1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 NVIDIA Corporation 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/clk-provider.h> 8 #include <linux/debugfs.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/regulator/consumer.h> 15 #include <linux/reset.h> 16 17 #include <soc/tegra/pmc.h> 18 19 #include <drm/display/drm_dp_helper.h> 20 #include <drm/display/drm_scdc_helper.h> 21 #include <drm/drm_atomic_helper.h> 22 #include <drm/drm_debugfs.h> 23 #include <drm/drm_edid.h> 24 #include <drm/drm_eld.h> 25 #include <drm/drm_file.h> 26 #include <drm/drm_panel.h> 27 #include <drm/drm_simple_kms_helper.h> 28 29 #include "dc.h" 30 #include "dp.h" 31 #include "drm.h" 32 #include "hda.h" 33 #include "sor.h" 34 #include "trace.h" 35 36 #define SOR_REKEY 0x38 37 38 struct tegra_sor_hdmi_settings { 39 unsigned long frequency; 40 41 u8 vcocap; 42 u8 filter; 43 u8 ichpmp; 44 u8 loadadj; 45 u8 tmds_termadj; 46 u8 tx_pu_value; 47 u8 bg_temp_coef; 48 u8 bg_vref_level; 49 u8 avdd10_level; 50 u8 avdd14_level; 51 u8 sparepll; 52 53 u8 drive_current[4]; 54 u8 preemphasis[4]; 55 }; 56 57 #if 1 58 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = { 59 { 60 .frequency = 54000000, 61 .vcocap = 0x0, 62 .filter = 0x0, 63 .ichpmp = 0x1, 64 .loadadj = 0x3, 65 .tmds_termadj = 0x9, 66 .tx_pu_value = 0x10, 67 .bg_temp_coef = 0x3, 68 .bg_vref_level = 0x8, 69 .avdd10_level = 0x4, 70 .avdd14_level = 0x4, 71 .sparepll = 0x0, 72 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, 73 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 74 }, { 75 .frequency = 75000000, 76 .vcocap = 0x3, 77 .filter = 0x0, 78 .ichpmp = 0x1, 79 .loadadj = 0x3, 80 .tmds_termadj = 0x9, 81 .tx_pu_value = 0x40, 82 .bg_temp_coef = 0x3, 83 .bg_vref_level = 0x8, 84 .avdd10_level = 0x4, 85 .avdd14_level = 0x4, 86 .sparepll = 0x0, 87 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, 88 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 89 }, { 90 .frequency = 150000000, 91 .vcocap = 0x3, 92 .filter = 0x0, 93 .ichpmp = 0x1, 94 .loadadj = 0x3, 95 .tmds_termadj = 0x9, 96 .tx_pu_value = 0x66, 97 .bg_temp_coef = 0x3, 98 .bg_vref_level = 0x8, 99 .avdd10_level = 0x4, 100 .avdd14_level = 0x4, 101 .sparepll = 0x0, 102 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, 103 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 104 }, { 105 .frequency = 300000000, 106 .vcocap = 0x3, 107 .filter = 0x0, 108 .ichpmp = 0x1, 109 .loadadj = 0x3, 110 .tmds_termadj = 0x9, 111 .tx_pu_value = 0x66, 112 .bg_temp_coef = 0x3, 113 .bg_vref_level = 0xa, 114 .avdd10_level = 0x4, 115 .avdd14_level = 0x4, 116 .sparepll = 0x0, 117 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f }, 118 .preemphasis = { 0x00, 0x17, 0x17, 0x17 }, 119 }, { 120 .frequency = 600000000, 121 .vcocap = 0x3, 122 .filter = 0x0, 123 .ichpmp = 0x1, 124 .loadadj = 0x3, 125 .tmds_termadj = 0x9, 126 .tx_pu_value = 0x66, 127 .bg_temp_coef = 0x3, 128 .bg_vref_level = 0x8, 129 .avdd10_level = 0x4, 130 .avdd14_level = 0x4, 131 .sparepll = 0x0, 132 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f }, 133 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 134 }, 135 }; 136 #else 137 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = { 138 { 139 .frequency = 75000000, 140 .vcocap = 0x3, 141 .filter = 0x0, 142 .ichpmp = 0x1, 143 .loadadj = 0x3, 144 .tmds_termadj = 0x9, 145 .tx_pu_value = 0x40, 146 .bg_temp_coef = 0x3, 147 .bg_vref_level = 0x8, 148 .avdd10_level = 0x4, 149 .avdd14_level = 0x4, 150 .sparepll = 0x0, 151 .drive_current = { 0x29, 0x29, 0x29, 0x29 }, 152 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 153 }, { 154 .frequency = 150000000, 155 .vcocap = 0x3, 156 .filter = 0x0, 157 .ichpmp = 0x1, 158 .loadadj = 0x3, 159 .tmds_termadj = 0x9, 160 .tx_pu_value = 0x66, 161 .bg_temp_coef = 0x3, 162 .bg_vref_level = 0x8, 163 .avdd10_level = 0x4, 164 .avdd14_level = 0x4, 165 .sparepll = 0x0, 166 .drive_current = { 0x30, 0x37, 0x37, 0x37 }, 167 .preemphasis = { 0x01, 0x02, 0x02, 0x02 }, 168 }, { 169 .frequency = 300000000, 170 .vcocap = 0x3, 171 .filter = 0x0, 172 .ichpmp = 0x6, 173 .loadadj = 0x3, 174 .tmds_termadj = 0x9, 175 .tx_pu_value = 0x66, 176 .bg_temp_coef = 0x3, 177 .bg_vref_level = 0xf, 178 .avdd10_level = 0x4, 179 .avdd14_level = 0x4, 180 .sparepll = 0x0, 181 .drive_current = { 0x30, 0x37, 0x37, 0x37 }, 182 .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e }, 183 }, { 184 .frequency = 600000000, 185 .vcocap = 0x3, 186 .filter = 0x0, 187 .ichpmp = 0xa, 188 .loadadj = 0x3, 189 .tmds_termadj = 0xb, 190 .tx_pu_value = 0x66, 191 .bg_temp_coef = 0x3, 192 .bg_vref_level = 0xe, 193 .avdd10_level = 0x4, 194 .avdd14_level = 0x4, 195 .sparepll = 0x0, 196 .drive_current = { 0x35, 0x3e, 0x3e, 0x3e }, 197 .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f }, 198 }, 199 }; 200 #endif 201 202 static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = { 203 { 204 .frequency = 54000000, 205 .vcocap = 0, 206 .filter = 5, 207 .ichpmp = 5, 208 .loadadj = 3, 209 .tmds_termadj = 0xf, 210 .tx_pu_value = 0, 211 .bg_temp_coef = 3, 212 .bg_vref_level = 8, 213 .avdd10_level = 4, 214 .avdd14_level = 4, 215 .sparepll = 0x54, 216 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, 217 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 218 }, { 219 .frequency = 75000000, 220 .vcocap = 1, 221 .filter = 5, 222 .ichpmp = 5, 223 .loadadj = 3, 224 .tmds_termadj = 0xf, 225 .tx_pu_value = 0, 226 .bg_temp_coef = 3, 227 .bg_vref_level = 8, 228 .avdd10_level = 4, 229 .avdd14_level = 4, 230 .sparepll = 0x44, 231 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, 232 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 233 }, { 234 .frequency = 150000000, 235 .vcocap = 3, 236 .filter = 5, 237 .ichpmp = 5, 238 .loadadj = 3, 239 .tmds_termadj = 15, 240 .tx_pu_value = 0x66 /* 0 */, 241 .bg_temp_coef = 3, 242 .bg_vref_level = 8, 243 .avdd10_level = 4, 244 .avdd14_level = 4, 245 .sparepll = 0x00, /* 0x34 */ 246 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 }, 247 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 248 }, { 249 .frequency = 300000000, 250 .vcocap = 3, 251 .filter = 5, 252 .ichpmp = 5, 253 .loadadj = 3, 254 .tmds_termadj = 15, 255 .tx_pu_value = 64, 256 .bg_temp_coef = 3, 257 .bg_vref_level = 8, 258 .avdd10_level = 4, 259 .avdd14_level = 4, 260 .sparepll = 0x34, 261 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, 262 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 263 }, { 264 .frequency = 600000000, 265 .vcocap = 3, 266 .filter = 5, 267 .ichpmp = 5, 268 .loadadj = 3, 269 .tmds_termadj = 12, 270 .tx_pu_value = 96, 271 .bg_temp_coef = 3, 272 .bg_vref_level = 8, 273 .avdd10_level = 4, 274 .avdd14_level = 4, 275 .sparepll = 0x34, 276 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, 277 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 278 } 279 }; 280 281 static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = { 282 { 283 .frequency = 54000000, 284 .vcocap = 0, 285 .filter = 5, 286 .ichpmp = 5, 287 .loadadj = 3, 288 .tmds_termadj = 0xf, 289 .tx_pu_value = 0, 290 .bg_temp_coef = 3, 291 .bg_vref_level = 8, 292 .avdd10_level = 4, 293 .avdd14_level = 4, 294 .sparepll = 0x54, 295 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, 296 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 297 }, { 298 .frequency = 75000000, 299 .vcocap = 1, 300 .filter = 5, 301 .ichpmp = 5, 302 .loadadj = 3, 303 .tmds_termadj = 0xf, 304 .tx_pu_value = 0, 305 .bg_temp_coef = 3, 306 .bg_vref_level = 8, 307 .avdd10_level = 4, 308 .avdd14_level = 4, 309 .sparepll = 0x44, 310 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, 311 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 312 }, { 313 .frequency = 150000000, 314 .vcocap = 3, 315 .filter = 5, 316 .ichpmp = 5, 317 .loadadj = 3, 318 .tmds_termadj = 15, 319 .tx_pu_value = 0x66 /* 0 */, 320 .bg_temp_coef = 3, 321 .bg_vref_level = 8, 322 .avdd10_level = 4, 323 .avdd14_level = 4, 324 .sparepll = 0x00, /* 0x34 */ 325 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 }, 326 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 327 }, { 328 .frequency = 300000000, 329 .vcocap = 3, 330 .filter = 5, 331 .ichpmp = 5, 332 .loadadj = 3, 333 .tmds_termadj = 15, 334 .tx_pu_value = 64, 335 .bg_temp_coef = 3, 336 .bg_vref_level = 8, 337 .avdd10_level = 4, 338 .avdd14_level = 4, 339 .sparepll = 0x34, 340 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, 341 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 342 }, { 343 .frequency = 600000000, 344 .vcocap = 3, 345 .filter = 5, 346 .ichpmp = 5, 347 .loadadj = 3, 348 .tmds_termadj = 12, 349 .tx_pu_value = 96, 350 .bg_temp_coef = 3, 351 .bg_vref_level = 8, 352 .avdd10_level = 4, 353 .avdd14_level = 4, 354 .sparepll = 0x34, 355 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, 356 .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, 357 } 358 }; 359 360 struct tegra_sor_regs { 361 unsigned int head_state0; 362 unsigned int head_state1; 363 unsigned int head_state2; 364 unsigned int head_state3; 365 unsigned int head_state4; 366 unsigned int head_state5; 367 unsigned int pll0; 368 unsigned int pll1; 369 unsigned int pll2; 370 unsigned int pll3; 371 unsigned int dp_padctl0; 372 unsigned int dp_padctl2; 373 }; 374 375 struct tegra_sor_soc { 376 bool supports_lvds; 377 bool supports_hdmi; 378 bool supports_dp; 379 bool supports_audio; 380 bool supports_hdcp; 381 382 const struct tegra_sor_regs *regs; 383 bool has_nvdisplay; 384 385 const struct tegra_sor_hdmi_settings *settings; 386 unsigned int num_settings; 387 388 const u8 *xbar_cfg; 389 const u8 *lane_map; 390 391 const u8 (*voltage_swing)[4][4]; 392 const u8 (*pre_emphasis)[4][4]; 393 const u8 (*post_cursor)[4][4]; 394 const u8 (*tx_pu)[4][4]; 395 }; 396 397 struct tegra_sor; 398 399 struct tegra_sor_ops { 400 const char *name; 401 int (*probe)(struct tegra_sor *sor); 402 void (*audio_enable)(struct tegra_sor *sor); 403 void (*audio_disable)(struct tegra_sor *sor); 404 }; 405 406 struct tegra_sor { 407 struct host1x_client client; 408 struct tegra_output output; 409 struct device *dev; 410 411 const struct tegra_sor_soc *soc; 412 void __iomem *regs; 413 unsigned int index; 414 unsigned int irq; 415 416 struct reset_control *rst; 417 struct clk *clk_parent; 418 struct clk *clk_safe; 419 struct clk *clk_out; 420 struct clk *clk_pad; 421 struct clk *clk_dp; 422 struct clk *clk; 423 424 u8 xbar_cfg[5]; 425 426 struct drm_dp_link link; 427 struct drm_dp_aux *aux; 428 429 struct drm_info_list *debugfs_files; 430 431 const struct tegra_sor_ops *ops; 432 enum tegra_io_pad pad; 433 434 /* for HDMI 2.0 */ 435 struct tegra_sor_hdmi_settings *settings; 436 unsigned int num_settings; 437 438 struct regulator *avdd_io_supply; 439 struct regulator *vdd_pll_supply; 440 struct regulator *hdmi_supply; 441 442 struct delayed_work scdc; 443 bool scdc_enabled; 444 445 struct tegra_hda_format format; 446 }; 447 448 struct tegra_sor_state { 449 struct drm_connector_state base; 450 451 unsigned int link_speed; 452 unsigned long pclk; 453 unsigned int bpc; 454 }; 455 456 static inline struct tegra_sor_state * 457 to_sor_state(struct drm_connector_state *state) 458 { 459 return container_of(state, struct tegra_sor_state, base); 460 } 461 462 struct tegra_sor_config { 463 u32 bits_per_pixel; 464 465 u32 active_polarity; 466 u32 active_count; 467 u32 tu_size; 468 u32 active_frac; 469 u32 watermark; 470 471 u32 hblank_symbols; 472 u32 vblank_symbols; 473 }; 474 475 static inline struct tegra_sor * 476 host1x_client_to_sor(struct host1x_client *client) 477 { 478 return container_of(client, struct tegra_sor, client); 479 } 480 481 static inline struct tegra_sor *to_sor(struct tegra_output *output) 482 { 483 return container_of(output, struct tegra_sor, output); 484 } 485 486 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset) 487 { 488 u32 value = readl(sor->regs + (offset << 2)); 489 490 trace_sor_readl(sor->dev, offset, value); 491 492 return value; 493 } 494 495 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value, 496 unsigned int offset) 497 { 498 trace_sor_writel(sor->dev, offset, value); 499 writel(value, sor->regs + (offset << 2)); 500 } 501 502 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent) 503 { 504 int err; 505 506 clk_disable_unprepare(sor->clk); 507 508 err = clk_set_parent(sor->clk_out, parent); 509 if (err < 0) 510 return err; 511 512 err = clk_prepare_enable(sor->clk); 513 if (err < 0) 514 return err; 515 516 return 0; 517 } 518 519 struct tegra_clk_sor_pad { 520 struct clk_hw hw; 521 struct tegra_sor *sor; 522 }; 523 524 static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw) 525 { 526 return container_of(hw, struct tegra_clk_sor_pad, hw); 527 } 528 529 static const char * const tegra_clk_sor_pad_parents[2][2] = { 530 { "pll_d_out0", "pll_dp" }, 531 { "pll_d2_out0", "pll_dp" }, 532 }; 533 534 /* 535 * Implementing ->set_parent() here isn't really required because the parent 536 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in 537 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the 538 * Tegra186 and later SoC generations where the BPMP implements this clock 539 * and doesn't expose the mux via the common clock framework. 540 */ 541 542 static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index) 543 { 544 struct tegra_clk_sor_pad *pad = to_pad(hw); 545 struct tegra_sor *sor = pad->sor; 546 u32 value; 547 548 value = tegra_sor_readl(sor, SOR_CLK_CNTRL); 549 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; 550 551 switch (index) { 552 case 0: 553 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK; 554 break; 555 556 case 1: 557 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK; 558 break; 559 } 560 561 tegra_sor_writel(sor, value, SOR_CLK_CNTRL); 562 563 return 0; 564 } 565 566 static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw) 567 { 568 struct tegra_clk_sor_pad *pad = to_pad(hw); 569 struct tegra_sor *sor = pad->sor; 570 u8 parent = U8_MAX; 571 u32 value; 572 573 value = tegra_sor_readl(sor, SOR_CLK_CNTRL); 574 575 switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) { 576 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK: 577 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK: 578 parent = 0; 579 break; 580 581 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK: 582 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK: 583 parent = 1; 584 break; 585 } 586 587 return parent; 588 } 589 590 static const struct clk_ops tegra_clk_sor_pad_ops = { 591 .determine_rate = clk_hw_determine_rate_no_reparent, 592 .set_parent = tegra_clk_sor_pad_set_parent, 593 .get_parent = tegra_clk_sor_pad_get_parent, 594 }; 595 596 static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor, 597 const char *name) 598 { 599 struct tegra_clk_sor_pad *pad; 600 struct clk_init_data init; 601 struct clk *clk; 602 603 pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL); 604 if (!pad) 605 return ERR_PTR(-ENOMEM); 606 607 pad->sor = sor; 608 609 init.name = name; 610 init.flags = 0; 611 init.parent_names = tegra_clk_sor_pad_parents[sor->index]; 612 init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]); 613 init.ops = &tegra_clk_sor_pad_ops; 614 615 pad->hw.init = &init; 616 617 clk = devm_clk_register(sor->dev, &pad->hw); 618 619 return clk; 620 } 621 622 static void tegra_sor_filter_rates(struct tegra_sor *sor) 623 { 624 struct drm_dp_link *link = &sor->link; 625 unsigned int i; 626 627 /* Tegra only supports RBR, HBR and HBR2 */ 628 for (i = 0; i < link->num_rates; i++) { 629 switch (link->rates[i]) { 630 case 1620000: 631 case 2700000: 632 case 5400000: 633 break; 634 635 default: 636 DRM_DEBUG_KMS("link rate %lu kHz not supported\n", 637 link->rates[i]); 638 link->rates[i] = 0; 639 break; 640 } 641 } 642 643 drm_dp_link_update_rates(link); 644 } 645 646 static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes) 647 { 648 unsigned long timeout; 649 u32 value; 650 651 /* 652 * Clear or set the PD_TXD bit corresponding to each lane, depending 653 * on whether it is used or not. 654 */ 655 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 656 657 if (lanes <= 2) 658 value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) | 659 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2])); 660 else 661 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) | 662 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]); 663 664 if (lanes <= 1) 665 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]); 666 else 667 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]); 668 669 if (lanes == 0) 670 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]); 671 else 672 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]); 673 674 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 675 676 /* start lane sequencer */ 677 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN | 678 SOR_LANE_SEQ_CTL_POWER_STATE_UP; 679 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); 680 681 timeout = jiffies + msecs_to_jiffies(250); 682 683 while (time_before(jiffies, timeout)) { 684 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); 685 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) 686 break; 687 688 usleep_range(250, 1000); 689 } 690 691 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0) 692 return -ETIMEDOUT; 693 694 return 0; 695 } 696 697 static int tegra_sor_power_down_lanes(struct tegra_sor *sor) 698 { 699 unsigned long timeout; 700 u32 value; 701 702 /* power down all lanes */ 703 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 704 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 | 705 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2); 706 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 707 708 /* start lane sequencer */ 709 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP | 710 SOR_LANE_SEQ_CTL_POWER_STATE_DOWN; 711 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); 712 713 timeout = jiffies + msecs_to_jiffies(250); 714 715 while (time_before(jiffies, timeout)) { 716 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); 717 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) 718 break; 719 720 usleep_range(25, 100); 721 } 722 723 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0) 724 return -ETIMEDOUT; 725 726 return 0; 727 } 728 729 static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes) 730 { 731 u32 value; 732 733 /* pre-charge all used lanes */ 734 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 735 736 if (lanes <= 2) 737 value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) | 738 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2])); 739 else 740 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) | 741 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]); 742 743 if (lanes <= 1) 744 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]); 745 else 746 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]); 747 748 if (lanes == 0) 749 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]); 750 else 751 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]); 752 753 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 754 755 usleep_range(15, 100); 756 757 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 758 value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 | 759 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0); 760 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 761 } 762 763 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor) 764 { 765 u32 mask = 0x08, adj = 0, value; 766 767 /* enable pad calibration logic */ 768 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 769 value &= ~SOR_DP_PADCTL_PAD_CAL_PD; 770 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 771 772 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 773 value |= SOR_PLL1_TMDS_TERM; 774 tegra_sor_writel(sor, value, sor->soc->regs->pll1); 775 776 while (mask) { 777 adj |= mask; 778 779 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 780 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK; 781 value |= SOR_PLL1_TMDS_TERMADJ(adj); 782 tegra_sor_writel(sor, value, sor->soc->regs->pll1); 783 784 usleep_range(100, 200); 785 786 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 787 if (value & SOR_PLL1_TERM_COMPOUT) 788 adj &= ~mask; 789 790 mask >>= 1; 791 } 792 793 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 794 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK; 795 value |= SOR_PLL1_TMDS_TERMADJ(adj); 796 tegra_sor_writel(sor, value, sor->soc->regs->pll1); 797 798 /* disable pad calibration logic */ 799 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 800 value |= SOR_DP_PADCTL_PAD_CAL_PD; 801 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 802 } 803 804 static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link) 805 { 806 struct tegra_sor *sor = container_of(link, struct tegra_sor, link); 807 u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0; 808 const struct tegra_sor_soc *soc = sor->soc; 809 u32 pattern = 0, tx_pu = 0, value; 810 unsigned int i; 811 812 for (value = 0, i = 0; i < link->lanes; i++) { 813 u8 vs = link->train.request.voltage_swing[i]; 814 u8 pe = link->train.request.pre_emphasis[i]; 815 u8 pc = link->train.request.post_cursor[i]; 816 u8 shift = sor->soc->lane_map[i] << 3; 817 818 voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift; 819 pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift; 820 post_cursor |= soc->post_cursor[pc][vs][pe] << shift; 821 822 if (sor->soc->tx_pu[pc][vs][pe] > tx_pu) 823 tx_pu = sor->soc->tx_pu[pc][vs][pe]; 824 825 switch (link->train.pattern) { 826 case DP_TRAINING_PATTERN_DISABLE: 827 value = SOR_DP_TPG_SCRAMBLER_GALIOS | 828 SOR_DP_TPG_PATTERN_NONE; 829 break; 830 831 case DP_TRAINING_PATTERN_1: 832 value = SOR_DP_TPG_SCRAMBLER_NONE | 833 SOR_DP_TPG_PATTERN_TRAIN1; 834 break; 835 836 case DP_TRAINING_PATTERN_2: 837 value = SOR_DP_TPG_SCRAMBLER_NONE | 838 SOR_DP_TPG_PATTERN_TRAIN2; 839 break; 840 841 case DP_TRAINING_PATTERN_3: 842 value = SOR_DP_TPG_SCRAMBLER_NONE | 843 SOR_DP_TPG_PATTERN_TRAIN3; 844 break; 845 846 default: 847 return -EINVAL; 848 } 849 850 if (link->caps.channel_coding) 851 value |= SOR_DP_TPG_CHANNEL_CODING; 852 853 pattern = pattern << 8 | value; 854 } 855 856 tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0); 857 tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0); 858 859 if (link->caps.tps3_supported) 860 tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0); 861 862 tegra_sor_writel(sor, pattern, SOR_DP_TPG); 863 864 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 865 value &= ~SOR_DP_PADCTL_TX_PU_MASK; 866 value |= SOR_DP_PADCTL_TX_PU_ENABLE; 867 value |= SOR_DP_PADCTL_TX_PU(tx_pu); 868 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 869 870 usleep_range(20, 100); 871 872 return 0; 873 } 874 875 static int tegra_sor_dp_link_configure(struct drm_dp_link *link) 876 { 877 struct tegra_sor *sor = container_of(link, struct tegra_sor, link); 878 unsigned int rate, lanes; 879 u32 value; 880 int err; 881 882 rate = drm_dp_link_rate_to_bw_code(link->rate); 883 lanes = link->lanes; 884 885 /* configure link speed and lane count */ 886 value = tegra_sor_readl(sor, SOR_CLK_CNTRL); 887 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; 888 value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate); 889 tegra_sor_writel(sor, value, SOR_CLK_CNTRL); 890 891 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); 892 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK; 893 value |= SOR_DP_LINKCTL_LANE_COUNT(lanes); 894 895 if (link->caps.enhanced_framing) 896 value |= SOR_DP_LINKCTL_ENHANCED_FRAME; 897 898 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); 899 900 usleep_range(400, 1000); 901 902 /* configure load pulse position adjustment */ 903 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 904 value &= ~SOR_PLL1_LOADADJ_MASK; 905 906 switch (rate) { 907 case DP_LINK_BW_1_62: 908 value |= SOR_PLL1_LOADADJ(0x3); 909 break; 910 911 case DP_LINK_BW_2_7: 912 value |= SOR_PLL1_LOADADJ(0x4); 913 break; 914 915 case DP_LINK_BW_5_4: 916 value |= SOR_PLL1_LOADADJ(0x6); 917 break; 918 } 919 920 tegra_sor_writel(sor, value, sor->soc->regs->pll1); 921 922 /* use alternate scrambler reset for eDP */ 923 value = tegra_sor_readl(sor, SOR_DP_SPARE0); 924 925 if (link->edp == 0) 926 value &= ~SOR_DP_SPARE_PANEL_INTERNAL; 927 else 928 value |= SOR_DP_SPARE_PANEL_INTERNAL; 929 930 tegra_sor_writel(sor, value, SOR_DP_SPARE0); 931 932 err = tegra_sor_power_down_lanes(sor); 933 if (err < 0) { 934 dev_err(sor->dev, "failed to power down lanes: %d\n", err); 935 return err; 936 } 937 938 /* power up and pre-charge lanes */ 939 err = tegra_sor_power_up_lanes(sor, lanes); 940 if (err < 0) { 941 dev_err(sor->dev, "failed to power up %u lane%s: %d\n", 942 lanes, (lanes != 1) ? "s" : "", err); 943 return err; 944 } 945 946 tegra_sor_dp_precharge(sor, lanes); 947 948 return 0; 949 } 950 951 static const struct drm_dp_link_ops tegra_sor_dp_link_ops = { 952 .apply_training = tegra_sor_dp_link_apply_training, 953 .configure = tegra_sor_dp_link_configure, 954 }; 955 956 static void tegra_sor_super_update(struct tegra_sor *sor) 957 { 958 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0); 959 tegra_sor_writel(sor, 1, SOR_SUPER_STATE0); 960 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0); 961 } 962 963 static void tegra_sor_update(struct tegra_sor *sor) 964 { 965 tegra_sor_writel(sor, 0, SOR_STATE0); 966 tegra_sor_writel(sor, 1, SOR_STATE0); 967 tegra_sor_writel(sor, 0, SOR_STATE0); 968 } 969 970 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout) 971 { 972 u32 value; 973 974 value = tegra_sor_readl(sor, SOR_PWM_DIV); 975 value &= ~SOR_PWM_DIV_MASK; 976 value |= 0x400; /* period */ 977 tegra_sor_writel(sor, value, SOR_PWM_DIV); 978 979 value = tegra_sor_readl(sor, SOR_PWM_CTL); 980 value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK; 981 value |= 0x400; /* duty cycle */ 982 value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */ 983 value |= SOR_PWM_CTL_TRIGGER; 984 tegra_sor_writel(sor, value, SOR_PWM_CTL); 985 986 timeout = jiffies + msecs_to_jiffies(timeout); 987 988 while (time_before(jiffies, timeout)) { 989 value = tegra_sor_readl(sor, SOR_PWM_CTL); 990 if ((value & SOR_PWM_CTL_TRIGGER) == 0) 991 return 0; 992 993 usleep_range(25, 100); 994 } 995 996 return -ETIMEDOUT; 997 } 998 999 static int tegra_sor_attach(struct tegra_sor *sor) 1000 { 1001 unsigned long value, timeout; 1002 1003 /* wake up in normal mode */ 1004 value = tegra_sor_readl(sor, SOR_SUPER_STATE1); 1005 value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE; 1006 value |= SOR_SUPER_STATE_MODE_NORMAL; 1007 tegra_sor_writel(sor, value, SOR_SUPER_STATE1); 1008 tegra_sor_super_update(sor); 1009 1010 /* attach */ 1011 value = tegra_sor_readl(sor, SOR_SUPER_STATE1); 1012 value |= SOR_SUPER_STATE_ATTACHED; 1013 tegra_sor_writel(sor, value, SOR_SUPER_STATE1); 1014 tegra_sor_super_update(sor); 1015 1016 timeout = jiffies + msecs_to_jiffies(250); 1017 1018 while (time_before(jiffies, timeout)) { 1019 value = tegra_sor_readl(sor, SOR_TEST); 1020 if ((value & SOR_TEST_ATTACHED) != 0) 1021 return 0; 1022 1023 usleep_range(25, 100); 1024 } 1025 1026 return -ETIMEDOUT; 1027 } 1028 1029 static int tegra_sor_wakeup(struct tegra_sor *sor) 1030 { 1031 unsigned long value, timeout; 1032 1033 timeout = jiffies + msecs_to_jiffies(250); 1034 1035 /* wait for head to wake up */ 1036 while (time_before(jiffies, timeout)) { 1037 value = tegra_sor_readl(sor, SOR_TEST); 1038 value &= SOR_TEST_HEAD_MODE_MASK; 1039 1040 if (value == SOR_TEST_HEAD_MODE_AWAKE) 1041 return 0; 1042 1043 usleep_range(25, 100); 1044 } 1045 1046 return -ETIMEDOUT; 1047 } 1048 1049 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout) 1050 { 1051 u32 value; 1052 1053 value = tegra_sor_readl(sor, SOR_PWR); 1054 value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU; 1055 tegra_sor_writel(sor, value, SOR_PWR); 1056 1057 timeout = jiffies + msecs_to_jiffies(timeout); 1058 1059 while (time_before(jiffies, timeout)) { 1060 value = tegra_sor_readl(sor, SOR_PWR); 1061 if ((value & SOR_PWR_TRIGGER) == 0) 1062 return 0; 1063 1064 usleep_range(25, 100); 1065 } 1066 1067 return -ETIMEDOUT; 1068 } 1069 1070 struct tegra_sor_params { 1071 /* number of link clocks per line */ 1072 unsigned int num_clocks; 1073 /* ratio between input and output */ 1074 u64 ratio; 1075 /* precision factor */ 1076 u64 precision; 1077 1078 unsigned int active_polarity; 1079 unsigned int active_count; 1080 unsigned int active_frac; 1081 unsigned int tu_size; 1082 unsigned int error; 1083 }; 1084 1085 static int tegra_sor_compute_params(struct tegra_sor *sor, 1086 struct tegra_sor_params *params, 1087 unsigned int tu_size) 1088 { 1089 u64 active_sym, active_count, frac, approx; 1090 u32 active_polarity, active_frac = 0; 1091 const u64 f = params->precision; 1092 s64 error; 1093 1094 active_sym = params->ratio * tu_size; 1095 active_count = div_u64(active_sym, f) * f; 1096 frac = active_sym - active_count; 1097 1098 /* fraction < 0.5 */ 1099 if (frac >= (f / 2)) { 1100 active_polarity = 1; 1101 frac = f - frac; 1102 } else { 1103 active_polarity = 0; 1104 } 1105 1106 if (frac != 0) { 1107 frac = div_u64(f * f, frac); /* 1/fraction */ 1108 if (frac <= (15 * f)) { 1109 active_frac = div_u64(frac, f); 1110 1111 /* round up */ 1112 if (active_polarity) 1113 active_frac++; 1114 } else { 1115 active_frac = active_polarity ? 1 : 15; 1116 } 1117 } 1118 1119 if (active_frac == 1) 1120 active_polarity = 0; 1121 1122 if (active_polarity == 1) { 1123 if (active_frac) { 1124 approx = active_count + (active_frac * (f - 1)) * f; 1125 approx = div_u64(approx, active_frac * f); 1126 } else { 1127 approx = active_count + f; 1128 } 1129 } else { 1130 if (active_frac) 1131 approx = active_count + div_u64(f, active_frac); 1132 else 1133 approx = active_count; 1134 } 1135 1136 error = div_s64(active_sym - approx, tu_size); 1137 error *= params->num_clocks; 1138 1139 if (error <= 0 && abs(error) < params->error) { 1140 params->active_count = div_u64(active_count, f); 1141 params->active_polarity = active_polarity; 1142 params->active_frac = active_frac; 1143 params->error = abs(error); 1144 params->tu_size = tu_size; 1145 1146 if (error == 0) 1147 return true; 1148 } 1149 1150 return false; 1151 } 1152 1153 static int tegra_sor_compute_config(struct tegra_sor *sor, 1154 const struct drm_display_mode *mode, 1155 struct tegra_sor_config *config, 1156 struct drm_dp_link *link) 1157 { 1158 const u64 f = 100000, link_rate = link->rate * 1000; 1159 const u64 pclk = (u64)mode->clock * 1000; 1160 u64 input, output, watermark, num; 1161 struct tegra_sor_params params; 1162 u32 num_syms_per_line; 1163 unsigned int i; 1164 1165 if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel) 1166 return -EINVAL; 1167 1168 input = pclk * config->bits_per_pixel; 1169 output = link_rate * 8 * link->lanes; 1170 1171 if (input >= output) 1172 return -ERANGE; 1173 1174 memset(¶ms, 0, sizeof(params)); 1175 params.ratio = div64_u64(input * f, output); 1176 params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk); 1177 params.precision = f; 1178 params.error = 64 * f; 1179 params.tu_size = 64; 1180 1181 for (i = params.tu_size; i >= 32; i--) 1182 if (tegra_sor_compute_params(sor, ¶ms, i)) 1183 break; 1184 1185 if (params.active_frac == 0) { 1186 config->active_polarity = 0; 1187 config->active_count = params.active_count; 1188 1189 if (!params.active_polarity) 1190 config->active_count--; 1191 1192 config->tu_size = params.tu_size; 1193 config->active_frac = 1; 1194 } else { 1195 config->active_polarity = params.active_polarity; 1196 config->active_count = params.active_count; 1197 config->active_frac = params.active_frac; 1198 config->tu_size = params.tu_size; 1199 } 1200 1201 dev_dbg(sor->dev, 1202 "polarity: %d active count: %d tu size: %d active frac: %d\n", 1203 config->active_polarity, config->active_count, 1204 config->tu_size, config->active_frac); 1205 1206 watermark = params.ratio * config->tu_size * (f - params.ratio); 1207 watermark = div_u64(watermark, f); 1208 1209 watermark = div_u64(watermark + params.error, f); 1210 config->watermark = watermark + (config->bits_per_pixel / 8) + 2; 1211 num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) * 1212 (link->lanes * 8); 1213 1214 if (config->watermark > 30) { 1215 config->watermark = 30; 1216 dev_err(sor->dev, 1217 "unable to compute TU size, forcing watermark to %u\n", 1218 config->watermark); 1219 } else if (config->watermark > num_syms_per_line) { 1220 config->watermark = num_syms_per_line; 1221 dev_err(sor->dev, "watermark too high, forcing to %u\n", 1222 config->watermark); 1223 } 1224 1225 /* compute the number of symbols per horizontal blanking interval */ 1226 num = ((mode->htotal - mode->hdisplay) - 7) * link_rate; 1227 config->hblank_symbols = div_u64(num, pclk); 1228 1229 if (link->caps.enhanced_framing) 1230 config->hblank_symbols -= 3; 1231 1232 config->hblank_symbols -= 12 / link->lanes; 1233 1234 /* compute the number of symbols per vertical blanking interval */ 1235 num = (mode->hdisplay - 25) * link_rate; 1236 config->vblank_symbols = div_u64(num, pclk); 1237 config->vblank_symbols -= 36 / link->lanes + 4; 1238 1239 dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols, 1240 config->vblank_symbols); 1241 1242 return 0; 1243 } 1244 1245 static void tegra_sor_apply_config(struct tegra_sor *sor, 1246 const struct tegra_sor_config *config) 1247 { 1248 u32 value; 1249 1250 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); 1251 value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK; 1252 value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size); 1253 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); 1254 1255 value = tegra_sor_readl(sor, SOR_DP_CONFIG0); 1256 value &= ~SOR_DP_CONFIG_WATERMARK_MASK; 1257 value |= SOR_DP_CONFIG_WATERMARK(config->watermark); 1258 1259 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK; 1260 value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count); 1261 1262 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK; 1263 value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac); 1264 1265 if (config->active_polarity) 1266 value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY; 1267 else 1268 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY; 1269 1270 value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE; 1271 value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE; 1272 tegra_sor_writel(sor, value, SOR_DP_CONFIG0); 1273 1274 value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS); 1275 value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK; 1276 value |= config->hblank_symbols & 0xffff; 1277 tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS); 1278 1279 value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS); 1280 value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK; 1281 value |= config->vblank_symbols & 0xffff; 1282 tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS); 1283 } 1284 1285 static void tegra_sor_mode_set(struct tegra_sor *sor, 1286 const struct drm_display_mode *mode, 1287 struct tegra_sor_state *state) 1288 { 1289 struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc); 1290 unsigned int vbe, vse, hbe, hse, vbs, hbs; 1291 u32 value; 1292 1293 value = tegra_sor_readl(sor, SOR_STATE1); 1294 value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK; 1295 value &= ~SOR_STATE_ASY_CRC_MODE_MASK; 1296 value &= ~SOR_STATE_ASY_OWNER_MASK; 1297 1298 value |= SOR_STATE_ASY_CRC_MODE_COMPLETE | 1299 SOR_STATE_ASY_OWNER(dc->pipe + 1); 1300 1301 if (mode->flags & DRM_MODE_FLAG_PHSYNC) 1302 value &= ~SOR_STATE_ASY_HSYNCPOL; 1303 1304 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1305 value |= SOR_STATE_ASY_HSYNCPOL; 1306 1307 if (mode->flags & DRM_MODE_FLAG_PVSYNC) 1308 value &= ~SOR_STATE_ASY_VSYNCPOL; 1309 1310 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1311 value |= SOR_STATE_ASY_VSYNCPOL; 1312 1313 switch (state->bpc) { 1314 case 16: 1315 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444; 1316 break; 1317 1318 case 12: 1319 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444; 1320 break; 1321 1322 case 10: 1323 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444; 1324 break; 1325 1326 case 8: 1327 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444; 1328 break; 1329 1330 case 6: 1331 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444; 1332 break; 1333 1334 default: 1335 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444; 1336 break; 1337 } 1338 1339 tegra_sor_writel(sor, value, SOR_STATE1); 1340 1341 /* 1342 * TODO: The video timing programming below doesn't seem to match the 1343 * register definitions. 1344 */ 1345 1346 value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff); 1347 tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe); 1348 1349 /* sync end = sync width - 1 */ 1350 vse = mode->vsync_end - mode->vsync_start - 1; 1351 hse = mode->hsync_end - mode->hsync_start - 1; 1352 1353 value = ((vse & 0x7fff) << 16) | (hse & 0x7fff); 1354 tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe); 1355 1356 /* blank end = sync end + back porch */ 1357 vbe = vse + (mode->vtotal - mode->vsync_end); 1358 hbe = hse + (mode->htotal - mode->hsync_end); 1359 1360 value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff); 1361 tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe); 1362 1363 /* blank start = blank end + active */ 1364 vbs = vbe + mode->vdisplay; 1365 hbs = hbe + mode->hdisplay; 1366 1367 value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff); 1368 tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe); 1369 1370 /* XXX interlacing support */ 1371 tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe); 1372 } 1373 1374 static int tegra_sor_detach(struct tegra_sor *sor) 1375 { 1376 unsigned long value, timeout; 1377 1378 /* switch to safe mode */ 1379 value = tegra_sor_readl(sor, SOR_SUPER_STATE1); 1380 value &= ~SOR_SUPER_STATE_MODE_NORMAL; 1381 tegra_sor_writel(sor, value, SOR_SUPER_STATE1); 1382 tegra_sor_super_update(sor); 1383 1384 timeout = jiffies + msecs_to_jiffies(250); 1385 1386 while (time_before(jiffies, timeout)) { 1387 value = tegra_sor_readl(sor, SOR_PWR); 1388 if (value & SOR_PWR_MODE_SAFE) 1389 break; 1390 } 1391 1392 if ((value & SOR_PWR_MODE_SAFE) == 0) 1393 return -ETIMEDOUT; 1394 1395 /* go to sleep */ 1396 value = tegra_sor_readl(sor, SOR_SUPER_STATE1); 1397 value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK; 1398 tegra_sor_writel(sor, value, SOR_SUPER_STATE1); 1399 tegra_sor_super_update(sor); 1400 1401 /* detach */ 1402 value = tegra_sor_readl(sor, SOR_SUPER_STATE1); 1403 value &= ~SOR_SUPER_STATE_ATTACHED; 1404 tegra_sor_writel(sor, value, SOR_SUPER_STATE1); 1405 tegra_sor_super_update(sor); 1406 1407 timeout = jiffies + msecs_to_jiffies(250); 1408 1409 while (time_before(jiffies, timeout)) { 1410 value = tegra_sor_readl(sor, SOR_TEST); 1411 if ((value & SOR_TEST_ATTACHED) == 0) 1412 break; 1413 1414 usleep_range(25, 100); 1415 } 1416 1417 if ((value & SOR_TEST_ATTACHED) != 0) 1418 return -ETIMEDOUT; 1419 1420 return 0; 1421 } 1422 1423 static int tegra_sor_power_down(struct tegra_sor *sor) 1424 { 1425 unsigned long value, timeout; 1426 int err; 1427 1428 value = tegra_sor_readl(sor, SOR_PWR); 1429 value &= ~SOR_PWR_NORMAL_STATE_PU; 1430 value |= SOR_PWR_TRIGGER; 1431 tegra_sor_writel(sor, value, SOR_PWR); 1432 1433 timeout = jiffies + msecs_to_jiffies(250); 1434 1435 while (time_before(jiffies, timeout)) { 1436 value = tegra_sor_readl(sor, SOR_PWR); 1437 if ((value & SOR_PWR_TRIGGER) == 0) 1438 return 0; 1439 1440 usleep_range(25, 100); 1441 } 1442 1443 if ((value & SOR_PWR_TRIGGER) != 0) 1444 return -ETIMEDOUT; 1445 1446 /* switch to safe parent clock */ 1447 err = tegra_sor_set_parent_clock(sor, sor->clk_safe); 1448 if (err < 0) { 1449 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); 1450 return err; 1451 } 1452 1453 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 1454 value |= SOR_PLL2_PORT_POWERDOWN; 1455 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 1456 1457 usleep_range(20, 100); 1458 1459 value = tegra_sor_readl(sor, sor->soc->regs->pll0); 1460 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR; 1461 tegra_sor_writel(sor, value, sor->soc->regs->pll0); 1462 1463 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 1464 value |= SOR_PLL2_SEQ_PLLCAPPD; 1465 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; 1466 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 1467 1468 usleep_range(20, 100); 1469 1470 return 0; 1471 } 1472 1473 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout) 1474 { 1475 u32 value; 1476 1477 timeout = jiffies + msecs_to_jiffies(timeout); 1478 1479 while (time_before(jiffies, timeout)) { 1480 value = tegra_sor_readl(sor, SOR_CRCA); 1481 if (value & SOR_CRCA_VALID) 1482 return 0; 1483 1484 usleep_range(100, 200); 1485 } 1486 1487 return -ETIMEDOUT; 1488 } 1489 1490 static int tegra_sor_show_crc(struct seq_file *s, void *data) 1491 { 1492 struct drm_info_node *node = s->private; 1493 struct tegra_sor *sor = node->info_ent->data; 1494 struct drm_crtc *crtc = sor->output.encoder.crtc; 1495 struct drm_device *drm = node->minor->dev; 1496 int err = 0; 1497 u32 value; 1498 1499 drm_modeset_lock_all(drm); 1500 1501 if (!crtc || !crtc->state->active) { 1502 err = -EBUSY; 1503 goto unlock; 1504 } 1505 1506 value = tegra_sor_readl(sor, SOR_STATE1); 1507 value &= ~SOR_STATE_ASY_CRC_MODE_MASK; 1508 tegra_sor_writel(sor, value, SOR_STATE1); 1509 1510 value = tegra_sor_readl(sor, SOR_CRC_CNTRL); 1511 value |= SOR_CRC_CNTRL_ENABLE; 1512 tegra_sor_writel(sor, value, SOR_CRC_CNTRL); 1513 1514 value = tegra_sor_readl(sor, SOR_TEST); 1515 value &= ~SOR_TEST_CRC_POST_SERIALIZE; 1516 tegra_sor_writel(sor, value, SOR_TEST); 1517 1518 err = tegra_sor_crc_wait(sor, 100); 1519 if (err < 0) 1520 goto unlock; 1521 1522 tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA); 1523 value = tegra_sor_readl(sor, SOR_CRCB); 1524 1525 seq_printf(s, "%08x\n", value); 1526 1527 unlock: 1528 drm_modeset_unlock_all(drm); 1529 return err; 1530 } 1531 1532 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1533 1534 static const struct debugfs_reg32 tegra_sor_regs[] = { 1535 DEBUGFS_REG32(SOR_CTXSW), 1536 DEBUGFS_REG32(SOR_SUPER_STATE0), 1537 DEBUGFS_REG32(SOR_SUPER_STATE1), 1538 DEBUGFS_REG32(SOR_STATE0), 1539 DEBUGFS_REG32(SOR_STATE1), 1540 DEBUGFS_REG32(SOR_HEAD_STATE0(0)), 1541 DEBUGFS_REG32(SOR_HEAD_STATE0(1)), 1542 DEBUGFS_REG32(SOR_HEAD_STATE1(0)), 1543 DEBUGFS_REG32(SOR_HEAD_STATE1(1)), 1544 DEBUGFS_REG32(SOR_HEAD_STATE2(0)), 1545 DEBUGFS_REG32(SOR_HEAD_STATE2(1)), 1546 DEBUGFS_REG32(SOR_HEAD_STATE3(0)), 1547 DEBUGFS_REG32(SOR_HEAD_STATE3(1)), 1548 DEBUGFS_REG32(SOR_HEAD_STATE4(0)), 1549 DEBUGFS_REG32(SOR_HEAD_STATE4(1)), 1550 DEBUGFS_REG32(SOR_HEAD_STATE5(0)), 1551 DEBUGFS_REG32(SOR_HEAD_STATE5(1)), 1552 DEBUGFS_REG32(SOR_CRC_CNTRL), 1553 DEBUGFS_REG32(SOR_DP_DEBUG_MVID), 1554 DEBUGFS_REG32(SOR_CLK_CNTRL), 1555 DEBUGFS_REG32(SOR_CAP), 1556 DEBUGFS_REG32(SOR_PWR), 1557 DEBUGFS_REG32(SOR_TEST), 1558 DEBUGFS_REG32(SOR_PLL0), 1559 DEBUGFS_REG32(SOR_PLL1), 1560 DEBUGFS_REG32(SOR_PLL2), 1561 DEBUGFS_REG32(SOR_PLL3), 1562 DEBUGFS_REG32(SOR_CSTM), 1563 DEBUGFS_REG32(SOR_LVDS), 1564 DEBUGFS_REG32(SOR_CRCA), 1565 DEBUGFS_REG32(SOR_CRCB), 1566 DEBUGFS_REG32(SOR_BLANK), 1567 DEBUGFS_REG32(SOR_SEQ_CTL), 1568 DEBUGFS_REG32(SOR_LANE_SEQ_CTL), 1569 DEBUGFS_REG32(SOR_SEQ_INST(0)), 1570 DEBUGFS_REG32(SOR_SEQ_INST(1)), 1571 DEBUGFS_REG32(SOR_SEQ_INST(2)), 1572 DEBUGFS_REG32(SOR_SEQ_INST(3)), 1573 DEBUGFS_REG32(SOR_SEQ_INST(4)), 1574 DEBUGFS_REG32(SOR_SEQ_INST(5)), 1575 DEBUGFS_REG32(SOR_SEQ_INST(6)), 1576 DEBUGFS_REG32(SOR_SEQ_INST(7)), 1577 DEBUGFS_REG32(SOR_SEQ_INST(8)), 1578 DEBUGFS_REG32(SOR_SEQ_INST(9)), 1579 DEBUGFS_REG32(SOR_SEQ_INST(10)), 1580 DEBUGFS_REG32(SOR_SEQ_INST(11)), 1581 DEBUGFS_REG32(SOR_SEQ_INST(12)), 1582 DEBUGFS_REG32(SOR_SEQ_INST(13)), 1583 DEBUGFS_REG32(SOR_SEQ_INST(14)), 1584 DEBUGFS_REG32(SOR_SEQ_INST(15)), 1585 DEBUGFS_REG32(SOR_PWM_DIV), 1586 DEBUGFS_REG32(SOR_PWM_CTL), 1587 DEBUGFS_REG32(SOR_VCRC_A0), 1588 DEBUGFS_REG32(SOR_VCRC_A1), 1589 DEBUGFS_REG32(SOR_VCRC_B0), 1590 DEBUGFS_REG32(SOR_VCRC_B1), 1591 DEBUGFS_REG32(SOR_CCRC_A0), 1592 DEBUGFS_REG32(SOR_CCRC_A1), 1593 DEBUGFS_REG32(SOR_CCRC_B0), 1594 DEBUGFS_REG32(SOR_CCRC_B1), 1595 DEBUGFS_REG32(SOR_EDATA_A0), 1596 DEBUGFS_REG32(SOR_EDATA_A1), 1597 DEBUGFS_REG32(SOR_EDATA_B0), 1598 DEBUGFS_REG32(SOR_EDATA_B1), 1599 DEBUGFS_REG32(SOR_COUNT_A0), 1600 DEBUGFS_REG32(SOR_COUNT_A1), 1601 DEBUGFS_REG32(SOR_COUNT_B0), 1602 DEBUGFS_REG32(SOR_COUNT_B1), 1603 DEBUGFS_REG32(SOR_DEBUG_A0), 1604 DEBUGFS_REG32(SOR_DEBUG_A1), 1605 DEBUGFS_REG32(SOR_DEBUG_B0), 1606 DEBUGFS_REG32(SOR_DEBUG_B1), 1607 DEBUGFS_REG32(SOR_TRIG), 1608 DEBUGFS_REG32(SOR_MSCHECK), 1609 DEBUGFS_REG32(SOR_XBAR_CTRL), 1610 DEBUGFS_REG32(SOR_XBAR_POL), 1611 DEBUGFS_REG32(SOR_DP_LINKCTL0), 1612 DEBUGFS_REG32(SOR_DP_LINKCTL1), 1613 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0), 1614 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1), 1615 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0), 1616 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1), 1617 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0), 1618 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1), 1619 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0), 1620 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1), 1621 DEBUGFS_REG32(SOR_LANE_POSTCURSOR0), 1622 DEBUGFS_REG32(SOR_LANE_POSTCURSOR1), 1623 DEBUGFS_REG32(SOR_DP_CONFIG0), 1624 DEBUGFS_REG32(SOR_DP_CONFIG1), 1625 DEBUGFS_REG32(SOR_DP_MN0), 1626 DEBUGFS_REG32(SOR_DP_MN1), 1627 DEBUGFS_REG32(SOR_DP_PADCTL0), 1628 DEBUGFS_REG32(SOR_DP_PADCTL1), 1629 DEBUGFS_REG32(SOR_DP_PADCTL2), 1630 DEBUGFS_REG32(SOR_DP_DEBUG0), 1631 DEBUGFS_REG32(SOR_DP_DEBUG1), 1632 DEBUGFS_REG32(SOR_DP_SPARE0), 1633 DEBUGFS_REG32(SOR_DP_SPARE1), 1634 DEBUGFS_REG32(SOR_DP_AUDIO_CTRL), 1635 DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS), 1636 DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS), 1637 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER), 1638 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0), 1639 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1), 1640 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2), 1641 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3), 1642 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4), 1643 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5), 1644 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6), 1645 DEBUGFS_REG32(SOR_DP_TPG), 1646 DEBUGFS_REG32(SOR_DP_TPG_CONFIG), 1647 DEBUGFS_REG32(SOR_DP_LQ_CSTM0), 1648 DEBUGFS_REG32(SOR_DP_LQ_CSTM1), 1649 DEBUGFS_REG32(SOR_DP_LQ_CSTM2), 1650 }; 1651 1652 static int tegra_sor_show_regs(struct seq_file *s, void *data) 1653 { 1654 struct drm_info_node *node = s->private; 1655 struct tegra_sor *sor = node->info_ent->data; 1656 struct drm_crtc *crtc = sor->output.encoder.crtc; 1657 struct drm_device *drm = node->minor->dev; 1658 unsigned int i; 1659 int err = 0; 1660 1661 drm_modeset_lock_all(drm); 1662 1663 if (!crtc || !crtc->state->active) { 1664 err = -EBUSY; 1665 goto unlock; 1666 } 1667 1668 for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) { 1669 unsigned int offset = tegra_sor_regs[i].offset; 1670 1671 seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name, 1672 offset, tegra_sor_readl(sor, offset)); 1673 } 1674 1675 unlock: 1676 drm_modeset_unlock_all(drm); 1677 return err; 1678 } 1679 1680 static const struct drm_info_list debugfs_files[] = { 1681 { "crc", tegra_sor_show_crc, 0, NULL }, 1682 { "regs", tegra_sor_show_regs, 0, NULL }, 1683 }; 1684 1685 static int tegra_sor_late_register(struct drm_connector *connector) 1686 { 1687 struct tegra_output *output = connector_to_output(connector); 1688 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1689 struct drm_minor *minor = connector->dev->primary; 1690 struct dentry *root = connector->debugfs_entry; 1691 struct tegra_sor *sor = to_sor(output); 1692 1693 sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1694 GFP_KERNEL); 1695 if (!sor->debugfs_files) 1696 return -ENOMEM; 1697 1698 for (i = 0; i < count; i++) 1699 sor->debugfs_files[i].data = sor; 1700 1701 drm_debugfs_create_files(sor->debugfs_files, count, root, minor); 1702 1703 return 0; 1704 } 1705 1706 static void tegra_sor_early_unregister(struct drm_connector *connector) 1707 { 1708 struct tegra_output *output = connector_to_output(connector); 1709 unsigned int count = ARRAY_SIZE(debugfs_files); 1710 struct tegra_sor *sor = to_sor(output); 1711 1712 drm_debugfs_remove_files(sor->debugfs_files, count, 1713 connector->debugfs_entry, 1714 connector->dev->primary); 1715 kfree(sor->debugfs_files); 1716 sor->debugfs_files = NULL; 1717 } 1718 1719 static void tegra_sor_connector_reset(struct drm_connector *connector) 1720 { 1721 struct tegra_sor_state *state; 1722 1723 state = kzalloc(sizeof(*state), GFP_KERNEL); 1724 if (!state) 1725 return; 1726 1727 if (connector->state) { 1728 __drm_atomic_helper_connector_destroy_state(connector->state); 1729 kfree(connector->state); 1730 } 1731 1732 __drm_atomic_helper_connector_reset(connector, &state->base); 1733 } 1734 1735 static enum drm_connector_status 1736 tegra_sor_connector_detect(struct drm_connector *connector, bool force) 1737 { 1738 struct tegra_output *output = connector_to_output(connector); 1739 struct tegra_sor *sor = to_sor(output); 1740 1741 if (sor->aux) 1742 return drm_dp_aux_detect(sor->aux); 1743 1744 return tegra_output_connector_detect(connector, force); 1745 } 1746 1747 static struct drm_connector_state * 1748 tegra_sor_connector_duplicate_state(struct drm_connector *connector) 1749 { 1750 struct tegra_sor_state *state = to_sor_state(connector->state); 1751 struct tegra_sor_state *copy; 1752 1753 copy = kmemdup(state, sizeof(*state), GFP_KERNEL); 1754 if (!copy) 1755 return NULL; 1756 1757 __drm_atomic_helper_connector_duplicate_state(connector, ©->base); 1758 1759 return ©->base; 1760 } 1761 1762 static const struct drm_connector_funcs tegra_sor_connector_funcs = { 1763 .reset = tegra_sor_connector_reset, 1764 .detect = tegra_sor_connector_detect, 1765 .fill_modes = drm_helper_probe_single_connector_modes, 1766 .destroy = tegra_output_connector_destroy, 1767 .atomic_duplicate_state = tegra_sor_connector_duplicate_state, 1768 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1769 .late_register = tegra_sor_late_register, 1770 .early_unregister = tegra_sor_early_unregister, 1771 }; 1772 1773 static int tegra_sor_connector_get_modes(struct drm_connector *connector) 1774 { 1775 struct tegra_output *output = connector_to_output(connector); 1776 struct tegra_sor *sor = to_sor(output); 1777 int err; 1778 1779 if (sor->aux) 1780 drm_dp_aux_enable(sor->aux); 1781 1782 err = tegra_output_connector_get_modes(connector); 1783 1784 if (sor->aux) 1785 drm_dp_aux_disable(sor->aux); 1786 1787 return err; 1788 } 1789 1790 static enum drm_mode_status 1791 tegra_sor_connector_mode_valid(struct drm_connector *connector, 1792 struct drm_display_mode *mode) 1793 { 1794 return MODE_OK; 1795 } 1796 1797 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = { 1798 .get_modes = tegra_sor_connector_get_modes, 1799 .mode_valid = tegra_sor_connector_mode_valid, 1800 }; 1801 1802 static int 1803 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder, 1804 struct drm_crtc_state *crtc_state, 1805 struct drm_connector_state *conn_state) 1806 { 1807 struct tegra_output *output = encoder_to_output(encoder); 1808 struct tegra_sor_state *state = to_sor_state(conn_state); 1809 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc); 1810 unsigned long pclk = crtc_state->mode.clock * 1000; 1811 struct tegra_sor *sor = to_sor(output); 1812 struct drm_display_info *info; 1813 int err; 1814 1815 info = &output->connector.display_info; 1816 1817 /* 1818 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so 1819 * the pixel clock must be corrected accordingly. 1820 */ 1821 if (pclk >= 340000000) { 1822 state->link_speed = 20; 1823 state->pclk = pclk / 2; 1824 } else { 1825 state->link_speed = 10; 1826 state->pclk = pclk; 1827 } 1828 1829 err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent, 1830 pclk, 0); 1831 if (err < 0) { 1832 dev_err(output->dev, "failed to setup CRTC state: %d\n", err); 1833 return err; 1834 } 1835 1836 switch (info->bpc) { 1837 case 8: 1838 case 6: 1839 state->bpc = info->bpc; 1840 break; 1841 1842 default: 1843 DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc); 1844 state->bpc = 8; 1845 break; 1846 } 1847 1848 return 0; 1849 } 1850 1851 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size) 1852 { 1853 u32 value = 0; 1854 size_t i; 1855 1856 for (i = size; i > 0; i--) 1857 value = (value << 8) | ptr[i - 1]; 1858 1859 return value; 1860 } 1861 1862 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor, 1863 const void *data, size_t size) 1864 { 1865 const u8 *ptr = data; 1866 unsigned long offset; 1867 size_t i, j; 1868 u32 value; 1869 1870 switch (ptr[0]) { 1871 case HDMI_INFOFRAME_TYPE_AVI: 1872 offset = SOR_HDMI_AVI_INFOFRAME_HEADER; 1873 break; 1874 1875 case HDMI_INFOFRAME_TYPE_AUDIO: 1876 offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER; 1877 break; 1878 1879 case HDMI_INFOFRAME_TYPE_VENDOR: 1880 offset = SOR_HDMI_VSI_INFOFRAME_HEADER; 1881 break; 1882 1883 default: 1884 dev_err(sor->dev, "unsupported infoframe type: %02x\n", 1885 ptr[0]); 1886 return; 1887 } 1888 1889 value = INFOFRAME_HEADER_TYPE(ptr[0]) | 1890 INFOFRAME_HEADER_VERSION(ptr[1]) | 1891 INFOFRAME_HEADER_LEN(ptr[2]); 1892 tegra_sor_writel(sor, value, offset); 1893 offset++; 1894 1895 /* 1896 * Each subpack contains 7 bytes, divided into: 1897 * - subpack_low: bytes 0 - 3 1898 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00) 1899 */ 1900 for (i = 3, j = 0; i < size; i += 7, j += 8) { 1901 size_t rem = size - i, num = min_t(size_t, rem, 4); 1902 1903 value = tegra_sor_hdmi_subpack(&ptr[i], num); 1904 tegra_sor_writel(sor, value, offset++); 1905 1906 num = min_t(size_t, rem - num, 3); 1907 1908 value = tegra_sor_hdmi_subpack(&ptr[i + 4], num); 1909 tegra_sor_writel(sor, value, offset++); 1910 } 1911 } 1912 1913 static int 1914 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor, 1915 const struct drm_display_mode *mode) 1916 { 1917 u8 buffer[HDMI_INFOFRAME_SIZE(AVI)]; 1918 struct hdmi_avi_infoframe frame; 1919 u32 value; 1920 int err; 1921 1922 /* disable AVI infoframe */ 1923 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL); 1924 value &= ~INFOFRAME_CTRL_SINGLE; 1925 value &= ~INFOFRAME_CTRL_OTHER; 1926 value &= ~INFOFRAME_CTRL_ENABLE; 1927 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL); 1928 1929 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, 1930 &sor->output.connector, mode); 1931 if (err < 0) { 1932 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err); 1933 return err; 1934 } 1935 1936 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer)); 1937 if (err < 0) { 1938 dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err); 1939 return err; 1940 } 1941 1942 tegra_sor_hdmi_write_infopack(sor, buffer, err); 1943 1944 /* enable AVI infoframe */ 1945 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL); 1946 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE; 1947 value |= INFOFRAME_CTRL_ENABLE; 1948 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL); 1949 1950 return 0; 1951 } 1952 1953 static void tegra_sor_write_eld(struct tegra_sor *sor) 1954 { 1955 size_t length = drm_eld_size(sor->output.connector.eld), i; 1956 1957 for (i = 0; i < length; i++) 1958 tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i], 1959 SOR_AUDIO_HDA_ELD_BUFWR); 1960 1961 /* 1962 * The HDA codec will always report an ELD buffer size of 96 bytes and 1963 * the HDA codec driver will check that each byte read from the buffer 1964 * is valid. Therefore every byte must be written, even if no 96 bytes 1965 * were parsed from EDID. 1966 */ 1967 for (i = length; i < 96; i++) 1968 tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR); 1969 } 1970 1971 static void tegra_sor_audio_prepare(struct tegra_sor *sor) 1972 { 1973 u32 value; 1974 1975 /* 1976 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This 1977 * is used for interoperability between the HDA codec driver and the 1978 * HDMI/DP driver. 1979 */ 1980 value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0; 1981 tegra_sor_writel(sor, value, SOR_INT_ENABLE); 1982 tegra_sor_writel(sor, value, SOR_INT_MASK); 1983 1984 tegra_sor_write_eld(sor); 1985 1986 value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD; 1987 tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE); 1988 } 1989 1990 static void tegra_sor_audio_unprepare(struct tegra_sor *sor) 1991 { 1992 tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE); 1993 tegra_sor_writel(sor, 0, SOR_INT_MASK); 1994 tegra_sor_writel(sor, 0, SOR_INT_ENABLE); 1995 } 1996 1997 static void tegra_sor_audio_enable(struct tegra_sor *sor) 1998 { 1999 u32 value; 2000 2001 value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL); 2002 2003 /* select HDA audio input */ 2004 value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK); 2005 value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA); 2006 2007 /* inject null samples */ 2008 if (sor->format.channels != 2) 2009 value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL; 2010 else 2011 value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL; 2012 2013 value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH; 2014 2015 tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL); 2016 2017 /* enable advertising HBR capability */ 2018 tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE); 2019 } 2020 2021 static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor) 2022 { 2023 u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)]; 2024 struct hdmi_audio_infoframe frame; 2025 u32 value; 2026 int err; 2027 2028 err = hdmi_audio_infoframe_init(&frame); 2029 if (err < 0) { 2030 dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err); 2031 return err; 2032 } 2033 2034 frame.channels = sor->format.channels; 2035 2036 err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer)); 2037 if (err < 0) { 2038 dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err); 2039 return err; 2040 } 2041 2042 tegra_sor_hdmi_write_infopack(sor, buffer, err); 2043 2044 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL); 2045 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE; 2046 value |= INFOFRAME_CTRL_ENABLE; 2047 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL); 2048 2049 return 0; 2050 } 2051 2052 static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor) 2053 { 2054 u32 value; 2055 2056 tegra_sor_audio_enable(sor); 2057 2058 tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL); 2059 2060 value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH | 2061 SOR_HDMI_SPARE_CTS_RESET(1) | 2062 SOR_HDMI_SPARE_HW_CTS_ENABLE; 2063 tegra_sor_writel(sor, value, SOR_HDMI_SPARE); 2064 2065 /* enable HW CTS */ 2066 value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0); 2067 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW); 2068 2069 /* allow packet to be sent */ 2070 value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE; 2071 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH); 2072 2073 /* reset N counter and enable lookup */ 2074 value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP; 2075 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N); 2076 2077 value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000); 2078 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320); 2079 tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320); 2080 2081 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441); 2082 tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441); 2083 2084 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882); 2085 tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882); 2086 2087 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764); 2088 tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764); 2089 2090 value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000); 2091 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480); 2092 tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480); 2093 2094 value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000); 2095 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960); 2096 tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960); 2097 2098 value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000); 2099 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920); 2100 tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920); 2101 2102 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N); 2103 value &= ~SOR_HDMI_AUDIO_N_RESET; 2104 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N); 2105 2106 tegra_sor_hdmi_enable_audio_infoframe(sor); 2107 } 2108 2109 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor) 2110 { 2111 u32 value; 2112 2113 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL); 2114 value &= ~INFOFRAME_CTRL_ENABLE; 2115 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL); 2116 } 2117 2118 static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor) 2119 { 2120 tegra_sor_hdmi_disable_audio_infoframe(sor); 2121 } 2122 2123 static struct tegra_sor_hdmi_settings * 2124 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency) 2125 { 2126 unsigned int i; 2127 2128 for (i = 0; i < sor->num_settings; i++) 2129 if (frequency <= sor->settings[i].frequency) 2130 return &sor->settings[i]; 2131 2132 return NULL; 2133 } 2134 2135 static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor) 2136 { 2137 u32 value; 2138 2139 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL); 2140 value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4; 2141 value &= ~SOR_HDMI2_CTRL_SCRAMBLE; 2142 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL); 2143 } 2144 2145 static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor) 2146 { 2147 drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false); 2148 drm_scdc_set_scrambling(&sor->output.connector, false); 2149 2150 tegra_sor_hdmi_disable_scrambling(sor); 2151 } 2152 2153 static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor) 2154 { 2155 if (sor->scdc_enabled) { 2156 cancel_delayed_work_sync(&sor->scdc); 2157 tegra_sor_hdmi_scdc_disable(sor); 2158 } 2159 } 2160 2161 static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor) 2162 { 2163 u32 value; 2164 2165 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL); 2166 value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4; 2167 value |= SOR_HDMI2_CTRL_SCRAMBLE; 2168 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL); 2169 } 2170 2171 static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor) 2172 { 2173 drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true); 2174 drm_scdc_set_scrambling(&sor->output.connector, true); 2175 2176 tegra_sor_hdmi_enable_scrambling(sor); 2177 } 2178 2179 static void tegra_sor_hdmi_scdc_work(struct work_struct *work) 2180 { 2181 struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work); 2182 2183 if (!drm_scdc_get_scrambling_status(&sor->output.connector)) { 2184 DRM_DEBUG_KMS("SCDC not scrambled\n"); 2185 tegra_sor_hdmi_scdc_enable(sor); 2186 } 2187 2188 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000)); 2189 } 2190 2191 static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor) 2192 { 2193 struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc; 2194 struct drm_display_mode *mode; 2195 2196 mode = &sor->output.encoder.crtc->state->adjusted_mode; 2197 2198 if (mode->clock >= 340000 && scdc->supported) { 2199 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000)); 2200 tegra_sor_hdmi_scdc_enable(sor); 2201 sor->scdc_enabled = true; 2202 } 2203 } 2204 2205 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder) 2206 { 2207 struct tegra_output *output = encoder_to_output(encoder); 2208 struct tegra_dc *dc = to_tegra_dc(encoder->crtc); 2209 struct tegra_sor *sor = to_sor(output); 2210 u32 value; 2211 int err; 2212 2213 tegra_sor_audio_unprepare(sor); 2214 tegra_sor_hdmi_scdc_stop(sor); 2215 2216 err = tegra_sor_detach(sor); 2217 if (err < 0) 2218 dev_err(sor->dev, "failed to detach SOR: %d\n", err); 2219 2220 tegra_sor_writel(sor, 0, SOR_STATE1); 2221 tegra_sor_update(sor); 2222 2223 /* disable display to SOR clock */ 2224 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 2225 2226 if (!sor->soc->has_nvdisplay) 2227 value &= ~SOR1_TIMING_CYA; 2228 2229 value &= ~SOR_ENABLE(sor->index); 2230 2231 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 2232 2233 tegra_dc_commit(dc); 2234 2235 err = tegra_sor_power_down(sor); 2236 if (err < 0) 2237 dev_err(sor->dev, "failed to power down SOR: %d\n", err); 2238 2239 err = tegra_io_pad_power_disable(sor->pad); 2240 if (err < 0) 2241 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err); 2242 2243 host1x_client_suspend(&sor->client); 2244 } 2245 2246 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder) 2247 { 2248 struct tegra_output *output = encoder_to_output(encoder); 2249 unsigned int h_ref_to_sync = 1, pulse_start, max_ac; 2250 struct tegra_dc *dc = to_tegra_dc(encoder->crtc); 2251 struct tegra_sor_hdmi_settings *settings; 2252 struct tegra_sor *sor = to_sor(output); 2253 struct tegra_sor_state *state; 2254 struct drm_display_mode *mode; 2255 unsigned long rate, pclk; 2256 unsigned int div, i; 2257 u32 value; 2258 int err; 2259 2260 state = to_sor_state(output->connector.state); 2261 mode = &encoder->crtc->state->adjusted_mode; 2262 pclk = mode->clock * 1000; 2263 2264 err = host1x_client_resume(&sor->client); 2265 if (err < 0) { 2266 dev_err(sor->dev, "failed to resume: %d\n", err); 2267 return; 2268 } 2269 2270 /* switch to safe parent clock */ 2271 err = tegra_sor_set_parent_clock(sor, sor->clk_safe); 2272 if (err < 0) { 2273 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); 2274 return; 2275 } 2276 2277 div = clk_get_rate(sor->clk) / 1000000 * 4; 2278 2279 err = tegra_io_pad_power_enable(sor->pad); 2280 if (err < 0) 2281 dev_err(sor->dev, "failed to power on I/O pad: %d\n", err); 2282 2283 usleep_range(20, 100); 2284 2285 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2286 value &= ~SOR_PLL2_BANDGAP_POWERDOWN; 2287 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2288 2289 usleep_range(20, 100); 2290 2291 value = tegra_sor_readl(sor, sor->soc->regs->pll3); 2292 value &= ~SOR_PLL3_PLL_VDD_MODE_3V3; 2293 tegra_sor_writel(sor, value, sor->soc->regs->pll3); 2294 2295 value = tegra_sor_readl(sor, sor->soc->regs->pll0); 2296 value &= ~SOR_PLL0_VCOPD; 2297 value &= ~SOR_PLL0_PWR; 2298 tegra_sor_writel(sor, value, sor->soc->regs->pll0); 2299 2300 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2301 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; 2302 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2303 2304 usleep_range(200, 400); 2305 2306 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2307 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE; 2308 value &= ~SOR_PLL2_PORT_POWERDOWN; 2309 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2310 2311 usleep_range(20, 100); 2312 2313 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 2314 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 | 2315 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2; 2316 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 2317 2318 while (true) { 2319 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); 2320 if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0) 2321 break; 2322 2323 usleep_range(250, 1000); 2324 } 2325 2326 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN | 2327 SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5); 2328 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); 2329 2330 while (true) { 2331 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); 2332 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) 2333 break; 2334 2335 usleep_range(250, 1000); 2336 } 2337 2338 value = tegra_sor_readl(sor, SOR_CLK_CNTRL); 2339 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; 2340 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; 2341 2342 if (mode->clock < 340000) { 2343 DRM_DEBUG_KMS("setting 2.7 GHz link speed\n"); 2344 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70; 2345 } else { 2346 DRM_DEBUG_KMS("setting 5.4 GHz link speed\n"); 2347 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40; 2348 } 2349 2350 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK; 2351 tegra_sor_writel(sor, value, SOR_CLK_CNTRL); 2352 2353 /* SOR pad PLL stabilization time */ 2354 usleep_range(250, 1000); 2355 2356 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); 2357 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK; 2358 value |= SOR_DP_LINKCTL_LANE_COUNT(4); 2359 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); 2360 2361 value = tegra_sor_readl(sor, SOR_DP_SPARE0); 2362 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE; 2363 value &= ~SOR_DP_SPARE_PANEL_INTERNAL; 2364 value &= ~SOR_DP_SPARE_SEQ_ENABLE; 2365 value &= ~SOR_DP_SPARE_MACRO_SOR_CLK; 2366 tegra_sor_writel(sor, value, SOR_DP_SPARE0); 2367 2368 value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) | 2369 SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8); 2370 tegra_sor_writel(sor, value, SOR_SEQ_CTL); 2371 2372 value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT | 2373 SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1); 2374 tegra_sor_writel(sor, value, SOR_SEQ_INST(0)); 2375 tegra_sor_writel(sor, value, SOR_SEQ_INST(8)); 2376 2377 if (!sor->soc->has_nvdisplay) { 2378 /* program the reference clock */ 2379 value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div); 2380 tegra_sor_writel(sor, value, SOR_REFCLK); 2381 } 2382 2383 /* XXX not in TRM */ 2384 for (value = 0, i = 0; i < 5; i++) 2385 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) | 2386 SOR_XBAR_CTRL_LINK1_XSEL(i, i); 2387 2388 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL); 2389 tegra_sor_writel(sor, value, SOR_XBAR_CTRL); 2390 2391 /* 2392 * Switch the pad clock to the DP clock. Note that we cannot actually 2393 * do this because Tegra186 and later don't support clk_set_parent() 2394 * on the sorX_pad_clkout clocks. We already do the equivalent above 2395 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register. 2396 */ 2397 #if 0 2398 err = clk_set_parent(sor->clk_pad, sor->clk_dp); 2399 if (err < 0) { 2400 dev_err(sor->dev, "failed to select pad parent clock: %d\n", 2401 err); 2402 return; 2403 } 2404 #endif 2405 2406 /* switch the SOR clock to the pad clock */ 2407 err = tegra_sor_set_parent_clock(sor, sor->clk_pad); 2408 if (err < 0) { 2409 dev_err(sor->dev, "failed to select SOR parent clock: %d\n", 2410 err); 2411 return; 2412 } 2413 2414 /* switch the output clock to the parent pixel clock */ 2415 err = clk_set_parent(sor->clk, sor->clk_parent); 2416 if (err < 0) { 2417 dev_err(sor->dev, "failed to select output parent clock: %d\n", 2418 err); 2419 return; 2420 } 2421 2422 /* adjust clock rate for HDMI 2.0 modes */ 2423 rate = clk_get_rate(sor->clk_parent); 2424 2425 if (mode->clock >= 340000) 2426 rate /= 2; 2427 2428 DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk); 2429 2430 clk_set_rate(sor->clk, rate); 2431 2432 if (!sor->soc->has_nvdisplay) { 2433 value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe); 2434 2435 /* XXX is this the proper check? */ 2436 if (mode->clock < 75000) 2437 value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED; 2438 2439 tegra_sor_writel(sor, value, SOR_INPUT_CONTROL); 2440 } 2441 2442 max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32; 2443 2444 value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) | 2445 SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY); 2446 tegra_sor_writel(sor, value, SOR_HDMI_CTRL); 2447 2448 if (!dc->soc->has_nvdisplay) { 2449 /* H_PULSE2 setup */ 2450 pulse_start = h_ref_to_sync + 2451 (mode->hsync_end - mode->hsync_start) + 2452 (mode->htotal - mode->hsync_end) - 10; 2453 2454 value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE | 2455 PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL; 2456 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL); 2457 2458 value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start); 2459 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A); 2460 2461 value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0); 2462 value |= H_PULSE2_ENABLE; 2463 tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0); 2464 } 2465 2466 /* infoframe setup */ 2467 err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode); 2468 if (err < 0) 2469 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err); 2470 2471 /* XXX HDMI audio support not implemented yet */ 2472 tegra_sor_hdmi_disable_audio_infoframe(sor); 2473 2474 /* use single TMDS protocol */ 2475 value = tegra_sor_readl(sor, SOR_STATE1); 2476 value &= ~SOR_STATE_ASY_PROTOCOL_MASK; 2477 value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A; 2478 tegra_sor_writel(sor, value, SOR_STATE1); 2479 2480 /* power up pad calibration */ 2481 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 2482 value &= ~SOR_DP_PADCTL_PAD_CAL_PD; 2483 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 2484 2485 /* production settings */ 2486 settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000); 2487 if (!settings) { 2488 dev_err(sor->dev, "no settings for pixel clock %d Hz\n", 2489 mode->clock * 1000); 2490 return; 2491 } 2492 2493 value = tegra_sor_readl(sor, sor->soc->regs->pll0); 2494 value &= ~SOR_PLL0_ICHPMP_MASK; 2495 value &= ~SOR_PLL0_FILTER_MASK; 2496 value &= ~SOR_PLL0_VCOCAP_MASK; 2497 value |= SOR_PLL0_ICHPMP(settings->ichpmp); 2498 value |= SOR_PLL0_FILTER(settings->filter); 2499 value |= SOR_PLL0_VCOCAP(settings->vcocap); 2500 tegra_sor_writel(sor, value, sor->soc->regs->pll0); 2501 2502 /* XXX not in TRM */ 2503 value = tegra_sor_readl(sor, sor->soc->regs->pll1); 2504 value &= ~SOR_PLL1_LOADADJ_MASK; 2505 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK; 2506 value |= SOR_PLL1_LOADADJ(settings->loadadj); 2507 value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj); 2508 value |= SOR_PLL1_TMDS_TERM; 2509 tegra_sor_writel(sor, value, sor->soc->regs->pll1); 2510 2511 value = tegra_sor_readl(sor, sor->soc->regs->pll3); 2512 value &= ~SOR_PLL3_BG_TEMP_COEF_MASK; 2513 value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK; 2514 value &= ~SOR_PLL3_AVDD10_LEVEL_MASK; 2515 value &= ~SOR_PLL3_AVDD14_LEVEL_MASK; 2516 value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef); 2517 value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level); 2518 value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level); 2519 value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level); 2520 tegra_sor_writel(sor, value, sor->soc->regs->pll3); 2521 2522 value = settings->drive_current[3] << 24 | 2523 settings->drive_current[2] << 16 | 2524 settings->drive_current[1] << 8 | 2525 settings->drive_current[0] << 0; 2526 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0); 2527 2528 value = settings->preemphasis[3] << 24 | 2529 settings->preemphasis[2] << 16 | 2530 settings->preemphasis[1] << 8 | 2531 settings->preemphasis[0] << 0; 2532 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0); 2533 2534 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 2535 value &= ~SOR_DP_PADCTL_TX_PU_MASK; 2536 value |= SOR_DP_PADCTL_TX_PU_ENABLE; 2537 value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value); 2538 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 2539 2540 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2); 2541 value &= ~SOR_DP_PADCTL_SPAREPLL_MASK; 2542 value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll); 2543 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2); 2544 2545 /* power down pad calibration */ 2546 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); 2547 value |= SOR_DP_PADCTL_PAD_CAL_PD; 2548 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); 2549 2550 if (!dc->soc->has_nvdisplay) { 2551 /* miscellaneous display controller settings */ 2552 value = VSYNC_H_POSITION(1); 2553 tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS); 2554 } 2555 2556 value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL); 2557 value &= ~DITHER_CONTROL_MASK; 2558 value &= ~BASE_COLOR_SIZE_MASK; 2559 2560 switch (state->bpc) { 2561 case 6: 2562 value |= BASE_COLOR_SIZE_666; 2563 break; 2564 2565 case 8: 2566 value |= BASE_COLOR_SIZE_888; 2567 break; 2568 2569 case 10: 2570 value |= BASE_COLOR_SIZE_101010; 2571 break; 2572 2573 case 12: 2574 value |= BASE_COLOR_SIZE_121212; 2575 break; 2576 2577 default: 2578 WARN(1, "%u bits-per-color not supported\n", state->bpc); 2579 value |= BASE_COLOR_SIZE_888; 2580 break; 2581 } 2582 2583 tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL); 2584 2585 /* XXX set display head owner */ 2586 value = tegra_sor_readl(sor, SOR_STATE1); 2587 value &= ~SOR_STATE_ASY_OWNER_MASK; 2588 value |= SOR_STATE_ASY_OWNER(1 + dc->pipe); 2589 tegra_sor_writel(sor, value, SOR_STATE1); 2590 2591 err = tegra_sor_power_up(sor, 250); 2592 if (err < 0) 2593 dev_err(sor->dev, "failed to power up SOR: %d\n", err); 2594 2595 /* configure dynamic range of output */ 2596 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe); 2597 value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK; 2598 value &= ~SOR_HEAD_STATE_DYNRANGE_MASK; 2599 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe); 2600 2601 /* configure colorspace */ 2602 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe); 2603 value &= ~SOR_HEAD_STATE_COLORSPACE_MASK; 2604 value |= SOR_HEAD_STATE_COLORSPACE_RGB; 2605 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe); 2606 2607 tegra_sor_mode_set(sor, mode, state); 2608 2609 tegra_sor_update(sor); 2610 2611 /* program preamble timing in SOR (XXX) */ 2612 value = tegra_sor_readl(sor, SOR_DP_SPARE0); 2613 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE; 2614 tegra_sor_writel(sor, value, SOR_DP_SPARE0); 2615 2616 err = tegra_sor_attach(sor); 2617 if (err < 0) 2618 dev_err(sor->dev, "failed to attach SOR: %d\n", err); 2619 2620 /* enable display to SOR clock and generate HDMI preamble */ 2621 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 2622 2623 if (!sor->soc->has_nvdisplay) 2624 value |= SOR1_TIMING_CYA; 2625 2626 value |= SOR_ENABLE(sor->index); 2627 2628 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 2629 2630 if (dc->soc->has_nvdisplay) { 2631 value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index)); 2632 value &= ~PROTOCOL_MASK; 2633 value |= PROTOCOL_SINGLE_TMDS_A; 2634 tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index)); 2635 } 2636 2637 tegra_dc_commit(dc); 2638 2639 err = tegra_sor_wakeup(sor); 2640 if (err < 0) 2641 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err); 2642 2643 tegra_sor_hdmi_scdc_start(sor); 2644 tegra_sor_audio_prepare(sor); 2645 } 2646 2647 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = { 2648 .disable = tegra_sor_hdmi_disable, 2649 .enable = tegra_sor_hdmi_enable, 2650 .atomic_check = tegra_sor_encoder_atomic_check, 2651 }; 2652 2653 static void tegra_sor_dp_disable(struct drm_encoder *encoder) 2654 { 2655 struct tegra_output *output = encoder_to_output(encoder); 2656 struct tegra_dc *dc = to_tegra_dc(encoder->crtc); 2657 struct tegra_sor *sor = to_sor(output); 2658 u32 value; 2659 int err; 2660 2661 if (output->panel) 2662 drm_panel_disable(output->panel); 2663 2664 /* 2665 * Do not attempt to power down a DP link if we're not connected since 2666 * the AUX transactions would just be timing out. 2667 */ 2668 if (output->connector.status != connector_status_disconnected) { 2669 err = drm_dp_link_power_down(sor->aux, &sor->link); 2670 if (err < 0) 2671 dev_err(sor->dev, "failed to power down link: %d\n", 2672 err); 2673 } 2674 2675 err = tegra_sor_detach(sor); 2676 if (err < 0) 2677 dev_err(sor->dev, "failed to detach SOR: %d\n", err); 2678 2679 tegra_sor_writel(sor, 0, SOR_STATE1); 2680 tegra_sor_update(sor); 2681 2682 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 2683 value &= ~SOR_ENABLE(sor->index); 2684 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 2685 tegra_dc_commit(dc); 2686 2687 value = tegra_sor_readl(sor, SOR_STATE1); 2688 value &= ~SOR_STATE_ASY_PROTOCOL_MASK; 2689 value &= ~SOR_STATE_ASY_SUBOWNER_MASK; 2690 value &= ~SOR_STATE_ASY_OWNER_MASK; 2691 tegra_sor_writel(sor, value, SOR_STATE1); 2692 tegra_sor_update(sor); 2693 2694 /* switch to safe parent clock */ 2695 err = tegra_sor_set_parent_clock(sor, sor->clk_safe); 2696 if (err < 0) 2697 dev_err(sor->dev, "failed to set safe clock: %d\n", err); 2698 2699 err = tegra_sor_power_down(sor); 2700 if (err < 0) 2701 dev_err(sor->dev, "failed to power down SOR: %d\n", err); 2702 2703 err = tegra_io_pad_power_disable(sor->pad); 2704 if (err < 0) 2705 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err); 2706 2707 err = drm_dp_aux_disable(sor->aux); 2708 if (err < 0) 2709 dev_err(sor->dev, "failed disable DPAUX: %d\n", err); 2710 2711 if (output->panel) 2712 drm_panel_unprepare(output->panel); 2713 2714 host1x_client_suspend(&sor->client); 2715 } 2716 2717 static void tegra_sor_dp_enable(struct drm_encoder *encoder) 2718 { 2719 struct tegra_output *output = encoder_to_output(encoder); 2720 struct tegra_dc *dc = to_tegra_dc(encoder->crtc); 2721 struct tegra_sor *sor = to_sor(output); 2722 struct tegra_sor_config config; 2723 struct tegra_sor_state *state; 2724 struct drm_display_mode *mode; 2725 struct drm_display_info *info; 2726 unsigned int i; 2727 u32 value; 2728 int err; 2729 2730 state = to_sor_state(output->connector.state); 2731 mode = &encoder->crtc->state->adjusted_mode; 2732 info = &output->connector.display_info; 2733 2734 err = host1x_client_resume(&sor->client); 2735 if (err < 0) { 2736 dev_err(sor->dev, "failed to resume: %d\n", err); 2737 return; 2738 } 2739 2740 /* switch to safe parent clock */ 2741 err = tegra_sor_set_parent_clock(sor, sor->clk_safe); 2742 if (err < 0) 2743 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); 2744 2745 err = tegra_io_pad_power_enable(sor->pad); 2746 if (err < 0) 2747 dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err); 2748 2749 usleep_range(20, 100); 2750 2751 err = drm_dp_aux_enable(sor->aux); 2752 if (err < 0) 2753 dev_err(sor->dev, "failed to enable DPAUX: %d\n", err); 2754 2755 err = drm_dp_link_probe(sor->aux, &sor->link); 2756 if (err < 0) 2757 dev_err(sor->dev, "failed to probe DP link: %d\n", err); 2758 2759 tegra_sor_filter_rates(sor); 2760 2761 err = drm_dp_link_choose(&sor->link, mode, info); 2762 if (err < 0) 2763 dev_err(sor->dev, "failed to choose link: %d\n", err); 2764 2765 if (output->panel) 2766 drm_panel_prepare(output->panel); 2767 2768 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2769 value &= ~SOR_PLL2_BANDGAP_POWERDOWN; 2770 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2771 2772 usleep_range(20, 40); 2773 2774 value = tegra_sor_readl(sor, sor->soc->regs->pll3); 2775 value |= SOR_PLL3_PLL_VDD_MODE_3V3; 2776 tegra_sor_writel(sor, value, sor->soc->regs->pll3); 2777 2778 value = tegra_sor_readl(sor, sor->soc->regs->pll0); 2779 value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR); 2780 tegra_sor_writel(sor, value, sor->soc->regs->pll0); 2781 2782 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2783 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; 2784 value |= SOR_PLL2_SEQ_PLLCAPPD; 2785 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2786 2787 usleep_range(200, 400); 2788 2789 value = tegra_sor_readl(sor, sor->soc->regs->pll2); 2790 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE; 2791 value &= ~SOR_PLL2_PORT_POWERDOWN; 2792 tegra_sor_writel(sor, value, sor->soc->regs->pll2); 2793 2794 value = tegra_sor_readl(sor, SOR_CLK_CNTRL); 2795 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; 2796 2797 if (output->panel) 2798 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK; 2799 else 2800 value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK; 2801 2802 tegra_sor_writel(sor, value, SOR_CLK_CNTRL); 2803 2804 usleep_range(200, 400); 2805 2806 value = tegra_sor_readl(sor, SOR_DP_SPARE0); 2807 /* XXX not in TRM */ 2808 if (output->panel) 2809 value |= SOR_DP_SPARE_PANEL_INTERNAL; 2810 else 2811 value &= ~SOR_DP_SPARE_PANEL_INTERNAL; 2812 2813 value |= SOR_DP_SPARE_SEQ_ENABLE; 2814 tegra_sor_writel(sor, value, SOR_DP_SPARE0); 2815 2816 /* XXX not in TRM */ 2817 tegra_sor_writel(sor, 0, SOR_LVDS); 2818 2819 value = tegra_sor_readl(sor, sor->soc->regs->pll0); 2820 value &= ~SOR_PLL0_ICHPMP_MASK; 2821 value &= ~SOR_PLL0_VCOCAP_MASK; 2822 value |= SOR_PLL0_ICHPMP(0x1); 2823 value |= SOR_PLL0_VCOCAP(0x3); 2824 value |= SOR_PLL0_RESISTOR_EXT; 2825 tegra_sor_writel(sor, value, sor->soc->regs->pll0); 2826 2827 /* XXX not in TRM */ 2828 for (value = 0, i = 0; i < 5; i++) 2829 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) | 2830 SOR_XBAR_CTRL_LINK1_XSEL(i, i); 2831 2832 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL); 2833 tegra_sor_writel(sor, value, SOR_XBAR_CTRL); 2834 2835 /* 2836 * Switch the pad clock to the DP clock. Note that we cannot actually 2837 * do this because Tegra186 and later don't support clk_set_parent() 2838 * on the sorX_pad_clkout clocks. We already do the equivalent above 2839 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register. 2840 */ 2841 #if 0 2842 err = clk_set_parent(sor->clk_pad, sor->clk_parent); 2843 if (err < 0) { 2844 dev_err(sor->dev, "failed to select pad parent clock: %d\n", 2845 err); 2846 return; 2847 } 2848 #endif 2849 2850 /* switch the SOR clock to the pad clock */ 2851 err = tegra_sor_set_parent_clock(sor, sor->clk_pad); 2852 if (err < 0) { 2853 dev_err(sor->dev, "failed to select SOR parent clock: %d\n", 2854 err); 2855 return; 2856 } 2857 2858 /* switch the output clock to the parent pixel clock */ 2859 err = clk_set_parent(sor->clk, sor->clk_parent); 2860 if (err < 0) { 2861 dev_err(sor->dev, "failed to select output parent clock: %d\n", 2862 err); 2863 return; 2864 } 2865 2866 /* use DP-A protocol */ 2867 value = tegra_sor_readl(sor, SOR_STATE1); 2868 value &= ~SOR_STATE_ASY_PROTOCOL_MASK; 2869 value |= SOR_STATE_ASY_PROTOCOL_DP_A; 2870 tegra_sor_writel(sor, value, SOR_STATE1); 2871 2872 /* enable port */ 2873 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); 2874 value |= SOR_DP_LINKCTL_ENABLE; 2875 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); 2876 2877 tegra_sor_dp_term_calibrate(sor); 2878 2879 err = drm_dp_link_train(&sor->link); 2880 if (err < 0) 2881 dev_err(sor->dev, "link training failed: %d\n", err); 2882 else 2883 dev_dbg(sor->dev, "link training succeeded\n"); 2884 2885 err = drm_dp_link_power_up(sor->aux, &sor->link); 2886 if (err < 0) 2887 dev_err(sor->dev, "failed to power up DP link: %d\n", err); 2888 2889 /* compute configuration */ 2890 memset(&config, 0, sizeof(config)); 2891 config.bits_per_pixel = state->bpc * 3; 2892 2893 err = tegra_sor_compute_config(sor, mode, &config, &sor->link); 2894 if (err < 0) 2895 dev_err(sor->dev, "failed to compute configuration: %d\n", err); 2896 2897 tegra_sor_apply_config(sor, &config); 2898 tegra_sor_mode_set(sor, mode, state); 2899 2900 if (output->panel) { 2901 /* CSTM (LVDS, link A/B, upper) */ 2902 value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B | 2903 SOR_CSTM_UPPER; 2904 tegra_sor_writel(sor, value, SOR_CSTM); 2905 2906 /* PWM setup */ 2907 err = tegra_sor_setup_pwm(sor, 250); 2908 if (err < 0) 2909 dev_err(sor->dev, "failed to setup PWM: %d\n", err); 2910 } 2911 2912 tegra_sor_update(sor); 2913 2914 err = tegra_sor_power_up(sor, 250); 2915 if (err < 0) 2916 dev_err(sor->dev, "failed to power up SOR: %d\n", err); 2917 2918 /* attach and wake up */ 2919 err = tegra_sor_attach(sor); 2920 if (err < 0) 2921 dev_err(sor->dev, "failed to attach SOR: %d\n", err); 2922 2923 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 2924 value |= SOR_ENABLE(sor->index); 2925 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 2926 2927 tegra_dc_commit(dc); 2928 2929 err = tegra_sor_wakeup(sor); 2930 if (err < 0) 2931 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err); 2932 2933 if (output->panel) 2934 drm_panel_enable(output->panel); 2935 } 2936 2937 static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = { 2938 .disable = tegra_sor_dp_disable, 2939 .enable = tegra_sor_dp_enable, 2940 .atomic_check = tegra_sor_encoder_atomic_check, 2941 }; 2942 2943 static void tegra_sor_disable_regulator(void *data) 2944 { 2945 struct regulator *reg = data; 2946 2947 regulator_disable(reg); 2948 } 2949 2950 static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg) 2951 { 2952 int err; 2953 2954 err = regulator_enable(reg); 2955 if (err) 2956 return err; 2957 2958 return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg); 2959 } 2960 2961 static int tegra_sor_hdmi_probe(struct tegra_sor *sor) 2962 { 2963 int err; 2964 2965 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp"); 2966 if (IS_ERR(sor->avdd_io_supply)) 2967 return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply), 2968 "cannot get AVDD I/O supply\n"); 2969 2970 err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply); 2971 if (err < 0) { 2972 dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n", 2973 err); 2974 return err; 2975 } 2976 2977 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll"); 2978 if (IS_ERR(sor->vdd_pll_supply)) 2979 return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply), 2980 "cannot get VDD PLL supply\n"); 2981 2982 err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply); 2983 if (err < 0) { 2984 dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n", 2985 err); 2986 return err; 2987 } 2988 2989 sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi"); 2990 if (IS_ERR(sor->hdmi_supply)) 2991 return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply), 2992 "cannot get HDMI supply\n"); 2993 2994 err = tegra_sor_enable_regulator(sor, sor->hdmi_supply); 2995 if (err < 0) { 2996 dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err); 2997 return err; 2998 } 2999 3000 INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work); 3001 3002 return 0; 3003 } 3004 3005 static const struct tegra_sor_ops tegra_sor_hdmi_ops = { 3006 .name = "HDMI", 3007 .probe = tegra_sor_hdmi_probe, 3008 .audio_enable = tegra_sor_hdmi_audio_enable, 3009 .audio_disable = tegra_sor_hdmi_audio_disable, 3010 }; 3011 3012 static int tegra_sor_dp_probe(struct tegra_sor *sor) 3013 { 3014 int err; 3015 3016 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp"); 3017 if (IS_ERR(sor->avdd_io_supply)) 3018 return PTR_ERR(sor->avdd_io_supply); 3019 3020 err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply); 3021 if (err < 0) 3022 return err; 3023 3024 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll"); 3025 if (IS_ERR(sor->vdd_pll_supply)) 3026 return PTR_ERR(sor->vdd_pll_supply); 3027 3028 err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply); 3029 if (err < 0) 3030 return err; 3031 3032 return 0; 3033 } 3034 3035 static const struct tegra_sor_ops tegra_sor_dp_ops = { 3036 .name = "DP", 3037 .probe = tegra_sor_dp_probe, 3038 }; 3039 3040 static int tegra_sor_init(struct host1x_client *client) 3041 { 3042 struct drm_device *drm = dev_get_drvdata(client->host); 3043 const struct drm_encoder_helper_funcs *helpers = NULL; 3044 struct tegra_sor *sor = host1x_client_to_sor(client); 3045 int connector = DRM_MODE_CONNECTOR_Unknown; 3046 int encoder = DRM_MODE_ENCODER_NONE; 3047 int err; 3048 3049 if (!sor->aux) { 3050 if (sor->ops == &tegra_sor_hdmi_ops) { 3051 connector = DRM_MODE_CONNECTOR_HDMIA; 3052 encoder = DRM_MODE_ENCODER_TMDS; 3053 helpers = &tegra_sor_hdmi_helpers; 3054 } else if (sor->soc->supports_lvds) { 3055 connector = DRM_MODE_CONNECTOR_LVDS; 3056 encoder = DRM_MODE_ENCODER_LVDS; 3057 } 3058 } else { 3059 if (sor->output.panel) { 3060 connector = DRM_MODE_CONNECTOR_eDP; 3061 encoder = DRM_MODE_ENCODER_TMDS; 3062 helpers = &tegra_sor_dp_helpers; 3063 } else { 3064 connector = DRM_MODE_CONNECTOR_DisplayPort; 3065 encoder = DRM_MODE_ENCODER_TMDS; 3066 helpers = &tegra_sor_dp_helpers; 3067 } 3068 3069 sor->link.ops = &tegra_sor_dp_link_ops; 3070 sor->link.aux = sor->aux; 3071 } 3072 3073 sor->output.dev = sor->dev; 3074 3075 drm_connector_init_with_ddc(drm, &sor->output.connector, 3076 &tegra_sor_connector_funcs, 3077 connector, 3078 sor->output.ddc); 3079 drm_connector_helper_add(&sor->output.connector, 3080 &tegra_sor_connector_helper_funcs); 3081 sor->output.connector.dpms = DRM_MODE_DPMS_OFF; 3082 3083 drm_simple_encoder_init(drm, &sor->output.encoder, encoder); 3084 drm_encoder_helper_add(&sor->output.encoder, helpers); 3085 3086 drm_connector_attach_encoder(&sor->output.connector, 3087 &sor->output.encoder); 3088 drm_connector_register(&sor->output.connector); 3089 3090 err = tegra_output_init(drm, &sor->output); 3091 if (err < 0) { 3092 dev_err(client->dev, "failed to initialize output: %d\n", err); 3093 return err; 3094 } 3095 3096 tegra_output_find_possible_crtcs(&sor->output, drm); 3097 3098 if (sor->aux) { 3099 err = drm_dp_aux_attach(sor->aux, &sor->output); 3100 if (err < 0) { 3101 dev_err(sor->dev, "failed to attach DP: %d\n", err); 3102 return err; 3103 } 3104 } 3105 3106 /* 3107 * XXX: Remove this reset once proper hand-over from firmware to 3108 * kernel is possible. 3109 */ 3110 if (sor->rst) { 3111 err = pm_runtime_resume_and_get(sor->dev); 3112 if (err < 0) { 3113 dev_err(sor->dev, "failed to get runtime PM: %d\n", err); 3114 return err; 3115 } 3116 3117 err = reset_control_acquire(sor->rst); 3118 if (err < 0) { 3119 dev_err(sor->dev, "failed to acquire SOR reset: %d\n", 3120 err); 3121 goto rpm_put; 3122 } 3123 3124 err = reset_control_assert(sor->rst); 3125 if (err < 0) { 3126 dev_err(sor->dev, "failed to assert SOR reset: %d\n", 3127 err); 3128 goto rpm_put; 3129 } 3130 } 3131 3132 err = clk_prepare_enable(sor->clk); 3133 if (err < 0) { 3134 dev_err(sor->dev, "failed to enable clock: %d\n", err); 3135 goto rpm_put; 3136 } 3137 3138 usleep_range(1000, 3000); 3139 3140 if (sor->rst) { 3141 err = reset_control_deassert(sor->rst); 3142 if (err < 0) { 3143 dev_err(sor->dev, "failed to deassert SOR reset: %d\n", 3144 err); 3145 clk_disable_unprepare(sor->clk); 3146 goto rpm_put; 3147 } 3148 3149 reset_control_release(sor->rst); 3150 pm_runtime_put(sor->dev); 3151 } 3152 3153 err = clk_prepare_enable(sor->clk_safe); 3154 if (err < 0) { 3155 clk_disable_unprepare(sor->clk); 3156 return err; 3157 } 3158 3159 err = clk_prepare_enable(sor->clk_dp); 3160 if (err < 0) { 3161 clk_disable_unprepare(sor->clk_safe); 3162 clk_disable_unprepare(sor->clk); 3163 return err; 3164 } 3165 3166 return 0; 3167 3168 rpm_put: 3169 if (sor->rst) 3170 pm_runtime_put(sor->dev); 3171 3172 return err; 3173 } 3174 3175 static int tegra_sor_exit(struct host1x_client *client) 3176 { 3177 struct tegra_sor *sor = host1x_client_to_sor(client); 3178 int err; 3179 3180 tegra_output_exit(&sor->output); 3181 3182 if (sor->aux) { 3183 err = drm_dp_aux_detach(sor->aux); 3184 if (err < 0) { 3185 dev_err(sor->dev, "failed to detach DP: %d\n", err); 3186 return err; 3187 } 3188 } 3189 3190 clk_disable_unprepare(sor->clk_safe); 3191 clk_disable_unprepare(sor->clk_dp); 3192 clk_disable_unprepare(sor->clk); 3193 3194 return 0; 3195 } 3196 3197 static int tegra_sor_runtime_suspend(struct host1x_client *client) 3198 { 3199 struct tegra_sor *sor = host1x_client_to_sor(client); 3200 struct device *dev = client->dev; 3201 int err; 3202 3203 if (sor->rst) { 3204 err = reset_control_assert(sor->rst); 3205 if (err < 0) { 3206 dev_err(dev, "failed to assert reset: %d\n", err); 3207 return err; 3208 } 3209 3210 reset_control_release(sor->rst); 3211 } 3212 3213 usleep_range(1000, 2000); 3214 3215 clk_disable_unprepare(sor->clk); 3216 pm_runtime_put_sync(dev); 3217 3218 return 0; 3219 } 3220 3221 static int tegra_sor_runtime_resume(struct host1x_client *client) 3222 { 3223 struct tegra_sor *sor = host1x_client_to_sor(client); 3224 struct device *dev = client->dev; 3225 int err; 3226 3227 err = pm_runtime_resume_and_get(dev); 3228 if (err < 0) { 3229 dev_err(dev, "failed to get runtime PM: %d\n", err); 3230 return err; 3231 } 3232 3233 err = clk_prepare_enable(sor->clk); 3234 if (err < 0) { 3235 dev_err(dev, "failed to enable clock: %d\n", err); 3236 goto put_rpm; 3237 } 3238 3239 usleep_range(1000, 2000); 3240 3241 if (sor->rst) { 3242 err = reset_control_acquire(sor->rst); 3243 if (err < 0) { 3244 dev_err(dev, "failed to acquire reset: %d\n", err); 3245 goto disable_clk; 3246 } 3247 3248 err = reset_control_deassert(sor->rst); 3249 if (err < 0) { 3250 dev_err(dev, "failed to deassert reset: %d\n", err); 3251 goto release_reset; 3252 } 3253 } 3254 3255 return 0; 3256 3257 release_reset: 3258 reset_control_release(sor->rst); 3259 disable_clk: 3260 clk_disable_unprepare(sor->clk); 3261 put_rpm: 3262 pm_runtime_put_sync(dev); 3263 return err; 3264 } 3265 3266 static const struct host1x_client_ops sor_client_ops = { 3267 .init = tegra_sor_init, 3268 .exit = tegra_sor_exit, 3269 .suspend = tegra_sor_runtime_suspend, 3270 .resume = tegra_sor_runtime_resume, 3271 }; 3272 3273 static const u8 tegra124_sor_xbar_cfg[5] = { 3274 0, 1, 2, 3, 4 3275 }; 3276 3277 static const struct tegra_sor_regs tegra124_sor_regs = { 3278 .head_state0 = 0x05, 3279 .head_state1 = 0x07, 3280 .head_state2 = 0x09, 3281 .head_state3 = 0x0b, 3282 .head_state4 = 0x0d, 3283 .head_state5 = 0x0f, 3284 .pll0 = 0x17, 3285 .pll1 = 0x18, 3286 .pll2 = 0x19, 3287 .pll3 = 0x1a, 3288 .dp_padctl0 = 0x5c, 3289 .dp_padctl2 = 0x73, 3290 }; 3291 3292 /* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */ 3293 static const u8 tegra124_sor_lane_map[4] = { 3294 2, 1, 0, 3, 3295 }; 3296 3297 static const u8 tegra124_sor_voltage_swing[4][4][4] = { 3298 { 3299 { 0x13, 0x19, 0x1e, 0x28 }, 3300 { 0x1e, 0x25, 0x2d, }, 3301 { 0x28, 0x32, }, 3302 { 0x3c, }, 3303 }, { 3304 { 0x12, 0x17, 0x1b, 0x25 }, 3305 { 0x1c, 0x23, 0x2a, }, 3306 { 0x25, 0x2f, }, 3307 { 0x39, } 3308 }, { 3309 { 0x12, 0x16, 0x1a, 0x22 }, 3310 { 0x1b, 0x20, 0x27, }, 3311 { 0x24, 0x2d, }, 3312 { 0x36, }, 3313 }, { 3314 { 0x11, 0x14, 0x17, 0x1f }, 3315 { 0x19, 0x1e, 0x24, }, 3316 { 0x22, 0x2a, }, 3317 { 0x32, }, 3318 }, 3319 }; 3320 3321 static const u8 tegra124_sor_pre_emphasis[4][4][4] = { 3322 { 3323 { 0x00, 0x09, 0x13, 0x25 }, 3324 { 0x00, 0x0f, 0x1e, }, 3325 { 0x00, 0x14, }, 3326 { 0x00, }, 3327 }, { 3328 { 0x00, 0x0a, 0x14, 0x28 }, 3329 { 0x00, 0x0f, 0x1e, }, 3330 { 0x00, 0x14, }, 3331 { 0x00 }, 3332 }, { 3333 { 0x00, 0x0a, 0x14, 0x28 }, 3334 { 0x00, 0x0f, 0x1e, }, 3335 { 0x00, 0x14, }, 3336 { 0x00, }, 3337 }, { 3338 { 0x00, 0x0a, 0x14, 0x28 }, 3339 { 0x00, 0x0f, 0x1e, }, 3340 { 0x00, 0x14, }, 3341 { 0x00, }, 3342 }, 3343 }; 3344 3345 static const u8 tegra124_sor_post_cursor[4][4][4] = { 3346 { 3347 { 0x00, 0x00, 0x00, 0x00 }, 3348 { 0x00, 0x00, 0x00, }, 3349 { 0x00, 0x00, }, 3350 { 0x00, }, 3351 }, { 3352 { 0x02, 0x02, 0x04, 0x05 }, 3353 { 0x02, 0x04, 0x05, }, 3354 { 0x04, 0x05, }, 3355 { 0x05, }, 3356 }, { 3357 { 0x04, 0x05, 0x08, 0x0b }, 3358 { 0x05, 0x09, 0x0b, }, 3359 { 0x08, 0x0a, }, 3360 { 0x0b, }, 3361 }, { 3362 { 0x05, 0x09, 0x0b, 0x12 }, 3363 { 0x09, 0x0d, 0x12, }, 3364 { 0x0b, 0x0f, }, 3365 { 0x12, }, 3366 }, 3367 }; 3368 3369 static const u8 tegra124_sor_tx_pu[4][4][4] = { 3370 { 3371 { 0x20, 0x30, 0x40, 0x60 }, 3372 { 0x30, 0x40, 0x60, }, 3373 { 0x40, 0x60, }, 3374 { 0x60, }, 3375 }, { 3376 { 0x20, 0x20, 0x30, 0x50 }, 3377 { 0x30, 0x40, 0x50, }, 3378 { 0x40, 0x50, }, 3379 { 0x60, }, 3380 }, { 3381 { 0x20, 0x20, 0x30, 0x40, }, 3382 { 0x30, 0x30, 0x40, }, 3383 { 0x40, 0x50, }, 3384 { 0x60, }, 3385 }, { 3386 { 0x20, 0x20, 0x20, 0x40, }, 3387 { 0x30, 0x30, 0x40, }, 3388 { 0x40, 0x40, }, 3389 { 0x60, }, 3390 }, 3391 }; 3392 3393 static const struct tegra_sor_soc tegra124_sor = { 3394 .supports_lvds = true, 3395 .supports_hdmi = false, 3396 .supports_dp = true, 3397 .supports_audio = false, 3398 .supports_hdcp = false, 3399 .regs = &tegra124_sor_regs, 3400 .has_nvdisplay = false, 3401 .xbar_cfg = tegra124_sor_xbar_cfg, 3402 .lane_map = tegra124_sor_lane_map, 3403 .voltage_swing = tegra124_sor_voltage_swing, 3404 .pre_emphasis = tegra124_sor_pre_emphasis, 3405 .post_cursor = tegra124_sor_post_cursor, 3406 .tx_pu = tegra124_sor_tx_pu, 3407 }; 3408 3409 static const u8 tegra132_sor_pre_emphasis[4][4][4] = { 3410 { 3411 { 0x00, 0x08, 0x12, 0x24 }, 3412 { 0x01, 0x0e, 0x1d, }, 3413 { 0x01, 0x13, }, 3414 { 0x00, }, 3415 }, { 3416 { 0x00, 0x08, 0x12, 0x24 }, 3417 { 0x00, 0x0e, 0x1d, }, 3418 { 0x00, 0x13, }, 3419 { 0x00 }, 3420 }, { 3421 { 0x00, 0x08, 0x12, 0x24 }, 3422 { 0x00, 0x0e, 0x1d, }, 3423 { 0x00, 0x13, }, 3424 { 0x00, }, 3425 }, { 3426 { 0x00, 0x08, 0x12, 0x24 }, 3427 { 0x00, 0x0e, 0x1d, }, 3428 { 0x00, 0x13, }, 3429 { 0x00, }, 3430 }, 3431 }; 3432 3433 static const struct tegra_sor_soc tegra132_sor = { 3434 .supports_lvds = true, 3435 .supports_hdmi = false, 3436 .supports_dp = true, 3437 .supports_audio = false, 3438 .supports_hdcp = false, 3439 .regs = &tegra124_sor_regs, 3440 .has_nvdisplay = false, 3441 .xbar_cfg = tegra124_sor_xbar_cfg, 3442 .lane_map = tegra124_sor_lane_map, 3443 .voltage_swing = tegra124_sor_voltage_swing, 3444 .pre_emphasis = tegra132_sor_pre_emphasis, 3445 .post_cursor = tegra124_sor_post_cursor, 3446 .tx_pu = tegra124_sor_tx_pu, 3447 }; 3448 3449 static const struct tegra_sor_regs tegra210_sor_regs = { 3450 .head_state0 = 0x05, 3451 .head_state1 = 0x07, 3452 .head_state2 = 0x09, 3453 .head_state3 = 0x0b, 3454 .head_state4 = 0x0d, 3455 .head_state5 = 0x0f, 3456 .pll0 = 0x17, 3457 .pll1 = 0x18, 3458 .pll2 = 0x19, 3459 .pll3 = 0x1a, 3460 .dp_padctl0 = 0x5c, 3461 .dp_padctl2 = 0x73, 3462 }; 3463 3464 static const u8 tegra210_sor_xbar_cfg[5] = { 3465 2, 1, 0, 3, 4 3466 }; 3467 3468 static const u8 tegra210_sor_lane_map[4] = { 3469 0, 1, 2, 3, 3470 }; 3471 3472 static const struct tegra_sor_soc tegra210_sor = { 3473 .supports_lvds = false, 3474 .supports_hdmi = false, 3475 .supports_dp = true, 3476 .supports_audio = false, 3477 .supports_hdcp = false, 3478 3479 .regs = &tegra210_sor_regs, 3480 .has_nvdisplay = false, 3481 3482 .xbar_cfg = tegra210_sor_xbar_cfg, 3483 .lane_map = tegra210_sor_lane_map, 3484 .voltage_swing = tegra124_sor_voltage_swing, 3485 .pre_emphasis = tegra124_sor_pre_emphasis, 3486 .post_cursor = tegra124_sor_post_cursor, 3487 .tx_pu = tegra124_sor_tx_pu, 3488 }; 3489 3490 static const struct tegra_sor_soc tegra210_sor1 = { 3491 .supports_lvds = false, 3492 .supports_hdmi = true, 3493 .supports_dp = true, 3494 .supports_audio = true, 3495 .supports_hdcp = true, 3496 3497 .regs = &tegra210_sor_regs, 3498 .has_nvdisplay = false, 3499 3500 .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults), 3501 .settings = tegra210_sor_hdmi_defaults, 3502 .xbar_cfg = tegra210_sor_xbar_cfg, 3503 .lane_map = tegra210_sor_lane_map, 3504 .voltage_swing = tegra124_sor_voltage_swing, 3505 .pre_emphasis = tegra124_sor_pre_emphasis, 3506 .post_cursor = tegra124_sor_post_cursor, 3507 .tx_pu = tegra124_sor_tx_pu, 3508 }; 3509 3510 static const struct tegra_sor_regs tegra186_sor_regs = { 3511 .head_state0 = 0x151, 3512 .head_state1 = 0x154, 3513 .head_state2 = 0x157, 3514 .head_state3 = 0x15a, 3515 .head_state4 = 0x15d, 3516 .head_state5 = 0x160, 3517 .pll0 = 0x163, 3518 .pll1 = 0x164, 3519 .pll2 = 0x165, 3520 .pll3 = 0x166, 3521 .dp_padctl0 = 0x168, 3522 .dp_padctl2 = 0x16a, 3523 }; 3524 3525 static const u8 tegra186_sor_voltage_swing[4][4][4] = { 3526 { 3527 { 0x13, 0x19, 0x1e, 0x28 }, 3528 { 0x1e, 0x25, 0x2d, }, 3529 { 0x28, 0x32, }, 3530 { 0x39, }, 3531 }, { 3532 { 0x12, 0x16, 0x1b, 0x25 }, 3533 { 0x1c, 0x23, 0x2a, }, 3534 { 0x25, 0x2f, }, 3535 { 0x37, } 3536 }, { 3537 { 0x12, 0x16, 0x1a, 0x22 }, 3538 { 0x1b, 0x20, 0x27, }, 3539 { 0x24, 0x2d, }, 3540 { 0x35, }, 3541 }, { 3542 { 0x11, 0x14, 0x17, 0x1f }, 3543 { 0x19, 0x1e, 0x24, }, 3544 { 0x22, 0x2a, }, 3545 { 0x32, }, 3546 }, 3547 }; 3548 3549 static const u8 tegra186_sor_pre_emphasis[4][4][4] = { 3550 { 3551 { 0x00, 0x08, 0x12, 0x24 }, 3552 { 0x01, 0x0e, 0x1d, }, 3553 { 0x01, 0x13, }, 3554 { 0x00, }, 3555 }, { 3556 { 0x00, 0x08, 0x12, 0x24 }, 3557 { 0x00, 0x0e, 0x1d, }, 3558 { 0x00, 0x13, }, 3559 { 0x00 }, 3560 }, { 3561 { 0x00, 0x08, 0x14, 0x24 }, 3562 { 0x00, 0x0e, 0x1d, }, 3563 { 0x00, 0x13, }, 3564 { 0x00, }, 3565 }, { 3566 { 0x00, 0x08, 0x12, 0x24 }, 3567 { 0x00, 0x0e, 0x1d, }, 3568 { 0x00, 0x13, }, 3569 { 0x00, }, 3570 }, 3571 }; 3572 3573 static const struct tegra_sor_soc tegra186_sor = { 3574 .supports_lvds = false, 3575 .supports_hdmi = true, 3576 .supports_dp = true, 3577 .supports_audio = true, 3578 .supports_hdcp = true, 3579 3580 .regs = &tegra186_sor_regs, 3581 .has_nvdisplay = true, 3582 3583 .num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults), 3584 .settings = tegra186_sor_hdmi_defaults, 3585 .xbar_cfg = tegra124_sor_xbar_cfg, 3586 .lane_map = tegra124_sor_lane_map, 3587 .voltage_swing = tegra186_sor_voltage_swing, 3588 .pre_emphasis = tegra186_sor_pre_emphasis, 3589 .post_cursor = tegra124_sor_post_cursor, 3590 .tx_pu = tegra124_sor_tx_pu, 3591 }; 3592 3593 static const struct tegra_sor_regs tegra194_sor_regs = { 3594 .head_state0 = 0x151, 3595 .head_state1 = 0x155, 3596 .head_state2 = 0x159, 3597 .head_state3 = 0x15d, 3598 .head_state4 = 0x161, 3599 .head_state5 = 0x165, 3600 .pll0 = 0x169, 3601 .pll1 = 0x16a, 3602 .pll2 = 0x16b, 3603 .pll3 = 0x16c, 3604 .dp_padctl0 = 0x16e, 3605 .dp_padctl2 = 0x16f, 3606 }; 3607 3608 static const struct tegra_sor_soc tegra194_sor = { 3609 .supports_lvds = false, 3610 .supports_hdmi = true, 3611 .supports_dp = true, 3612 .supports_audio = true, 3613 .supports_hdcp = true, 3614 3615 .regs = &tegra194_sor_regs, 3616 .has_nvdisplay = true, 3617 3618 .num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults), 3619 .settings = tegra194_sor_hdmi_defaults, 3620 3621 .xbar_cfg = tegra210_sor_xbar_cfg, 3622 .lane_map = tegra124_sor_lane_map, 3623 .voltage_swing = tegra186_sor_voltage_swing, 3624 .pre_emphasis = tegra186_sor_pre_emphasis, 3625 .post_cursor = tegra124_sor_post_cursor, 3626 .tx_pu = tegra124_sor_tx_pu, 3627 }; 3628 3629 static const struct of_device_id tegra_sor_of_match[] = { 3630 { .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor }, 3631 { .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor }, 3632 { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 }, 3633 { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor }, 3634 { .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor }, 3635 { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor }, 3636 { }, 3637 }; 3638 MODULE_DEVICE_TABLE(of, tegra_sor_of_match); 3639 3640 static int tegra_sor_parse_dt(struct tegra_sor *sor) 3641 { 3642 struct device_node *np = sor->dev->of_node; 3643 u32 xbar_cfg[5]; 3644 unsigned int i; 3645 u32 value; 3646 int err; 3647 3648 if (sor->soc->has_nvdisplay) { 3649 err = of_property_read_u32(np, "nvidia,interface", &value); 3650 if (err < 0) 3651 return err; 3652 3653 sor->index = value; 3654 3655 /* 3656 * override the default that we already set for Tegra210 and 3657 * earlier 3658 */ 3659 sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index; 3660 } else { 3661 if (!sor->soc->supports_audio) 3662 sor->index = 0; 3663 else 3664 sor->index = 1; 3665 } 3666 3667 err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5); 3668 if (err < 0) { 3669 /* fall back to default per-SoC XBAR configuration */ 3670 for (i = 0; i < 5; i++) 3671 sor->xbar_cfg[i] = sor->soc->xbar_cfg[i]; 3672 } else { 3673 /* copy cells to SOR XBAR configuration */ 3674 for (i = 0; i < 5; i++) 3675 sor->xbar_cfg[i] = xbar_cfg[i]; 3676 } 3677 3678 return 0; 3679 } 3680 3681 static irqreturn_t tegra_sor_irq(int irq, void *data) 3682 { 3683 struct tegra_sor *sor = data; 3684 u32 value; 3685 3686 value = tegra_sor_readl(sor, SOR_INT_STATUS); 3687 tegra_sor_writel(sor, value, SOR_INT_STATUS); 3688 3689 if (value & SOR_INT_CODEC_SCRATCH0) { 3690 value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0); 3691 3692 if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) { 3693 unsigned int format; 3694 3695 format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK; 3696 3697 tegra_hda_parse_format(format, &sor->format); 3698 3699 if (sor->ops->audio_enable) 3700 sor->ops->audio_enable(sor); 3701 } else { 3702 if (sor->ops->audio_disable) 3703 sor->ops->audio_disable(sor); 3704 } 3705 } 3706 3707 return IRQ_HANDLED; 3708 } 3709 3710 static int tegra_sor_probe(struct platform_device *pdev) 3711 { 3712 struct device_node *np; 3713 struct tegra_sor *sor; 3714 int err; 3715 3716 sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL); 3717 if (!sor) 3718 return -ENOMEM; 3719 3720 sor->soc = of_device_get_match_data(&pdev->dev); 3721 sor->output.dev = sor->dev = &pdev->dev; 3722 3723 sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings, 3724 sor->soc->num_settings * 3725 sizeof(*sor->settings), 3726 GFP_KERNEL); 3727 if (!sor->settings) 3728 return -ENOMEM; 3729 3730 sor->num_settings = sor->soc->num_settings; 3731 3732 np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0); 3733 if (np) { 3734 sor->aux = drm_dp_aux_find_by_of_node(np); 3735 of_node_put(np); 3736 3737 if (!sor->aux) 3738 return -EPROBE_DEFER; 3739 3740 if (get_device(sor->aux->dev)) 3741 sor->output.ddc = &sor->aux->ddc; 3742 } 3743 3744 if (!sor->aux) { 3745 if (sor->soc->supports_hdmi) { 3746 sor->ops = &tegra_sor_hdmi_ops; 3747 sor->pad = TEGRA_IO_PAD_HDMI; 3748 } else if (sor->soc->supports_lvds) { 3749 dev_err(&pdev->dev, "LVDS not supported yet\n"); 3750 return -ENODEV; 3751 } else { 3752 dev_err(&pdev->dev, "unknown (non-DP) support\n"); 3753 return -ENODEV; 3754 } 3755 } else { 3756 np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0); 3757 /* 3758 * No need to keep this around since we only use it as a check 3759 * to see if a panel is connected (eDP) or not (DP). 3760 */ 3761 of_node_put(np); 3762 3763 sor->ops = &tegra_sor_dp_ops; 3764 sor->pad = TEGRA_IO_PAD_LVDS; 3765 } 3766 3767 err = tegra_sor_parse_dt(sor); 3768 if (err < 0) 3769 goto put_aux; 3770 3771 err = tegra_output_probe(&sor->output); 3772 if (err < 0) { 3773 dev_err_probe(&pdev->dev, err, "failed to probe output\n"); 3774 goto put_aux; 3775 } 3776 3777 if (sor->ops && sor->ops->probe) { 3778 err = sor->ops->probe(sor); 3779 if (err < 0) { 3780 dev_err(&pdev->dev, "failed to probe %s: %d\n", 3781 sor->ops->name, err); 3782 goto remove; 3783 } 3784 } 3785 3786 sor->regs = devm_platform_ioremap_resource(pdev, 0); 3787 if (IS_ERR(sor->regs)) { 3788 err = PTR_ERR(sor->regs); 3789 goto remove; 3790 } 3791 3792 err = platform_get_irq(pdev, 0); 3793 if (err < 0) 3794 goto remove; 3795 3796 sor->irq = err; 3797 3798 err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0, 3799 dev_name(sor->dev), sor); 3800 if (err < 0) { 3801 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err); 3802 goto remove; 3803 } 3804 3805 sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor"); 3806 if (IS_ERR(sor->rst)) { 3807 err = PTR_ERR(sor->rst); 3808 3809 if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) { 3810 dev_err(&pdev->dev, "failed to get reset control: %d\n", 3811 err); 3812 goto remove; 3813 } 3814 3815 /* 3816 * At this point, the reset control is most likely being used 3817 * by the generic power domain implementation. With any luck 3818 * the power domain will have taken care of resetting the SOR 3819 * and we don't have to do anything. 3820 */ 3821 sor->rst = NULL; 3822 } 3823 3824 sor->clk = devm_clk_get(&pdev->dev, NULL); 3825 if (IS_ERR(sor->clk)) { 3826 err = PTR_ERR(sor->clk); 3827 dev_err(&pdev->dev, "failed to get module clock: %d\n", err); 3828 goto remove; 3829 } 3830 3831 if (sor->soc->supports_hdmi || sor->soc->supports_dp) { 3832 struct device_node *np = pdev->dev.of_node; 3833 const char *name; 3834 3835 /* 3836 * For backwards compatibility with Tegra210 device trees, 3837 * fall back to the old clock name "source" if the new "out" 3838 * clock is not available. 3839 */ 3840 if (of_property_match_string(np, "clock-names", "out") < 0) 3841 name = "source"; 3842 else 3843 name = "out"; 3844 3845 sor->clk_out = devm_clk_get(&pdev->dev, name); 3846 if (IS_ERR(sor->clk_out)) { 3847 err = PTR_ERR(sor->clk_out); 3848 dev_err(sor->dev, "failed to get %s clock: %d\n", 3849 name, err); 3850 goto remove; 3851 } 3852 } else { 3853 /* fall back to the module clock on SOR0 (eDP/LVDS only) */ 3854 sor->clk_out = sor->clk; 3855 } 3856 3857 sor->clk_parent = devm_clk_get(&pdev->dev, "parent"); 3858 if (IS_ERR(sor->clk_parent)) { 3859 err = PTR_ERR(sor->clk_parent); 3860 dev_err(&pdev->dev, "failed to get parent clock: %d\n", err); 3861 goto remove; 3862 } 3863 3864 sor->clk_safe = devm_clk_get(&pdev->dev, "safe"); 3865 if (IS_ERR(sor->clk_safe)) { 3866 err = PTR_ERR(sor->clk_safe); 3867 dev_err(&pdev->dev, "failed to get safe clock: %d\n", err); 3868 goto remove; 3869 } 3870 3871 sor->clk_dp = devm_clk_get(&pdev->dev, "dp"); 3872 if (IS_ERR(sor->clk_dp)) { 3873 err = PTR_ERR(sor->clk_dp); 3874 dev_err(&pdev->dev, "failed to get DP clock: %d\n", err); 3875 goto remove; 3876 } 3877 3878 /* 3879 * Starting with Tegra186, the BPMP provides an implementation for 3880 * the pad output clock, so we have to look it up from device tree. 3881 */ 3882 sor->clk_pad = devm_clk_get(&pdev->dev, "pad"); 3883 if (IS_ERR(sor->clk_pad)) { 3884 if (sor->clk_pad != ERR_PTR(-ENOENT)) { 3885 err = PTR_ERR(sor->clk_pad); 3886 goto remove; 3887 } 3888 3889 /* 3890 * If the pad output clock is not available, then we assume 3891 * we're on Tegra210 or earlier and have to provide our own 3892 * implementation. 3893 */ 3894 sor->clk_pad = NULL; 3895 } 3896 3897 /* 3898 * The bootloader may have set up the SOR such that it's module clock 3899 * is sourced by one of the display PLLs. However, that doesn't work 3900 * without properly having set up other bits of the SOR. 3901 */ 3902 err = clk_set_parent(sor->clk_out, sor->clk_safe); 3903 if (err < 0) { 3904 dev_err(&pdev->dev, "failed to use safe clock: %d\n", err); 3905 goto remove; 3906 } 3907 3908 platform_set_drvdata(pdev, sor); 3909 pm_runtime_enable(&pdev->dev); 3910 3911 host1x_client_init(&sor->client); 3912 sor->client.ops = &sor_client_ops; 3913 sor->client.dev = &pdev->dev; 3914 3915 /* 3916 * On Tegra210 and earlier, provide our own implementation for the 3917 * pad output clock. 3918 */ 3919 if (!sor->clk_pad) { 3920 char *name; 3921 3922 name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout", 3923 sor->index); 3924 if (!name) { 3925 err = -ENOMEM; 3926 goto uninit; 3927 } 3928 3929 err = host1x_client_resume(&sor->client); 3930 if (err < 0) { 3931 dev_err(sor->dev, "failed to resume: %d\n", err); 3932 goto uninit; 3933 } 3934 3935 sor->clk_pad = tegra_clk_sor_pad_register(sor, name); 3936 host1x_client_suspend(&sor->client); 3937 } 3938 3939 if (IS_ERR(sor->clk_pad)) { 3940 err = PTR_ERR(sor->clk_pad); 3941 dev_err(sor->dev, "failed to register SOR pad clock: %d\n", 3942 err); 3943 goto uninit; 3944 } 3945 3946 err = __host1x_client_register(&sor->client); 3947 if (err < 0) { 3948 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 3949 err); 3950 goto uninit; 3951 } 3952 3953 return 0; 3954 3955 uninit: 3956 host1x_client_exit(&sor->client); 3957 pm_runtime_disable(&pdev->dev); 3958 remove: 3959 if (sor->aux) 3960 sor->output.ddc = NULL; 3961 3962 tegra_output_remove(&sor->output); 3963 put_aux: 3964 if (sor->aux) 3965 put_device(sor->aux->dev); 3966 3967 return err; 3968 } 3969 3970 static void tegra_sor_remove(struct platform_device *pdev) 3971 { 3972 struct tegra_sor *sor = platform_get_drvdata(pdev); 3973 3974 host1x_client_unregister(&sor->client); 3975 3976 pm_runtime_disable(&pdev->dev); 3977 3978 if (sor->aux) { 3979 put_device(sor->aux->dev); 3980 sor->output.ddc = NULL; 3981 } 3982 3983 tegra_output_remove(&sor->output); 3984 } 3985 3986 static int __maybe_unused tegra_sor_suspend(struct device *dev) 3987 { 3988 struct tegra_sor *sor = dev_get_drvdata(dev); 3989 int err; 3990 3991 err = tegra_output_suspend(&sor->output); 3992 if (err < 0) { 3993 dev_err(dev, "failed to suspend output: %d\n", err); 3994 return err; 3995 } 3996 3997 if (sor->hdmi_supply) { 3998 err = regulator_disable(sor->hdmi_supply); 3999 if (err < 0) { 4000 tegra_output_resume(&sor->output); 4001 return err; 4002 } 4003 } 4004 4005 return 0; 4006 } 4007 4008 static int __maybe_unused tegra_sor_resume(struct device *dev) 4009 { 4010 struct tegra_sor *sor = dev_get_drvdata(dev); 4011 int err; 4012 4013 if (sor->hdmi_supply) { 4014 err = regulator_enable(sor->hdmi_supply); 4015 if (err < 0) 4016 return err; 4017 } 4018 4019 err = tegra_output_resume(&sor->output); 4020 if (err < 0) { 4021 dev_err(dev, "failed to resume output: %d\n", err); 4022 4023 if (sor->hdmi_supply) 4024 regulator_disable(sor->hdmi_supply); 4025 4026 return err; 4027 } 4028 4029 return 0; 4030 } 4031 4032 static const struct dev_pm_ops tegra_sor_pm_ops = { 4033 SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume) 4034 }; 4035 4036 struct platform_driver tegra_sor_driver = { 4037 .driver = { 4038 .name = "tegra-sor", 4039 .of_match_table = tegra_sor_of_match, 4040 .pm = &tegra_sor_pm_ops, 4041 }, 4042 .probe = tegra_sor_probe, 4043 .remove_new = tegra_sor_remove, 4044 }; 4045