xref: /linux/drivers/gpu/drm/tiny/repaper.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DRM driver for Pervasive Displays RePaper branded e-ink panels
4  *
5  * Copyright 2013-2017 Pervasive Displays, Inc.
6  * Copyright 2017 Noralf Trønnes
7  *
8  * The driver supports:
9  * Material Film: Aurora Mb (V231)
10  * Driver IC: G2 (eTC)
11  *
12  * The controller code was taken from the userspace driver:
13  * https://github.com/repaper/gratis
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/sched/clock.h>
21 #include <linux/spi/spi.h>
22 #include <linux/thermal.h>
23 
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_connector.h>
26 #include <drm/drm_damage_helper.h>
27 #include <drm/drm_drv.h>
28 #include <drm/drm_fb_dma_helper.h>
29 #include <drm/drm_fbdev_generic.h>
30 #include <drm/drm_format_helper.h>
31 #include <drm/drm_framebuffer.h>
32 #include <drm/drm_gem_atomic_helper.h>
33 #include <drm/drm_gem_dma_helper.h>
34 #include <drm/drm_gem_framebuffer_helper.h>
35 #include <drm/drm_managed.h>
36 #include <drm/drm_modes.h>
37 #include <drm/drm_rect.h>
38 #include <drm/drm_probe_helper.h>
39 #include <drm/drm_simple_kms_helper.h>
40 
41 #define REPAPER_RID_G2_COG_ID	0x12
42 
43 enum repaper_model {
44 	/* 0 is reserved to avoid clashing with NULL */
45 	E1144CS021 = 1,
46 	E1190CS021,
47 	E2200CS021,
48 	E2271CS021,
49 };
50 
51 enum repaper_stage {         /* Image pixel -> Display pixel */
52 	REPAPER_COMPENSATE,  /* B -> W, W -> B (Current Image) */
53 	REPAPER_WHITE,       /* B -> N, W -> W (Current Image) */
54 	REPAPER_INVERSE,     /* B -> N, W -> B (New Image) */
55 	REPAPER_NORMAL       /* B -> B, W -> W (New Image) */
56 };
57 
58 enum repaper_epd_border_byte {
59 	REPAPER_BORDER_BYTE_NONE,
60 	REPAPER_BORDER_BYTE_ZERO,
61 	REPAPER_BORDER_BYTE_SET,
62 };
63 
64 struct repaper_epd {
65 	struct drm_device drm;
66 	struct drm_simple_display_pipe pipe;
67 	const struct drm_display_mode *mode;
68 	struct drm_connector connector;
69 	struct spi_device *spi;
70 
71 	struct gpio_desc *panel_on;
72 	struct gpio_desc *border;
73 	struct gpio_desc *discharge;
74 	struct gpio_desc *reset;
75 	struct gpio_desc *busy;
76 
77 	struct thermal_zone_device *thermal;
78 
79 	unsigned int height;
80 	unsigned int width;
81 	unsigned int bytes_per_scan;
82 	const u8 *channel_select;
83 	unsigned int stage_time;
84 	unsigned int factored_stage_time;
85 	bool middle_scan;
86 	bool pre_border_byte;
87 	enum repaper_epd_border_byte border_byte;
88 
89 	u8 *line_buffer;
90 	void *current_frame;
91 
92 	bool cleared;
93 	bool partial;
94 };
95 
96 static inline struct repaper_epd *drm_to_epd(struct drm_device *drm)
97 {
98 	return container_of(drm, struct repaper_epd, drm);
99 }
100 
101 static int repaper_spi_transfer(struct spi_device *spi, u8 header,
102 				const void *tx, void *rx, size_t len)
103 {
104 	void *txbuf = NULL, *rxbuf = NULL;
105 	struct spi_transfer tr[2] = {};
106 	u8 *headerbuf;
107 	int ret;
108 
109 	headerbuf = kmalloc(1, GFP_KERNEL);
110 	if (!headerbuf)
111 		return -ENOMEM;
112 
113 	headerbuf[0] = header;
114 	tr[0].tx_buf = headerbuf;
115 	tr[0].len = 1;
116 
117 	/* Stack allocated tx? */
118 	if (tx && len <= 32) {
119 		txbuf = kmemdup(tx, len, GFP_KERNEL);
120 		if (!txbuf) {
121 			ret = -ENOMEM;
122 			goto out_free;
123 		}
124 	}
125 
126 	if (rx) {
127 		rxbuf = kmalloc(len, GFP_KERNEL);
128 		if (!rxbuf) {
129 			ret = -ENOMEM;
130 			goto out_free;
131 		}
132 	}
133 
134 	tr[1].tx_buf = txbuf ? txbuf : tx;
135 	tr[1].rx_buf = rxbuf;
136 	tr[1].len = len;
137 
138 	ndelay(80);
139 	ret = spi_sync_transfer(spi, tr, 2);
140 	if (rx && !ret)
141 		memcpy(rx, rxbuf, len);
142 
143 out_free:
144 	kfree(headerbuf);
145 	kfree(txbuf);
146 	kfree(rxbuf);
147 
148 	return ret;
149 }
150 
151 static int repaper_write_buf(struct spi_device *spi, u8 reg,
152 			     const u8 *buf, size_t len)
153 {
154 	int ret;
155 
156 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
157 	if (ret)
158 		return ret;
159 
160 	return repaper_spi_transfer(spi, 0x72, buf, NULL, len);
161 }
162 
163 static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val)
164 {
165 	return repaper_write_buf(spi, reg, &val, 1);
166 }
167 
168 static int repaper_read_val(struct spi_device *spi, u8 reg)
169 {
170 	int ret;
171 	u8 val;
172 
173 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
174 	if (ret)
175 		return ret;
176 
177 	ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1);
178 
179 	return ret ? ret : val;
180 }
181 
182 static int repaper_read_id(struct spi_device *spi)
183 {
184 	int ret;
185 	u8 id;
186 
187 	ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1);
188 
189 	return ret ? ret : id;
190 }
191 
192 static void repaper_spi_mosi_low(struct spi_device *spi)
193 {
194 	const u8 buf[1] = { 0 };
195 
196 	spi_write(spi, buf, 1);
197 }
198 
199 /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */
200 static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp,
201 				const u8 *data, u8 fixed_value, const u8 *mask,
202 				enum repaper_stage stage)
203 {
204 	unsigned int b;
205 
206 	for (b = 0; b < (epd->width / 8); b++) {
207 		if (data) {
208 			u8 pixels = data[b] & 0xaa;
209 			u8 pixel_mask = 0xff;
210 			u8 p1, p2, p3, p4;
211 
212 			if (mask) {
213 				pixel_mask = (mask[b] ^ pixels) & 0xaa;
214 				pixel_mask |= pixel_mask >> 1;
215 			}
216 
217 			switch (stage) {
218 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
219 				pixels = 0xaa | ((pixels ^ 0xaa) >> 1);
220 				break;
221 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
222 				pixels = 0x55 + ((pixels ^ 0xaa) >> 1);
223 				break;
224 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
225 				pixels = 0x55 | (pixels ^ 0xaa);
226 				break;
227 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
228 				pixels = 0xaa | (pixels >> 1);
229 				break;
230 			}
231 
232 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
233 			p1 = (pixels >> 6) & 0x03;
234 			p2 = (pixels >> 4) & 0x03;
235 			p3 = (pixels >> 2) & 0x03;
236 			p4 = (pixels >> 0) & 0x03;
237 			pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6);
238 			*(*pp)++ = pixels;
239 		} else {
240 			*(*pp)++ = fixed_value;
241 		}
242 	}
243 }
244 
245 /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */
246 static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp,
247 			       const u8 *data, u8 fixed_value, const u8 *mask,
248 			       enum repaper_stage stage)
249 {
250 	unsigned int b;
251 
252 	for (b = epd->width / 8; b > 0; b--) {
253 		if (data) {
254 			u8 pixels = data[b - 1] & 0x55;
255 			u8 pixel_mask = 0xff;
256 
257 			if (mask) {
258 				pixel_mask = (mask[b - 1] ^ pixels) & 0x55;
259 				pixel_mask |= pixel_mask << 1;
260 			}
261 
262 			switch (stage) {
263 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
264 				pixels = 0xaa | (pixels ^ 0x55);
265 				break;
266 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
267 				pixels = 0x55 + (pixels ^ 0x55);
268 				break;
269 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
270 				pixels = 0x55 | ((pixels ^ 0x55) << 1);
271 				break;
272 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
273 				pixels = 0xaa | pixels;
274 				break;
275 			}
276 
277 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
278 			*(*pp)++ = pixels;
279 		} else {
280 			*(*pp)++ = fixed_value;
281 		}
282 	}
283 }
284 
285 /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */
286 static inline u16 repaper_interleave_bits(u16 value)
287 {
288 	value = (value | (value << 4)) & 0x0f0f;
289 	value = (value | (value << 2)) & 0x3333;
290 	value = (value | (value << 1)) & 0x5555;
291 
292 	return value;
293 }
294 
295 /* pixels on display are numbered from 1 */
296 static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp,
297 			       const u8 *data, u8 fixed_value, const u8 *mask,
298 			       enum repaper_stage stage)
299 {
300 	unsigned int b;
301 
302 	for (b = epd->width / 8; b > 0; b--) {
303 		if (data) {
304 			u16 pixels = repaper_interleave_bits(data[b - 1]);
305 			u16 pixel_mask = 0xffff;
306 
307 			if (mask) {
308 				pixel_mask = repaper_interleave_bits(mask[b - 1]);
309 
310 				pixel_mask = (pixel_mask ^ pixels) & 0x5555;
311 				pixel_mask |= pixel_mask << 1;
312 			}
313 
314 			switch (stage) {
315 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
316 				pixels = 0xaaaa | (pixels ^ 0x5555);
317 				break;
318 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
319 				pixels = 0x5555 + (pixels ^ 0x5555);
320 				break;
321 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
322 				pixels = 0x5555 | ((pixels ^ 0x5555) << 1);
323 				break;
324 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
325 				pixels = 0xaaaa | pixels;
326 				break;
327 			}
328 
329 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555);
330 			*(*pp)++ = pixels >> 8;
331 			*(*pp)++ = pixels;
332 		} else {
333 			*(*pp)++ = fixed_value;
334 			*(*pp)++ = fixed_value;
335 		}
336 	}
337 }
338 
339 /* output one line of scan and data bytes to the display */
340 static void repaper_one_line(struct repaper_epd *epd, unsigned int line,
341 			     const u8 *data, u8 fixed_value, const u8 *mask,
342 			     enum repaper_stage stage)
343 {
344 	u8 *p = epd->line_buffer;
345 	unsigned int b;
346 
347 	repaper_spi_mosi_low(epd->spi);
348 
349 	if (epd->pre_border_byte)
350 		*p++ = 0x00;
351 
352 	if (epd->middle_scan) {
353 		/* data bytes */
354 		repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage);
355 
356 		/* scan line */
357 		for (b = epd->bytes_per_scan; b > 0; b--) {
358 			if (line / 4 == b - 1)
359 				*p++ = 0x03 << (2 * (line & 0x03));
360 			else
361 				*p++ = 0x00;
362 		}
363 
364 		/* data bytes */
365 		repaper_even_pixels(epd, &p, data, fixed_value, mask, stage);
366 	} else {
367 		/*
368 		 * even scan line, but as lines on display are numbered from 1,
369 		 * line: 1,3,5,...
370 		 */
371 		for (b = 0; b < epd->bytes_per_scan; b++) {
372 			if (0 != (line & 0x01) && line / 8 == b)
373 				*p++ = 0xc0 >> (line & 0x06);
374 			else
375 				*p++ = 0x00;
376 		}
377 
378 		/* data bytes */
379 		repaper_all_pixels(epd, &p, data, fixed_value, mask, stage);
380 
381 		/*
382 		 * odd scan line, but as lines on display are numbered from 1,
383 		 * line: 0,2,4,6,...
384 		 */
385 		for (b = epd->bytes_per_scan; b > 0; b--) {
386 			if (0 == (line & 0x01) && line / 8 == b - 1)
387 				*p++ = 0x03 << (line & 0x06);
388 			else
389 				*p++ = 0x00;
390 		}
391 	}
392 
393 	switch (epd->border_byte) {
394 	case REPAPER_BORDER_BYTE_NONE:
395 		break;
396 
397 	case REPAPER_BORDER_BYTE_ZERO:
398 		*p++ = 0x00;
399 		break;
400 
401 	case REPAPER_BORDER_BYTE_SET:
402 		switch (stage) {
403 		case REPAPER_COMPENSATE:
404 		case REPAPER_WHITE:
405 		case REPAPER_INVERSE:
406 			*p++ = 0x00;
407 			break;
408 		case REPAPER_NORMAL:
409 			*p++ = 0xaa;
410 			break;
411 		}
412 		break;
413 	}
414 
415 	repaper_write_buf(epd->spi, 0x0a, epd->line_buffer,
416 			  p - epd->line_buffer);
417 
418 	/* Output data to panel */
419 	repaper_write_val(epd->spi, 0x02, 0x07);
420 
421 	repaper_spi_mosi_low(epd->spi);
422 }
423 
424 static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value,
425 				enum repaper_stage stage)
426 {
427 	unsigned int line;
428 
429 	for (line = 0; line < epd->height; line++)
430 		repaper_one_line(epd, line, NULL, fixed_value, NULL, stage);
431 }
432 
433 static void repaper_frame_data(struct repaper_epd *epd, const u8 *image,
434 			       const u8 *mask, enum repaper_stage stage)
435 {
436 	unsigned int line;
437 
438 	if (!mask) {
439 		for (line = 0; line < epd->height; line++) {
440 			repaper_one_line(epd, line,
441 					 &image[line * (epd->width / 8)],
442 					 0, NULL, stage);
443 		}
444 	} else {
445 		for (line = 0; line < epd->height; line++) {
446 			size_t n = line * epd->width / 8;
447 
448 			repaper_one_line(epd, line, &image[n], 0, &mask[n],
449 					 stage);
450 		}
451 	}
452 }
453 
454 static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value,
455 				       enum repaper_stage stage)
456 {
457 	u64 start = local_clock();
458 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
459 
460 	do {
461 		repaper_frame_fixed(epd, fixed_value, stage);
462 	} while (local_clock() < end);
463 }
464 
465 static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image,
466 				      const u8 *mask, enum repaper_stage stage)
467 {
468 	u64 start = local_clock();
469 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
470 
471 	do {
472 		repaper_frame_data(epd, image, mask, stage);
473 	} while (local_clock() < end);
474 }
475 
476 static void repaper_get_temperature(struct repaper_epd *epd)
477 {
478 	int ret, temperature = 0;
479 	unsigned int factor10x;
480 
481 	if (!epd->thermal)
482 		return;
483 
484 	ret = thermal_zone_get_temp(epd->thermal, &temperature);
485 	if (ret) {
486 		DRM_DEV_ERROR(&epd->spi->dev, "Failed to get temperature (%d)\n", ret);
487 		return;
488 	}
489 
490 	temperature /= 1000;
491 
492 	if (temperature <= -10)
493 		factor10x = 170;
494 	else if (temperature <= -5)
495 		factor10x = 120;
496 	else if (temperature <= 5)
497 		factor10x = 80;
498 	else if (temperature <= 10)
499 		factor10x = 40;
500 	else if (temperature <= 15)
501 		factor10x = 30;
502 	else if (temperature <= 20)
503 		factor10x = 20;
504 	else if (temperature <= 40)
505 		factor10x = 10;
506 	else
507 		factor10x = 7;
508 
509 	epd->factored_stage_time = epd->stage_time * factor10x / 10;
510 }
511 
512 static int repaper_fb_dirty(struct drm_framebuffer *fb,
513 			    struct drm_format_conv_state *fmtcnv_state)
514 {
515 	struct drm_gem_dma_object *dma_obj = drm_fb_dma_get_gem_obj(fb, 0);
516 	struct repaper_epd *epd = drm_to_epd(fb->dev);
517 	unsigned int dst_pitch = 0;
518 	struct iosys_map dst, vmap;
519 	struct drm_rect clip;
520 	int idx, ret = 0;
521 	u8 *buf = NULL;
522 
523 	if (!drm_dev_enter(fb->dev, &idx))
524 		return -ENODEV;
525 
526 	/* repaper can't do partial updates */
527 	clip.x1 = 0;
528 	clip.x2 = fb->width;
529 	clip.y1 = 0;
530 	clip.y2 = fb->height;
531 
532 	repaper_get_temperature(epd);
533 
534 	DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id,
535 		  epd->factored_stage_time);
536 
537 	buf = kmalloc(fb->width * fb->height / 8, GFP_KERNEL);
538 	if (!buf) {
539 		ret = -ENOMEM;
540 		goto out_exit;
541 	}
542 
543 	ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
544 	if (ret)
545 		goto out_free;
546 
547 	iosys_map_set_vaddr(&dst, buf);
548 	iosys_map_set_vaddr(&vmap, dma_obj->vaddr);
549 	drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, &vmap, fb, &clip, fmtcnv_state);
550 
551 	drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
552 
553 	if (epd->partial) {
554 		repaper_frame_data_repeat(epd, buf, epd->current_frame,
555 					  REPAPER_NORMAL);
556 	} else if (epd->cleared) {
557 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
558 					  REPAPER_COMPENSATE);
559 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
560 					  REPAPER_WHITE);
561 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
562 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
563 
564 		epd->partial = true;
565 	} else {
566 		/* Clear display (anything -> white) */
567 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE);
568 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE);
569 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE);
570 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL);
571 
572 		/* Assuming a clear (white) screen output an image */
573 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE);
574 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE);
575 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
576 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
577 
578 		epd->cleared = true;
579 		epd->partial = true;
580 	}
581 
582 	memcpy(epd->current_frame, buf, fb->width * fb->height / 8);
583 
584 	/*
585 	 * An extra frame write is needed if pixels are set in the bottom line,
586 	 * or else grey lines rises up from the pixels
587 	 */
588 	if (epd->pre_border_byte) {
589 		unsigned int x;
590 
591 		for (x = 0; x < (fb->width / 8); x++)
592 			if (buf[x + (fb->width * (fb->height - 1) / 8)]) {
593 				repaper_frame_data_repeat(epd, buf,
594 							  epd->current_frame,
595 							  REPAPER_NORMAL);
596 				break;
597 			}
598 	}
599 
600 out_free:
601 	kfree(buf);
602 out_exit:
603 	drm_dev_exit(idx);
604 
605 	return ret;
606 }
607 
608 static void power_off(struct repaper_epd *epd)
609 {
610 	/* Turn off power and all signals */
611 	gpiod_set_value_cansleep(epd->reset, 0);
612 	gpiod_set_value_cansleep(epd->panel_on, 0);
613 	if (epd->border)
614 		gpiod_set_value_cansleep(epd->border, 0);
615 
616 	/* Ensure SPI MOSI and CLOCK are Low before CS Low */
617 	repaper_spi_mosi_low(epd->spi);
618 
619 	/* Discharge pulse */
620 	gpiod_set_value_cansleep(epd->discharge, 1);
621 	msleep(150);
622 	gpiod_set_value_cansleep(epd->discharge, 0);
623 }
624 
625 static enum drm_mode_status repaper_pipe_mode_valid(struct drm_simple_display_pipe *pipe,
626 						    const struct drm_display_mode *mode)
627 {
628 	struct drm_crtc *crtc = &pipe->crtc;
629 	struct repaper_epd *epd = drm_to_epd(crtc->dev);
630 
631 	return drm_crtc_helper_mode_valid_fixed(crtc, mode, epd->mode);
632 }
633 
634 static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe,
635 				struct drm_crtc_state *crtc_state,
636 				struct drm_plane_state *plane_state)
637 {
638 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
639 	struct spi_device *spi = epd->spi;
640 	struct device *dev = &spi->dev;
641 	bool dc_ok = false;
642 	int i, ret, idx;
643 
644 	if (!drm_dev_enter(pipe->crtc.dev, &idx))
645 		return;
646 
647 	DRM_DEBUG_DRIVER("\n");
648 
649 	/* Power up sequence */
650 	gpiod_set_value_cansleep(epd->reset, 0);
651 	gpiod_set_value_cansleep(epd->panel_on, 0);
652 	gpiod_set_value_cansleep(epd->discharge, 0);
653 	if (epd->border)
654 		gpiod_set_value_cansleep(epd->border, 0);
655 	repaper_spi_mosi_low(spi);
656 	usleep_range(5000, 10000);
657 
658 	gpiod_set_value_cansleep(epd->panel_on, 1);
659 	/*
660 	 * This delay comes from the repaper.org userspace driver, it's not
661 	 * mentioned in the datasheet.
662 	 */
663 	usleep_range(10000, 15000);
664 	gpiod_set_value_cansleep(epd->reset, 1);
665 	if (epd->border)
666 		gpiod_set_value_cansleep(epd->border, 1);
667 	usleep_range(5000, 10000);
668 	gpiod_set_value_cansleep(epd->reset, 0);
669 	usleep_range(5000, 10000);
670 	gpiod_set_value_cansleep(epd->reset, 1);
671 	usleep_range(5000, 10000);
672 
673 	/* Wait for COG to become ready */
674 	for (i = 100; i > 0; i--) {
675 		if (!gpiod_get_value_cansleep(epd->busy))
676 			break;
677 
678 		usleep_range(10, 100);
679 	}
680 
681 	if (!i) {
682 		DRM_DEV_ERROR(dev, "timeout waiting for panel to become ready.\n");
683 		power_off(epd);
684 		goto out_exit;
685 	}
686 
687 	repaper_read_id(spi);
688 	ret = repaper_read_id(spi);
689 	if (ret != REPAPER_RID_G2_COG_ID) {
690 		if (ret < 0)
691 			dev_err(dev, "failed to read chip (%d)\n", ret);
692 		else
693 			dev_err(dev, "wrong COG ID 0x%02x\n", ret);
694 		power_off(epd);
695 		goto out_exit;
696 	}
697 
698 	/* Disable OE */
699 	repaper_write_val(spi, 0x02, 0x40);
700 
701 	ret = repaper_read_val(spi, 0x0f);
702 	if (ret < 0 || !(ret & 0x80)) {
703 		if (ret < 0)
704 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
705 		else
706 			DRM_DEV_ERROR(dev, "panel is reported broken\n");
707 		power_off(epd);
708 		goto out_exit;
709 	}
710 
711 	/* Power saving mode */
712 	repaper_write_val(spi, 0x0b, 0x02);
713 	/* Channel select */
714 	repaper_write_buf(spi, 0x01, epd->channel_select, 8);
715 	/* High power mode osc */
716 	repaper_write_val(spi, 0x07, 0xd1);
717 	/* Power setting */
718 	repaper_write_val(spi, 0x08, 0x02);
719 	/* Vcom level */
720 	repaper_write_val(spi, 0x09, 0xc2);
721 	/* Power setting */
722 	repaper_write_val(spi, 0x04, 0x03);
723 	/* Driver latch on */
724 	repaper_write_val(spi, 0x03, 0x01);
725 	/* Driver latch off */
726 	repaper_write_val(spi, 0x03, 0x00);
727 	usleep_range(5000, 10000);
728 
729 	/* Start chargepump */
730 	for (i = 0; i < 4; ++i) {
731 		/* Charge pump positive voltage on - VGH/VDL on */
732 		repaper_write_val(spi, 0x05, 0x01);
733 		msleep(240);
734 
735 		/* Charge pump negative voltage on - VGL/VDL on */
736 		repaper_write_val(spi, 0x05, 0x03);
737 		msleep(40);
738 
739 		/* Charge pump Vcom on - Vcom driver on */
740 		repaper_write_val(spi, 0x05, 0x0f);
741 		msleep(40);
742 
743 		/* check DC/DC */
744 		ret = repaper_read_val(spi, 0x0f);
745 		if (ret < 0) {
746 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
747 			power_off(epd);
748 			goto out_exit;
749 		}
750 
751 		if (ret & 0x40) {
752 			dc_ok = true;
753 			break;
754 		}
755 	}
756 
757 	if (!dc_ok) {
758 		DRM_DEV_ERROR(dev, "dc/dc failed\n");
759 		power_off(epd);
760 		goto out_exit;
761 	}
762 
763 	/*
764 	 * Output enable to disable
765 	 * The userspace driver sets this to 0x04, but the datasheet says 0x06
766 	 */
767 	repaper_write_val(spi, 0x02, 0x04);
768 
769 	epd->partial = false;
770 out_exit:
771 	drm_dev_exit(idx);
772 }
773 
774 static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe)
775 {
776 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
777 	struct spi_device *spi = epd->spi;
778 	unsigned int line;
779 
780 	/*
781 	 * This callback is not protected by drm_dev_enter/exit since we want to
782 	 * turn off the display on regular driver unload. It's highly unlikely
783 	 * that the underlying SPI controller is gone should this be called after
784 	 * unplug.
785 	 */
786 
787 	DRM_DEBUG_DRIVER("\n");
788 
789 	/* Nothing frame */
790 	for (line = 0; line < epd->height; line++)
791 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
792 				 REPAPER_COMPENSATE);
793 
794 	/* 2.7" */
795 	if (epd->border) {
796 		/* Dummy line */
797 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
798 				 REPAPER_COMPENSATE);
799 		msleep(25);
800 		gpiod_set_value_cansleep(epd->border, 0);
801 		msleep(200);
802 		gpiod_set_value_cansleep(epd->border, 1);
803 	} else {
804 		/* Border dummy line */
805 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
806 				 REPAPER_NORMAL);
807 		msleep(200);
808 	}
809 
810 	/* not described in datasheet */
811 	repaper_write_val(spi, 0x0b, 0x00);
812 	/* Latch reset turn on */
813 	repaper_write_val(spi, 0x03, 0x01);
814 	/* Power off charge pump Vcom */
815 	repaper_write_val(spi, 0x05, 0x03);
816 	/* Power off charge pump neg voltage */
817 	repaper_write_val(spi, 0x05, 0x01);
818 	msleep(120);
819 	/* Discharge internal */
820 	repaper_write_val(spi, 0x04, 0x80);
821 	/* turn off all charge pumps */
822 	repaper_write_val(spi, 0x05, 0x00);
823 	/* Turn off osc */
824 	repaper_write_val(spi, 0x07, 0x01);
825 	msleep(50);
826 
827 	power_off(epd);
828 }
829 
830 static void repaper_pipe_update(struct drm_simple_display_pipe *pipe,
831 				struct drm_plane_state *old_state)
832 {
833 	struct drm_plane_state *state = pipe->plane.state;
834 	struct drm_format_conv_state fmtcnv_state = DRM_FORMAT_CONV_STATE_INIT;
835 	struct drm_rect rect;
836 
837 	if (!pipe->crtc.state->active)
838 		return;
839 
840 	if (drm_atomic_helper_damage_merged(old_state, state, &rect))
841 		repaper_fb_dirty(state->fb, &fmtcnv_state);
842 
843 	drm_format_conv_state_release(&fmtcnv_state);
844 }
845 
846 static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = {
847 	.mode_valid = repaper_pipe_mode_valid,
848 	.enable = repaper_pipe_enable,
849 	.disable = repaper_pipe_disable,
850 	.update = repaper_pipe_update,
851 };
852 
853 static int repaper_connector_get_modes(struct drm_connector *connector)
854 {
855 	struct repaper_epd *epd = drm_to_epd(connector->dev);
856 
857 	return drm_connector_helper_get_modes_fixed(connector, epd->mode);
858 }
859 
860 static const struct drm_connector_helper_funcs repaper_connector_hfuncs = {
861 	.get_modes = repaper_connector_get_modes,
862 };
863 
864 static const struct drm_connector_funcs repaper_connector_funcs = {
865 	.reset = drm_atomic_helper_connector_reset,
866 	.fill_modes = drm_helper_probe_single_connector_modes,
867 	.destroy = drm_connector_cleanup,
868 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
869 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
870 };
871 
872 static const struct drm_mode_config_funcs repaper_mode_config_funcs = {
873 	.fb_create = drm_gem_fb_create_with_dirty,
874 	.atomic_check = drm_atomic_helper_check,
875 	.atomic_commit = drm_atomic_helper_commit,
876 };
877 
878 static const uint32_t repaper_formats[] = {
879 	DRM_FORMAT_XRGB8888,
880 };
881 
882 static const struct drm_display_mode repaper_e1144cs021_mode = {
883 	DRM_SIMPLE_MODE(128, 96, 29, 22),
884 };
885 
886 static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
887 					    0x00, 0x0f, 0xff, 0x00 };
888 
889 static const struct drm_display_mode repaper_e1190cs021_mode = {
890 	DRM_SIMPLE_MODE(144, 128, 36, 32),
891 };
892 
893 static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03,
894 					    0xfc, 0x00, 0x00, 0xff };
895 
896 static const struct drm_display_mode repaper_e2200cs021_mode = {
897 	DRM_SIMPLE_MODE(200, 96, 46, 22),
898 };
899 
900 static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
901 					    0x01, 0xff, 0xe0, 0x00 };
902 
903 static const struct drm_display_mode repaper_e2271cs021_mode = {
904 	DRM_SIMPLE_MODE(264, 176, 57, 38),
905 };
906 
907 static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f,
908 					    0xff, 0xfe, 0x00, 0x00 };
909 
910 DEFINE_DRM_GEM_DMA_FOPS(repaper_fops);
911 
912 static const struct drm_driver repaper_driver = {
913 	.driver_features	= DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
914 	.fops			= &repaper_fops,
915 	DRM_GEM_DMA_DRIVER_OPS_VMAP,
916 	.name			= "repaper",
917 	.desc			= "Pervasive Displays RePaper e-ink panels",
918 	.date			= "20170405",
919 	.major			= 1,
920 	.minor			= 0,
921 };
922 
923 static const struct of_device_id repaper_of_match[] = {
924 	{ .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 },
925 	{ .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 },
926 	{ .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 },
927 	{ .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 },
928 	{},
929 };
930 MODULE_DEVICE_TABLE(of, repaper_of_match);
931 
932 static const struct spi_device_id repaper_id[] = {
933 	{ "e1144cs021", E1144CS021 },
934 	{ "e1190cs021", E1190CS021 },
935 	{ "e2200cs021", E2200CS021 },
936 	{ "e2271cs021", E2271CS021 },
937 	{ },
938 };
939 MODULE_DEVICE_TABLE(spi, repaper_id);
940 
941 static int repaper_probe(struct spi_device *spi)
942 {
943 	const struct drm_display_mode *mode;
944 	const struct spi_device_id *spi_id;
945 	struct device *dev = &spi->dev;
946 	enum repaper_model model;
947 	const char *thermal_zone;
948 	struct repaper_epd *epd;
949 	size_t line_buffer_size;
950 	struct drm_device *drm;
951 	const void *match;
952 	int ret;
953 
954 	match = device_get_match_data(dev);
955 	if (match) {
956 		model = (enum repaper_model)(uintptr_t)match;
957 	} else {
958 		spi_id = spi_get_device_id(spi);
959 		model = (enum repaper_model)spi_id->driver_data;
960 	}
961 
962 	/* The SPI device is used to allocate dma memory */
963 	if (!dev->coherent_dma_mask) {
964 		ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
965 		if (ret) {
966 			dev_warn(dev, "Failed to set dma mask %d\n", ret);
967 			return ret;
968 		}
969 	}
970 
971 	epd = devm_drm_dev_alloc(dev, &repaper_driver,
972 				 struct repaper_epd, drm);
973 	if (IS_ERR(epd))
974 		return PTR_ERR(epd);
975 
976 	drm = &epd->drm;
977 
978 	ret = drmm_mode_config_init(drm);
979 	if (ret)
980 		return ret;
981 	drm->mode_config.funcs = &repaper_mode_config_funcs;
982 
983 	epd->spi = spi;
984 
985 	epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW);
986 	if (IS_ERR(epd->panel_on)) {
987 		ret = PTR_ERR(epd->panel_on);
988 		if (ret != -EPROBE_DEFER)
989 			DRM_DEV_ERROR(dev, "Failed to get gpio 'panel-on'\n");
990 		return ret;
991 	}
992 
993 	epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW);
994 	if (IS_ERR(epd->discharge)) {
995 		ret = PTR_ERR(epd->discharge);
996 		if (ret != -EPROBE_DEFER)
997 			DRM_DEV_ERROR(dev, "Failed to get gpio 'discharge'\n");
998 		return ret;
999 	}
1000 
1001 	epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1002 	if (IS_ERR(epd->reset)) {
1003 		ret = PTR_ERR(epd->reset);
1004 		if (ret != -EPROBE_DEFER)
1005 			DRM_DEV_ERROR(dev, "Failed to get gpio 'reset'\n");
1006 		return ret;
1007 	}
1008 
1009 	epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN);
1010 	if (IS_ERR(epd->busy)) {
1011 		ret = PTR_ERR(epd->busy);
1012 		if (ret != -EPROBE_DEFER)
1013 			DRM_DEV_ERROR(dev, "Failed to get gpio 'busy'\n");
1014 		return ret;
1015 	}
1016 
1017 	if (!device_property_read_string(dev, "pervasive,thermal-zone",
1018 					 &thermal_zone)) {
1019 		epd->thermal = thermal_zone_get_zone_by_name(thermal_zone);
1020 		if (IS_ERR(epd->thermal)) {
1021 			DRM_DEV_ERROR(dev, "Failed to get thermal zone: %s\n", thermal_zone);
1022 			return PTR_ERR(epd->thermal);
1023 		}
1024 	}
1025 
1026 	switch (model) {
1027 	case E1144CS021:
1028 		mode = &repaper_e1144cs021_mode;
1029 		epd->channel_select = repaper_e1144cs021_cs;
1030 		epd->stage_time = 480;
1031 		epd->bytes_per_scan = 96 / 4;
1032 		epd->middle_scan = true; /* data-scan-data */
1033 		epd->pre_border_byte = false;
1034 		epd->border_byte = REPAPER_BORDER_BYTE_ZERO;
1035 		break;
1036 
1037 	case E1190CS021:
1038 		mode = &repaper_e1190cs021_mode;
1039 		epd->channel_select = repaper_e1190cs021_cs;
1040 		epd->stage_time = 480;
1041 		epd->bytes_per_scan = 128 / 4 / 2;
1042 		epd->middle_scan = false; /* scan-data-scan */
1043 		epd->pre_border_byte = false;
1044 		epd->border_byte = REPAPER_BORDER_BYTE_SET;
1045 		break;
1046 
1047 	case E2200CS021:
1048 		mode = &repaper_e2200cs021_mode;
1049 		epd->channel_select = repaper_e2200cs021_cs;
1050 		epd->stage_time = 480;
1051 		epd->bytes_per_scan = 96 / 4;
1052 		epd->middle_scan = true; /* data-scan-data */
1053 		epd->pre_border_byte = true;
1054 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1055 		break;
1056 
1057 	case E2271CS021:
1058 		epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW);
1059 		if (IS_ERR(epd->border)) {
1060 			ret = PTR_ERR(epd->border);
1061 			if (ret != -EPROBE_DEFER)
1062 				DRM_DEV_ERROR(dev, "Failed to get gpio 'border'\n");
1063 			return ret;
1064 		}
1065 
1066 		mode = &repaper_e2271cs021_mode;
1067 		epd->channel_select = repaper_e2271cs021_cs;
1068 		epd->stage_time = 630;
1069 		epd->bytes_per_scan = 176 / 4;
1070 		epd->middle_scan = true; /* data-scan-data */
1071 		epd->pre_border_byte = true;
1072 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1073 		break;
1074 
1075 	default:
1076 		return -ENODEV;
1077 	}
1078 
1079 	epd->mode = mode;
1080 	epd->width = mode->hdisplay;
1081 	epd->height = mode->vdisplay;
1082 	epd->factored_stage_time = epd->stage_time;
1083 
1084 	line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2;
1085 	epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL);
1086 	if (!epd->line_buffer)
1087 		return -ENOMEM;
1088 
1089 	epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8,
1090 					  GFP_KERNEL);
1091 	if (!epd->current_frame)
1092 		return -ENOMEM;
1093 
1094 	drm->mode_config.min_width = mode->hdisplay;
1095 	drm->mode_config.max_width = mode->hdisplay;
1096 	drm->mode_config.min_height = mode->vdisplay;
1097 	drm->mode_config.max_height = mode->vdisplay;
1098 
1099 	drm_connector_helper_add(&epd->connector, &repaper_connector_hfuncs);
1100 	ret = drm_connector_init(drm, &epd->connector, &repaper_connector_funcs,
1101 				 DRM_MODE_CONNECTOR_SPI);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = drm_simple_display_pipe_init(drm, &epd->pipe, &repaper_pipe_funcs,
1106 					   repaper_formats, ARRAY_SIZE(repaper_formats),
1107 					   NULL, &epd->connector);
1108 	if (ret)
1109 		return ret;
1110 
1111 	drm_mode_config_reset(drm);
1112 
1113 	ret = drm_dev_register(drm, 0);
1114 	if (ret)
1115 		return ret;
1116 
1117 	spi_set_drvdata(spi, drm);
1118 
1119 	DRM_DEBUG_DRIVER("SPI speed: %uMHz\n", spi->max_speed_hz / 1000000);
1120 
1121 	drm_fbdev_generic_setup(drm, 0);
1122 
1123 	return 0;
1124 }
1125 
1126 static void repaper_remove(struct spi_device *spi)
1127 {
1128 	struct drm_device *drm = spi_get_drvdata(spi);
1129 
1130 	drm_dev_unplug(drm);
1131 	drm_atomic_helper_shutdown(drm);
1132 }
1133 
1134 static void repaper_shutdown(struct spi_device *spi)
1135 {
1136 	drm_atomic_helper_shutdown(spi_get_drvdata(spi));
1137 }
1138 
1139 static struct spi_driver repaper_spi_driver = {
1140 	.driver = {
1141 		.name = "repaper",
1142 		.of_match_table = repaper_of_match,
1143 	},
1144 	.id_table = repaper_id,
1145 	.probe = repaper_probe,
1146 	.remove = repaper_remove,
1147 	.shutdown = repaper_shutdown,
1148 };
1149 module_spi_driver(repaper_spi_driver);
1150 
1151 MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver");
1152 MODULE_AUTHOR("Noralf Trønnes");
1153 MODULE_LICENSE("GPL");
1154