0x07);
421 
422 	repaper_spi_mosi_low(epd->spi);
423 }
424 
425 static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value,
426 				enum repaper_stage stage)
427 {
428 	unsigned int line;
429 
430 	for (line = 0; line < epd->height; line++)
431 		repaper_one_line(epd, line, NULL, fixed_value, NULL, stage);
432 }
433 
434 static void repaper_frame_data(struct repaper_epd *epd, const u8 *image,
435 			       const u8 *mask, enum repaper_stage stage)
436 {
437 	unsigned int line;
438 
439 	if (!mask) {
440 		for (line = 0; line < epd->height; line++) {
441 			repaper_one_line(epd, line,
442 					 &image[line * (epd->width / 8)],
443 					 0, NULL, stage);
444 		}
445 	} else {
446 		for (line = 0; line < epd->height; line++) {
447 			size_t n = line * epd->width / 8;
448 
449 			repaper_one_line(epd, line, &image[n], 0, &mask[n],
450 					 stage);
451 		}
452 	}
453 }
454 
455 static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value,
456 				       enum repaper_stage stage)
457 {
458 	u64 start = local_clock();
459 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
460 
461 	do {
462 		repaper_frame_fixed(epd, fixed_value, stage);
463 	} while (local_clock() < end);
464 }
465 
466 static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image,
467 				      const u8 *mask, enum repaper_stage stage)
468 {
469 	u64 start = local_clock();
470 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
471 
472 	do {
473 		repaper_frame_data(epd, image, mask, stage);
474 	} while (local_clock() < end);
475 }
476 
477 static void repaper_get_temperature(struct repaper_epd *epd)
478 {
479 	int ret, temperature = 0;
480 	unsigned int factor10x;
481 
482 	if (!epd->thermal)
483 		return;
484 
485 	ret = thermal_zone_get_temp(epd->thermal, &temperature);
486 	if (ret) {
487 		DRM_DEV_ERROR(&epd->spi->dev, "Failed to get temperature (%d)\n", ret);
488 		return;
489 	}
490 
491 	temperature /= 1000;
492 
493 	if (temperature <= -10)
494 		factor10x = 170;
495 	else if (temperature <= -5)
496 		factor10x = 120;
497 	else if (temperature <= 5)
498 		factor10x = 80;
499 	else if (temperature <= 10)
500 		factor10x = 40;
501 	else if (temperature <= 15)
502 		factor10x = 30;
503 	else if (temperature <= 20)
504 		factor10x = 20;
505 	else if (temperature <= 40)
506 		factor10x = 10;
507 	else
508 		factor10x = 7;
509 
510 	epd->factored_stage_time = epd->stage_time * factor10x / 10;
511 }
512 
513 static int repaper_fb_dirty(struct drm_framebuffer *fb,
514 			    struct drm_format_conv_state *fmtcnv_state)
515 {
516 	struct drm_gem_dma_object *dma_obj = drm_fb_dma_get_gem_obj(fb, 0);
517 	struct repaper_epd *epd = drm_to_epd(fb->dev);
518 	unsigned int dst_pitch = 0;
519 	struct iosys_map dst, vmap;
520 	struct drm_rect clip;
521 	int idx, ret = 0;
522 	u8 *buf = NULL;
523 
524 	if (!drm_dev_enter(fb->dev, &idx))
525 		return -ENODEV;
526 
527 	/* repaper can't do partial updates */
528 	clip.x1 = 0;
529 	clip.x2 = fb->width;
530 	clip.y1 = 0;
531 	clip.y2 = fb->height;
532 
533 	repaper_get_temperature(epd);
534 
535 	DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id,
536 		  epd->factored_stage_time);
537 
538 	buf = kmalloc(fb->width * fb->height / 8, GFP_KERNEL);
539 	if (!buf) {
540 		ret = -ENOMEM;
541 		goto out_exit;
542 	}
543 
544 	ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
545 	if (ret)
546 		goto out_free;
547 
548 	iosys_map_set_vaddr(&dst, buf);
549 	iosys_map_set_vaddr(&vmap, dma_obj->vaddr);
550 	drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, &vmap, fb, &clip, fmtcnv_state);
551 
552 	drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
553 
554 	if (epd->partial) {
555 		repaper_frame_data_repeat(epd, buf, epd->current_frame,
556 					  REPAPER_NORMAL);
557 	} else if (epd->cleared) {
558 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
559 					  REPAPER_COMPENSATE);
560 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
561 					  REPAPER_WHITE);
562 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
563 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
564 
565 		epd->partial = true;
566 	} else {
567 		/* Clear display (anything -> white) */
568 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE);
569 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE);
570 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE);
571 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL);
572 
573 		/* Assuming a clear (white) screen output an image */
574 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE);
575 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE);
576 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
577 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
578 
579 		epd->cleared = true;
580 		epd->partial = true;
581 	}
582 
583 	memcpy(epd->current_frame, buf, fb->width * fb->height / 8);
584 
585 	/*
586 	 * An extra frame write is needed if pixels are set in the bottom line,
587 	 * or else grey lines rises up from the pixels
588 	 */
589 	if (epd->pre_border_byte) {
590 		unsigned int x;
591 
592 		for (x = 0; x < (fb->width / 8); x++)
593 			if (buf[x + (fb->width * (fb->height - 1) / 8)]) {
594 				repaper_frame_data_repeat(epd, buf,
595 							  epd->current_frame,
596 							  REPAPER_NORMAL);
597 				break;
598 			}
599 	}
600 
601 out_free:
602 	kfree(buf);
603 out_exit:
604 	drm_dev_exit(idx);
605 
606 	return ret;
607 }
608 
609 static void power_off(struct repaper_epd *epd)
610 {
611 	/* Turn off power and all signals */
612 	gpiod_set_value_cansleep(epd->reset, 0);
613 	gpiod_set_value_cansleep(epd->panel_on, 0);
614 	if (epd->border)
615 		gpiod_set_value_cansleep(epd->border, 0);
616 
617 	/* Ensure SPI MOSI and CLOCK are Low before CS Low */
618 	repaper_spi_mosi_low(epd->spi);
619 
620 	/* Discharge pulse */
621 	gpiod_set_value_cansleep(epd->discharge, 1);
622 	msleep(150);
623 	gpiod_set_value_cansleep(epd->discharge, 0);
624 }
625 
626 static enum drm_mode_status repaper_pipe_mode_valid(struct drm_simple_display_pipe *pipe,
627 						    const struct drm_display_mode *mode)
628 {
629 	struct drm_crtc *crtc = &pipe->crtc;
630 	struct repaper_epd *epd = drm_to_epd(crtc->dev);
631 
632 	return drm_crtc_helper_mode_valid_fixed(crtc, mode, epd->mode);
633 }
634 
635 static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe,
636 				struct drm_crtc_state *crtc_state,
637 				struct drm_plane_state *plane_state)
638 {
639 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
640 	struct spi_device *spi = epd->spi;
641 	struct device *dev = &spi->dev;
642 	bool dc_ok = false;
643 	int i, ret, idx;
644 
645 	if (!drm_dev_enter(pipe->crtc.dev, &idx))
646 		return;
647 
648 	DRM_DEBUG_DRIVER("\n");
649 
650 	/* Power up sequence */
651 	gpiod_set_value_cansleep(epd->reset, 0);
652 	gpiod_set_value_cansleep(epd->panel_on, 0);
653 	gpiod_set_value_cansleep(epd->discharge, 0);
654 	if (epd->border)
655 		gpiod_set_value_cansleep(epd->border, 0);
656 	repaper_spi_mosi_low(spi);
657 	usleep_range(5000, 10000);
658 
659 	gpiod_set_value_cansleep(epd->panel_on, 1);
660 	/*
661 	 * This delay comes from the repaper.org userspace driver, it's not
662 	 * mentioned in the datasheet.
663 	 */
664 	usleep_range(10000, 15000);
665 	gpiod_set_value_cansleep(epd->reset, 1);
666 	if (epd->border)
667 		gpiod_set_value_cansleep(epd->border, 1);
668 	usleep_range(5000, 10000);
669 	gpiod_set_value_cansleep(epd->reset, 0);
670 	usleep_range(5000, 10000);
671 	gpiod_set_value_cansleep(epd->reset, 1);
672 	usleep_range(5000, 10000);
673 
674 	/* Wait for COG to become ready */
675 	for (i = 100; i > 0; i--) {
676 		if (!gpiod_get_value_cansleep(epd->busy))
677 			break;
678 
679 		usleep_range(10, 100);
680 	}
681 
682 	if (!i) {
683 		DRM_DEV_ERROR(dev, "timeout waiting for panel to become ready.\n");
684 		power_off(epd);
685 		goto out_exit;
686 	}
687 
688 	repaper_read_id(spi);
689 	ret = repaper_read_id(spi);
690 	if (ret != REPAPER_RID_G2_COG_ID) {
691 		if (ret < 0)
692 			dev_err(dev, "failed to read chip (%d)\n", ret);
693 		else
694 			dev_err(dev, "wrong COG ID 0x%02x\n", ret);
695 		power_off(epd);
696 		goto out_exit;
697 	}
698 
699 	/* Disable OE */
700 	repaper_write_val(spi, 0x02, 0x40);
701 
702 	ret = repaper_read_val(spi, 0x0f);
703 	if (ret < 0 || !(ret & 0x80)) {
704 		if (ret < 0)
705 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
706 		else
707 			DRM_DEV_ERROR(dev, "panel is reported broken\n");
708 		power_off(epd);
709 		goto out_exit;
710 	}
711 
712 	/* Power saving mode */
713 	repaper_write_val(spi, 0x0b, 0x02);
714 	/* Channel select */
715 	repaper_write_buf(spi, 0x01, epd->channel_select, 8);
716 	/* High power mode osc */
717 	repaper_write_val(spi, 0x07, 0xd1);
718 	/* Power setting */
719 	repaper_write_val(spi, 0x08, 0x02);
720 	/* Vcom level */
721 	repaper_write_val(spi, 0x09, 0xc2);
722 	/* Power setting */
723 	repaper_write_val(spi, 0x04, 0x03);
724 	/* Driver latch on */
725 	repaper_write_val(spi, 0x03, 0x01);
726 	/* Driver latch off */
727 	repaper_write_val(spi, 0x03, 0x00);
728 	usleep_range(5000, 10000);
729 
730 	/* Start chargepump */
731 	for (i = 0; i < 4; ++i) {
732 		/* Charge pump positive voltage on - VGH/VDL on */
733 		repaper_write_val(spi, 0x05, 0x01);
734 		msleep(240);
735 
736 		/* Charge pump negative voltage on - VGL/VDL on */
737 		repaper_write_val(spi, 0x05, 0x03);
738 		msleep(40);
739 
740 		/* Charge pump Vcom on - Vcom driver on */
741 		repaper_write_val(spi, 0x05, 0x0f);
742 		msleep(40);
743 
744 		/* check DC/DC */
745 		ret = repaper_read_val(spi, 0x0f);
746 		if (ret < 0) {
747 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
748 			power_off(epd);
749 			goto out_exit;
750 		}
751 
752 		if (ret & 0x40) {
753 			dc_ok = true;
754 			break;
755 		}
756 	}
757 
758 	if (!dc_ok) {
759 		DRM_DEV_ERROR(dev, "dc/dc failed\n");
760 		power_off(epd);
761 		goto out_exit;
762 	}
763 
764 	/*
765 	 * Output enable to disable
766 	 * The userspace driver sets this to 0x04, but the datasheet says 0x06
767 	 */
768 	repaper_write_val(spi, 0x02, 0x04);
769 
770 	epd->partial = false;
771 out_exit:
772 	drm_dev_exit(idx);
773 }
774 
775 static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe)
776 {
777 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
778 	struct spi_device *spi = epd->spi;
779 	unsigned int line;
780 
781 	/*
782 	 * This callback is not protected by drm_dev_enter/exit since we want to
783 	 * turn off the display on regular driver unload. It's highly unlikely
784 	 * that the underlying SPI controller is gone should this be called after
785 	 * unplug.
786 	 */
787 
788 	DRM_DEBUG_DRIVER("\n");
789 
790 	/* Nothing frame */
791 	for (line = 0; line < epd->height; line++)
792 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
793 				 REPAPER_COMPENSATE);
794 
795 	/* 2.7" */
796 	if (epd->border) {
797 		/* Dummy line */
798 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
799 				 REPAPER_COMPENSATE);
800 		msleep(25);
801 		gpiod_set_value_cansleep(epd->border, 0);
802 		msleep(200);
803 		gpiod_set_value_cansleep(epd->border, 1);
804 	} else {
805 		/* Border dummy line */
806 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
807 				 REPAPER_NORMAL);
808 		msleep(200);
809 	}
810 
811 	/* not described in datasheet */
812 	repaper_write_val(spi, 0x0b, 0x00);
813 	/* Latch reset turn on */
814 	repaper_write_val(spi, 0x03, 0x01);
815 	/* Power off charge pump Vcom */
816 	repaper_write_val(spi, 0x05, 0x03);
817 	/* Power off charge pump neg voltage */
818 	repaper_write_val(spi, 0x05, 0x01);
819 	msleep(120);
820 	/* Discharge internal */
821 	repaper_write_val(spi, 0x04, 0x80);
822 	/* turn off all charge pumps */
823 	repaper_write_val(spi, 0x05, 0x00);
824 	/* Turn off osc */
825 	repaper_write_val(spi, 0x07, 0x01);
826 	msleep(50);
827 
828 	power_off(epd);
829 }
830 
831 static void repaper_pipe_update(struct drm_simple_display_pipe *pipe,
832 				struct drm_plane_state *old_state)
833 {
834 	struct drm_plane_state *state = pipe->plane.state;
835 	struct drm_format_conv_state fmtcnv_state = DRM_FORMAT_CONV_STATE_INIT;
836 	struct drm_rect rect;
837 
838 	if (!pipe->crtc.state->active)
839 		return;
840 
841 	if (drm_atomic_helper_damage_merged(old_state, state, &rect))
842 		repaper_fb_dirty(state->fb, &fmtcnv_state);
843 
844 	drm_format_conv_state_release(&fmtcnv_state);
845 }
846 
847 static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = {
848 	.mode_valid = repaper_pipe_mode_valid,
849 	.enable = repaper_pipe_enable,
850 	.disable = repaper_pipe_disable,
851 	.update = repaper_pipe_update,
852 };
853 
854 static int repaper_connector_get_modes(struct drm_connector *connector)
855 {
856 	struct repaper_epd *epd = drm_to_epd(connector->dev);
857 
858 	return drm_connector_helper_get_modes_fixed(connector, epd->mode);
859 }
860 
861 static const struct drm_connector_helper_funcs repaper_connector_hfuncs = {
862 	.get_modes = repaper_connector_get_modes,
863 };
864 
865 static const struct drm_connector_funcs repaper_connector_funcs = {
866 	.reset = drm_atomic_helper_connector_reset,
867 	.fill_modes = drm_helper_probe_single_connector_modes,
868 	.destroy = drm_connector_cleanup,
869 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
870 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
871 };
872 
873 static const struct drm_mode_config_funcs repaper_mode_config_funcs = {
874 	.fb_create = drm_gem_fb_create_with_dirty,
875 	.atomic_check = drm_atomic_helper_check,
876 	.atomic_commit = drm_atomic_helper_commit,
877 };
878 
879 static const uint32_t repaper_formats[] = {
880 	DRM_FORMAT_XRGB8888,
881 };
882 
883 static const struct drm_display_mode repaper_e1144cs021_mode = {
884 	DRM_SIMPLE_MODE(128, 96, 29, 22),
885 };
886 
887 static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
888 					    0x00, 0x0f, 0xff, 0x00 };
889 
890 static const struct drm_display_mode repaper_e1190cs021_mode = {
891 	DRM_SIMPLE_MODE(144, 128, 36, 32),
892 };
893 
894 static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03,
895 					    0xfc, 0x00, 0x00, 0xff };
896 
897 static const struct drm_display_mode repaper_e2200cs021_mode = {
898 	DRM_SIMPLE_MODE(200, 96, 46, 22),
899 };
900 
901 static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
902 					    0x01, 0xff, 0xe0, 0x00 };
903 
904 static const struct drm_display_mode repaper_e2271cs021_mode = {
905 	DRM_SIMPLE_MODE(264, 176, 57, 38),
906 };
907 
908 static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f,
909 					    0xff, 0xfe, 0x00, 0x00 };
910 
911 DEFINE_DRM_GEM_DMA_FOPS(repaper_fops);
912 
913 static const struct drm_driver repaper_driver = {
914 	.driver_features	= DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
915 	.fops			= &repaper_fops,
916 	DRM_GEM_DMA_DRIVER_OPS_VMAP,
917 	DRM_FBDEV_DMA_DRIVER_OPS,
918 	.name			= "repaper",
919 	.desc			= "Pervasive Displays RePaper e-ink panels",
920 	.date			= "20170405",
921 	.major			= 1,
922 	.minor			= 0,
923 };
924 
925 static const struct of_device_id repaper_of_match[] = {
926 	{ .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 },
927 	{ .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 },
928 	{ .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 },
929 	{ .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 },
930 	{},
931 };
932 MODULE_DEVICE_TABLE(of, repaper_of_match);
933 
934 static const struct spi_device_id repaper_id[] = {
935 	{ "e1144cs021", E1144CS021 },
936 	{ "e1190cs021", E1190CS021 },
937 	{ "e2200cs021", E2200CS021 },
938 	{ "e2271cs021", E2271CS021 },
939 	{ },
940 };
941 MODULE_DEVICE_TABLE(spi, repaper_id);
942 
943 static int repaper_probe(struct spi_device *spi)
944 {
945 	const struct drm_display_mode *mode;
946 	const struct spi_device_id *spi_id;
947 	struct device *dev = &spi->dev;
948 	enum repaper_model model;
949 	const char *thermal_zone;
950 	struct repaper_epd *epd;
951 	size_t line_buffer_size;
952 	struct drm_device *drm;
953 	const void *match;
954 	int ret;
955 
956 	match = device_get_match_data(dev);
957 	if (match) {
958 		model = (enum repaper_model)(uintptr_t)match;
959 	} else {
960 		spi_id = spi_get_device_id(spi);
961 		model = (enum repaper_model)spi_id->driver_data;
962 	}
963 
964 	/* The SPI device is used to allocate dma memory */
965 	if (!dev->coherent_dma_mask) {
966 		ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
967 		if (ret) {
968 			dev_warn(dev, "Failed to set dma mask %d\n", ret);
969 			return ret;
970 		}
971 	}
972 
973 	epd = devm_drm_dev_alloc(dev, &repaper_driver,
974 				 struct repaper_epd, drm);
975 	if (IS_ERR(epd))
976 		return PTR_ERR(epd);
977 
978 	drm = &epd->drm;
979 
980 	ret = drmm_mode_config_init(drm);
981 	if (ret)
982 		return ret;
983 	drm->mode_config.funcs = &repaper_mode_config_funcs;
984 
985 	epd->spi = spi;
986 
987 	epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW);
988 	if (IS_ERR(epd->panel_on)) {
989 		ret = PTR_ERR(epd->panel_on);
990 		if (ret != -EPROBE_DEFER)
991 			DRM_DEV_ERROR(dev, "Failed to get gpio 'panel-on'\n");
992 		return ret;
993 	}
994 
995 	epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW);
996 	if (IS_ERR(epd->discharge)) {
997 		ret = PTR_ERR(epd->discharge);
998 		if (ret != -EPROBE_DEFER)
999 			DRM_DEV_ERROR(dev, "Failed to get gpio 'discharge'\n");
1000 		return ret;
1001 	}
1002 
1003 	epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1004 	if (IS_ERR(epd->reset)) {
1005 		ret = PTR_ERR(epd->reset);
1006 		if (ret != -EPROBE_DEFER)
1007 			DRM_DEV_ERROR(dev, "Failed to get gpio 'reset'\n");
1008 		return ret;
1009 	}
1010 
1011 	epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN);
1012 	if (IS_ERR(epd->busy)) {
1013 		ret = PTR_ERR(epd->busy);
1014 		if (ret != -EPROBE_DEFER)
1015 			DRM_DEV_ERROR(dev, "Failed to get gpio 'busy'\n");
1016 		return ret;
1017 	}
1018 
1019 	if (!device_property_read_string(dev, "pervasive,thermal-zone",
1020 					 &thermal_zone)) {
1021 		epd->thermal = thermal_zone_get_zone_by_name(thermal_zone);
1022 		if (IS_ERR(epd->thermal)) {
1023 			DRM_DEV_ERROR(dev, "Failed to get thermal zone: %s\n", thermal_zone);
1024 			return PTR_ERR(epd->thermal);
1025 		}
1026 	}
1027 
1028 	switch (model) {
1029 	case E1144CS021:
1030 		mode = &repaper_e1144cs021_mode;
1031 		epd->channel_select = repaper_e1144cs021_cs;
1032 		epd->stage_time = 480;
1033 		epd->bytes_per_scan = 96 / 4;
1034 		epd->middle_scan = true; /* data-scan-data */
1035 		epd->pre_border_byte = false;
1036 		epd->border_byte = REPAPER_BORDER_BYTE_ZERO;
1037 		break;
1038 
1039 	case E1190CS021:
1040 		mode = &repaper_e1190cs021_mode;
1041 		epd->channel_select = repaper_e1190cs021_cs;
1042 		epd->stage_time = 480;
1043 		epd->bytes_per_scan = 128 / 4 / 2;
1044 		epd->middle_scan = false; /* scan-data-scan */
1045 		epd->pre_border_byte = false;
1046 		epd->border_byte = REPAPER_BORDER_BYTE_SET;
1047 		break;
1048 
1049 	case E2200CS021:
1050 		mode = &repaper_e2200cs021_mode;
1051 		epd->channel_select = repaper_e2200cs021_cs;
1052 		epd->stage_time = 480;
1053 		epd->bytes_per_scan = 96 / 4;
1054 		epd->middle_scan = true; /* data-scan-data */
1055 		epd->pre_border_byte = true;
1056 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1057 		break;
1058 
1059 	case E2271CS021:
1060 		epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW);
1061 		if (IS_ERR(epd->border)) {
1062 			ret = PTR_ERR(epd->border);
1063 			if (ret != -EPROBE_DEFER)
1064 				DRM_DEV_ERROR(dev, "Failed to get gpio 'border'\n");
1065 			return ret;
1066 		}
1067 
1068 		mode = &repaper_e2271cs021_mode;
1069 		epd->channel_select = repaper_e2271cs021_cs;
1070 		epd->stage_time = 630;
1071 		epd->bytes_per_scan = 176 / 4;
1072 		epd->middle_scan = true; /* data-scan-data */
1073 		epd->pre_border_byte = true;
1074 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1075 		break;
1076 
1077 	default:
1078 		return -ENODEV;
1079 	}
1080 
1081 	epd->mode = mode;
1082 	epd->width = mode->hdisplay;
1083 	epd->height = mode->vdisplay;
1084 	epd->factored_stage_time = epd->stage_time;
1085 
1086 	line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2;
1087 	epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL);
1088 	if (!epd->line_buffer)
1089 		return -ENOMEM;
1090 
1091 	epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8,
1092 					  GFP_KERNEL);
1093 	if (!epd->current_frame)
1094 		return -ENOMEM;
1095 
1096 	drm->mode_config.min_width = mode->hdisplay;
1097 	drm->mode_config.max_width = mode->hdisplay;
1098 	drm->mode_config.min_height = mode->vdisplay;
1099 	drm->mode_config.max_height = mode->vdisplay;
1100 
1101 	drm_connector_helper_add(&epd->connector, &repaper_connector_hfuncs);
1102 	ret = drm_connector_init(drm, &epd->connector, &repaper_connector_funcs,
1103 				 DRM_MODE_CONNECTOR_SPI);
1104 	if (ret)
1105 		return ret;
1106 
1107 	ret = drm_simple_display_pipe_init(drm, &epd->pipe, &repaper_pipe_funcs,
1108 					   repaper_formats, ARRAY_SIZE(repaper_formats),
1109 					   NULL, &epd->connector);
1110 	if (ret)
1111 		return ret;
1112 
1113 	drm_mode_config_reset(drm);
1114 
1115 	ret = drm_dev_register(drm, 0);
1116 	if (ret)
1117 		return ret;
1118 
1119 	spi_set_drvdata(spi, drm);
1120 
1121 	DRM_DEBUG_DRIVER("SPI speed: %uMHz\n", spi->max_speed_hz / 1000000);
1122 
1123 	drm_client_setup(drm, NULL);
1124 
1125 	return 0;
1126 }
1127 
1128 static void repaper_remove(struct spi_device *spi)
1129 {
1130 	struct drm_device *drm = spi_get_drvdata(spi);
1131 
1132 	drm_dev_unplug(drm);
1133 	drm_atomic_helper_shutdown(drm);
1134 }
1135 
1136 static void repaper_shutdown(struct spi_device *spi)
1137 {
1138 	drm_atomic_helper_shutdown(spi_get_drvdata(spi));
1139 }
1140 
1141 static struct spi_driver repaper_spi_driver = {
1142 	.driver = {
1143 		.name = "repaper",
1144 		.of_match_table = repaper_of_match,
1145 	},
1146 	.id_table = repaper_id,
1147 	.probe = repaper_probe,
1148 	.remove = repaper_remove,
1149 	.shutdown = repaper_shutdown,
1150 };
1151 module_spi_driver(repaper_spi_driver);
1152 
1153 MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver");
1154 MODULE_AUTHOR("Noralf Trønnes");
1155 MODULE_LICENSE("GPL");
1156