1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/ 4 * Author: Jyri Sarha <jsarha@ti.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/media-bus-format.h> 15 #include <linux/module.h> 16 #include <linux/mfd/syscon.h> 17 #include <linux/of.h> 18 #include <linux/of_graph.h> 19 #include <linux/of_device.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/regmap.h> 23 #include <linux/sys_soc.h> 24 25 #include <drm/drm_blend.h> 26 #include <drm/drm_fourcc.h> 27 #include <drm/drm_fb_dma_helper.h> 28 #include <drm/drm_framebuffer.h> 29 #include <drm/drm_gem_dma_helper.h> 30 #include <drm/drm_panel.h> 31 32 #include "tidss_crtc.h" 33 #include "tidss_dispc.h" 34 #include "tidss_drv.h" 35 #include "tidss_irq.h" 36 #include "tidss_plane.h" 37 38 #include "tidss_dispc_regs.h" 39 #include "tidss_scale_coefs.h" 40 41 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 42 [DSS_REVISION_OFF] = 0x00, 43 [DSS_SYSCONFIG_OFF] = 0x04, 44 [DSS_SYSSTATUS_OFF] = 0x08, 45 [DISPC_IRQ_EOI_OFF] = 0x20, 46 [DISPC_IRQSTATUS_RAW_OFF] = 0x24, 47 [DISPC_IRQSTATUS_OFF] = 0x28, 48 [DISPC_IRQENABLE_SET_OFF] = 0x2c, 49 [DISPC_IRQENABLE_CLR_OFF] = 0x30, 50 51 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40, 52 [DISPC_GLOBAL_BUFFER_OFF] = 0x44, 53 54 [DISPC_DBG_CONTROL_OFF] = 0x4c, 55 [DISPC_DBG_STATUS_OFF] = 0x50, 56 57 [DISPC_CLKGATING_DISABLE_OFF] = 0x54, 58 }; 59 60 const struct dispc_features dispc_k2g_feats = { 61 .min_pclk_khz = 4375, 62 63 .max_pclk_khz = { 64 [DISPC_VP_DPI] = 150000, 65 }, 66 67 /* 68 * XXX According TRM the RGB input buffer width up to 2560 should 69 * work on 3 taps, but in practice it only works up to 1280. 70 */ 71 .scaling = { 72 .in_width_max_5tap_rgb = 1280, 73 .in_width_max_3tap_rgb = 1280, 74 .in_width_max_5tap_yuv = 2560, 75 .in_width_max_3tap_yuv = 2560, 76 .upscale_limit = 16, 77 .downscale_limit_5tap = 4, 78 .downscale_limit_3tap = 2, 79 /* 80 * The max supported pixel inc value is 255. The value 81 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 82 * The maximum bpp of all formats supported by the HW 83 * is 8. So the maximum supported xinc value is 32, 84 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 85 */ 86 .xinc_max = 32, 87 }, 88 89 .subrev = DISPC_K2G, 90 91 .common = "common", 92 93 .common_regs = tidss_k2g_common_regs, 94 95 .num_vps = 1, 96 .vp_name = { "vp1" }, 97 .ovr_name = { "ovr1" }, 98 .vpclk_name = { "vp1" }, 99 .vp_bus_type = { DISPC_VP_DPI }, 100 101 .vp_feat = { .color = { 102 .has_ctm = true, 103 .gamma_size = 256, 104 .gamma_type = TIDSS_GAMMA_8BIT, 105 }, 106 }, 107 108 .num_planes = 1, 109 .vid_name = { "vid1" }, 110 .vid_lite = { false }, 111 .vid_order = { 0 }, 112 }; 113 114 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 115 [DSS_REVISION_OFF] = 0x4, 116 [DSS_SYSCONFIG_OFF] = 0x8, 117 [DSS_SYSSTATUS_OFF] = 0x20, 118 [DISPC_IRQ_EOI_OFF] = 0x24, 119 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 120 [DISPC_IRQSTATUS_OFF] = 0x2c, 121 [DISPC_IRQENABLE_SET_OFF] = 0x30, 122 [DISPC_IRQENABLE_CLR_OFF] = 0x40, 123 [DISPC_VID_IRQENABLE_OFF] = 0x44, 124 [DISPC_VID_IRQSTATUS_OFF] = 0x58, 125 [DISPC_VP_IRQENABLE_OFF] = 0x70, 126 [DISPC_VP_IRQSTATUS_OFF] = 0x7c, 127 128 [WB_IRQENABLE_OFF] = 0x88, 129 [WB_IRQSTATUS_OFF] = 0x8c, 130 131 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90, 132 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94, 133 [DISPC_GLOBAL_BUFFER_OFF] = 0x98, 134 [DSS_CBA_CFG_OFF] = 0x9c, 135 [DISPC_DBG_CONTROL_OFF] = 0xa0, 136 [DISPC_DBG_STATUS_OFF] = 0xa4, 137 [DISPC_CLKGATING_DISABLE_OFF] = 0xa8, 138 [DISPC_SECURE_DISABLE_OFF] = 0xac, 139 }; 140 141 const struct dispc_features dispc_am65x_feats = { 142 .max_pclk_khz = { 143 [DISPC_VP_DPI] = 165000, 144 [DISPC_VP_OLDI] = 165000, 145 }, 146 147 .scaling = { 148 .in_width_max_5tap_rgb = 1280, 149 .in_width_max_3tap_rgb = 2560, 150 .in_width_max_5tap_yuv = 2560, 151 .in_width_max_3tap_yuv = 4096, 152 .upscale_limit = 16, 153 .downscale_limit_5tap = 4, 154 .downscale_limit_3tap = 2, 155 /* 156 * The max supported pixel inc value is 255. The value 157 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 158 * The maximum bpp of all formats supported by the HW 159 * is 8. So the maximum supported xinc value is 32, 160 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 161 */ 162 .xinc_max = 32, 163 }, 164 165 .subrev = DISPC_AM65X, 166 167 .common = "common", 168 .common_regs = tidss_am65x_common_regs, 169 170 .num_vps = 2, 171 .vp_name = { "vp1", "vp2" }, 172 .ovr_name = { "ovr1", "ovr2" }, 173 .vpclk_name = { "vp1", "vp2" }, 174 .vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI }, 175 176 .vp_feat = { .color = { 177 .has_ctm = true, 178 .gamma_size = 256, 179 .gamma_type = TIDSS_GAMMA_8BIT, 180 }, 181 }, 182 183 .num_planes = 2, 184 /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ 185 .vid_name = { "vid", "vidl1" }, 186 .vid_lite = { false, true, }, 187 .vid_order = { 1, 0 }, 188 }; 189 190 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 191 [DSS_REVISION_OFF] = 0x4, 192 [DSS_SYSCONFIG_OFF] = 0x8, 193 [DSS_SYSSTATUS_OFF] = 0x20, 194 [DISPC_IRQ_EOI_OFF] = 0x80, 195 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 196 [DISPC_IRQSTATUS_OFF] = 0x2c, 197 [DISPC_IRQENABLE_SET_OFF] = 0x30, 198 [DISPC_IRQENABLE_CLR_OFF] = 0x34, 199 [DISPC_VID_IRQENABLE_OFF] = 0x38, 200 [DISPC_VID_IRQSTATUS_OFF] = 0x48, 201 [DISPC_VP_IRQENABLE_OFF] = 0x58, 202 [DISPC_VP_IRQSTATUS_OFF] = 0x68, 203 204 [WB_IRQENABLE_OFF] = 0x78, 205 [WB_IRQSTATUS_OFF] = 0x7c, 206 207 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98, 208 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c, 209 [DISPC_GLOBAL_BUFFER_OFF] = 0xa0, 210 [DSS_CBA_CFG_OFF] = 0xa4, 211 [DISPC_DBG_CONTROL_OFF] = 0xa8, 212 [DISPC_DBG_STATUS_OFF] = 0xac, 213 [DISPC_CLKGATING_DISABLE_OFF] = 0xb0, 214 [DISPC_SECURE_DISABLE_OFF] = 0x90, 215 216 [FBDC_REVISION_1_OFF] = 0xb8, 217 [FBDC_REVISION_2_OFF] = 0xbc, 218 [FBDC_REVISION_3_OFF] = 0xc0, 219 [FBDC_REVISION_4_OFF] = 0xc4, 220 [FBDC_REVISION_5_OFF] = 0xc8, 221 [FBDC_REVISION_6_OFF] = 0xcc, 222 [FBDC_COMMON_CONTROL_OFF] = 0xd0, 223 [FBDC_CONSTANT_COLOR_0_OFF] = 0xd4, 224 [FBDC_CONSTANT_COLOR_1_OFF] = 0xd8, 225 [DISPC_CONNECTIONS_OFF] = 0xe4, 226 [DISPC_MSS_VP1_OFF] = 0xe8, 227 [DISPC_MSS_VP3_OFF] = 0xec, 228 }; 229 230 const struct dispc_features dispc_j721e_feats = { 231 .max_pclk_khz = { 232 [DISPC_VP_DPI] = 170000, 233 [DISPC_VP_INTERNAL] = 600000, 234 }, 235 236 .scaling = { 237 .in_width_max_5tap_rgb = 2048, 238 .in_width_max_3tap_rgb = 4096, 239 .in_width_max_5tap_yuv = 4096, 240 .in_width_max_3tap_yuv = 4096, 241 .upscale_limit = 16, 242 .downscale_limit_5tap = 4, 243 .downscale_limit_3tap = 2, 244 /* 245 * The max supported pixel inc value is 255. The value 246 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 247 * The maximum bpp of all formats supported by the HW 248 * is 8. So the maximum supported xinc value is 32, 249 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 250 */ 251 .xinc_max = 32, 252 }, 253 254 .subrev = DISPC_J721E, 255 256 .common = "common_m", 257 .common_regs = tidss_j721e_common_regs, 258 259 .num_vps = 4, 260 .vp_name = { "vp1", "vp2", "vp3", "vp4" }, 261 .ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" }, 262 .vpclk_name = { "vp1", "vp2", "vp3", "vp4" }, 263 /* Currently hard coded VP routing (see dispc_initial_config()) */ 264 .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI, 265 DISPC_VP_INTERNAL, DISPC_VP_DPI, }, 266 .vp_feat = { .color = { 267 .has_ctm = true, 268 .gamma_size = 1024, 269 .gamma_type = TIDSS_GAMMA_10BIT, 270 }, 271 }, 272 .num_planes = 4, 273 .vid_name = { "vid1", "vidl1", "vid2", "vidl2" }, 274 .vid_lite = { 0, 1, 0, 1, }, 275 .vid_order = { 1, 3, 0, 2 }, 276 }; 277 278 static const u16 *dispc_common_regmap; 279 280 struct dss_vp_data { 281 u32 *gamma_table; 282 }; 283 284 struct dispc_device { 285 struct tidss_device *tidss; 286 struct device *dev; 287 288 void __iomem *base_common; 289 void __iomem *base_vid[TIDSS_MAX_PLANES]; 290 void __iomem *base_ovr[TIDSS_MAX_PORTS]; 291 void __iomem *base_vp[TIDSS_MAX_PORTS]; 292 293 struct regmap *oldi_io_ctrl; 294 295 struct clk *vp_clk[TIDSS_MAX_PORTS]; 296 297 const struct dispc_features *feat; 298 299 struct clk *fclk; 300 301 bool is_enabled; 302 303 struct dss_vp_data vp_data[TIDSS_MAX_PORTS]; 304 305 u32 *fourccs; 306 u32 num_fourccs; 307 308 u32 memory_bandwidth_limit; 309 310 struct dispc_errata errata; 311 }; 312 313 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val) 314 { 315 iowrite32(val, dispc->base_common + reg); 316 } 317 318 static u32 dispc_read(struct dispc_device *dispc, u16 reg) 319 { 320 return ioread32(dispc->base_common + reg); 321 } 322 323 static 324 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val) 325 { 326 void __iomem *base = dispc->base_vid[hw_plane]; 327 328 iowrite32(val, base + reg); 329 } 330 331 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg) 332 { 333 void __iomem *base = dispc->base_vid[hw_plane]; 334 335 return ioread32(base + reg); 336 } 337 338 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport, 339 u16 reg, u32 val) 340 { 341 void __iomem *base = dispc->base_ovr[hw_videoport]; 342 343 iowrite32(val, base + reg); 344 } 345 346 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 347 { 348 void __iomem *base = dispc->base_ovr[hw_videoport]; 349 350 return ioread32(base + reg); 351 } 352 353 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport, 354 u16 reg, u32 val) 355 { 356 void __iomem *base = dispc->base_vp[hw_videoport]; 357 358 iowrite32(val, base + reg); 359 } 360 361 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 362 { 363 void __iomem *base = dispc->base_vp[hw_videoport]; 364 365 return ioread32(base + reg); 366 } 367 368 /* 369 * TRM gives bitfields as start:end, where start is the higher bit 370 * number. For example 7:0 371 */ 372 373 static u32 FLD_MASK(u32 start, u32 end) 374 { 375 return ((1 << (start - end + 1)) - 1) << end; 376 } 377 378 static u32 FLD_VAL(u32 val, u32 start, u32 end) 379 { 380 return (val << end) & FLD_MASK(start, end); 381 } 382 383 static u32 FLD_GET(u32 val, u32 start, u32 end) 384 { 385 return (val & FLD_MASK(start, end)) >> end; 386 } 387 388 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end) 389 { 390 return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end); 391 } 392 393 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end) 394 { 395 return FLD_GET(dispc_read(dispc, idx), start, end); 396 } 397 398 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val, 399 u32 start, u32 end) 400 { 401 dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val, 402 start, end)); 403 } 404 405 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx, 406 u32 start, u32 end) 407 { 408 return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end); 409 } 410 411 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx, 412 u32 val, u32 start, u32 end) 413 { 414 dispc_vid_write(dispc, hw_plane, idx, 415 FLD_MOD(dispc_vid_read(dispc, hw_plane, idx), 416 val, start, end)); 417 } 418 419 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx, 420 u32 start, u32 end) 421 { 422 return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end); 423 } 424 425 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val, 426 u32 start, u32 end) 427 { 428 dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx), 429 val, start, end)); 430 } 431 432 __maybe_unused 433 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx, 434 u32 start, u32 end) 435 { 436 return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end); 437 } 438 439 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx, 440 u32 val, u32 start, u32 end) 441 { 442 dispc_ovr_write(dispc, ovr, idx, 443 FLD_MOD(dispc_ovr_read(dispc, ovr, idx), 444 val, start, end)); 445 } 446 447 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport) 448 { 449 dispc_irq_t vp_stat = 0; 450 451 if (stat & BIT(0)) 452 vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport); 453 if (stat & BIT(1)) 454 vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport); 455 if (stat & BIT(2)) 456 vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport); 457 if (stat & BIT(4)) 458 vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport); 459 460 return vp_stat; 461 } 462 463 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport) 464 { 465 u32 stat = 0; 466 467 if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport)) 468 stat |= BIT(0); 469 if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport)) 470 stat |= BIT(1); 471 if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport)) 472 stat |= BIT(2); 473 if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport)) 474 stat |= BIT(4); 475 476 return stat; 477 } 478 479 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane) 480 { 481 dispc_irq_t vid_stat = 0; 482 483 if (stat & BIT(0)) 484 vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane); 485 486 return vid_stat; 487 } 488 489 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane) 490 { 491 u32 stat = 0; 492 493 if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane)) 494 stat |= BIT(0); 495 496 return stat; 497 } 498 499 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc, 500 u32 hw_videoport) 501 { 502 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS); 503 504 return dispc_vp_irq_from_raw(stat, hw_videoport); 505 } 506 507 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc, 508 u32 hw_videoport, dispc_irq_t vpstat) 509 { 510 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 511 512 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat); 513 } 514 515 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc, 516 u32 hw_plane) 517 { 518 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS); 519 520 return dispc_vid_irq_from_raw(stat, hw_plane); 521 } 522 523 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc, 524 u32 hw_plane, dispc_irq_t vidstat) 525 { 526 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 527 528 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat); 529 } 530 531 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc, 532 u32 hw_videoport) 533 { 534 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE); 535 536 return dispc_vp_irq_from_raw(stat, hw_videoport); 537 } 538 539 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc, 540 u32 hw_videoport, dispc_irq_t vpstat) 541 { 542 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 543 544 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat); 545 } 546 547 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc, 548 u32 hw_plane) 549 { 550 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE); 551 552 return dispc_vid_irq_from_raw(stat, hw_plane); 553 } 554 555 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc, 556 u32 hw_plane, dispc_irq_t vidstat) 557 { 558 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 559 560 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat); 561 } 562 563 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc, 564 dispc_irq_t mask) 565 { 566 dispc_k2g_vp_write_irqstatus(dispc, 0, mask); 567 dispc_k2g_vid_write_irqstatus(dispc, 0, mask); 568 } 569 570 static 571 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc) 572 { 573 dispc_irq_t stat = 0; 574 575 /* always clear the top level irqstatus */ 576 dispc_write(dispc, DISPC_IRQSTATUS, 577 dispc_read(dispc, DISPC_IRQSTATUS)); 578 579 stat |= dispc_k2g_vp_read_irqstatus(dispc, 0); 580 stat |= dispc_k2g_vid_read_irqstatus(dispc, 0); 581 582 dispc_k2g_clear_irqstatus(dispc, stat); 583 584 return stat; 585 } 586 587 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc) 588 { 589 dispc_irq_t stat = 0; 590 591 stat |= dispc_k2g_vp_read_irqenable(dispc, 0); 592 stat |= dispc_k2g_vid_read_irqenable(dispc, 0); 593 594 return stat; 595 } 596 597 static 598 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 599 { 600 dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc); 601 602 /* clear the irqstatus for newly enabled irqs */ 603 dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 604 605 dispc_k2g_vp_set_irqenable(dispc, 0, mask); 606 dispc_k2g_vid_set_irqenable(dispc, 0, mask); 607 608 dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7)); 609 610 /* flush posted write */ 611 dispc_k2g_read_irqenable(dispc); 612 } 613 614 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc, 615 u32 hw_videoport) 616 { 617 u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport)); 618 619 return dispc_vp_irq_from_raw(stat, hw_videoport); 620 } 621 622 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc, 623 u32 hw_videoport, dispc_irq_t vpstat) 624 { 625 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 626 627 dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat); 628 } 629 630 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc, 631 u32 hw_plane) 632 { 633 u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane)); 634 635 return dispc_vid_irq_from_raw(stat, hw_plane); 636 } 637 638 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc, 639 u32 hw_plane, dispc_irq_t vidstat) 640 { 641 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 642 643 dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat); 644 } 645 646 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc, 647 u32 hw_videoport) 648 { 649 u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport)); 650 651 return dispc_vp_irq_from_raw(stat, hw_videoport); 652 } 653 654 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc, 655 u32 hw_videoport, dispc_irq_t vpstat) 656 { 657 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 658 659 dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat); 660 } 661 662 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc, 663 u32 hw_plane) 664 { 665 u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane)); 666 667 return dispc_vid_irq_from_raw(stat, hw_plane); 668 } 669 670 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc, 671 u32 hw_plane, dispc_irq_t vidstat) 672 { 673 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 674 675 dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat); 676 } 677 678 static 679 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask) 680 { 681 unsigned int i; 682 u32 top_clear = 0; 683 684 for (i = 0; i < dispc->feat->num_vps; ++i) { 685 if (clearmask & DSS_IRQ_VP_MASK(i)) { 686 dispc_k3_vp_write_irqstatus(dispc, i, clearmask); 687 top_clear |= BIT(i); 688 } 689 } 690 for (i = 0; i < dispc->feat->num_planes; ++i) { 691 if (clearmask & DSS_IRQ_PLANE_MASK(i)) { 692 dispc_k3_vid_write_irqstatus(dispc, i, clearmask); 693 top_clear |= BIT(4 + i); 694 } 695 } 696 if (dispc->feat->subrev == DISPC_K2G) 697 return; 698 699 dispc_write(dispc, DISPC_IRQSTATUS, top_clear); 700 701 /* Flush posted writes */ 702 dispc_read(dispc, DISPC_IRQSTATUS); 703 } 704 705 static 706 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc) 707 { 708 dispc_irq_t status = 0; 709 unsigned int i; 710 711 for (i = 0; i < dispc->feat->num_vps; ++i) 712 status |= dispc_k3_vp_read_irqstatus(dispc, i); 713 714 for (i = 0; i < dispc->feat->num_planes; ++i) 715 status |= dispc_k3_vid_read_irqstatus(dispc, i); 716 717 dispc_k3_clear_irqstatus(dispc, status); 718 719 return status; 720 } 721 722 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc) 723 { 724 dispc_irq_t enable = 0; 725 unsigned int i; 726 727 for (i = 0; i < dispc->feat->num_vps; ++i) 728 enable |= dispc_k3_vp_read_irqenable(dispc, i); 729 730 for (i = 0; i < dispc->feat->num_planes; ++i) 731 enable |= dispc_k3_vid_read_irqenable(dispc, i); 732 733 return enable; 734 } 735 736 static void dispc_k3_set_irqenable(struct dispc_device *dispc, 737 dispc_irq_t mask) 738 { 739 unsigned int i; 740 u32 main_enable = 0, main_disable = 0; 741 dispc_irq_t old_mask; 742 743 old_mask = dispc_k3_read_irqenable(dispc); 744 745 /* clear the irqstatus for newly enabled irqs */ 746 dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask); 747 748 for (i = 0; i < dispc->feat->num_vps; ++i) { 749 dispc_k3_vp_set_irqenable(dispc, i, mask); 750 if (mask & DSS_IRQ_VP_MASK(i)) 751 main_enable |= BIT(i); /* VP IRQ */ 752 else 753 main_disable |= BIT(i); /* VP IRQ */ 754 } 755 756 for (i = 0; i < dispc->feat->num_planes; ++i) { 757 dispc_k3_vid_set_irqenable(dispc, i, mask); 758 if (mask & DSS_IRQ_PLANE_MASK(i)) 759 main_enable |= BIT(i + 4); /* VID IRQ */ 760 else 761 main_disable |= BIT(i + 4); /* VID IRQ */ 762 } 763 764 if (main_enable) 765 dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable); 766 767 if (main_disable) 768 dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable); 769 770 /* Flush posted writes */ 771 dispc_read(dispc, DISPC_IRQENABLE_SET); 772 } 773 774 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc) 775 { 776 switch (dispc->feat->subrev) { 777 case DISPC_K2G: 778 return dispc_k2g_read_and_clear_irqstatus(dispc); 779 case DISPC_AM65X: 780 case DISPC_J721E: 781 return dispc_k3_read_and_clear_irqstatus(dispc); 782 default: 783 WARN_ON(1); 784 return 0; 785 } 786 } 787 788 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 789 { 790 switch (dispc->feat->subrev) { 791 case DISPC_K2G: 792 dispc_k2g_set_irqenable(dispc, mask); 793 break; 794 case DISPC_AM65X: 795 case DISPC_J721E: 796 dispc_k3_set_irqenable(dispc, mask); 797 break; 798 default: 799 WARN_ON(1); 800 break; 801 } 802 } 803 804 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 }; 805 806 struct dispc_bus_format { 807 u32 bus_fmt; 808 u32 data_width; 809 bool is_oldi_fmt; 810 enum dispc_oldi_mode_reg_val oldi_mode_reg_val; 811 }; 812 813 static const struct dispc_bus_format dispc_bus_formats[] = { 814 { MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 }, 815 { MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 }, 816 { MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 }, 817 { MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 }, 818 { MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 }, 819 { MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 }, 820 { MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 }, 821 { MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 }, 822 { MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 }, 823 }; 824 825 static const 826 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc, 827 u32 hw_videoport, 828 u32 bus_fmt, u32 bus_flags) 829 { 830 unsigned int i; 831 832 for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) { 833 if (dispc_bus_formats[i].bus_fmt == bus_fmt) 834 return &dispc_bus_formats[i]; 835 } 836 837 return NULL; 838 } 839 840 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport, 841 const struct drm_crtc_state *state) 842 { 843 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 844 const struct dispc_bus_format *fmt; 845 846 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 847 tstate->bus_flags); 848 if (!fmt) { 849 dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n", 850 __func__, tstate->bus_format); 851 return -EINVAL; 852 } 853 854 if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI && 855 fmt->is_oldi_fmt) { 856 dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n", 857 __func__, dispc->feat->vp_name[hw_videoport]); 858 return -EINVAL; 859 } 860 861 return 0; 862 } 863 864 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power) 865 { 866 u32 val = power ? 0 : OLDI_PWRDN_TX; 867 868 if (WARN_ON(!dispc->oldi_io_ctrl)) 869 return; 870 871 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL, 872 OLDI_PWRDN_TX, val); 873 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL, 874 OLDI_PWRDN_TX, val); 875 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL, 876 OLDI_PWRDN_TX, val); 877 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL, 878 OLDI_PWRDN_TX, val); 879 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL, 880 OLDI_PWRDN_TX, val); 881 } 882 883 static void dispc_set_num_datalines(struct dispc_device *dispc, 884 u32 hw_videoport, int num_lines) 885 { 886 int v; 887 888 switch (num_lines) { 889 case 12: 890 v = 0; break; 891 case 16: 892 v = 1; break; 893 case 18: 894 v = 2; break; 895 case 24: 896 v = 3; break; 897 case 30: 898 v = 4; break; 899 case 36: 900 v = 5; break; 901 default: 902 WARN_ON(1); 903 v = 3; 904 } 905 906 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8); 907 } 908 909 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport, 910 const struct dispc_bus_format *fmt) 911 { 912 u32 oldi_cfg = 0; 913 u32 oldi_reset_bit = BIT(5 + hw_videoport); 914 int count = 0; 915 916 /* 917 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC 918 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0. 919 */ 920 921 if (fmt->data_width == 24) 922 oldi_cfg |= BIT(8); /* MSB */ 923 else if (fmt->data_width != 18) 924 dev_warn(dispc->dev, "%s: %d port width not supported\n", 925 __func__, fmt->data_width); 926 927 oldi_cfg |= BIT(7); /* DEPOL */ 928 929 oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1); 930 931 oldi_cfg |= BIT(12); /* SOFTRST */ 932 933 oldi_cfg |= BIT(0); /* ENABLE */ 934 935 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg); 936 937 while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) && 938 count < 10000) 939 count++; 940 941 if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS))) 942 dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n", 943 __func__); 944 } 945 946 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport, 947 const struct drm_crtc_state *state) 948 { 949 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 950 const struct dispc_bus_format *fmt; 951 952 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 953 tstate->bus_flags); 954 955 if (WARN_ON(!fmt)) 956 return; 957 958 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 959 dispc_oldi_tx_power(dispc, true); 960 961 dispc_enable_oldi(dispc, hw_videoport, fmt); 962 } 963 } 964 965 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport, 966 const struct drm_crtc_state *state) 967 { 968 const struct drm_display_mode *mode = &state->adjusted_mode; 969 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 970 bool align, onoff, rf, ieo, ipc, ihs, ivs; 971 const struct dispc_bus_format *fmt; 972 u32 hsw, hfp, hbp, vsw, vfp, vbp; 973 974 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 975 tstate->bus_flags); 976 977 if (WARN_ON(!fmt)) 978 return; 979 980 dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width); 981 982 hfp = mode->hsync_start - mode->hdisplay; 983 hsw = mode->hsync_end - mode->hsync_start; 984 hbp = mode->htotal - mode->hsync_end; 985 986 vfp = mode->vsync_start - mode->vdisplay; 987 vsw = mode->vsync_end - mode->vsync_start; 988 vbp = mode->vtotal - mode->vsync_end; 989 990 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H, 991 FLD_VAL(hsw - 1, 7, 0) | 992 FLD_VAL(hfp - 1, 19, 8) | 993 FLD_VAL(hbp - 1, 31, 20)); 994 995 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V, 996 FLD_VAL(vsw - 1, 7, 0) | 997 FLD_VAL(vfp, 19, 8) | 998 FLD_VAL(vbp, 31, 20)); 999 1000 ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 1001 1002 ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 1003 1004 ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW); 1005 1006 ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE); 1007 1008 /* always use the 'rf' setting */ 1009 onoff = true; 1010 1011 rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE); 1012 1013 /* always use aligned syncs */ 1014 align = true; 1015 1016 /* always use DE_HIGH for OLDI */ 1017 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) 1018 ieo = false; 1019 1020 dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ, 1021 FLD_VAL(align, 18, 18) | 1022 FLD_VAL(onoff, 17, 17) | 1023 FLD_VAL(rf, 16, 16) | 1024 FLD_VAL(ieo, 15, 15) | 1025 FLD_VAL(ipc, 14, 14) | 1026 FLD_VAL(ihs, 13, 13) | 1027 FLD_VAL(ivs, 12, 12)); 1028 1029 dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN, 1030 FLD_VAL(mode->hdisplay - 1, 11, 0) | 1031 FLD_VAL(mode->vdisplay - 1, 27, 16)); 1032 1033 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0); 1034 } 1035 1036 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport) 1037 { 1038 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0); 1039 } 1040 1041 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport) 1042 { 1043 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 1044 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0); 1045 1046 dispc_oldi_tx_power(dispc, false); 1047 } 1048 } 1049 1050 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport) 1051 { 1052 return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5); 1053 } 1054 1055 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport) 1056 { 1057 WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5)); 1058 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5); 1059 } 1060 1061 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN }; 1062 1063 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode) 1064 { 1065 u16 c12; 1066 1067 c12 = c8 << 4; 1068 1069 switch (mode) { 1070 case C8_TO_C12_REPLICATE: 1071 /* Copy c8 4 MSB to 4 LSB for full scale c12 */ 1072 c12 |= c8 >> 4; 1073 break; 1074 case C8_TO_C12_MAX: 1075 c12 |= 0xF; 1076 break; 1077 default: 1078 case C8_TO_C12_MIN: 1079 break; 1080 } 1081 1082 return c12; 1083 } 1084 1085 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m) 1086 { 1087 u8 a, r, g, b; 1088 u64 v; 1089 1090 a = (argb8888 >> 24) & 0xff; 1091 r = (argb8888 >> 16) & 0xff; 1092 g = (argb8888 >> 8) & 0xff; 1093 b = (argb8888 >> 0) & 0xff; 1094 1095 v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) | 1096 ((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m); 1097 1098 return v; 1099 } 1100 1101 static void dispc_vp_set_default_color(struct dispc_device *dispc, 1102 u32 hw_videoport, u32 default_color) 1103 { 1104 u64 v; 1105 1106 v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE); 1107 1108 dispc_ovr_write(dispc, hw_videoport, 1109 DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff); 1110 dispc_ovr_write(dispc, hw_videoport, 1111 DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff); 1112 } 1113 1114 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc, 1115 u32 hw_videoport, 1116 const struct drm_display_mode *mode) 1117 { 1118 u32 hsw, hfp, hbp, vsw, vfp, vbp; 1119 enum dispc_vp_bus_type bus_type; 1120 int max_pclk; 1121 1122 bus_type = dispc->feat->vp_bus_type[hw_videoport]; 1123 1124 max_pclk = dispc->feat->max_pclk_khz[bus_type]; 1125 1126 if (WARN_ON(max_pclk == 0)) 1127 return MODE_BAD; 1128 1129 if (mode->clock < dispc->feat->min_pclk_khz) 1130 return MODE_CLOCK_LOW; 1131 1132 if (mode->clock > max_pclk) 1133 return MODE_CLOCK_HIGH; 1134 1135 if (mode->hdisplay > 4096) 1136 return MODE_BAD; 1137 1138 if (mode->vdisplay > 4096) 1139 return MODE_BAD; 1140 1141 /* TODO: add interlace support */ 1142 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1143 return MODE_NO_INTERLACE; 1144 1145 /* 1146 * Enforce the output width is divisible by 2. Actually this 1147 * is only needed in following cases: 1148 * - YUV output selected (BT656, BT1120) 1149 * - Dithering enabled 1150 * - TDM with TDMCycleFormat == 3 1151 * But for simplicity we enforce that always. 1152 */ 1153 if ((mode->hdisplay % 2) != 0) 1154 return MODE_BAD_HVALUE; 1155 1156 hfp = mode->hsync_start - mode->hdisplay; 1157 hsw = mode->hsync_end - mode->hsync_start; 1158 hbp = mode->htotal - mode->hsync_end; 1159 1160 vfp = mode->vsync_start - mode->vdisplay; 1161 vsw = mode->vsync_end - mode->vsync_start; 1162 vbp = mode->vtotal - mode->vsync_end; 1163 1164 if (hsw < 1 || hsw > 256 || 1165 hfp < 1 || hfp > 4096 || 1166 hbp < 1 || hbp > 4096) 1167 return MODE_BAD_HVALUE; 1168 1169 if (vsw < 1 || vsw > 256 || 1170 vfp > 4095 || vbp > 4095) 1171 return MODE_BAD_VVALUE; 1172 1173 if (dispc->memory_bandwidth_limit) { 1174 const unsigned int bpp = 4; 1175 u64 bandwidth; 1176 1177 bandwidth = 1000 * mode->clock; 1178 bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; 1179 bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); 1180 1181 if (dispc->memory_bandwidth_limit < bandwidth) 1182 return MODE_BAD; 1183 } 1184 1185 return MODE_OK; 1186 } 1187 1188 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport) 1189 { 1190 int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]); 1191 1192 if (ret) 1193 dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__, 1194 ret); 1195 1196 return ret; 1197 } 1198 1199 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport) 1200 { 1201 clk_disable_unprepare(dispc->vp_clk[hw_videoport]); 1202 } 1203 1204 /* 1205 * Calculate the percentage difference between the requested pixel clock rate 1206 * and the effective rate resulting from calculating the clock divider value. 1207 */ 1208 static 1209 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate) 1210 { 1211 int r = rate / 100, rr = real_rate / 100; 1212 1213 return (unsigned int)(abs(((rr - r) * 100) / r)); 1214 } 1215 1216 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport, 1217 unsigned long rate) 1218 { 1219 int r; 1220 unsigned long new_rate; 1221 1222 r = clk_set_rate(dispc->vp_clk[hw_videoport], rate); 1223 if (r) { 1224 dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n", 1225 hw_videoport, rate); 1226 return r; 1227 } 1228 1229 new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]); 1230 1231 if (dispc_pclk_diff(rate, new_rate) > 5) 1232 dev_warn(dispc->dev, 1233 "vp%d: Clock rate %lu differs over 5%% from requested %lu\n", 1234 hw_videoport, new_rate, rate); 1235 1236 dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n", 1237 hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate); 1238 1239 return 0; 1240 } 1241 1242 /* OVR */ 1243 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc, 1244 u32 hw_plane, u32 hw_videoport, 1245 u32 x, u32 y, u32 layer) 1246 { 1247 /* On k2g there is only one plane and no need for ovr */ 1248 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION, 1249 x | (y << 16)); 1250 } 1251 1252 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc, 1253 u32 hw_plane, u32 hw_videoport, 1254 u32 x, u32 y, u32 layer) 1255 { 1256 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1257 hw_plane, 4, 1); 1258 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1259 x, 17, 6); 1260 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1261 y, 30, 19); 1262 } 1263 1264 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc, 1265 u32 hw_plane, u32 hw_videoport, 1266 u32 x, u32 y, u32 layer) 1267 { 1268 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1269 hw_plane, 4, 1); 1270 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1271 x, 13, 0); 1272 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1273 y, 29, 16); 1274 } 1275 1276 void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, 1277 u32 hw_videoport, u32 x, u32 y, u32 layer) 1278 { 1279 switch (dispc->feat->subrev) { 1280 case DISPC_K2G: 1281 dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport, 1282 x, y, layer); 1283 break; 1284 case DISPC_AM65X: 1285 dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport, 1286 x, y, layer); 1287 break; 1288 case DISPC_J721E: 1289 dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport, 1290 x, y, layer); 1291 break; 1292 default: 1293 WARN_ON(1); 1294 break; 1295 } 1296 } 1297 1298 void dispc_ovr_enable_layer(struct dispc_device *dispc, 1299 u32 hw_videoport, u32 layer, bool enable) 1300 { 1301 if (dispc->feat->subrev == DISPC_K2G) 1302 return; 1303 1304 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1305 !!enable, 0, 0); 1306 } 1307 1308 /* CSC */ 1309 enum csc_ctm { 1310 CSC_RR, CSC_RG, CSC_RB, 1311 CSC_GR, CSC_GG, CSC_GB, 1312 CSC_BR, CSC_BG, CSC_BB, 1313 }; 1314 1315 enum csc_yuv2rgb { 1316 CSC_RY, CSC_RCB, CSC_RCR, 1317 CSC_GY, CSC_GCB, CSC_GCR, 1318 CSC_BY, CSC_BCB, CSC_BCR, 1319 }; 1320 1321 enum csc_rgb2yuv { 1322 CSC_YR, CSC_YG, CSC_YB, 1323 CSC_CBR, CSC_CBG, CSC_CBB, 1324 CSC_CRR, CSC_CRG, CSC_CRB, 1325 }; 1326 1327 struct dispc_csc_coef { 1328 void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval); 1329 int m[9]; 1330 int preoffset[3]; 1331 int postoffset[3]; 1332 enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping; 1333 const char *name; 1334 }; 1335 1336 #define DISPC_CSC_REGVAL_LEN 8 1337 1338 static 1339 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval) 1340 { 1341 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19)) 1342 regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]); 1343 regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]); 1344 regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]); 1345 #undef OVAL 1346 } 1347 1348 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16)) 1349 static 1350 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval) 1351 { 1352 regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]); 1353 regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]); 1354 regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]); 1355 regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]); 1356 regval[4] = CVAL(csc->m[CSC_BCB], 0); 1357 1358 dispc_csc_offset_regval(csc, regval); 1359 } 1360 1361 __maybe_unused static 1362 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval) 1363 { 1364 regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]); 1365 regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]); 1366 regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]); 1367 regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]); 1368 regval[4] = CVAL(csc->m[CSC_CBB], 0); 1369 1370 dispc_csc_offset_regval(csc, regval); 1371 } 1372 1373 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc, 1374 u32 *regval) 1375 { 1376 regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]); 1377 regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]); 1378 regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]); 1379 regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]); 1380 regval[4] = CVAL(csc->m[CSC_BB], 0); 1381 1382 dispc_csc_offset_regval(csc, regval); 1383 } 1384 1385 #undef CVAL 1386 1387 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1388 const struct dispc_csc_coef *csc) 1389 { 1390 static const u16 dispc_vid_csc_coef_reg[] = { 1391 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1392 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1393 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1394 DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */ 1395 }; 1396 u32 regval[DISPC_CSC_REGVAL_LEN]; 1397 unsigned int i; 1398 1399 csc->to_regval(csc, regval); 1400 1401 if (regval[7] != 0) 1402 dev_warn(dispc->dev, "%s: No post offset support for %s\n", 1403 __func__, csc->name); 1404 1405 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1406 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1407 regval[i]); 1408 } 1409 1410 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1411 const struct dispc_csc_coef *csc) 1412 { 1413 static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 1414 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1415 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1416 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1417 DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7, 1418 }; 1419 u32 regval[DISPC_CSC_REGVAL_LEN]; 1420 unsigned int i; 1421 1422 csc->to_regval(csc, regval); 1423 1424 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1425 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1426 regval[i]); 1427 } 1428 1429 /* YUV -> RGB, ITU-R BT.601, full range */ 1430 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = { 1431 dispc_csc_yuv2rgb_regval, 1432 { 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 1433 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 1434 256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/ 1435 { 0, -2048, -2048, }, /* full range */ 1436 { 0, 0, 0, }, 1437 CLIP_FULL_RANGE, 1438 "BT.601 Full", 1439 }; 1440 1441 /* YUV -> RGB, ITU-R BT.601, limited range */ 1442 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = { 1443 dispc_csc_yuv2rgb_regval, 1444 { 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 1445 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 1446 298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/ 1447 { -256, -2048, -2048, }, /* limited range */ 1448 { 0, 0, 0, }, 1449 CLIP_FULL_RANGE, 1450 "BT.601 Limited", 1451 }; 1452 1453 /* YUV -> RGB, ITU-R BT.709, full range */ 1454 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = { 1455 dispc_csc_yuv2rgb_regval, 1456 { 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 1457 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 1458 256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/ 1459 { 0, -2048, -2048, }, /* full range */ 1460 { 0, 0, 0, }, 1461 CLIP_FULL_RANGE, 1462 "BT.709 Full", 1463 }; 1464 1465 /* YUV -> RGB, ITU-R BT.709, limited range */ 1466 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = { 1467 dispc_csc_yuv2rgb_regval, 1468 { 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 1469 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 1470 298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/ 1471 { -256, -2048, -2048, }, /* limited range */ 1472 { 0, 0, 0, }, 1473 CLIP_FULL_RANGE, 1474 "BT.709 Limited", 1475 }; 1476 1477 static const struct { 1478 enum drm_color_encoding encoding; 1479 enum drm_color_range range; 1480 const struct dispc_csc_coef *csc; 1481 } dispc_csc_table[] = { 1482 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE, 1483 &csc_yuv2rgb_bt601_full, }, 1484 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE, 1485 &csc_yuv2rgb_bt601_lim, }, 1486 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE, 1487 &csc_yuv2rgb_bt709_full, }, 1488 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE, 1489 &csc_yuv2rgb_bt709_lim, }, 1490 }; 1491 1492 static const 1493 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding, 1494 enum drm_color_range range) 1495 { 1496 unsigned int i; 1497 1498 for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) { 1499 if (dispc_csc_table[i].encoding == encoding && 1500 dispc_csc_table[i].range == range) { 1501 return dispc_csc_table[i].csc; 1502 } 1503 } 1504 return NULL; 1505 } 1506 1507 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane, 1508 const struct drm_plane_state *state) 1509 { 1510 const struct dispc_csc_coef *coef; 1511 1512 coef = dispc_find_csc(state->color_encoding, state->color_range); 1513 if (!coef) { 1514 dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n", 1515 __func__, state->color_encoding, state->color_range); 1516 return; 1517 } 1518 1519 if (dispc->feat->subrev == DISPC_K2G) 1520 dispc_k2g_vid_write_csc(dispc, hw_plane, coef); 1521 else 1522 dispc_k3_vid_write_csc(dispc, hw_plane, coef); 1523 } 1524 1525 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane, 1526 bool enable) 1527 { 1528 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9); 1529 } 1530 1531 /* SCALER */ 1532 1533 static u32 dispc_calc_fir_inc(u32 in, u32 out) 1534 { 1535 return (u32)div_u64(0x200000ull * in, out); 1536 } 1537 1538 enum dispc_vid_fir_coef_set { 1539 DISPC_VID_FIR_COEF_HORIZ, 1540 DISPC_VID_FIR_COEF_HORIZ_UV, 1541 DISPC_VID_FIR_COEF_VERT, 1542 DISPC_VID_FIR_COEF_VERT_UV, 1543 }; 1544 1545 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc, 1546 u32 hw_plane, 1547 enum dispc_vid_fir_coef_set coef_set, 1548 const struct tidss_scale_coefs *coefs) 1549 { 1550 static const u16 c0_regs[] = { 1551 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0, 1552 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C, 1553 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0, 1554 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C, 1555 }; 1556 1557 static const u16 c12_regs[] = { 1558 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12, 1559 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C, 1560 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12, 1561 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C, 1562 }; 1563 1564 const u16 c0_base = c0_regs[coef_set]; 1565 const u16 c12_base = c12_regs[coef_set]; 1566 int phase; 1567 1568 if (!coefs) { 1569 dev_err(dispc->dev, "%s: No coefficients given.\n", __func__); 1570 return; 1571 } 1572 1573 for (phase = 0; phase <= 8; ++phase) { 1574 u16 reg = c0_base + phase * 4; 1575 u16 c0 = coefs->c0[phase]; 1576 1577 dispc_vid_write(dispc, hw_plane, reg, c0); 1578 } 1579 1580 for (phase = 0; phase <= 15; ++phase) { 1581 u16 reg = c12_base + phase * 4; 1582 s16 c1, c2; 1583 u32 c12; 1584 1585 c1 = coefs->c1[phase]; 1586 c2 = coefs->c2[phase]; 1587 c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20); 1588 1589 dispc_vid_write(dispc, hw_plane, reg, c12); 1590 } 1591 } 1592 1593 static bool dispc_fourcc_is_yuv(u32 fourcc) 1594 { 1595 switch (fourcc) { 1596 case DRM_FORMAT_YUYV: 1597 case DRM_FORMAT_UYVY: 1598 case DRM_FORMAT_NV12: 1599 return true; 1600 default: 1601 return false; 1602 } 1603 } 1604 1605 struct dispc_scaling_params { 1606 int xinc, yinc; 1607 u32 in_w, in_h, in_w_uv, in_h_uv; 1608 u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv; 1609 bool scale_x, scale_y; 1610 const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv; 1611 bool five_taps; 1612 }; 1613 1614 static int dispc_vid_calc_scaling(struct dispc_device *dispc, 1615 const struct drm_plane_state *state, 1616 struct dispc_scaling_params *sp, 1617 bool lite_plane) 1618 { 1619 const struct dispc_features_scaling *f = &dispc->feat->scaling; 1620 u32 fourcc = state->fb->format->format; 1621 u32 in_width_max_5tap = f->in_width_max_5tap_rgb; 1622 u32 in_width_max_3tap = f->in_width_max_3tap_rgb; 1623 u32 downscale_limit; 1624 u32 in_width_max; 1625 1626 memset(sp, 0, sizeof(*sp)); 1627 sp->xinc = 1; 1628 sp->yinc = 1; 1629 sp->in_w = state->src_w >> 16; 1630 sp->in_w_uv = sp->in_w; 1631 sp->in_h = state->src_h >> 16; 1632 sp->in_h_uv = sp->in_h; 1633 1634 sp->scale_x = sp->in_w != state->crtc_w; 1635 sp->scale_y = sp->in_h != state->crtc_h; 1636 1637 if (dispc_fourcc_is_yuv(fourcc)) { 1638 in_width_max_5tap = f->in_width_max_5tap_yuv; 1639 in_width_max_3tap = f->in_width_max_3tap_yuv; 1640 1641 sp->in_w_uv >>= 1; 1642 sp->scale_x = true; 1643 1644 if (fourcc == DRM_FORMAT_NV12) { 1645 sp->in_h_uv >>= 1; 1646 sp->scale_y = true; 1647 } 1648 } 1649 1650 /* Skip the rest if no scaling is used */ 1651 if ((!sp->scale_x && !sp->scale_y) || lite_plane) 1652 return 0; 1653 1654 if (sp->in_w > in_width_max_5tap) { 1655 sp->five_taps = false; 1656 in_width_max = in_width_max_3tap; 1657 downscale_limit = f->downscale_limit_3tap; 1658 } else { 1659 sp->five_taps = true; 1660 in_width_max = in_width_max_5tap; 1661 downscale_limit = f->downscale_limit_5tap; 1662 } 1663 1664 if (sp->scale_x) { 1665 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1666 1667 if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1668 dev_dbg(dispc->dev, 1669 "%s: X-scaling factor %u/%u > %u\n", 1670 __func__, state->crtc_w, state->src_w >> 16, 1671 f->upscale_limit); 1672 return -EINVAL; 1673 } 1674 1675 if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1676 sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w, 1677 state->crtc_w), 1678 downscale_limit); 1679 1680 if (sp->xinc > f->xinc_max) { 1681 dev_dbg(dispc->dev, 1682 "%s: X-scaling factor %u/%u < 1/%u\n", 1683 __func__, state->crtc_w, 1684 state->src_w >> 16, 1685 downscale_limit * f->xinc_max); 1686 return -EINVAL; 1687 } 1688 1689 sp->in_w = (state->src_w >> 16) / sp->xinc; 1690 } 1691 1692 while (sp->in_w > in_width_max) { 1693 sp->xinc++; 1694 sp->in_w = (state->src_w >> 16) / sp->xinc; 1695 } 1696 1697 if (sp->xinc > f->xinc_max) { 1698 dev_dbg(dispc->dev, 1699 "%s: Too wide input buffer %u > %u\n", __func__, 1700 state->src_w >> 16, in_width_max * f->xinc_max); 1701 return -EINVAL; 1702 } 1703 1704 /* 1705 * We need even line length for YUV formats. Decimation 1706 * can lead to odd length, so we need to make it even 1707 * again. 1708 */ 1709 if (dispc_fourcc_is_yuv(fourcc)) 1710 sp->in_w &= ~1; 1711 1712 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1713 } 1714 1715 if (sp->scale_y) { 1716 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); 1717 1718 if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1719 dev_dbg(dispc->dev, 1720 "%s: Y-scaling factor %u/%u > %u\n", 1721 __func__, state->crtc_h, state->src_h >> 16, 1722 f->upscale_limit); 1723 return -EINVAL; 1724 } 1725 1726 if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1727 sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h, 1728 state->crtc_h), 1729 downscale_limit); 1730 1731 sp->in_h /= sp->yinc; 1732 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, 1733 state->crtc_h); 1734 } 1735 } 1736 1737 dev_dbg(dispc->dev, 1738 "%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n", 1739 __func__, state->src_w >> 16, state->src_h >> 16, 1740 sp->xinc, sp->yinc, sp->in_w, sp->in_h, 1741 sp->fir_xinc / 0x200000u, 1742 ((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1743 sp->fir_yinc / 0x200000u, 1744 ((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1745 sp->five_taps ? 5 : 3, 1746 state->crtc_w, state->crtc_h); 1747 1748 if (dispc_fourcc_is_yuv(fourcc)) { 1749 if (sp->scale_x) { 1750 sp->in_w_uv /= sp->xinc; 1751 sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv, 1752 state->crtc_w); 1753 sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev, 1754 sp->fir_xinc_uv, 1755 true); 1756 } 1757 if (sp->scale_y) { 1758 sp->in_h_uv /= sp->yinc; 1759 sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv, 1760 state->crtc_h); 1761 sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev, 1762 sp->fir_yinc_uv, 1763 sp->five_taps); 1764 } 1765 } 1766 1767 if (sp->scale_x) 1768 sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc, 1769 true); 1770 1771 if (sp->scale_y) 1772 sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc, 1773 sp->five_taps); 1774 1775 return 0; 1776 } 1777 1778 static void dispc_vid_set_scaling(struct dispc_device *dispc, 1779 u32 hw_plane, 1780 struct dispc_scaling_params *sp, 1781 u32 fourcc) 1782 { 1783 /* HORIZONTAL RESIZE ENABLE */ 1784 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1785 sp->scale_x, 7, 7); 1786 1787 /* VERTICAL RESIZE ENABLE */ 1788 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1789 sp->scale_y, 8, 8); 1790 1791 /* Skip the rest if no scaling is used */ 1792 if (!sp->scale_x && !sp->scale_y) 1793 return; 1794 1795 /* VERTICAL 5-TAPS */ 1796 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1797 sp->five_taps, 21, 21); 1798 1799 if (dispc_fourcc_is_yuv(fourcc)) { 1800 if (sp->scale_x) { 1801 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2, 1802 sp->fir_xinc_uv); 1803 dispc_vid_write_fir_coefs(dispc, hw_plane, 1804 DISPC_VID_FIR_COEF_HORIZ_UV, 1805 sp->xcoef_uv); 1806 } 1807 if (sp->scale_y) { 1808 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2, 1809 sp->fir_yinc_uv); 1810 dispc_vid_write_fir_coefs(dispc, hw_plane, 1811 DISPC_VID_FIR_COEF_VERT_UV, 1812 sp->ycoef_uv); 1813 } 1814 } 1815 1816 if (sp->scale_x) { 1817 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc); 1818 dispc_vid_write_fir_coefs(dispc, hw_plane, 1819 DISPC_VID_FIR_COEF_HORIZ, 1820 sp->xcoef); 1821 } 1822 1823 if (sp->scale_y) { 1824 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc); 1825 dispc_vid_write_fir_coefs(dispc, hw_plane, 1826 DISPC_VID_FIR_COEF_VERT, sp->ycoef); 1827 } 1828 } 1829 1830 /* OTHER */ 1831 1832 static const struct { 1833 u32 fourcc; 1834 u8 dss_code; 1835 } dispc_color_formats[] = { 1836 { DRM_FORMAT_ARGB4444, 0x0, }, 1837 { DRM_FORMAT_ABGR4444, 0x1, }, 1838 { DRM_FORMAT_RGBA4444, 0x2, }, 1839 1840 { DRM_FORMAT_RGB565, 0x3, }, 1841 { DRM_FORMAT_BGR565, 0x4, }, 1842 1843 { DRM_FORMAT_ARGB1555, 0x5, }, 1844 { DRM_FORMAT_ABGR1555, 0x6, }, 1845 1846 { DRM_FORMAT_ARGB8888, 0x7, }, 1847 { DRM_FORMAT_ABGR8888, 0x8, }, 1848 { DRM_FORMAT_RGBA8888, 0x9, }, 1849 { DRM_FORMAT_BGRA8888, 0xa, }, 1850 1851 { DRM_FORMAT_RGB888, 0xb, }, 1852 { DRM_FORMAT_BGR888, 0xc, }, 1853 1854 { DRM_FORMAT_ARGB2101010, 0xe, }, 1855 { DRM_FORMAT_ABGR2101010, 0xf, }, 1856 1857 { DRM_FORMAT_XRGB4444, 0x20, }, 1858 { DRM_FORMAT_XBGR4444, 0x21, }, 1859 { DRM_FORMAT_RGBX4444, 0x22, }, 1860 1861 { DRM_FORMAT_XRGB1555, 0x25, }, 1862 { DRM_FORMAT_XBGR1555, 0x26, }, 1863 1864 { DRM_FORMAT_XRGB8888, 0x27, }, 1865 { DRM_FORMAT_XBGR8888, 0x28, }, 1866 { DRM_FORMAT_RGBX8888, 0x29, }, 1867 { DRM_FORMAT_BGRX8888, 0x2a, }, 1868 1869 { DRM_FORMAT_XRGB2101010, 0x2e, }, 1870 { DRM_FORMAT_XBGR2101010, 0x2f, }, 1871 1872 { DRM_FORMAT_YUYV, 0x3e, }, 1873 { DRM_FORMAT_UYVY, 0x3f, }, 1874 1875 { DRM_FORMAT_NV12, 0x3d, }, 1876 }; 1877 1878 static void dispc_plane_set_pixel_format(struct dispc_device *dispc, 1879 u32 hw_plane, u32 fourcc) 1880 { 1881 unsigned int i; 1882 1883 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 1884 if (dispc_color_formats[i].fourcc == fourcc) { 1885 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1886 dispc_color_formats[i].dss_code, 1887 6, 1); 1888 return; 1889 } 1890 } 1891 1892 WARN_ON(1); 1893 } 1894 1895 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len) 1896 { 1897 WARN_ON(!dispc->fourccs); 1898 1899 *len = dispc->num_fourccs; 1900 1901 return dispc->fourccs; 1902 } 1903 1904 static s32 pixinc(int pixels, u8 ps) 1905 { 1906 if (pixels == 1) 1907 return 1; 1908 else if (pixels > 1) 1909 return 1 + (pixels - 1) * ps; 1910 else if (pixels < 0) 1911 return 1 - (-pixels + 1) * ps; 1912 1913 WARN_ON(1); 1914 return 0; 1915 } 1916 1917 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane, 1918 const struct drm_plane_state *state, 1919 u32 hw_videoport) 1920 { 1921 bool lite = dispc->feat->vid_lite[hw_plane]; 1922 u32 fourcc = state->fb->format->format; 1923 bool need_scaling = state->src_w >> 16 != state->crtc_w || 1924 state->src_h >> 16 != state->crtc_h; 1925 struct dispc_scaling_params scaling; 1926 int ret; 1927 1928 if (dispc_fourcc_is_yuv(fourcc)) { 1929 if (!dispc_find_csc(state->color_encoding, 1930 state->color_range)) { 1931 dev_dbg(dispc->dev, 1932 "%s: Unsupported CSC (%u,%u) for HW plane %u\n", 1933 __func__, state->color_encoding, 1934 state->color_range, hw_plane); 1935 return -EINVAL; 1936 } 1937 } 1938 1939 if (need_scaling) { 1940 if (lite) { 1941 dev_dbg(dispc->dev, 1942 "%s: Lite plane %u can't scale %ux%u!=%ux%u\n", 1943 __func__, hw_plane, 1944 state->src_w >> 16, state->src_h >> 16, 1945 state->crtc_w, state->crtc_h); 1946 return -EINVAL; 1947 } 1948 ret = dispc_vid_calc_scaling(dispc, state, &scaling, false); 1949 if (ret) 1950 return ret; 1951 } 1952 1953 return 0; 1954 } 1955 1956 static 1957 dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state) 1958 { 1959 struct drm_framebuffer *fb = state->fb; 1960 struct drm_gem_dma_object *gem; 1961 u32 x = state->src_x >> 16; 1962 u32 y = state->src_y >> 16; 1963 1964 gem = drm_fb_dma_get_gem_obj(state->fb, 0); 1965 1966 return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] + 1967 y * fb->pitches[0]; 1968 } 1969 1970 static 1971 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state) 1972 { 1973 struct drm_framebuffer *fb = state->fb; 1974 struct drm_gem_dma_object *gem; 1975 u32 x = state->src_x >> 16; 1976 u32 y = state->src_y >> 16; 1977 1978 if (WARN_ON(state->fb->format->num_planes != 2)) 1979 return 0; 1980 1981 gem = drm_fb_dma_get_gem_obj(fb, 1); 1982 1983 return gem->dma_addr + fb->offsets[1] + 1984 (x * fb->format->cpp[1] / fb->format->hsub) + 1985 (y * fb->pitches[1] / fb->format->vsub); 1986 } 1987 1988 int dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane, 1989 const struct drm_plane_state *state, 1990 u32 hw_videoport) 1991 { 1992 bool lite = dispc->feat->vid_lite[hw_plane]; 1993 u32 fourcc = state->fb->format->format; 1994 u16 cpp = state->fb->format->cpp[0]; 1995 u32 fb_width = state->fb->pitches[0] / cpp; 1996 dma_addr_t dma_addr = dispc_plane_state_dma_addr(state); 1997 struct dispc_scaling_params scale; 1998 1999 dispc_vid_calc_scaling(dispc, state, &scale, lite); 2000 2001 dispc_plane_set_pixel_format(dispc, hw_plane, fourcc); 2002 2003 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff); 2004 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32); 2005 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff); 2006 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32); 2007 2008 dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE, 2009 (scale.in_w - 1) | ((scale.in_h - 1) << 16)); 2010 2011 /* For YUV422 format we use the macropixel size for pixel inc */ 2012 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2013 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2014 pixinc(scale.xinc, cpp * 2)); 2015 else 2016 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2017 pixinc(scale.xinc, cpp)); 2018 2019 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC, 2020 pixinc(1 + (scale.yinc * fb_width - 2021 scale.xinc * scale.in_w), 2022 cpp)); 2023 2024 if (state->fb->format->num_planes == 2) { 2025 u16 cpp_uv = state->fb->format->cpp[1]; 2026 u32 fb_width_uv = state->fb->pitches[1] / cpp_uv; 2027 dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state); 2028 2029 dispc_vid_write(dispc, hw_plane, 2030 DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff); 2031 dispc_vid_write(dispc, hw_plane, 2032 DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32); 2033 dispc_vid_write(dispc, hw_plane, 2034 DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff); 2035 dispc_vid_write(dispc, hw_plane, 2036 DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32); 2037 2038 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV, 2039 pixinc(1 + (scale.yinc * fb_width_uv - 2040 scale.xinc * scale.in_w_uv), 2041 cpp_uv)); 2042 } 2043 2044 if (!lite) { 2045 dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE, 2046 (state->crtc_w - 1) | 2047 ((state->crtc_h - 1) << 16)); 2048 2049 dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc); 2050 } 2051 2052 /* enable YUV->RGB color conversion */ 2053 if (dispc_fourcc_is_yuv(fourcc)) { 2054 dispc_vid_csc_setup(dispc, hw_plane, state); 2055 dispc_vid_csc_enable(dispc, hw_plane, true); 2056 } else { 2057 dispc_vid_csc_enable(dispc, hw_plane, false); 2058 } 2059 2060 dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA, 2061 0xFF & (state->alpha >> 8)); 2062 2063 if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) 2064 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2065 28, 28); 2066 else 2067 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2068 28, 28); 2069 2070 return 0; 2071 } 2072 2073 int dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) 2074 { 2075 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0); 2076 2077 return 0; 2078 } 2079 2080 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane) 2081 { 2082 return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0); 2083 } 2084 2085 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc, 2086 u32 hw_plane, u32 low, u32 high) 2087 { 2088 dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD, 2089 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2090 } 2091 2092 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc, 2093 u32 hw_plane, u32 low, u32 high) 2094 { 2095 dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD, 2096 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2097 } 2098 2099 static void dispc_k2g_plane_init(struct dispc_device *dispc) 2100 { 2101 unsigned int hw_plane; 2102 2103 dev_dbg(dispc->dev, "%s()\n", __func__); 2104 2105 /* MFLAG_CTRL = ENABLED */ 2106 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2107 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2108 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2109 2110 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2111 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2112 u32 thr_low, thr_high; 2113 u32 mflag_low, mflag_high; 2114 u32 preload; 2115 2116 thr_high = size - 1; 2117 thr_low = size / 2; 2118 2119 mflag_high = size * 2 / 3; 2120 mflag_low = size / 3; 2121 2122 preload = thr_low; 2123 2124 dev_dbg(dispc->dev, 2125 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2126 dispc->feat->vid_name[hw_plane], 2127 size, 2128 thr_high, thr_low, 2129 mflag_high, mflag_low, 2130 preload); 2131 2132 dispc_vid_set_buf_threshold(dispc, hw_plane, 2133 thr_low, thr_high); 2134 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2135 mflag_low, mflag_high); 2136 2137 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2138 2139 /* 2140 * Prefetch up to fifo high-threshold value to minimize the 2141 * possibility of underflows. Note that this means the PRELOAD 2142 * register is ignored. 2143 */ 2144 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2145 19, 19); 2146 } 2147 } 2148 2149 static void dispc_k3_plane_init(struct dispc_device *dispc) 2150 { 2151 unsigned int hw_plane; 2152 u32 cba_lo_pri = 1; 2153 u32 cba_hi_pri = 0; 2154 2155 dev_dbg(dispc->dev, "%s()\n", __func__); 2156 2157 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0); 2158 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3); 2159 2160 /* MFLAG_CTRL = ENABLED */ 2161 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2162 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2163 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2164 2165 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2166 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2167 u32 thr_low, thr_high; 2168 u32 mflag_low, mflag_high; 2169 u32 preload; 2170 2171 thr_high = size - 1; 2172 thr_low = size / 2; 2173 2174 mflag_high = size * 2 / 3; 2175 mflag_low = size / 3; 2176 2177 preload = thr_low; 2178 2179 dev_dbg(dispc->dev, 2180 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2181 dispc->feat->vid_name[hw_plane], 2182 size, 2183 thr_high, thr_low, 2184 mflag_high, mflag_low, 2185 preload); 2186 2187 dispc_vid_set_buf_threshold(dispc, hw_plane, 2188 thr_low, thr_high); 2189 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2190 mflag_low, mflag_high); 2191 2192 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2193 2194 /* Prefech up to PRELOAD value */ 2195 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2196 19, 19); 2197 } 2198 } 2199 2200 static void dispc_plane_init(struct dispc_device *dispc) 2201 { 2202 switch (dispc->feat->subrev) { 2203 case DISPC_K2G: 2204 dispc_k2g_plane_init(dispc); 2205 break; 2206 case DISPC_AM65X: 2207 case DISPC_J721E: 2208 dispc_k3_plane_init(dispc); 2209 break; 2210 default: 2211 WARN_ON(1); 2212 } 2213 } 2214 2215 static void dispc_vp_init(struct dispc_device *dispc) 2216 { 2217 unsigned int i; 2218 2219 dev_dbg(dispc->dev, "%s()\n", __func__); 2220 2221 /* Enable the gamma Shadow bit-field for all VPs*/ 2222 for (i = 0; i < dispc->feat->num_vps; i++) 2223 VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2); 2224 } 2225 2226 static void dispc_initial_config(struct dispc_device *dispc) 2227 { 2228 dispc_plane_init(dispc); 2229 dispc_vp_init(dispc); 2230 2231 /* Note: Hardcoded DPI routing on J721E for now */ 2232 if (dispc->feat->subrev == DISPC_J721E) { 2233 dispc_write(dispc, DISPC_CONNECTIONS, 2234 FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */ 2235 FLD_VAL(8, 7, 4) /* VP3 to DPI1 */ 2236 ); 2237 } 2238 } 2239 2240 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc, 2241 u32 hw_videoport) 2242 { 2243 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2244 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2245 unsigned int i; 2246 2247 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2248 2249 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2250 return; 2251 2252 for (i = 0; i < hwlen; ++i) { 2253 u32 v = table[i]; 2254 2255 v |= i << 24; 2256 2257 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE, 2258 v); 2259 } 2260 } 2261 2262 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc, 2263 u32 hw_videoport) 2264 { 2265 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2266 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2267 unsigned int i; 2268 2269 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2270 2271 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2272 return; 2273 2274 for (i = 0; i < hwlen; ++i) { 2275 u32 v = table[i]; 2276 2277 v |= i << 24; 2278 2279 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2280 } 2281 } 2282 2283 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc, 2284 u32 hw_videoport) 2285 { 2286 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2287 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2288 unsigned int i; 2289 2290 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2291 2292 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT)) 2293 return; 2294 2295 for (i = 0; i < hwlen; ++i) { 2296 u32 v = table[i]; 2297 2298 if (i == 0) 2299 v |= 1 << 31; 2300 2301 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2302 } 2303 } 2304 2305 static void dispc_vp_write_gamma_table(struct dispc_device *dispc, 2306 u32 hw_videoport) 2307 { 2308 switch (dispc->feat->subrev) { 2309 case DISPC_K2G: 2310 dispc_k2g_vp_write_gamma_table(dispc, hw_videoport); 2311 break; 2312 case DISPC_AM65X: 2313 dispc_am65x_vp_write_gamma_table(dispc, hw_videoport); 2314 break; 2315 case DISPC_J721E: 2316 dispc_j721e_vp_write_gamma_table(dispc, hw_videoport); 2317 break; 2318 default: 2319 WARN_ON(1); 2320 break; 2321 } 2322 } 2323 2324 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = { 2325 { .red = 0, .green = 0, .blue = 0, }, 2326 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 2327 }; 2328 2329 static void dispc_vp_set_gamma(struct dispc_device *dispc, 2330 u32 hw_videoport, 2331 const struct drm_color_lut *lut, 2332 unsigned int length) 2333 { 2334 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2335 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2336 u32 hwbits; 2337 unsigned int i; 2338 2339 dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n", 2340 __func__, hw_videoport, length, hwlen); 2341 2342 if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT) 2343 hwbits = 10; 2344 else 2345 hwbits = 8; 2346 2347 if (!lut || length < 2) { 2348 lut = dispc_vp_gamma_default_lut; 2349 length = ARRAY_SIZE(dispc_vp_gamma_default_lut); 2350 } 2351 2352 for (i = 0; i < length - 1; ++i) { 2353 unsigned int first = i * (hwlen - 1) / (length - 1); 2354 unsigned int last = (i + 1) * (hwlen - 1) / (length - 1); 2355 unsigned int w = last - first; 2356 u16 r, g, b; 2357 unsigned int j; 2358 2359 if (w == 0) 2360 continue; 2361 2362 for (j = 0; j <= w; j++) { 2363 r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w; 2364 g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w; 2365 b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w; 2366 2367 r >>= 16 - hwbits; 2368 g >>= 16 - hwbits; 2369 b >>= 16 - hwbits; 2370 2371 table[first + j] = (r << (hwbits * 2)) | 2372 (g << hwbits) | b; 2373 } 2374 } 2375 2376 dispc_vp_write_gamma_table(dispc, hw_videoport); 2377 } 2378 2379 static s16 dispc_S31_32_to_s2_8(s64 coef) 2380 { 2381 u64 sign_bit = 1ULL << 63; 2382 u64 cbits = (u64)coef; 2383 s16 ret; 2384 2385 if (cbits & sign_bit) 2386 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200); 2387 else 2388 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF); 2389 2390 return ret; 2391 } 2392 2393 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm, 2394 struct dispc_csc_coef *cpr) 2395 { 2396 memset(cpr, 0, sizeof(*cpr)); 2397 2398 cpr->to_regval = dispc_csc_cpr_regval; 2399 cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]); 2400 cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]); 2401 cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]); 2402 cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]); 2403 cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]); 2404 cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]); 2405 cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]); 2406 cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]); 2407 cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]); 2408 } 2409 2410 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \ 2411 FLD_VAL(xB, 31, 22)) 2412 2413 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc, 2414 u32 *regval) 2415 { 2416 regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]); 2417 regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]); 2418 regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]); 2419 } 2420 2421 #undef CVAL 2422 2423 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2424 const struct dispc_csc_coef *csc) 2425 { 2426 static const u16 dispc_vp_cpr_coef_reg[] = { 2427 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2428 /* K2G CPR is packed to three registers. */ 2429 }; 2430 u32 regval[DISPC_CSC_REGVAL_LEN]; 2431 unsigned int i; 2432 2433 dispc_k2g_vp_csc_cpr_regval(csc, regval); 2434 2435 for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++) 2436 dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i], 2437 regval[i]); 2438 } 2439 2440 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2441 struct drm_color_ctm *ctm) 2442 { 2443 u32 cprenable = 0; 2444 2445 if (ctm) { 2446 struct dispc_csc_coef cpr; 2447 2448 dispc_k2g_cpr_from_ctm(ctm, &cpr); 2449 dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr); 2450 cprenable = 1; 2451 } 2452 2453 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2454 cprenable, 15, 15); 2455 } 2456 2457 static s16 dispc_S31_32_to_s3_8(s64 coef) 2458 { 2459 u64 sign_bit = 1ULL << 63; 2460 u64 cbits = (u64)coef; 2461 s16 ret; 2462 2463 if (cbits & sign_bit) 2464 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400); 2465 else 2466 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF); 2467 2468 return ret; 2469 } 2470 2471 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm, 2472 struct dispc_csc_coef *cpr) 2473 { 2474 memset(cpr, 0, sizeof(*cpr)); 2475 2476 cpr->to_regval = dispc_csc_cpr_regval; 2477 cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]); 2478 cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]); 2479 cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]); 2480 cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]); 2481 cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]); 2482 cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]); 2483 cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]); 2484 cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]); 2485 cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]); 2486 } 2487 2488 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2489 const struct dispc_csc_coef *csc) 2490 { 2491 static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 2492 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2493 DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5, 2494 DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7, 2495 }; 2496 u32 regval[DISPC_CSC_REGVAL_LEN]; 2497 unsigned int i; 2498 2499 csc->to_regval(csc, regval); 2500 2501 for (i = 0; i < ARRAY_SIZE(regval); i++) 2502 dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i], 2503 regval[i]); 2504 } 2505 2506 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2507 struct drm_color_ctm *ctm) 2508 { 2509 u32 colorconvenable = 0; 2510 2511 if (ctm) { 2512 struct dispc_csc_coef csc; 2513 2514 dispc_csc_from_ctm(ctm, &csc); 2515 dispc_k3_vp_write_csc(dispc, hw_videoport, &csc); 2516 colorconvenable = 1; 2517 } 2518 2519 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2520 colorconvenable, 24, 24); 2521 } 2522 2523 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc, 2524 u32 hw_videoport, 2525 const struct drm_crtc_state *state, 2526 bool newmodeset) 2527 { 2528 struct drm_color_lut *lut = NULL; 2529 struct drm_color_ctm *ctm = NULL; 2530 unsigned int length = 0; 2531 2532 if (!(state->color_mgmt_changed || newmodeset)) 2533 return; 2534 2535 if (state->gamma_lut) { 2536 lut = (struct drm_color_lut *)state->gamma_lut->data; 2537 length = state->gamma_lut->length / sizeof(*lut); 2538 } 2539 2540 dispc_vp_set_gamma(dispc, hw_videoport, lut, length); 2541 2542 if (state->ctm) 2543 ctm = (struct drm_color_ctm *)state->ctm->data; 2544 2545 if (dispc->feat->subrev == DISPC_K2G) 2546 dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm); 2547 else 2548 dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm); 2549 } 2550 2551 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport, 2552 const struct drm_crtc_state *state, bool newmodeset) 2553 { 2554 dispc_vp_set_default_color(dispc, hw_videoport, 0); 2555 dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset); 2556 } 2557 2558 int dispc_runtime_suspend(struct dispc_device *dispc) 2559 { 2560 dev_dbg(dispc->dev, "suspend\n"); 2561 2562 dispc->is_enabled = false; 2563 2564 clk_disable_unprepare(dispc->fclk); 2565 2566 return 0; 2567 } 2568 2569 int dispc_runtime_resume(struct dispc_device *dispc) 2570 { 2571 dev_dbg(dispc->dev, "resume\n"); 2572 2573 clk_prepare_enable(dispc->fclk); 2574 2575 if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0) 2576 dev_warn(dispc->dev, "DSS FUNC RESET not done!\n"); 2577 2578 dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n", 2579 dispc_read(dispc, DSS_REVISION)); 2580 2581 dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n", 2582 REG_GET(dispc, DSS_SYSSTATUS, 1, 1), 2583 REG_GET(dispc, DSS_SYSSTATUS, 2, 2), 2584 REG_GET(dispc, DSS_SYSSTATUS, 3, 3)); 2585 2586 if (dispc->feat->subrev == DISPC_AM65X) 2587 dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n", 2588 REG_GET(dispc, DSS_SYSSTATUS, 5, 5), 2589 REG_GET(dispc, DSS_SYSSTATUS, 6, 6), 2590 REG_GET(dispc, DSS_SYSSTATUS, 7, 7)); 2591 2592 dev_dbg(dispc->dev, "DISPC IDLE %d\n", 2593 REG_GET(dispc, DSS_SYSSTATUS, 9, 9)); 2594 2595 dispc_initial_config(dispc); 2596 2597 dispc->is_enabled = true; 2598 2599 tidss_irq_resume(dispc->tidss); 2600 2601 return 0; 2602 } 2603 2604 void dispc_remove(struct tidss_device *tidss) 2605 { 2606 dev_dbg(tidss->dev, "%s\n", __func__); 2607 2608 tidss->dispc = NULL; 2609 } 2610 2611 static int dispc_iomap_resource(struct platform_device *pdev, const char *name, 2612 void __iomem **base) 2613 { 2614 void __iomem *b; 2615 2616 b = devm_platform_ioremap_resource_byname(pdev, name); 2617 if (IS_ERR(b)) { 2618 dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name); 2619 return PTR_ERR(b); 2620 } 2621 2622 *base = b; 2623 2624 return 0; 2625 } 2626 2627 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev, 2628 struct dispc_device *dispc) 2629 { 2630 dispc->oldi_io_ctrl = 2631 syscon_regmap_lookup_by_phandle(dev->of_node, 2632 "ti,am65x-oldi-io-ctrl"); 2633 if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) { 2634 dispc->oldi_io_ctrl = NULL; 2635 } else if (IS_ERR(dispc->oldi_io_ctrl)) { 2636 dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n", 2637 __func__, PTR_ERR(dispc->oldi_io_ctrl)); 2638 return PTR_ERR(dispc->oldi_io_ctrl); 2639 } 2640 return 0; 2641 } 2642 2643 static void dispc_init_errata(struct dispc_device *dispc) 2644 { 2645 static const struct soc_device_attribute am65x_sr10_soc_devices[] = { 2646 { .family = "AM65X", .revision = "SR1.0" }, 2647 { /* sentinel */ } 2648 }; 2649 2650 if (soc_device_match(am65x_sr10_soc_devices)) { 2651 dispc->errata.i2000 = true; 2652 dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n"); 2653 } 2654 } 2655 2656 static void dispc_softreset(struct dispc_device *dispc) 2657 { 2658 u32 val; 2659 int ret = 0; 2660 2661 /* Soft reset */ 2662 REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1); 2663 /* Wait for reset to complete */ 2664 ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS, 2665 val, val & 1, 100, 5000); 2666 if (ret) 2667 dev_warn(dispc->dev, "failed to reset dispc\n"); 2668 } 2669 2670 int dispc_init(struct tidss_device *tidss) 2671 { 2672 struct device *dev = tidss->dev; 2673 struct platform_device *pdev = to_platform_device(dev); 2674 struct dispc_device *dispc; 2675 const struct dispc_features *feat; 2676 unsigned int i, num_fourccs; 2677 int r = 0; 2678 2679 dev_dbg(dev, "%s\n", __func__); 2680 2681 feat = tidss->feat; 2682 2683 if (feat->subrev != DISPC_K2G) { 2684 r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); 2685 if (r) 2686 dev_warn(dev, "cannot set DMA masks to 48-bit\n"); 2687 } 2688 2689 dma_set_max_seg_size(dev, UINT_MAX); 2690 2691 dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL); 2692 if (!dispc) 2693 return -ENOMEM; 2694 2695 dispc->tidss = tidss; 2696 dispc->dev = dev; 2697 dispc->feat = feat; 2698 2699 dispc_init_errata(dispc); 2700 2701 dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats), 2702 sizeof(*dispc->fourccs), GFP_KERNEL); 2703 if (!dispc->fourccs) 2704 return -ENOMEM; 2705 2706 num_fourccs = 0; 2707 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 2708 if (dispc->errata.i2000 && 2709 dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) { 2710 continue; 2711 } 2712 dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc; 2713 } 2714 2715 dispc->num_fourccs = num_fourccs; 2716 2717 dispc_common_regmap = dispc->feat->common_regs; 2718 2719 r = dispc_iomap_resource(pdev, dispc->feat->common, 2720 &dispc->base_common); 2721 if (r) 2722 return r; 2723 2724 for (i = 0; i < dispc->feat->num_planes; i++) { 2725 r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i], 2726 &dispc->base_vid[i]); 2727 if (r) 2728 return r; 2729 } 2730 2731 /* K2G display controller does not support soft reset */ 2732 if (feat->subrev != DISPC_K2G) 2733 dispc_softreset(dispc); 2734 2735 for (i = 0; i < dispc->feat->num_vps; i++) { 2736 u32 gamma_size = dispc->feat->vp_feat.color.gamma_size; 2737 u32 *gamma_table; 2738 struct clk *clk; 2739 2740 r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i], 2741 &dispc->base_ovr[i]); 2742 if (r) 2743 return r; 2744 2745 r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i], 2746 &dispc->base_vp[i]); 2747 if (r) 2748 return r; 2749 2750 clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]); 2751 if (IS_ERR(clk)) { 2752 dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__, 2753 dispc->feat->vpclk_name[i], PTR_ERR(clk)); 2754 return PTR_ERR(clk); 2755 } 2756 dispc->vp_clk[i] = clk; 2757 2758 gamma_table = devm_kmalloc_array(dev, gamma_size, 2759 sizeof(*gamma_table), 2760 GFP_KERNEL); 2761 if (!gamma_table) 2762 return -ENOMEM; 2763 dispc->vp_data[i].gamma_table = gamma_table; 2764 } 2765 2766 if (feat->subrev == DISPC_AM65X) { 2767 r = dispc_init_am65x_oldi_io_ctrl(dev, dispc); 2768 if (r) 2769 return r; 2770 } 2771 2772 dispc->fclk = devm_clk_get(dev, "fck"); 2773 if (IS_ERR(dispc->fclk)) { 2774 dev_err(dev, "%s: Failed to get fclk: %ld\n", 2775 __func__, PTR_ERR(dispc->fclk)); 2776 return PTR_ERR(dispc->fclk); 2777 } 2778 dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk)); 2779 2780 of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth", 2781 &dispc->memory_bandwidth_limit); 2782 2783 tidss->dispc = dispc; 2784 2785 return 0; 2786 } 2787