xref: /linux/drivers/gpu/drm/tidss/tidss_dispc.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/
4  * Author: Jyri Sarha <jsarha@ti.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/media-bus-format.h>
15 #include <linux/module.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
21 #include <linux/sys_soc.h>
22 
23 #include <drm/drm_blend.h>
24 #include <drm/drm_fourcc.h>
25 #include <drm/drm_fb_dma_helper.h>
26 #include <drm/drm_framebuffer.h>
27 #include <drm/drm_gem_dma_helper.h>
28 #include <drm/drm_panel.h>
29 
30 #include "tidss_crtc.h"
31 #include "tidss_dispc.h"
32 #include "tidss_drv.h"
33 #include "tidss_irq.h"
34 #include "tidss_plane.h"
35 
36 #include "tidss_dispc_regs.h"
37 #include "tidss_scale_coefs.h"
38 
39 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
40 	[DSS_REVISION_OFF] =                    0x00,
41 	[DSS_SYSCONFIG_OFF] =                   0x04,
42 	[DSS_SYSSTATUS_OFF] =                   0x08,
43 	[DISPC_IRQ_EOI_OFF] =                   0x20,
44 	[DISPC_IRQSTATUS_RAW_OFF] =             0x24,
45 	[DISPC_IRQSTATUS_OFF] =                 0x28,
46 	[DISPC_IRQENABLE_SET_OFF] =             0x2c,
47 	[DISPC_IRQENABLE_CLR_OFF] =             0x30,
48 
49 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =    0x40,
50 	[DISPC_GLOBAL_BUFFER_OFF] =             0x44,
51 
52 	[DISPC_DBG_CONTROL_OFF] =               0x4c,
53 	[DISPC_DBG_STATUS_OFF] =                0x50,
54 
55 	[DISPC_CLKGATING_DISABLE_OFF] =         0x54,
56 };
57 
58 const struct dispc_features dispc_k2g_feats = {
59 	.min_pclk_khz = 4375,
60 
61 	.max_pclk_khz = {
62 		[DISPC_VP_DPI] = 150000,
63 	},
64 
65 	/*
66 	 * XXX According TRM the RGB input buffer width up to 2560 should
67 	 *     work on 3 taps, but in practice it only works up to 1280.
68 	 */
69 	.scaling = {
70 		.in_width_max_5tap_rgb = 1280,
71 		.in_width_max_3tap_rgb = 1280,
72 		.in_width_max_5tap_yuv = 2560,
73 		.in_width_max_3tap_yuv = 2560,
74 		.upscale_limit = 16,
75 		.downscale_limit_5tap = 4,
76 		.downscale_limit_3tap = 2,
77 		/*
78 		 * The max supported pixel inc value is 255. The value
79 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
80 		 * The maximum bpp of all formats supported by the HW
81 		 * is 8. So the maximum supported xinc value is 32,
82 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
83 		 */
84 		.xinc_max = 32,
85 	},
86 
87 	.subrev = DISPC_K2G,
88 
89 	.common = "common",
90 
91 	.common_regs = tidss_k2g_common_regs,
92 
93 	.num_vps = 1,
94 	.vp_name = { "vp1" },
95 	.ovr_name = { "ovr1" },
96 	.vpclk_name =  { "vp1" },
97 	.vp_bus_type = { DISPC_VP_DPI },
98 
99 	.vp_feat = { .color = {
100 			.has_ctm = true,
101 			.gamma_size = 256,
102 			.gamma_type = TIDSS_GAMMA_8BIT,
103 		},
104 	},
105 
106 	.num_planes = 1,
107 	.vid_name = { "vid1" },
108 	.vid_lite = { false },
109 	.vid_order = { 0 },
110 };
111 
112 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
113 	[DSS_REVISION_OFF] =			0x4,
114 	[DSS_SYSCONFIG_OFF] =			0x8,
115 	[DSS_SYSSTATUS_OFF] =			0x20,
116 	[DISPC_IRQ_EOI_OFF] =			0x24,
117 	[DISPC_IRQSTATUS_RAW_OFF] =		0x28,
118 	[DISPC_IRQSTATUS_OFF] =			0x2c,
119 	[DISPC_IRQENABLE_SET_OFF] =		0x30,
120 	[DISPC_IRQENABLE_CLR_OFF] =		0x40,
121 	[DISPC_VID_IRQENABLE_OFF] =		0x44,
122 	[DISPC_VID_IRQSTATUS_OFF] =		0x58,
123 	[DISPC_VP_IRQENABLE_OFF] =		0x70,
124 	[DISPC_VP_IRQSTATUS_OFF] =		0x7c,
125 
126 	[WB_IRQENABLE_OFF] =			0x88,
127 	[WB_IRQSTATUS_OFF] =			0x8c,
128 
129 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =	0x90,
130 	[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] =	0x94,
131 	[DISPC_GLOBAL_BUFFER_OFF] =		0x98,
132 	[DSS_CBA_CFG_OFF] =			0x9c,
133 	[DISPC_DBG_CONTROL_OFF] =		0xa0,
134 	[DISPC_DBG_STATUS_OFF] =		0xa4,
135 	[DISPC_CLKGATING_DISABLE_OFF] =		0xa8,
136 	[DISPC_SECURE_DISABLE_OFF] =		0xac,
137 };
138 
139 const struct dispc_features dispc_am65x_feats = {
140 	.max_pclk_khz = {
141 		[DISPC_VP_DPI] = 165000,
142 		[DISPC_VP_OLDI] = 165000,
143 	},
144 
145 	.scaling = {
146 		.in_width_max_5tap_rgb = 1280,
147 		.in_width_max_3tap_rgb = 2560,
148 		.in_width_max_5tap_yuv = 2560,
149 		.in_width_max_3tap_yuv = 4096,
150 		.upscale_limit = 16,
151 		.downscale_limit_5tap = 4,
152 		.downscale_limit_3tap = 2,
153 		/*
154 		 * The max supported pixel inc value is 255. The value
155 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
156 		 * The maximum bpp of all formats supported by the HW
157 		 * is 8. So the maximum supported xinc value is 32,
158 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
159 		 */
160 		.xinc_max = 32,
161 	},
162 
163 	.subrev = DISPC_AM65X,
164 
165 	.common = "common",
166 	.common_regs = tidss_am65x_common_regs,
167 
168 	.num_vps = 2,
169 	.vp_name = { "vp1", "vp2" },
170 	.ovr_name = { "ovr1", "ovr2" },
171 	.vpclk_name =  { "vp1", "vp2" },
172 	.vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI },
173 
174 	.vp_feat = { .color = {
175 			.has_ctm = true,
176 			.gamma_size = 256,
177 			.gamma_type = TIDSS_GAMMA_8BIT,
178 		},
179 	},
180 
181 	.num_planes = 2,
182 	/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
183 	.vid_name = { "vid", "vidl1" },
184 	.vid_lite = { false, true, },
185 	.vid_order = { 1, 0 },
186 };
187 
188 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
189 	[DSS_REVISION_OFF] =			0x4,
190 	[DSS_SYSCONFIG_OFF] =			0x8,
191 	[DSS_SYSSTATUS_OFF] =			0x20,
192 	[DISPC_IRQ_EOI_OFF] =			0x80,
193 	[DISPC_IRQSTATUS_RAW_OFF] =		0x28,
194 	[DISPC_IRQSTATUS_OFF] =			0x2c,
195 	[DISPC_IRQENABLE_SET_OFF] =		0x30,
196 	[DISPC_IRQENABLE_CLR_OFF] =		0x34,
197 	[DISPC_VID_IRQENABLE_OFF] =		0x38,
198 	[DISPC_VID_IRQSTATUS_OFF] =		0x48,
199 	[DISPC_VP_IRQENABLE_OFF] =		0x58,
200 	[DISPC_VP_IRQSTATUS_OFF] =		0x68,
201 
202 	[WB_IRQENABLE_OFF] =			0x78,
203 	[WB_IRQSTATUS_OFF] =			0x7c,
204 
205 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =	0x98,
206 	[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] =	0x9c,
207 	[DISPC_GLOBAL_BUFFER_OFF] =		0xa0,
208 	[DSS_CBA_CFG_OFF] =			0xa4,
209 	[DISPC_DBG_CONTROL_OFF] =		0xa8,
210 	[DISPC_DBG_STATUS_OFF] =		0xac,
211 	[DISPC_CLKGATING_DISABLE_OFF] =		0xb0,
212 	[DISPC_SECURE_DISABLE_OFF] =		0x90,
213 
214 	[FBDC_REVISION_1_OFF] =			0xb8,
215 	[FBDC_REVISION_2_OFF] =			0xbc,
216 	[FBDC_REVISION_3_OFF] =			0xc0,
217 	[FBDC_REVISION_4_OFF] =			0xc4,
218 	[FBDC_REVISION_5_OFF] =			0xc8,
219 	[FBDC_REVISION_6_OFF] =			0xcc,
220 	[FBDC_COMMON_CONTROL_OFF] =		0xd0,
221 	[FBDC_CONSTANT_COLOR_0_OFF] =		0xd4,
222 	[FBDC_CONSTANT_COLOR_1_OFF] =		0xd8,
223 	[DISPC_CONNECTIONS_OFF] =		0xe4,
224 	[DISPC_MSS_VP1_OFF] =			0xe8,
225 	[DISPC_MSS_VP3_OFF] =			0xec,
226 };
227 
228 const struct dispc_features dispc_j721e_feats = {
229 	.max_pclk_khz = {
230 		[DISPC_VP_DPI] = 170000,
231 		[DISPC_VP_INTERNAL] = 600000,
232 	},
233 
234 	.scaling = {
235 		.in_width_max_5tap_rgb = 2048,
236 		.in_width_max_3tap_rgb = 4096,
237 		.in_width_max_5tap_yuv = 4096,
238 		.in_width_max_3tap_yuv = 4096,
239 		.upscale_limit = 16,
240 		.downscale_limit_5tap = 4,
241 		.downscale_limit_3tap = 2,
242 		/*
243 		 * The max supported pixel inc value is 255. The value
244 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
245 		 * The maximum bpp of all formats supported by the HW
246 		 * is 8. So the maximum supported xinc value is 32,
247 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
248 		 */
249 		.xinc_max = 32,
250 	},
251 
252 	.subrev = DISPC_J721E,
253 
254 	.common = "common_m",
255 	.common_regs = tidss_j721e_common_regs,
256 
257 	.num_vps = 4,
258 	.vp_name = { "vp1", "vp2", "vp3", "vp4" },
259 	.ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" },
260 	.vpclk_name = { "vp1", "vp2", "vp3", "vp4" },
261 	/* Currently hard coded VP routing (see dispc_initial_config()) */
262 	.vp_bus_type =	{ DISPC_VP_INTERNAL, DISPC_VP_DPI,
263 			  DISPC_VP_INTERNAL, DISPC_VP_DPI, },
264 	.vp_feat = { .color = {
265 			.has_ctm = true,
266 			.gamma_size = 1024,
267 			.gamma_type = TIDSS_GAMMA_10BIT,
268 		},
269 	},
270 	.num_planes = 4,
271 	.vid_name = { "vid1", "vidl1", "vid2", "vidl2" },
272 	.vid_lite = { 0, 1, 0, 1, },
273 	.vid_order = { 1, 3, 0, 2 },
274 };
275 
276 const struct dispc_features dispc_am625_feats = {
277 	.max_pclk_khz = {
278 		[DISPC_VP_DPI] = 165000,
279 		[DISPC_VP_INTERNAL] = 170000,
280 	},
281 
282 	.scaling = {
283 		.in_width_max_5tap_rgb = 1280,
284 		.in_width_max_3tap_rgb = 2560,
285 		.in_width_max_5tap_yuv = 2560,
286 		.in_width_max_3tap_yuv = 4096,
287 		.upscale_limit = 16,
288 		.downscale_limit_5tap = 4,
289 		.downscale_limit_3tap = 2,
290 		/*
291 		 * The max supported pixel inc value is 255. The value
292 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
293 		 * The maximum bpp of all formats supported by the HW
294 		 * is 8. So the maximum supported xinc value is 32,
295 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
296 		 */
297 		.xinc_max = 32,
298 	},
299 
300 	.subrev = DISPC_AM625,
301 
302 	.common = "common",
303 	.common_regs = tidss_am65x_common_regs,
304 
305 	.num_vps = 2,
306 	.vp_name = { "vp1", "vp2" },
307 	.ovr_name = { "ovr1", "ovr2" },
308 	.vpclk_name =  { "vp1", "vp2" },
309 	.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI },
310 
311 	.vp_feat = { .color = {
312 			.has_ctm = true,
313 			.gamma_size = 256,
314 			.gamma_type = TIDSS_GAMMA_8BIT,
315 		},
316 	},
317 
318 	.num_planes = 2,
319 	/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
320 	.vid_name = { "vid", "vidl1" },
321 	.vid_lite = { false, true, },
322 	.vid_order = { 1, 0 },
323 };
324 
325 const struct dispc_features dispc_am62a7_feats = {
326 	/*
327 	 * if the code reaches dispc_mode_valid with VP1,
328 	 * it should return MODE_BAD.
329 	 */
330 	.max_pclk_khz = {
331 		[DISPC_VP_TIED_OFF] = 0,
332 		[DISPC_VP_DPI] = 165000,
333 	},
334 
335 	.scaling = {
336 		.in_width_max_5tap_rgb = 1280,
337 		.in_width_max_3tap_rgb = 2560,
338 		.in_width_max_5tap_yuv = 2560,
339 		.in_width_max_3tap_yuv = 4096,
340 		.upscale_limit = 16,
341 		.downscale_limit_5tap = 4,
342 		.downscale_limit_3tap = 2,
343 		/*
344 		 * The max supported pixel inc value is 255. The value
345 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
346 		 * The maximum bpp of all formats supported by the HW
347 		 * is 8. So the maximum supported xinc value is 32,
348 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
349 		 */
350 		.xinc_max = 32,
351 	},
352 
353 	.subrev = DISPC_AM62A7,
354 
355 	.common = "common",
356 	.common_regs = tidss_am65x_common_regs,
357 
358 	.num_vps = 2,
359 	.vp_name = { "vp1", "vp2" },
360 	.ovr_name = { "ovr1", "ovr2" },
361 	.vpclk_name =  { "vp1", "vp2" },
362 	/* VP1 of the DSS in AM62A7 SoC is tied off internally */
363 	.vp_bus_type = { DISPC_VP_TIED_OFF, DISPC_VP_DPI },
364 
365 	.vp_feat = { .color = {
366 			.has_ctm = true,
367 			.gamma_size = 256,
368 			.gamma_type = TIDSS_GAMMA_8BIT,
369 		},
370 	},
371 
372 	.num_planes = 2,
373 	/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
374 	.vid_name = { "vid", "vidl1" },
375 	.vid_lite = { false, true, },
376 	.vid_order = { 1, 0 },
377 };
378 
379 static const u16 *dispc_common_regmap;
380 
381 struct dss_vp_data {
382 	u32 *gamma_table;
383 };
384 
385 struct dispc_device {
386 	struct tidss_device *tidss;
387 	struct device *dev;
388 
389 	void __iomem *base_common;
390 	void __iomem *base_vid[TIDSS_MAX_PLANES];
391 	void __iomem *base_ovr[TIDSS_MAX_PORTS];
392 	void __iomem *base_vp[TIDSS_MAX_PORTS];
393 
394 	struct regmap *oldi_io_ctrl;
395 
396 	struct clk *vp_clk[TIDSS_MAX_PORTS];
397 
398 	const struct dispc_features *feat;
399 
400 	struct clk *fclk;
401 
402 	bool is_enabled;
403 
404 	struct dss_vp_data vp_data[TIDSS_MAX_PORTS];
405 
406 	u32 *fourccs;
407 	u32 num_fourccs;
408 
409 	u32 memory_bandwidth_limit;
410 
411 	struct dispc_errata errata;
412 };
413 
414 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val)
415 {
416 	iowrite32(val, dispc->base_common + reg);
417 }
418 
419 static u32 dispc_read(struct dispc_device *dispc, u16 reg)
420 {
421 	return ioread32(dispc->base_common + reg);
422 }
423 
424 static
425 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val)
426 {
427 	void __iomem *base = dispc->base_vid[hw_plane];
428 
429 	iowrite32(val, base + reg);
430 }
431 
432 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg)
433 {
434 	void __iomem *base = dispc->base_vid[hw_plane];
435 
436 	return ioread32(base + reg);
437 }
438 
439 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport,
440 			    u16 reg, u32 val)
441 {
442 	void __iomem *base = dispc->base_ovr[hw_videoport];
443 
444 	iowrite32(val, base + reg);
445 }
446 
447 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
448 {
449 	void __iomem *base = dispc->base_ovr[hw_videoport];
450 
451 	return ioread32(base + reg);
452 }
453 
454 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport,
455 			   u16 reg, u32 val)
456 {
457 	void __iomem *base = dispc->base_vp[hw_videoport];
458 
459 	iowrite32(val, base + reg);
460 }
461 
462 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
463 {
464 	void __iomem *base = dispc->base_vp[hw_videoport];
465 
466 	return ioread32(base + reg);
467 }
468 
469 /*
470  * TRM gives bitfields as start:end, where start is the higher bit
471  * number. For example 7:0
472  */
473 
474 static u32 FLD_MASK(u32 start, u32 end)
475 {
476 	return ((1 << (start - end + 1)) - 1) << end;
477 }
478 
479 static u32 FLD_VAL(u32 val, u32 start, u32 end)
480 {
481 	return (val << end) & FLD_MASK(start, end);
482 }
483 
484 static u32 FLD_GET(u32 val, u32 start, u32 end)
485 {
486 	return (val & FLD_MASK(start, end)) >> end;
487 }
488 
489 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end)
490 {
491 	return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end);
492 }
493 
494 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end)
495 {
496 	return FLD_GET(dispc_read(dispc, idx), start, end);
497 }
498 
499 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val,
500 			u32 start, u32 end)
501 {
502 	dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val,
503 					start, end));
504 }
505 
506 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx,
507 		       u32 start, u32 end)
508 {
509 	return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end);
510 }
511 
512 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx,
513 			    u32 val, u32 start, u32 end)
514 {
515 	dispc_vid_write(dispc, hw_plane, idx,
516 			FLD_MOD(dispc_vid_read(dispc, hw_plane, idx),
517 				val, start, end));
518 }
519 
520 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx,
521 		      u32 start, u32 end)
522 {
523 	return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end);
524 }
525 
526 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val,
527 			   u32 start, u32 end)
528 {
529 	dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx),
530 					       val, start, end));
531 }
532 
533 __maybe_unused
534 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx,
535 		       u32 start, u32 end)
536 {
537 	return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end);
538 }
539 
540 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx,
541 			    u32 val, u32 start, u32 end)
542 {
543 	dispc_ovr_write(dispc, ovr, idx,
544 			FLD_MOD(dispc_ovr_read(dispc, ovr, idx),
545 				val, start, end));
546 }
547 
548 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport)
549 {
550 	dispc_irq_t vp_stat = 0;
551 
552 	if (stat & BIT(0))
553 		vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport);
554 	if (stat & BIT(1))
555 		vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport);
556 	if (stat & BIT(2))
557 		vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport);
558 	if (stat & BIT(4))
559 		vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport);
560 
561 	return vp_stat;
562 }
563 
564 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport)
565 {
566 	u32 stat = 0;
567 
568 	if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport))
569 		stat |= BIT(0);
570 	if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport))
571 		stat |= BIT(1);
572 	if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport))
573 		stat |= BIT(2);
574 	if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport))
575 		stat |= BIT(4);
576 
577 	return stat;
578 }
579 
580 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane)
581 {
582 	dispc_irq_t vid_stat = 0;
583 
584 	if (stat & BIT(0))
585 		vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane);
586 
587 	return vid_stat;
588 }
589 
590 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane)
591 {
592 	u32 stat = 0;
593 
594 	if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane))
595 		stat |= BIT(0);
596 
597 	return stat;
598 }
599 
600 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc,
601 					       u32 hw_videoport)
602 {
603 	u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS);
604 
605 	return dispc_vp_irq_from_raw(stat, hw_videoport);
606 }
607 
608 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc,
609 					 u32 hw_videoport, dispc_irq_t vpstat)
610 {
611 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
612 
613 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat);
614 }
615 
616 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc,
617 						u32 hw_plane)
618 {
619 	u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS);
620 
621 	return dispc_vid_irq_from_raw(stat, hw_plane);
622 }
623 
624 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc,
625 					  u32 hw_plane, dispc_irq_t vidstat)
626 {
627 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
628 
629 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat);
630 }
631 
632 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc,
633 					       u32 hw_videoport)
634 {
635 	u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE);
636 
637 	return dispc_vp_irq_from_raw(stat, hw_videoport);
638 }
639 
640 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc,
641 				       u32 hw_videoport, dispc_irq_t vpstat)
642 {
643 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
644 
645 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat);
646 }
647 
648 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc,
649 						u32 hw_plane)
650 {
651 	u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE);
652 
653 	return dispc_vid_irq_from_raw(stat, hw_plane);
654 }
655 
656 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc,
657 					u32 hw_plane, dispc_irq_t vidstat)
658 {
659 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
660 
661 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat);
662 }
663 
664 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc,
665 				      dispc_irq_t mask)
666 {
667 	dispc_k2g_vp_write_irqstatus(dispc, 0, mask);
668 	dispc_k2g_vid_write_irqstatus(dispc, 0, mask);
669 }
670 
671 static
672 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc)
673 {
674 	dispc_irq_t stat = 0;
675 
676 	/* always clear the top level irqstatus */
677 	dispc_write(dispc, DISPC_IRQSTATUS,
678 		    dispc_read(dispc, DISPC_IRQSTATUS));
679 
680 	stat |= dispc_k2g_vp_read_irqstatus(dispc, 0);
681 	stat |= dispc_k2g_vid_read_irqstatus(dispc, 0);
682 
683 	dispc_k2g_clear_irqstatus(dispc, stat);
684 
685 	return stat;
686 }
687 
688 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc)
689 {
690 	dispc_irq_t stat = 0;
691 
692 	stat |= dispc_k2g_vp_read_irqenable(dispc, 0);
693 	stat |= dispc_k2g_vid_read_irqenable(dispc, 0);
694 
695 	return stat;
696 }
697 
698 static
699 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
700 {
701 	dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc);
702 
703 	/* clear the irqstatus for newly enabled irqs */
704 	dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
705 
706 	dispc_k2g_vp_set_irqenable(dispc, 0, mask);
707 	dispc_k2g_vid_set_irqenable(dispc, 0, mask);
708 
709 	dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7));
710 
711 	/* flush posted write */
712 	dispc_k2g_read_irqenable(dispc);
713 }
714 
715 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc,
716 					      u32 hw_videoport)
717 {
718 	u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport));
719 
720 	return dispc_vp_irq_from_raw(stat, hw_videoport);
721 }
722 
723 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc,
724 					u32 hw_videoport, dispc_irq_t vpstat)
725 {
726 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
727 
728 	dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat);
729 }
730 
731 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc,
732 					       u32 hw_plane)
733 {
734 	u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane));
735 
736 	return dispc_vid_irq_from_raw(stat, hw_plane);
737 }
738 
739 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc,
740 					 u32 hw_plane, dispc_irq_t vidstat)
741 {
742 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
743 
744 	dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat);
745 }
746 
747 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc,
748 					      u32 hw_videoport)
749 {
750 	u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport));
751 
752 	return dispc_vp_irq_from_raw(stat, hw_videoport);
753 }
754 
755 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc,
756 				      u32 hw_videoport, dispc_irq_t vpstat)
757 {
758 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
759 
760 	dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat);
761 }
762 
763 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc,
764 					       u32 hw_plane)
765 {
766 	u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane));
767 
768 	return dispc_vid_irq_from_raw(stat, hw_plane);
769 }
770 
771 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc,
772 				       u32 hw_plane, dispc_irq_t vidstat)
773 {
774 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
775 
776 	dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat);
777 }
778 
779 static
780 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask)
781 {
782 	unsigned int i;
783 	u32 top_clear = 0;
784 
785 	for (i = 0; i < dispc->feat->num_vps; ++i) {
786 		if (clearmask & DSS_IRQ_VP_MASK(i)) {
787 			dispc_k3_vp_write_irqstatus(dispc, i, clearmask);
788 			top_clear |= BIT(i);
789 		}
790 	}
791 	for (i = 0; i < dispc->feat->num_planes; ++i) {
792 		if (clearmask & DSS_IRQ_PLANE_MASK(i)) {
793 			dispc_k3_vid_write_irqstatus(dispc, i, clearmask);
794 			top_clear |= BIT(4 + i);
795 		}
796 	}
797 	if (dispc->feat->subrev == DISPC_K2G)
798 		return;
799 
800 	dispc_write(dispc, DISPC_IRQSTATUS, top_clear);
801 
802 	/* Flush posted writes */
803 	dispc_read(dispc, DISPC_IRQSTATUS);
804 }
805 
806 static
807 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc)
808 {
809 	dispc_irq_t status = 0;
810 	unsigned int i;
811 
812 	for (i = 0; i < dispc->feat->num_vps; ++i)
813 		status |= dispc_k3_vp_read_irqstatus(dispc, i);
814 
815 	for (i = 0; i < dispc->feat->num_planes; ++i)
816 		status |= dispc_k3_vid_read_irqstatus(dispc, i);
817 
818 	dispc_k3_clear_irqstatus(dispc, status);
819 
820 	return status;
821 }
822 
823 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc)
824 {
825 	dispc_irq_t enable = 0;
826 	unsigned int i;
827 
828 	for (i = 0; i < dispc->feat->num_vps; ++i)
829 		enable |= dispc_k3_vp_read_irqenable(dispc, i);
830 
831 	for (i = 0; i < dispc->feat->num_planes; ++i)
832 		enable |= dispc_k3_vid_read_irqenable(dispc, i);
833 
834 	return enable;
835 }
836 
837 static void dispc_k3_set_irqenable(struct dispc_device *dispc,
838 				   dispc_irq_t mask)
839 {
840 	unsigned int i;
841 	u32 main_enable = 0, main_disable = 0;
842 	dispc_irq_t old_mask;
843 
844 	old_mask = dispc_k3_read_irqenable(dispc);
845 
846 	/* clear the irqstatus for newly enabled irqs */
847 	dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask);
848 
849 	for (i = 0; i < dispc->feat->num_vps; ++i) {
850 		dispc_k3_vp_set_irqenable(dispc, i, mask);
851 		if (mask & DSS_IRQ_VP_MASK(i))
852 			main_enable |= BIT(i);		/* VP IRQ */
853 		else
854 			main_disable |= BIT(i);		/* VP IRQ */
855 	}
856 
857 	for (i = 0; i < dispc->feat->num_planes; ++i) {
858 		dispc_k3_vid_set_irqenable(dispc, i, mask);
859 		if (mask & DSS_IRQ_PLANE_MASK(i))
860 			main_enable |= BIT(i + 4);	/* VID IRQ */
861 		else
862 			main_disable |= BIT(i + 4);	/* VID IRQ */
863 	}
864 
865 	if (main_enable)
866 		dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable);
867 
868 	if (main_disable)
869 		dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable);
870 
871 	/* Flush posted writes */
872 	dispc_read(dispc, DISPC_IRQENABLE_SET);
873 }
874 
875 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc)
876 {
877 	switch (dispc->feat->subrev) {
878 	case DISPC_K2G:
879 		return dispc_k2g_read_and_clear_irqstatus(dispc);
880 	case DISPC_AM625:
881 	case DISPC_AM62A7:
882 	case DISPC_AM65X:
883 	case DISPC_J721E:
884 		return dispc_k3_read_and_clear_irqstatus(dispc);
885 	default:
886 		WARN_ON(1);
887 		return 0;
888 	}
889 }
890 
891 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
892 {
893 	switch (dispc->feat->subrev) {
894 	case DISPC_K2G:
895 		dispc_k2g_set_irqenable(dispc, mask);
896 		break;
897 	case DISPC_AM625:
898 	case DISPC_AM62A7:
899 	case DISPC_AM65X:
900 	case DISPC_J721E:
901 		dispc_k3_set_irqenable(dispc, mask);
902 		break;
903 	default:
904 		WARN_ON(1);
905 		break;
906 	}
907 }
908 
909 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 };
910 
911 struct dispc_bus_format {
912 	u32 bus_fmt;
913 	u32 data_width;
914 	bool is_oldi_fmt;
915 	enum dispc_oldi_mode_reg_val oldi_mode_reg_val;
916 };
917 
918 static const struct dispc_bus_format dispc_bus_formats[] = {
919 	{ MEDIA_BUS_FMT_RGB444_1X12,		12, false, 0 },
920 	{ MEDIA_BUS_FMT_RGB565_1X16,		16, false, 0 },
921 	{ MEDIA_BUS_FMT_RGB666_1X18,		18, false, 0 },
922 	{ MEDIA_BUS_FMT_RGB888_1X24,		24, false, 0 },
923 	{ MEDIA_BUS_FMT_RGB101010_1X30,		30, false, 0 },
924 	{ MEDIA_BUS_FMT_RGB121212_1X36,		36, false, 0 },
925 	{ MEDIA_BUS_FMT_RGB666_1X7X3_SPWG,	18, true, SPWG_18 },
926 	{ MEDIA_BUS_FMT_RGB888_1X7X4_SPWG,	24, true, SPWG_24 },
927 	{ MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA,	24, true, JEIDA_24 },
928 };
929 
930 static const
931 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc,
932 					       u32 hw_videoport,
933 					       u32 bus_fmt, u32 bus_flags)
934 {
935 	unsigned int i;
936 
937 	for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) {
938 		if (dispc_bus_formats[i].bus_fmt == bus_fmt)
939 			return &dispc_bus_formats[i];
940 	}
941 
942 	return NULL;
943 }
944 
945 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport,
946 		       const struct drm_crtc_state *state)
947 {
948 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
949 	const struct dispc_bus_format *fmt;
950 
951 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
952 				    tstate->bus_flags);
953 	if (!fmt) {
954 		dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n",
955 			__func__, tstate->bus_format);
956 		return -EINVAL;
957 	}
958 
959 	if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI &&
960 	    fmt->is_oldi_fmt) {
961 		dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n",
962 			__func__, dispc->feat->vp_name[hw_videoport]);
963 		return -EINVAL;
964 	}
965 
966 	return 0;
967 }
968 
969 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power)
970 {
971 	u32 val = power ? 0 : OLDI_PWRDN_TX;
972 
973 	if (WARN_ON(!dispc->oldi_io_ctrl))
974 		return;
975 
976 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL,
977 			   OLDI_PWRDN_TX, val);
978 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL,
979 			   OLDI_PWRDN_TX, val);
980 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL,
981 			   OLDI_PWRDN_TX, val);
982 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL,
983 			   OLDI_PWRDN_TX, val);
984 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL,
985 			   OLDI_PWRDN_TX, val);
986 }
987 
988 static void dispc_set_num_datalines(struct dispc_device *dispc,
989 				    u32 hw_videoport, int num_lines)
990 {
991 	int v;
992 
993 	switch (num_lines) {
994 	case 12:
995 		v = 0; break;
996 	case 16:
997 		v = 1; break;
998 	case 18:
999 		v = 2; break;
1000 	case 24:
1001 		v = 3; break;
1002 	case 30:
1003 		v = 4; break;
1004 	case 36:
1005 		v = 5; break;
1006 	default:
1007 		WARN_ON(1);
1008 		v = 3;
1009 	}
1010 
1011 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8);
1012 }
1013 
1014 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport,
1015 			      const struct dispc_bus_format *fmt)
1016 {
1017 	u32 oldi_cfg = 0;
1018 	u32 oldi_reset_bit = BIT(5 + hw_videoport);
1019 	int count = 0;
1020 
1021 	/*
1022 	 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC
1023 	 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0.
1024 	 */
1025 
1026 	if (fmt->data_width == 24)
1027 		oldi_cfg |= BIT(8); /* MSB */
1028 	else if (fmt->data_width != 18)
1029 		dev_warn(dispc->dev, "%s: %d port width not supported\n",
1030 			 __func__, fmt->data_width);
1031 
1032 	oldi_cfg |= BIT(7); /* DEPOL */
1033 
1034 	oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1);
1035 
1036 	oldi_cfg |= BIT(12); /* SOFTRST */
1037 
1038 	oldi_cfg |= BIT(0); /* ENABLE */
1039 
1040 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg);
1041 
1042 	while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) &&
1043 	       count < 10000)
1044 		count++;
1045 
1046 	if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)))
1047 		dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n",
1048 			 __func__);
1049 }
1050 
1051 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport,
1052 		      const struct drm_crtc_state *state)
1053 {
1054 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
1055 	const struct dispc_bus_format *fmt;
1056 
1057 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
1058 				    tstate->bus_flags);
1059 
1060 	if (WARN_ON(!fmt))
1061 		return;
1062 
1063 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
1064 		dispc_oldi_tx_power(dispc, true);
1065 
1066 		dispc_enable_oldi(dispc, hw_videoport, fmt);
1067 	}
1068 }
1069 
1070 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport,
1071 		     const struct drm_crtc_state *state)
1072 {
1073 	const struct drm_display_mode *mode = &state->adjusted_mode;
1074 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
1075 	bool align, onoff, rf, ieo, ipc, ihs, ivs;
1076 	const struct dispc_bus_format *fmt;
1077 	u32 hsw, hfp, hbp, vsw, vfp, vbp;
1078 
1079 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
1080 				    tstate->bus_flags);
1081 
1082 	if (WARN_ON(!fmt))
1083 		return;
1084 
1085 	dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width);
1086 
1087 	hfp = mode->hsync_start - mode->hdisplay;
1088 	hsw = mode->hsync_end - mode->hsync_start;
1089 	hbp = mode->htotal - mode->hsync_end;
1090 
1091 	vfp = mode->vsync_start - mode->vdisplay;
1092 	vsw = mode->vsync_end - mode->vsync_start;
1093 	vbp = mode->vtotal - mode->vsync_end;
1094 
1095 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H,
1096 		       FLD_VAL(hsw - 1, 7, 0) |
1097 		       FLD_VAL(hfp - 1, 19, 8) |
1098 		       FLD_VAL(hbp - 1, 31, 20));
1099 
1100 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V,
1101 		       FLD_VAL(vsw - 1, 7, 0) |
1102 		       FLD_VAL(vfp, 19, 8) |
1103 		       FLD_VAL(vbp, 31, 20));
1104 
1105 	ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
1106 
1107 	ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
1108 
1109 	ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW);
1110 
1111 	ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE);
1112 
1113 	/* always use the 'rf' setting */
1114 	onoff = true;
1115 
1116 	rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE);
1117 
1118 	/* always use aligned syncs */
1119 	align = true;
1120 
1121 	/* always use DE_HIGH for OLDI */
1122 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI)
1123 		ieo = false;
1124 
1125 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ,
1126 		       FLD_VAL(align, 18, 18) |
1127 		       FLD_VAL(onoff, 17, 17) |
1128 		       FLD_VAL(rf, 16, 16) |
1129 		       FLD_VAL(ieo, 15, 15) |
1130 		       FLD_VAL(ipc, 14, 14) |
1131 		       FLD_VAL(ihs, 13, 13) |
1132 		       FLD_VAL(ivs, 12, 12));
1133 
1134 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN,
1135 		       FLD_VAL(mode->hdisplay - 1, 11, 0) |
1136 		       FLD_VAL(mode->vdisplay - 1, 27, 16));
1137 
1138 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0);
1139 }
1140 
1141 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport)
1142 {
1143 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0);
1144 }
1145 
1146 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport)
1147 {
1148 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
1149 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0);
1150 
1151 		dispc_oldi_tx_power(dispc, false);
1152 	}
1153 }
1154 
1155 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport)
1156 {
1157 	return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5);
1158 }
1159 
1160 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport)
1161 {
1162 	WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5));
1163 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5);
1164 }
1165 
1166 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN };
1167 
1168 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode)
1169 {
1170 	u16 c12;
1171 
1172 	c12 = c8 << 4;
1173 
1174 	switch (mode) {
1175 	case C8_TO_C12_REPLICATE:
1176 		/* Copy c8 4 MSB to 4 LSB for full scale c12 */
1177 		c12 |= c8 >> 4;
1178 		break;
1179 	case C8_TO_C12_MAX:
1180 		c12 |= 0xF;
1181 		break;
1182 	default:
1183 	case C8_TO_C12_MIN:
1184 		break;
1185 	}
1186 
1187 	return c12;
1188 }
1189 
1190 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m)
1191 {
1192 	u8 a, r, g, b;
1193 	u64 v;
1194 
1195 	a = (argb8888 >> 24) & 0xff;
1196 	r = (argb8888 >> 16) & 0xff;
1197 	g = (argb8888 >> 8) & 0xff;
1198 	b = (argb8888 >> 0) & 0xff;
1199 
1200 	v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) |
1201 		((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m);
1202 
1203 	return v;
1204 }
1205 
1206 static void dispc_vp_set_default_color(struct dispc_device *dispc,
1207 				       u32 hw_videoport, u32 default_color)
1208 {
1209 	u64 v;
1210 
1211 	v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE);
1212 
1213 	dispc_ovr_write(dispc, hw_videoport,
1214 			DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff);
1215 	dispc_ovr_write(dispc, hw_videoport,
1216 			DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff);
1217 }
1218 
1219 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc,
1220 					 u32 hw_videoport,
1221 					 const struct drm_display_mode *mode)
1222 {
1223 	u32 hsw, hfp, hbp, vsw, vfp, vbp;
1224 	enum dispc_vp_bus_type bus_type;
1225 	int max_pclk;
1226 
1227 	bus_type = dispc->feat->vp_bus_type[hw_videoport];
1228 
1229 	max_pclk = dispc->feat->max_pclk_khz[bus_type];
1230 
1231 	if (WARN_ON(max_pclk == 0))
1232 		return MODE_BAD;
1233 
1234 	if (mode->clock < dispc->feat->min_pclk_khz)
1235 		return MODE_CLOCK_LOW;
1236 
1237 	if (mode->clock > max_pclk)
1238 		return MODE_CLOCK_HIGH;
1239 
1240 	if (mode->hdisplay > 4096)
1241 		return MODE_BAD;
1242 
1243 	if (mode->vdisplay > 4096)
1244 		return MODE_BAD;
1245 
1246 	/* TODO: add interlace support */
1247 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1248 		return MODE_NO_INTERLACE;
1249 
1250 	/*
1251 	 * Enforce the output width is divisible by 2. Actually this
1252 	 * is only needed in following cases:
1253 	 * - YUV output selected (BT656, BT1120)
1254 	 * - Dithering enabled
1255 	 * - TDM with TDMCycleFormat == 3
1256 	 * But for simplicity we enforce that always.
1257 	 */
1258 	if ((mode->hdisplay % 2) != 0)
1259 		return MODE_BAD_HVALUE;
1260 
1261 	hfp = mode->hsync_start - mode->hdisplay;
1262 	hsw = mode->hsync_end - mode->hsync_start;
1263 	hbp = mode->htotal - mode->hsync_end;
1264 
1265 	vfp = mode->vsync_start - mode->vdisplay;
1266 	vsw = mode->vsync_end - mode->vsync_start;
1267 	vbp = mode->vtotal - mode->vsync_end;
1268 
1269 	if (hsw < 1 || hsw > 256 ||
1270 	    hfp < 1 || hfp > 4096 ||
1271 	    hbp < 1 || hbp > 4096)
1272 		return MODE_BAD_HVALUE;
1273 
1274 	if (vsw < 1 || vsw > 256 ||
1275 	    vfp > 4095 || vbp > 4095)
1276 		return MODE_BAD_VVALUE;
1277 
1278 	if (dispc->memory_bandwidth_limit) {
1279 		const unsigned int bpp = 4;
1280 		u64 bandwidth;
1281 
1282 		bandwidth = 1000 * mode->clock;
1283 		bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp;
1284 		bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal);
1285 
1286 		if (dispc->memory_bandwidth_limit < bandwidth)
1287 			return MODE_BAD;
1288 	}
1289 
1290 	return MODE_OK;
1291 }
1292 
1293 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport)
1294 {
1295 	int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]);
1296 
1297 	if (ret)
1298 		dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__,
1299 			ret);
1300 
1301 	return ret;
1302 }
1303 
1304 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport)
1305 {
1306 	clk_disable_unprepare(dispc->vp_clk[hw_videoport]);
1307 }
1308 
1309 /*
1310  * Calculate the percentage difference between the requested pixel clock rate
1311  * and the effective rate resulting from calculating the clock divider value.
1312  */
1313 static
1314 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate)
1315 {
1316 	int r = rate / 100, rr = real_rate / 100;
1317 
1318 	return (unsigned int)(abs(((rr - r) * 100) / r));
1319 }
1320 
1321 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport,
1322 			  unsigned long rate)
1323 {
1324 	int r;
1325 	unsigned long new_rate;
1326 
1327 	r = clk_set_rate(dispc->vp_clk[hw_videoport], rate);
1328 	if (r) {
1329 		dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n",
1330 			hw_videoport, rate);
1331 		return r;
1332 	}
1333 
1334 	new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]);
1335 
1336 	if (dispc_pclk_diff(rate, new_rate) > 5)
1337 		dev_warn(dispc->dev,
1338 			 "vp%d: Clock rate %lu differs over 5%% from requested %lu\n",
1339 			 hw_videoport, new_rate, rate);
1340 
1341 	dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n",
1342 		hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate);
1343 
1344 	return 0;
1345 }
1346 
1347 /* OVR */
1348 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc,
1349 				    u32 hw_plane, u32 hw_videoport,
1350 				    u32 x, u32 y, u32 layer)
1351 {
1352 	/* On k2g there is only one plane and no need for ovr */
1353 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION,
1354 			x | (y << 16));
1355 }
1356 
1357 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc,
1358 				      u32 hw_plane, u32 hw_videoport,
1359 				      u32 x, u32 y, u32 layer)
1360 {
1361 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1362 			hw_plane, 4, 1);
1363 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1364 			x, 17, 6);
1365 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1366 			y, 30, 19);
1367 }
1368 
1369 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc,
1370 				      u32 hw_plane, u32 hw_videoport,
1371 				      u32 x, u32 y, u32 layer)
1372 {
1373 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1374 			hw_plane, 4, 1);
1375 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
1376 			x, 13, 0);
1377 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
1378 			y, 29, 16);
1379 }
1380 
1381 void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane,
1382 			 u32 hw_videoport, u32 x, u32 y, u32 layer)
1383 {
1384 	switch (dispc->feat->subrev) {
1385 	case DISPC_K2G:
1386 		dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport,
1387 					x, y, layer);
1388 		break;
1389 	case DISPC_AM625:
1390 	case DISPC_AM62A7:
1391 	case DISPC_AM65X:
1392 		dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport,
1393 					  x, y, layer);
1394 		break;
1395 	case DISPC_J721E:
1396 		dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport,
1397 					  x, y, layer);
1398 		break;
1399 	default:
1400 		WARN_ON(1);
1401 		break;
1402 	}
1403 }
1404 
1405 void dispc_ovr_enable_layer(struct dispc_device *dispc,
1406 			    u32 hw_videoport, u32 layer, bool enable)
1407 {
1408 	if (dispc->feat->subrev == DISPC_K2G)
1409 		return;
1410 
1411 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1412 			!!enable, 0, 0);
1413 }
1414 
1415 /* CSC */
1416 enum csc_ctm {
1417 	CSC_RR, CSC_RG, CSC_RB,
1418 	CSC_GR, CSC_GG, CSC_GB,
1419 	CSC_BR, CSC_BG, CSC_BB,
1420 };
1421 
1422 enum csc_yuv2rgb {
1423 	CSC_RY, CSC_RCB, CSC_RCR,
1424 	CSC_GY, CSC_GCB, CSC_GCR,
1425 	CSC_BY, CSC_BCB, CSC_BCR,
1426 };
1427 
1428 enum csc_rgb2yuv {
1429 	CSC_YR,  CSC_YG,  CSC_YB,
1430 	CSC_CBR, CSC_CBG, CSC_CBB,
1431 	CSC_CRR, CSC_CRG, CSC_CRB,
1432 };
1433 
1434 struct dispc_csc_coef {
1435 	void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval);
1436 	int m[9];
1437 	int preoffset[3];
1438 	int postoffset[3];
1439 	enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping;
1440 	const char *name;
1441 };
1442 
1443 #define DISPC_CSC_REGVAL_LEN 8
1444 
1445 static
1446 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval)
1447 {
1448 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19))
1449 	regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]);
1450 	regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]);
1451 	regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]);
1452 #undef OVAL
1453 }
1454 
1455 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16))
1456 static
1457 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval)
1458 {
1459 	regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]);
1460 	regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]);
1461 	regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]);
1462 	regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]);
1463 	regval[4] = CVAL(csc->m[CSC_BCB], 0);
1464 
1465 	dispc_csc_offset_regval(csc, regval);
1466 }
1467 
1468 __maybe_unused static
1469 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval)
1470 {
1471 	regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]);
1472 	regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]);
1473 	regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]);
1474 	regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]);
1475 	regval[4] = CVAL(csc->m[CSC_CBB], 0);
1476 
1477 	dispc_csc_offset_regval(csc, regval);
1478 }
1479 
1480 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc,
1481 				 u32 *regval)
1482 {
1483 	regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]);
1484 	regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]);
1485 	regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]);
1486 	regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]);
1487 	regval[4] = CVAL(csc->m[CSC_BB], 0);
1488 
1489 	dispc_csc_offset_regval(csc, regval);
1490 }
1491 
1492 #undef CVAL
1493 
1494 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
1495 				    const struct dispc_csc_coef *csc)
1496 {
1497 	static const u16 dispc_vid_csc_coef_reg[] = {
1498 		DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
1499 		DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
1500 		DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
1501 		DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */
1502 	};
1503 	u32 regval[DISPC_CSC_REGVAL_LEN];
1504 	unsigned int i;
1505 
1506 	csc->to_regval(csc, regval);
1507 
1508 	if (regval[7] != 0)
1509 		dev_warn(dispc->dev, "%s: No post offset support for %s\n",
1510 			 __func__, csc->name);
1511 
1512 	for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
1513 		dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
1514 				regval[i]);
1515 }
1516 
1517 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
1518 				   const struct dispc_csc_coef *csc)
1519 {
1520 	static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
1521 		DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
1522 		DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
1523 		DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
1524 		DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7,
1525 	};
1526 	u32 regval[DISPC_CSC_REGVAL_LEN];
1527 	unsigned int i;
1528 
1529 	csc->to_regval(csc, regval);
1530 
1531 	for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
1532 		dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
1533 				regval[i]);
1534 }
1535 
1536 /* YUV -> RGB, ITU-R BT.601, full range */
1537 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = {
1538 	dispc_csc_yuv2rgb_regval,
1539 	{ 256,   0,  358,	/* ry, rcb, rcr |1.000  0.000  1.402|*/
1540 	  256, -88, -182,	/* gy, gcb, gcr |1.000 -0.344 -0.714|*/
1541 	  256, 452,    0, },	/* by, bcb, bcr |1.000  1.772  0.000|*/
1542 	{    0, -2048, -2048, },	/* full range */
1543 	{    0,     0,     0, },
1544 	CLIP_FULL_RANGE,
1545 	"BT.601 Full",
1546 };
1547 
1548 /* YUV -> RGB, ITU-R BT.601, limited range */
1549 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = {
1550 	dispc_csc_yuv2rgb_regval,
1551 	{ 298,    0,  409,	/* ry, rcb, rcr |1.164  0.000  1.596|*/
1552 	  298, -100, -208,	/* gy, gcb, gcr |1.164 -0.392 -0.813|*/
1553 	  298,  516,    0, },	/* by, bcb, bcr |1.164  2.017  0.000|*/
1554 	{ -256, -2048, -2048, },	/* limited range */
1555 	{    0,     0,     0, },
1556 	CLIP_FULL_RANGE,
1557 	"BT.601 Limited",
1558 };
1559 
1560 /* YUV -> RGB, ITU-R BT.709, full range */
1561 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = {
1562 	dispc_csc_yuv2rgb_regval,
1563 	{ 256,	  0,  402,	/* ry, rcb, rcr |1.000	0.000  1.570|*/
1564 	  256,  -48, -120,	/* gy, gcb, gcr |1.000 -0.187 -0.467|*/
1565 	  256,  475,    0, },	/* by, bcb, bcr |1.000	1.856  0.000|*/
1566 	{    0, -2048, -2048, },	/* full range */
1567 	{    0,     0,     0, },
1568 	CLIP_FULL_RANGE,
1569 	"BT.709 Full",
1570 };
1571 
1572 /* YUV -> RGB, ITU-R BT.709, limited range */
1573 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = {
1574 	dispc_csc_yuv2rgb_regval,
1575 	{ 298,    0,  459,	/* ry, rcb, rcr |1.164  0.000  1.793|*/
1576 	  298,  -55, -136,	/* gy, gcb, gcr |1.164 -0.213 -0.533|*/
1577 	  298,  541,    0, },	/* by, bcb, bcr |1.164  2.112  0.000|*/
1578 	{ -256, -2048, -2048, },	/* limited range */
1579 	{    0,     0,     0, },
1580 	CLIP_FULL_RANGE,
1581 	"BT.709 Limited",
1582 };
1583 
1584 static const struct {
1585 	enum drm_color_encoding encoding;
1586 	enum drm_color_range range;
1587 	const struct dispc_csc_coef *csc;
1588 } dispc_csc_table[] = {
1589 	{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE,
1590 	  &csc_yuv2rgb_bt601_full, },
1591 	{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE,
1592 	  &csc_yuv2rgb_bt601_lim, },
1593 	{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE,
1594 	  &csc_yuv2rgb_bt709_full, },
1595 	{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE,
1596 	  &csc_yuv2rgb_bt709_lim, },
1597 };
1598 
1599 static const
1600 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding,
1601 				      enum drm_color_range range)
1602 {
1603 	unsigned int i;
1604 
1605 	for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) {
1606 		if (dispc_csc_table[i].encoding == encoding &&
1607 		    dispc_csc_table[i].range == range) {
1608 			return dispc_csc_table[i].csc;
1609 		}
1610 	}
1611 	return NULL;
1612 }
1613 
1614 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane,
1615 				const struct drm_plane_state *state)
1616 {
1617 	const struct dispc_csc_coef *coef;
1618 
1619 	coef = dispc_find_csc(state->color_encoding, state->color_range);
1620 	if (!coef) {
1621 		dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n",
1622 			__func__, state->color_encoding, state->color_range);
1623 		return;
1624 	}
1625 
1626 	if (dispc->feat->subrev == DISPC_K2G)
1627 		dispc_k2g_vid_write_csc(dispc, hw_plane, coef);
1628 	else
1629 		dispc_k3_vid_write_csc(dispc, hw_plane, coef);
1630 }
1631 
1632 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane,
1633 				 bool enable)
1634 {
1635 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9);
1636 }
1637 
1638 /* SCALER */
1639 
1640 static u32 dispc_calc_fir_inc(u32 in, u32 out)
1641 {
1642 	return (u32)div_u64(0x200000ull * in, out);
1643 }
1644 
1645 enum dispc_vid_fir_coef_set {
1646 	DISPC_VID_FIR_COEF_HORIZ,
1647 	DISPC_VID_FIR_COEF_HORIZ_UV,
1648 	DISPC_VID_FIR_COEF_VERT,
1649 	DISPC_VID_FIR_COEF_VERT_UV,
1650 };
1651 
1652 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc,
1653 				      u32 hw_plane,
1654 				      enum dispc_vid_fir_coef_set coef_set,
1655 				      const struct tidss_scale_coefs *coefs)
1656 {
1657 	static const u16 c0_regs[] = {
1658 		[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0,
1659 		[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C,
1660 		[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0,
1661 		[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C,
1662 	};
1663 
1664 	static const u16 c12_regs[] = {
1665 		[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12,
1666 		[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C,
1667 		[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12,
1668 		[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C,
1669 	};
1670 
1671 	const u16 c0_base = c0_regs[coef_set];
1672 	const u16 c12_base = c12_regs[coef_set];
1673 	int phase;
1674 
1675 	if (!coefs) {
1676 		dev_err(dispc->dev, "%s: No coefficients given.\n", __func__);
1677 		return;
1678 	}
1679 
1680 	for (phase = 0; phase <= 8; ++phase) {
1681 		u16 reg = c0_base + phase * 4;
1682 		u16 c0 = coefs->c0[phase];
1683 
1684 		dispc_vid_write(dispc, hw_plane, reg, c0);
1685 	}
1686 
1687 	for (phase = 0; phase <= 15; ++phase) {
1688 		u16 reg = c12_base + phase * 4;
1689 		s16 c1, c2;
1690 		u32 c12;
1691 
1692 		c1 = coefs->c1[phase];
1693 		c2 = coefs->c2[phase];
1694 		c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20);
1695 
1696 		dispc_vid_write(dispc, hw_plane, reg, c12);
1697 	}
1698 }
1699 
1700 static bool dispc_fourcc_is_yuv(u32 fourcc)
1701 {
1702 	switch (fourcc) {
1703 	case DRM_FORMAT_YUYV:
1704 	case DRM_FORMAT_UYVY:
1705 	case DRM_FORMAT_NV12:
1706 		return true;
1707 	default:
1708 		return false;
1709 	}
1710 }
1711 
1712 struct dispc_scaling_params {
1713 	int xinc, yinc;
1714 	u32 in_w, in_h, in_w_uv, in_h_uv;
1715 	u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv;
1716 	bool scale_x, scale_y;
1717 	const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv;
1718 	bool five_taps;
1719 };
1720 
1721 static int dispc_vid_calc_scaling(struct dispc_device *dispc,
1722 				  const struct drm_plane_state *state,
1723 				  struct dispc_scaling_params *sp,
1724 				  bool lite_plane)
1725 {
1726 	const struct dispc_features_scaling *f = &dispc->feat->scaling;
1727 	u32 fourcc = state->fb->format->format;
1728 	u32 in_width_max_5tap = f->in_width_max_5tap_rgb;
1729 	u32 in_width_max_3tap = f->in_width_max_3tap_rgb;
1730 	u32 downscale_limit;
1731 	u32 in_width_max;
1732 
1733 	memset(sp, 0, sizeof(*sp));
1734 	sp->xinc = 1;
1735 	sp->yinc = 1;
1736 	sp->in_w = state->src_w >> 16;
1737 	sp->in_w_uv = sp->in_w;
1738 	sp->in_h = state->src_h >> 16;
1739 	sp->in_h_uv = sp->in_h;
1740 
1741 	sp->scale_x = sp->in_w != state->crtc_w;
1742 	sp->scale_y = sp->in_h != state->crtc_h;
1743 
1744 	if (dispc_fourcc_is_yuv(fourcc)) {
1745 		in_width_max_5tap = f->in_width_max_5tap_yuv;
1746 		in_width_max_3tap = f->in_width_max_3tap_yuv;
1747 
1748 		sp->in_w_uv >>= 1;
1749 		sp->scale_x = true;
1750 
1751 		if (fourcc == DRM_FORMAT_NV12) {
1752 			sp->in_h_uv >>= 1;
1753 			sp->scale_y = true;
1754 		}
1755 	}
1756 
1757 	/* Skip the rest if no scaling is used */
1758 	if ((!sp->scale_x && !sp->scale_y) || lite_plane)
1759 		return 0;
1760 
1761 	if (sp->in_w > in_width_max_5tap) {
1762 		sp->five_taps = false;
1763 		in_width_max = in_width_max_3tap;
1764 		downscale_limit = f->downscale_limit_3tap;
1765 	} else {
1766 		sp->five_taps = true;
1767 		in_width_max = in_width_max_5tap;
1768 		downscale_limit = f->downscale_limit_5tap;
1769 	}
1770 
1771 	if (sp->scale_x) {
1772 		sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
1773 
1774 		if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
1775 			dev_dbg(dispc->dev,
1776 				"%s: X-scaling factor %u/%u > %u\n",
1777 				__func__, state->crtc_w, state->src_w >> 16,
1778 				f->upscale_limit);
1779 			return -EINVAL;
1780 		}
1781 
1782 		if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
1783 			sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w,
1784 							     state->crtc_w),
1785 						downscale_limit);
1786 
1787 			if (sp->xinc > f->xinc_max) {
1788 				dev_dbg(dispc->dev,
1789 					"%s: X-scaling factor %u/%u < 1/%u\n",
1790 					__func__, state->crtc_w,
1791 					state->src_w >> 16,
1792 					downscale_limit * f->xinc_max);
1793 				return -EINVAL;
1794 			}
1795 
1796 			sp->in_w = (state->src_w >> 16) / sp->xinc;
1797 		}
1798 
1799 		while (sp->in_w > in_width_max) {
1800 			sp->xinc++;
1801 			sp->in_w = (state->src_w >> 16) / sp->xinc;
1802 		}
1803 
1804 		if (sp->xinc > f->xinc_max) {
1805 			dev_dbg(dispc->dev,
1806 				"%s: Too wide input buffer %u > %u\n", __func__,
1807 				state->src_w >> 16, in_width_max * f->xinc_max);
1808 			return -EINVAL;
1809 		}
1810 
1811 		/*
1812 		 * We need even line length for YUV formats. Decimation
1813 		 * can lead to odd length, so we need to make it even
1814 		 * again.
1815 		 */
1816 		if (dispc_fourcc_is_yuv(fourcc))
1817 			sp->in_w &= ~1;
1818 
1819 		sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
1820 	}
1821 
1822 	if (sp->scale_y) {
1823 		sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h);
1824 
1825 		if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
1826 			dev_dbg(dispc->dev,
1827 				"%s: Y-scaling factor %u/%u > %u\n",
1828 				__func__, state->crtc_h, state->src_h >> 16,
1829 				f->upscale_limit);
1830 			return -EINVAL;
1831 		}
1832 
1833 		if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
1834 			sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h,
1835 							     state->crtc_h),
1836 						downscale_limit);
1837 
1838 			sp->in_h /= sp->yinc;
1839 			sp->fir_yinc = dispc_calc_fir_inc(sp->in_h,
1840 							  state->crtc_h);
1841 		}
1842 	}
1843 
1844 	dev_dbg(dispc->dev,
1845 		"%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n",
1846 		__func__, state->src_w >> 16, state->src_h >> 16,
1847 		sp->xinc, sp->yinc, sp->in_w, sp->in_h,
1848 		sp->fir_xinc / 0x200000u,
1849 		((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
1850 		sp->fir_yinc / 0x200000u,
1851 		((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
1852 		sp->five_taps ? 5 : 3,
1853 		state->crtc_w, state->crtc_h);
1854 
1855 	if (dispc_fourcc_is_yuv(fourcc)) {
1856 		if (sp->scale_x) {
1857 			sp->in_w_uv /= sp->xinc;
1858 			sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv,
1859 							     state->crtc_w);
1860 			sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev,
1861 							     sp->fir_xinc_uv,
1862 							     true);
1863 		}
1864 		if (sp->scale_y) {
1865 			sp->in_h_uv /= sp->yinc;
1866 			sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv,
1867 							     state->crtc_h);
1868 			sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev,
1869 							     sp->fir_yinc_uv,
1870 							     sp->five_taps);
1871 		}
1872 	}
1873 
1874 	if (sp->scale_x)
1875 		sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc,
1876 						  true);
1877 
1878 	if (sp->scale_y)
1879 		sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc,
1880 						  sp->five_taps);
1881 
1882 	return 0;
1883 }
1884 
1885 static void dispc_vid_set_scaling(struct dispc_device *dispc,
1886 				  u32 hw_plane,
1887 				  struct dispc_scaling_params *sp,
1888 				  u32 fourcc)
1889 {
1890 	/* HORIZONTAL RESIZE ENABLE */
1891 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1892 			sp->scale_x, 7, 7);
1893 
1894 	/* VERTICAL RESIZE ENABLE */
1895 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1896 			sp->scale_y, 8, 8);
1897 
1898 	/* Skip the rest if no scaling is used */
1899 	if (!sp->scale_x && !sp->scale_y)
1900 		return;
1901 
1902 	/* VERTICAL 5-TAPS  */
1903 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1904 			sp->five_taps, 21, 21);
1905 
1906 	if (dispc_fourcc_is_yuv(fourcc)) {
1907 		if (sp->scale_x) {
1908 			dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2,
1909 					sp->fir_xinc_uv);
1910 			dispc_vid_write_fir_coefs(dispc, hw_plane,
1911 						  DISPC_VID_FIR_COEF_HORIZ_UV,
1912 						  sp->xcoef_uv);
1913 		}
1914 		if (sp->scale_y) {
1915 			dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2,
1916 					sp->fir_yinc_uv);
1917 			dispc_vid_write_fir_coefs(dispc, hw_plane,
1918 						  DISPC_VID_FIR_COEF_VERT_UV,
1919 						  sp->ycoef_uv);
1920 		}
1921 	}
1922 
1923 	if (sp->scale_x) {
1924 		dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc);
1925 		dispc_vid_write_fir_coefs(dispc, hw_plane,
1926 					  DISPC_VID_FIR_COEF_HORIZ,
1927 					  sp->xcoef);
1928 	}
1929 
1930 	if (sp->scale_y) {
1931 		dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc);
1932 		dispc_vid_write_fir_coefs(dispc, hw_plane,
1933 					  DISPC_VID_FIR_COEF_VERT, sp->ycoef);
1934 	}
1935 }
1936 
1937 /* OTHER */
1938 
1939 static const struct {
1940 	u32 fourcc;
1941 	u8 dss_code;
1942 } dispc_color_formats[] = {
1943 	{ DRM_FORMAT_ARGB4444, 0x0, },
1944 	{ DRM_FORMAT_ABGR4444, 0x1, },
1945 	{ DRM_FORMAT_RGBA4444, 0x2, },
1946 
1947 	{ DRM_FORMAT_RGB565, 0x3, },
1948 	{ DRM_FORMAT_BGR565, 0x4, },
1949 
1950 	{ DRM_FORMAT_ARGB1555, 0x5, },
1951 	{ DRM_FORMAT_ABGR1555, 0x6, },
1952 
1953 	{ DRM_FORMAT_ARGB8888, 0x7, },
1954 	{ DRM_FORMAT_ABGR8888, 0x8, },
1955 	{ DRM_FORMAT_RGBA8888, 0x9, },
1956 	{ DRM_FORMAT_BGRA8888, 0xa, },
1957 
1958 	{ DRM_FORMAT_RGB888, 0xb, },
1959 	{ DRM_FORMAT_BGR888, 0xc, },
1960 
1961 	{ DRM_FORMAT_ARGB2101010, 0xe, },
1962 	{ DRM_FORMAT_ABGR2101010, 0xf, },
1963 
1964 	{ DRM_FORMAT_XRGB4444, 0x20, },
1965 	{ DRM_FORMAT_XBGR4444, 0x21, },
1966 	{ DRM_FORMAT_RGBX4444, 0x22, },
1967 
1968 	{ DRM_FORMAT_XRGB1555, 0x25, },
1969 	{ DRM_FORMAT_XBGR1555, 0x26, },
1970 
1971 	{ DRM_FORMAT_XRGB8888, 0x27, },
1972 	{ DRM_FORMAT_XBGR8888, 0x28, },
1973 	{ DRM_FORMAT_RGBX8888, 0x29, },
1974 	{ DRM_FORMAT_BGRX8888, 0x2a, },
1975 
1976 	{ DRM_FORMAT_XRGB2101010, 0x2e, },
1977 	{ DRM_FORMAT_XBGR2101010, 0x2f, },
1978 
1979 	{ DRM_FORMAT_YUYV, 0x3e, },
1980 	{ DRM_FORMAT_UYVY, 0x3f, },
1981 
1982 	{ DRM_FORMAT_NV12, 0x3d, },
1983 };
1984 
1985 static void dispc_plane_set_pixel_format(struct dispc_device *dispc,
1986 					 u32 hw_plane, u32 fourcc)
1987 {
1988 	unsigned int i;
1989 
1990 	for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
1991 		if (dispc_color_formats[i].fourcc == fourcc) {
1992 			VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1993 					dispc_color_formats[i].dss_code,
1994 					6, 1);
1995 			return;
1996 		}
1997 	}
1998 
1999 	WARN_ON(1);
2000 }
2001 
2002 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len)
2003 {
2004 	WARN_ON(!dispc->fourccs);
2005 
2006 	*len = dispc->num_fourccs;
2007 
2008 	return dispc->fourccs;
2009 }
2010 
2011 static s32 pixinc(int pixels, u8 ps)
2012 {
2013 	if (pixels == 1)
2014 		return 1;
2015 	else if (pixels > 1)
2016 		return 1 + (pixels - 1) * ps;
2017 	else if (pixels < 0)
2018 		return 1 - (-pixels + 1) * ps;
2019 
2020 	WARN_ON(1);
2021 	return 0;
2022 }
2023 
2024 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane,
2025 		      const struct drm_plane_state *state,
2026 		      u32 hw_videoport)
2027 {
2028 	bool lite = dispc->feat->vid_lite[hw_plane];
2029 	u32 fourcc = state->fb->format->format;
2030 	bool need_scaling = state->src_w >> 16 != state->crtc_w ||
2031 		state->src_h >> 16 != state->crtc_h;
2032 	struct dispc_scaling_params scaling;
2033 	int ret;
2034 
2035 	if (dispc_fourcc_is_yuv(fourcc)) {
2036 		if (!dispc_find_csc(state->color_encoding,
2037 				    state->color_range)) {
2038 			dev_dbg(dispc->dev,
2039 				"%s: Unsupported CSC (%u,%u) for HW plane %u\n",
2040 				__func__, state->color_encoding,
2041 				state->color_range, hw_plane);
2042 			return -EINVAL;
2043 		}
2044 	}
2045 
2046 	if (need_scaling) {
2047 		if (lite) {
2048 			dev_dbg(dispc->dev,
2049 				"%s: Lite plane %u can't scale %ux%u!=%ux%u\n",
2050 				__func__, hw_plane,
2051 				state->src_w >> 16, state->src_h >> 16,
2052 				state->crtc_w, state->crtc_h);
2053 			return -EINVAL;
2054 		}
2055 		ret = dispc_vid_calc_scaling(dispc, state, &scaling, false);
2056 		if (ret)
2057 			return ret;
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static
2064 dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state)
2065 {
2066 	struct drm_framebuffer *fb = state->fb;
2067 	struct drm_gem_dma_object *gem;
2068 	u32 x = state->src_x >> 16;
2069 	u32 y = state->src_y >> 16;
2070 
2071 	gem = drm_fb_dma_get_gem_obj(state->fb, 0);
2072 
2073 	return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] +
2074 		y * fb->pitches[0];
2075 }
2076 
2077 static
2078 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state)
2079 {
2080 	struct drm_framebuffer *fb = state->fb;
2081 	struct drm_gem_dma_object *gem;
2082 	u32 x = state->src_x >> 16;
2083 	u32 y = state->src_y >> 16;
2084 
2085 	if (WARN_ON(state->fb->format->num_planes != 2))
2086 		return 0;
2087 
2088 	gem = drm_fb_dma_get_gem_obj(fb, 1);
2089 
2090 	return gem->dma_addr + fb->offsets[1] +
2091 		(x * fb->format->cpp[1] / fb->format->hsub) +
2092 		(y * fb->pitches[1] / fb->format->vsub);
2093 }
2094 
2095 void dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane,
2096 		       const struct drm_plane_state *state,
2097 		       u32 hw_videoport)
2098 {
2099 	bool lite = dispc->feat->vid_lite[hw_plane];
2100 	u32 fourcc = state->fb->format->format;
2101 	u16 cpp = state->fb->format->cpp[0];
2102 	u32 fb_width = state->fb->pitches[0] / cpp;
2103 	dma_addr_t dma_addr = dispc_plane_state_dma_addr(state);
2104 	struct dispc_scaling_params scale;
2105 
2106 	dispc_vid_calc_scaling(dispc, state, &scale, lite);
2107 
2108 	dispc_plane_set_pixel_format(dispc, hw_plane, fourcc);
2109 
2110 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff);
2111 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32);
2112 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff);
2113 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32);
2114 
2115 	dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE,
2116 			(scale.in_w - 1) | ((scale.in_h - 1) << 16));
2117 
2118 	/* For YUV422 format we use the macropixel size for pixel inc */
2119 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2120 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
2121 				pixinc(scale.xinc, cpp * 2));
2122 	else
2123 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
2124 				pixinc(scale.xinc, cpp));
2125 
2126 	dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC,
2127 			pixinc(1 + (scale.yinc * fb_width -
2128 				    scale.xinc * scale.in_w),
2129 			       cpp));
2130 
2131 	if (state->fb->format->num_planes == 2) {
2132 		u16 cpp_uv = state->fb->format->cpp[1];
2133 		u32 fb_width_uv = state->fb->pitches[1] / cpp_uv;
2134 		dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state);
2135 
2136 		dispc_vid_write(dispc, hw_plane,
2137 				DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff);
2138 		dispc_vid_write(dispc, hw_plane,
2139 				DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32);
2140 		dispc_vid_write(dispc, hw_plane,
2141 				DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff);
2142 		dispc_vid_write(dispc, hw_plane,
2143 				DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32);
2144 
2145 		dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV,
2146 				pixinc(1 + (scale.yinc * fb_width_uv -
2147 					    scale.xinc * scale.in_w_uv),
2148 				       cpp_uv));
2149 	}
2150 
2151 	if (!lite) {
2152 		dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE,
2153 				(state->crtc_w - 1) |
2154 				((state->crtc_h - 1) << 16));
2155 
2156 		dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc);
2157 	}
2158 
2159 	/* enable YUV->RGB color conversion */
2160 	if (dispc_fourcc_is_yuv(fourcc)) {
2161 		dispc_vid_csc_setup(dispc, hw_plane, state);
2162 		dispc_vid_csc_enable(dispc, hw_plane, true);
2163 	} else {
2164 		dispc_vid_csc_enable(dispc, hw_plane, false);
2165 	}
2166 
2167 	dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA,
2168 			0xFF & (state->alpha >> 8));
2169 
2170 	if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI)
2171 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
2172 				28, 28);
2173 	else
2174 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
2175 				28, 28);
2176 }
2177 
2178 void dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable)
2179 {
2180 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0);
2181 }
2182 
2183 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane)
2184 {
2185 	return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0);
2186 }
2187 
2188 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc,
2189 					  u32 hw_plane, u32 low, u32 high)
2190 {
2191 	dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD,
2192 			FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
2193 }
2194 
2195 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc,
2196 					u32 hw_plane, u32 low, u32 high)
2197 {
2198 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD,
2199 			FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
2200 }
2201 
2202 static void dispc_k2g_plane_init(struct dispc_device *dispc)
2203 {
2204 	unsigned int hw_plane;
2205 
2206 	dev_dbg(dispc->dev, "%s()\n", __func__);
2207 
2208 	/* MFLAG_CTRL = ENABLED */
2209 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
2210 	/* MFLAG_START = MFLAGNORMALSTARTMODE */
2211 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
2212 
2213 	for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
2214 		u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
2215 		u32 thr_low, thr_high;
2216 		u32 mflag_low, mflag_high;
2217 		u32 preload;
2218 
2219 		thr_high = size - 1;
2220 		thr_low = size / 2;
2221 
2222 		mflag_high = size * 2 / 3;
2223 		mflag_low = size / 3;
2224 
2225 		preload = thr_low;
2226 
2227 		dev_dbg(dispc->dev,
2228 			"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
2229 			dispc->feat->vid_name[hw_plane],
2230 			size,
2231 			thr_high, thr_low,
2232 			mflag_high, mflag_low,
2233 			preload);
2234 
2235 		dispc_vid_set_buf_threshold(dispc, hw_plane,
2236 					    thr_low, thr_high);
2237 		dispc_vid_set_mflag_threshold(dispc, hw_plane,
2238 					      mflag_low, mflag_high);
2239 
2240 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
2241 
2242 		/*
2243 		 * Prefetch up to fifo high-threshold value to minimize the
2244 		 * possibility of underflows. Note that this means the PRELOAD
2245 		 * register is ignored.
2246 		 */
2247 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
2248 				19, 19);
2249 	}
2250 }
2251 
2252 static void dispc_k3_plane_init(struct dispc_device *dispc)
2253 {
2254 	unsigned int hw_plane;
2255 	u32 cba_lo_pri = 1;
2256 	u32 cba_hi_pri = 0;
2257 
2258 	dev_dbg(dispc->dev, "%s()\n", __func__);
2259 
2260 	REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0);
2261 	REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3);
2262 
2263 	/* MFLAG_CTRL = ENABLED */
2264 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
2265 	/* MFLAG_START = MFLAGNORMALSTARTMODE */
2266 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
2267 
2268 	for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
2269 		u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
2270 		u32 thr_low, thr_high;
2271 		u32 mflag_low, mflag_high;
2272 		u32 preload;
2273 
2274 		thr_high = size - 1;
2275 		thr_low = size / 2;
2276 
2277 		mflag_high = size * 2 / 3;
2278 		mflag_low = size / 3;
2279 
2280 		preload = thr_low;
2281 
2282 		dev_dbg(dispc->dev,
2283 			"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
2284 			dispc->feat->vid_name[hw_plane],
2285 			size,
2286 			thr_high, thr_low,
2287 			mflag_high, mflag_low,
2288 			preload);
2289 
2290 		dispc_vid_set_buf_threshold(dispc, hw_plane,
2291 					    thr_low, thr_high);
2292 		dispc_vid_set_mflag_threshold(dispc, hw_plane,
2293 					      mflag_low, mflag_high);
2294 
2295 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
2296 
2297 		/* Prefech up to PRELOAD value */
2298 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
2299 				19, 19);
2300 	}
2301 }
2302 
2303 static void dispc_plane_init(struct dispc_device *dispc)
2304 {
2305 	switch (dispc->feat->subrev) {
2306 	case DISPC_K2G:
2307 		dispc_k2g_plane_init(dispc);
2308 		break;
2309 	case DISPC_AM625:
2310 	case DISPC_AM62A7:
2311 	case DISPC_AM65X:
2312 	case DISPC_J721E:
2313 		dispc_k3_plane_init(dispc);
2314 		break;
2315 	default:
2316 		WARN_ON(1);
2317 	}
2318 }
2319 
2320 static void dispc_vp_init(struct dispc_device *dispc)
2321 {
2322 	unsigned int i;
2323 
2324 	dev_dbg(dispc->dev, "%s()\n", __func__);
2325 
2326 	/* Enable the gamma Shadow bit-field for all VPs*/
2327 	for (i = 0; i < dispc->feat->num_vps; i++)
2328 		VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2);
2329 }
2330 
2331 static void dispc_initial_config(struct dispc_device *dispc)
2332 {
2333 	dispc_plane_init(dispc);
2334 	dispc_vp_init(dispc);
2335 
2336 	/* Note: Hardcoded DPI routing on J721E for now */
2337 	if (dispc->feat->subrev == DISPC_J721E) {
2338 		dispc_write(dispc, DISPC_CONNECTIONS,
2339 			    FLD_VAL(2, 3, 0) |		/* VP1 to DPI0 */
2340 			    FLD_VAL(8, 7, 4)		/* VP3 to DPI1 */
2341 			);
2342 	}
2343 }
2344 
2345 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc,
2346 					   u32 hw_videoport)
2347 {
2348 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2349 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2350 	unsigned int i;
2351 
2352 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2353 
2354 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
2355 		return;
2356 
2357 	for (i = 0; i < hwlen; ++i) {
2358 		u32 v = table[i];
2359 
2360 		v |= i << 24;
2361 
2362 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE,
2363 			       v);
2364 	}
2365 }
2366 
2367 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc,
2368 					     u32 hw_videoport)
2369 {
2370 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2371 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2372 	unsigned int i;
2373 
2374 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2375 
2376 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
2377 		return;
2378 
2379 	for (i = 0; i < hwlen; ++i) {
2380 		u32 v = table[i];
2381 
2382 		v |= i << 24;
2383 
2384 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
2385 	}
2386 }
2387 
2388 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc,
2389 					     u32 hw_videoport)
2390 {
2391 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2392 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2393 	unsigned int i;
2394 
2395 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2396 
2397 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT))
2398 		return;
2399 
2400 	for (i = 0; i < hwlen; ++i) {
2401 		u32 v = table[i];
2402 
2403 		if (i == 0)
2404 			v |= 1 << 31;
2405 
2406 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
2407 	}
2408 }
2409 
2410 static void dispc_vp_write_gamma_table(struct dispc_device *dispc,
2411 				       u32 hw_videoport)
2412 {
2413 	switch (dispc->feat->subrev) {
2414 	case DISPC_K2G:
2415 		dispc_k2g_vp_write_gamma_table(dispc, hw_videoport);
2416 		break;
2417 	case DISPC_AM625:
2418 	case DISPC_AM62A7:
2419 	case DISPC_AM65X:
2420 		dispc_am65x_vp_write_gamma_table(dispc, hw_videoport);
2421 		break;
2422 	case DISPC_J721E:
2423 		dispc_j721e_vp_write_gamma_table(dispc, hw_videoport);
2424 		break;
2425 	default:
2426 		WARN_ON(1);
2427 		break;
2428 	}
2429 }
2430 
2431 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = {
2432 	{ .red = 0, .green = 0, .blue = 0, },
2433 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
2434 };
2435 
2436 static void dispc_vp_set_gamma(struct dispc_device *dispc,
2437 			       u32 hw_videoport,
2438 			       const struct drm_color_lut *lut,
2439 			       unsigned int length)
2440 {
2441 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2442 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2443 	u32 hwbits;
2444 	unsigned int i;
2445 
2446 	dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n",
2447 		__func__, hw_videoport, length, hwlen);
2448 
2449 	if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT)
2450 		hwbits = 10;
2451 	else
2452 		hwbits = 8;
2453 
2454 	if (!lut || length < 2) {
2455 		lut = dispc_vp_gamma_default_lut;
2456 		length = ARRAY_SIZE(dispc_vp_gamma_default_lut);
2457 	}
2458 
2459 	for (i = 0; i < length - 1; ++i) {
2460 		unsigned int first = i * (hwlen - 1) / (length - 1);
2461 		unsigned int last = (i + 1) * (hwlen - 1) / (length - 1);
2462 		unsigned int w = last - first;
2463 		u16 r, g, b;
2464 		unsigned int j;
2465 
2466 		if (w == 0)
2467 			continue;
2468 
2469 		for (j = 0; j <= w; j++) {
2470 			r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w;
2471 			g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w;
2472 			b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w;
2473 
2474 			r >>= 16 - hwbits;
2475 			g >>= 16 - hwbits;
2476 			b >>= 16 - hwbits;
2477 
2478 			table[first + j] = (r << (hwbits * 2)) |
2479 				(g << hwbits) | b;
2480 		}
2481 	}
2482 
2483 	dispc_vp_write_gamma_table(dispc, hw_videoport);
2484 }
2485 
2486 static s16 dispc_S31_32_to_s2_8(s64 coef)
2487 {
2488 	u64 sign_bit = 1ULL << 63;
2489 	u64 cbits = (u64)coef;
2490 	s16 ret;
2491 
2492 	if (cbits & sign_bit)
2493 		ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200);
2494 	else
2495 		ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF);
2496 
2497 	return ret;
2498 }
2499 
2500 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm,
2501 				   struct dispc_csc_coef *cpr)
2502 {
2503 	memset(cpr, 0, sizeof(*cpr));
2504 
2505 	cpr->to_regval = dispc_csc_cpr_regval;
2506 	cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]);
2507 	cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]);
2508 	cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]);
2509 	cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]);
2510 	cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]);
2511 	cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]);
2512 	cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]);
2513 	cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]);
2514 	cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]);
2515 }
2516 
2517 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) |	\
2518 			  FLD_VAL(xB, 31, 22))
2519 
2520 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc,
2521 					u32 *regval)
2522 {
2523 	regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]);
2524 	regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]);
2525 	regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]);
2526 }
2527 
2528 #undef CVAL
2529 
2530 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
2531 				   const struct dispc_csc_coef *csc)
2532 {
2533 	static const u16 dispc_vp_cpr_coef_reg[] = {
2534 		DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
2535 		/* K2G CPR is packed to three registers. */
2536 	};
2537 	u32 regval[DISPC_CSC_REGVAL_LEN];
2538 	unsigned int i;
2539 
2540 	dispc_k2g_vp_csc_cpr_regval(csc, regval);
2541 
2542 	for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++)
2543 		dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i],
2544 			       regval[i]);
2545 }
2546 
2547 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
2548 				 struct drm_color_ctm *ctm)
2549 {
2550 	u32 cprenable = 0;
2551 
2552 	if (ctm) {
2553 		struct dispc_csc_coef cpr;
2554 
2555 		dispc_k2g_cpr_from_ctm(ctm, &cpr);
2556 		dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr);
2557 		cprenable = 1;
2558 	}
2559 
2560 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
2561 		       cprenable, 15, 15);
2562 }
2563 
2564 static s16 dispc_S31_32_to_s3_8(s64 coef)
2565 {
2566 	u64 sign_bit = 1ULL << 63;
2567 	u64 cbits = (u64)coef;
2568 	s16 ret;
2569 
2570 	if (cbits & sign_bit)
2571 		ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400);
2572 	else
2573 		ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF);
2574 
2575 	return ret;
2576 }
2577 
2578 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm,
2579 			       struct dispc_csc_coef *cpr)
2580 {
2581 	memset(cpr, 0, sizeof(*cpr));
2582 
2583 	cpr->to_regval = dispc_csc_cpr_regval;
2584 	cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]);
2585 	cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]);
2586 	cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]);
2587 	cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]);
2588 	cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]);
2589 	cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]);
2590 	cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]);
2591 	cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]);
2592 	cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]);
2593 }
2594 
2595 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
2596 				  const struct dispc_csc_coef *csc)
2597 {
2598 	static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
2599 		DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
2600 		DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5,
2601 		DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7,
2602 	};
2603 	u32 regval[DISPC_CSC_REGVAL_LEN];
2604 	unsigned int i;
2605 
2606 	csc->to_regval(csc, regval);
2607 
2608 	for (i = 0; i < ARRAY_SIZE(regval); i++)
2609 		dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i],
2610 			       regval[i]);
2611 }
2612 
2613 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
2614 				struct drm_color_ctm *ctm)
2615 {
2616 	u32 colorconvenable = 0;
2617 
2618 	if (ctm) {
2619 		struct dispc_csc_coef csc;
2620 
2621 		dispc_csc_from_ctm(ctm, &csc);
2622 		dispc_k3_vp_write_csc(dispc, hw_videoport, &csc);
2623 		colorconvenable = 1;
2624 	}
2625 
2626 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
2627 		       colorconvenable, 24, 24);
2628 }
2629 
2630 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc,
2631 				    u32 hw_videoport,
2632 				    const struct drm_crtc_state *state,
2633 				    bool newmodeset)
2634 {
2635 	struct drm_color_lut *lut = NULL;
2636 	struct drm_color_ctm *ctm = NULL;
2637 	unsigned int length = 0;
2638 
2639 	if (!(state->color_mgmt_changed || newmodeset))
2640 		return;
2641 
2642 	if (state->gamma_lut) {
2643 		lut = (struct drm_color_lut *)state->gamma_lut->data;
2644 		length = state->gamma_lut->length / sizeof(*lut);
2645 	}
2646 
2647 	dispc_vp_set_gamma(dispc, hw_videoport, lut, length);
2648 
2649 	if (state->ctm)
2650 		ctm = (struct drm_color_ctm *)state->ctm->data;
2651 
2652 	if (dispc->feat->subrev == DISPC_K2G)
2653 		dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm);
2654 	else
2655 		dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm);
2656 }
2657 
2658 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport,
2659 		    const struct drm_crtc_state *state, bool newmodeset)
2660 {
2661 	dispc_vp_set_default_color(dispc, hw_videoport, 0);
2662 	dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset);
2663 }
2664 
2665 int dispc_runtime_suspend(struct dispc_device *dispc)
2666 {
2667 	dev_dbg(dispc->dev, "suspend\n");
2668 
2669 	dispc->is_enabled = false;
2670 
2671 	clk_disable_unprepare(dispc->fclk);
2672 
2673 	return 0;
2674 }
2675 
2676 int dispc_runtime_resume(struct dispc_device *dispc)
2677 {
2678 	dev_dbg(dispc->dev, "resume\n");
2679 
2680 	clk_prepare_enable(dispc->fclk);
2681 
2682 	if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0)
2683 		dev_warn(dispc->dev, "DSS FUNC RESET not done!\n");
2684 
2685 	dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n",
2686 		dispc_read(dispc, DSS_REVISION));
2687 
2688 	dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n",
2689 		REG_GET(dispc, DSS_SYSSTATUS, 1, 1),
2690 		REG_GET(dispc, DSS_SYSSTATUS, 2, 2),
2691 		REG_GET(dispc, DSS_SYSSTATUS, 3, 3));
2692 
2693 	if (dispc->feat->subrev == DISPC_AM625 ||
2694 	    dispc->feat->subrev == DISPC_AM65X)
2695 		dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n",
2696 			REG_GET(dispc, DSS_SYSSTATUS, 5, 5),
2697 			REG_GET(dispc, DSS_SYSSTATUS, 6, 6),
2698 			REG_GET(dispc, DSS_SYSSTATUS, 7, 7));
2699 
2700 	dev_dbg(dispc->dev, "DISPC IDLE %d\n",
2701 		REG_GET(dispc, DSS_SYSSTATUS, 9, 9));
2702 
2703 	dispc_initial_config(dispc);
2704 
2705 	dispc->is_enabled = true;
2706 
2707 	tidss_irq_resume(dispc->tidss);
2708 
2709 	return 0;
2710 }
2711 
2712 void dispc_remove(struct tidss_device *tidss)
2713 {
2714 	dev_dbg(tidss->dev, "%s\n", __func__);
2715 
2716 	tidss->dispc = NULL;
2717 }
2718 
2719 static int dispc_iomap_resource(struct platform_device *pdev, const char *name,
2720 				void __iomem **base)
2721 {
2722 	void __iomem *b;
2723 
2724 	b = devm_platform_ioremap_resource_byname(pdev, name);
2725 	if (IS_ERR(b)) {
2726 		dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name);
2727 		return PTR_ERR(b);
2728 	}
2729 
2730 	*base = b;
2731 
2732 	return 0;
2733 }
2734 
2735 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev,
2736 					 struct dispc_device *dispc)
2737 {
2738 	dispc->oldi_io_ctrl =
2739 		syscon_regmap_lookup_by_phandle(dev->of_node,
2740 						"ti,am65x-oldi-io-ctrl");
2741 	if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) {
2742 		dispc->oldi_io_ctrl = NULL;
2743 	} else if (IS_ERR(dispc->oldi_io_ctrl)) {
2744 		dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n",
2745 			__func__, PTR_ERR(dispc->oldi_io_ctrl));
2746 		return PTR_ERR(dispc->oldi_io_ctrl);
2747 	}
2748 	return 0;
2749 }
2750 
2751 static void dispc_init_errata(struct dispc_device *dispc)
2752 {
2753 	static const struct soc_device_attribute am65x_sr10_soc_devices[] = {
2754 		{ .family = "AM65X", .revision = "SR1.0" },
2755 		{ /* sentinel */ }
2756 	};
2757 
2758 	if (soc_device_match(am65x_sr10_soc_devices)) {
2759 		dispc->errata.i2000 = true;
2760 		dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n");
2761 	}
2762 }
2763 
2764 /*
2765  * K2G display controller does not support soft reset, so we do a basic manual
2766  * reset here: make sure the IRQs are masked and VPs are disabled.
2767  */
2768 static void dispc_softreset_k2g(struct dispc_device *dispc)
2769 {
2770 	dispc_set_irqenable(dispc, 0);
2771 	dispc_read_and_clear_irqstatus(dispc);
2772 
2773 	for (unsigned int vp_idx = 0; vp_idx < dispc->feat->num_vps; ++vp_idx)
2774 		VP_REG_FLD_MOD(dispc, vp_idx, DISPC_VP_CONTROL, 0, 0, 0);
2775 }
2776 
2777 static int dispc_softreset(struct dispc_device *dispc)
2778 {
2779 	u32 val;
2780 	int ret;
2781 
2782 	if (dispc->feat->subrev == DISPC_K2G) {
2783 		dispc_softreset_k2g(dispc);
2784 		return 0;
2785 	}
2786 
2787 	/* Soft reset */
2788 	REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1);
2789 	/* Wait for reset to complete */
2790 	ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS,
2791 				 val, val & 1, 100, 5000);
2792 	if (ret) {
2793 		dev_err(dispc->dev, "failed to reset dispc\n");
2794 		return ret;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 static int dispc_init_hw(struct dispc_device *dispc)
2801 {
2802 	struct device *dev = dispc->dev;
2803 	int ret;
2804 
2805 	ret = pm_runtime_set_active(dev);
2806 	if (ret) {
2807 		dev_err(dev, "Failed to set DSS PM to active\n");
2808 		return ret;
2809 	}
2810 
2811 	ret = clk_prepare_enable(dispc->fclk);
2812 	if (ret) {
2813 		dev_err(dev, "Failed to enable DSS fclk\n");
2814 		goto err_runtime_suspend;
2815 	}
2816 
2817 	ret = dispc_softreset(dispc);
2818 	if (ret)
2819 		goto err_clk_disable;
2820 
2821 	clk_disable_unprepare(dispc->fclk);
2822 	ret = pm_runtime_set_suspended(dev);
2823 	if (ret) {
2824 		dev_err(dev, "Failed to set DSS PM to suspended\n");
2825 		return ret;
2826 	}
2827 
2828 	return 0;
2829 
2830 err_clk_disable:
2831 	clk_disable_unprepare(dispc->fclk);
2832 
2833 err_runtime_suspend:
2834 	ret = pm_runtime_set_suspended(dev);
2835 	if (ret) {
2836 		dev_err(dev, "Failed to set DSS PM to suspended\n");
2837 		return ret;
2838 	}
2839 
2840 	return ret;
2841 }
2842 
2843 int dispc_init(struct tidss_device *tidss)
2844 {
2845 	struct device *dev = tidss->dev;
2846 	struct platform_device *pdev = to_platform_device(dev);
2847 	struct dispc_device *dispc;
2848 	const struct dispc_features *feat;
2849 	unsigned int i, num_fourccs;
2850 	int r = 0;
2851 
2852 	dev_dbg(dev, "%s\n", __func__);
2853 
2854 	feat = tidss->feat;
2855 
2856 	if (feat->subrev != DISPC_K2G) {
2857 		r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2858 		if (r)
2859 			dev_warn(dev, "cannot set DMA masks to 48-bit\n");
2860 	}
2861 
2862 	dma_set_max_seg_size(dev, UINT_MAX);
2863 
2864 	dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL);
2865 	if (!dispc)
2866 		return -ENOMEM;
2867 
2868 	dispc->tidss = tidss;
2869 	dispc->dev = dev;
2870 	dispc->feat = feat;
2871 
2872 	dispc_init_errata(dispc);
2873 
2874 	dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats),
2875 				      sizeof(*dispc->fourccs), GFP_KERNEL);
2876 	if (!dispc->fourccs)
2877 		return -ENOMEM;
2878 
2879 	num_fourccs = 0;
2880 	for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
2881 		if (dispc->errata.i2000 &&
2882 		    dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) {
2883 			continue;
2884 		}
2885 		dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc;
2886 	}
2887 
2888 	dispc->num_fourccs = num_fourccs;
2889 
2890 	dispc_common_regmap = dispc->feat->common_regs;
2891 
2892 	r = dispc_iomap_resource(pdev, dispc->feat->common,
2893 				 &dispc->base_common);
2894 	if (r)
2895 		return r;
2896 
2897 	for (i = 0; i < dispc->feat->num_planes; i++) {
2898 		r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i],
2899 					 &dispc->base_vid[i]);
2900 		if (r)
2901 			return r;
2902 	}
2903 
2904 	for (i = 0; i < dispc->feat->num_vps; i++) {
2905 		u32 gamma_size = dispc->feat->vp_feat.color.gamma_size;
2906 		u32 *gamma_table;
2907 		struct clk *clk;
2908 
2909 		r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i],
2910 					 &dispc->base_ovr[i]);
2911 		if (r)
2912 			return r;
2913 
2914 		r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i],
2915 					 &dispc->base_vp[i]);
2916 		if (r)
2917 			return r;
2918 
2919 		clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]);
2920 		if (IS_ERR(clk)) {
2921 			dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__,
2922 				dispc->feat->vpclk_name[i], PTR_ERR(clk));
2923 			return PTR_ERR(clk);
2924 		}
2925 		dispc->vp_clk[i] = clk;
2926 
2927 		gamma_table = devm_kmalloc_array(dev, gamma_size,
2928 						 sizeof(*gamma_table),
2929 						 GFP_KERNEL);
2930 		if (!gamma_table)
2931 			return -ENOMEM;
2932 		dispc->vp_data[i].gamma_table = gamma_table;
2933 	}
2934 
2935 	if (feat->subrev == DISPC_AM65X) {
2936 		r = dispc_init_am65x_oldi_io_ctrl(dev, dispc);
2937 		if (r)
2938 			return r;
2939 	}
2940 
2941 	dispc->fclk = devm_clk_get(dev, "fck");
2942 	if (IS_ERR(dispc->fclk)) {
2943 		dev_err(dev, "%s: Failed to get fclk: %ld\n",
2944 			__func__, PTR_ERR(dispc->fclk));
2945 		return PTR_ERR(dispc->fclk);
2946 	}
2947 	dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk));
2948 
2949 	of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth",
2950 			     &dispc->memory_bandwidth_limit);
2951 
2952 	r = dispc_init_hw(dispc);
2953 	if (r)
2954 		return r;
2955 
2956 	tidss->dispc = dispc;
2957 
2958 	return 0;
2959 }
2960