xref: /linux/drivers/gpu/drm/tegra/rgb.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/of.h>
9 
10 #include <drm/drm_atomic_helper.h>
11 #include <drm/drm_bridge_connector.h>
12 #include <drm/drm_simple_kms_helper.h>
13 
14 #include "drm.h"
15 #include "dc.h"
16 
17 struct tegra_rgb {
18 	struct tegra_output output;
19 	struct tegra_dc *dc;
20 
21 	struct clk *pll_d_out0;
22 	struct clk *pll_d2_out0;
23 	struct clk *clk_parent;
24 	struct clk *clk;
25 };
26 
27 static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
28 {
29 	return container_of(output, struct tegra_rgb, output);
30 }
31 
32 struct reg_entry {
33 	unsigned long offset;
34 	unsigned long value;
35 };
36 
37 static const struct reg_entry rgb_enable[] = {
38 	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
39 	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
40 	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
41 	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
42 	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
43 	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
44 	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
45 	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
46 	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
47 	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
48 	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
49 	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
50 	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
51 	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
52 	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
53 	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
54 	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
55 	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
56 	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
57 };
58 
59 static const struct reg_entry rgb_disable[] = {
60 	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
61 	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
62 	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
63 	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
64 	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
65 	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
66 	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
67 	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
68 	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
69 	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
70 	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
71 	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
72 	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
73 	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
74 	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
75 	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
76 	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
77 	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
78 	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
79 };
80 
81 static void tegra_dc_write_regs(struct tegra_dc *dc,
82 				const struct reg_entry *table,
83 				unsigned int num)
84 {
85 	unsigned int i;
86 
87 	for (i = 0; i < num; i++)
88 		tegra_dc_writel(dc, table[i].value, table[i].offset);
89 }
90 
91 static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
92 {
93 	struct tegra_output *output = encoder_to_output(encoder);
94 	struct tegra_rgb *rgb = to_rgb(output);
95 
96 	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
97 	tegra_dc_commit(rgb->dc);
98 }
99 
100 static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
101 {
102 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
103 	struct tegra_output *output = encoder_to_output(encoder);
104 	struct tegra_rgb *rgb = to_rgb(output);
105 	u32 value;
106 
107 	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
108 
109 	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
110 	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
111 
112 	/* configure H- and V-sync signal polarities */
113 	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
114 
115 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
116 		value |= LHS_OUTPUT_POLARITY_LOW;
117 	else
118 		value &= ~LHS_OUTPUT_POLARITY_LOW;
119 
120 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
121 		value |= LVS_OUTPUT_POLARITY_LOW;
122 	else
123 		value &= ~LVS_OUTPUT_POLARITY_LOW;
124 
125 	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
126 
127 	/* XXX: parameterize? */
128 	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
129 		DISP_ORDER_RED_BLUE;
130 	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
131 
132 	tegra_dc_commit(rgb->dc);
133 }
134 
135 static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
136 {
137 	if (!rgb->pll_d2_out0)
138 		return false;
139 
140 	if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
141 	    !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
142 		return false;
143 
144 	return true;
145 }
146 
147 static int
148 tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
149 			       struct drm_crtc_state *crtc_state,
150 			       struct drm_connector_state *conn_state)
151 {
152 	struct tegra_output *output = encoder_to_output(encoder);
153 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
154 	unsigned long pclk = crtc_state->mode.clock * 1000;
155 	struct tegra_rgb *rgb = to_rgb(output);
156 	unsigned int div;
157 	int err;
158 
159 	/*
160 	 * We may not want to change the frequency of the parent clock, since
161 	 * it may be a parent for other peripherals. This is due to the fact
162 	 * that on Tegra20 there's only a single clock dedicated to display
163 	 * (pll_d_out0), whereas later generations have a second one that can
164 	 * be used to independently drive a second output (pll_d2_out0).
165 	 *
166 	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
167 	 * typically used as the parent clock for the display controllers.
168 	 * But this comes at a cost: pll_p is the parent of several other
169 	 * peripherals, so its frequency shouldn't change out of the blue.
170 	 *
171 	 * The best we can do at this point is to use the shift clock divider
172 	 * and hope that the desired frequency can be matched (or at least
173 	 * matched sufficiently close that the panel will still work).
174 	 */
175 	if (tegra_rgb_pll_rate_change_allowed(rgb)) {
176 		/*
177 		 * Set display controller clock to x2 of PCLK in order to
178 		 * produce higher resolution pulse positions.
179 		 */
180 		div = 2;
181 		pclk *= 2;
182 	} else {
183 		div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
184 		pclk = 0;
185 	}
186 
187 	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
188 					 pclk, div);
189 	if (err < 0) {
190 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
191 		return err;
192 	}
193 
194 	return err;
195 }
196 
197 static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
198 	.disable = tegra_rgb_encoder_disable,
199 	.enable = tegra_rgb_encoder_enable,
200 	.atomic_check = tegra_rgb_encoder_atomic_check,
201 };
202 
203 int tegra_dc_rgb_probe(struct tegra_dc *dc)
204 {
205 	struct device_node *np;
206 	struct tegra_rgb *rgb;
207 	int err;
208 
209 	np = of_get_child_by_name(dc->dev->of_node, "rgb");
210 	if (!np || !of_device_is_available(np))
211 		return -ENODEV;
212 
213 	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
214 	if (!rgb)
215 		return -ENOMEM;
216 
217 	rgb->output.dev = dc->dev;
218 	rgb->output.of_node = np;
219 	rgb->dc = dc;
220 
221 	err = tegra_output_probe(&rgb->output);
222 	if (err < 0)
223 		return err;
224 
225 	rgb->clk = devm_clk_get(dc->dev, NULL);
226 	if (IS_ERR(rgb->clk)) {
227 		dev_err(dc->dev, "failed to get clock\n");
228 		return PTR_ERR(rgb->clk);
229 	}
230 
231 	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
232 	if (IS_ERR(rgb->clk_parent)) {
233 		dev_err(dc->dev, "failed to get parent clock\n");
234 		return PTR_ERR(rgb->clk_parent);
235 	}
236 
237 	err = clk_set_parent(rgb->clk, rgb->clk_parent);
238 	if (err < 0) {
239 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
240 		return err;
241 	}
242 
243 	rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
244 	if (IS_ERR(rgb->pll_d_out0)) {
245 		err = PTR_ERR(rgb->pll_d_out0);
246 		dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
247 		return err;
248 	}
249 
250 	if (dc->soc->has_pll_d2_out0) {
251 		rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
252 		if (IS_ERR(rgb->pll_d2_out0)) {
253 			err = PTR_ERR(rgb->pll_d2_out0);
254 			dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
255 			return err;
256 		}
257 	}
258 
259 	dc->rgb = &rgb->output;
260 
261 	return 0;
262 }
263 
264 void tegra_dc_rgb_remove(struct tegra_dc *dc)
265 {
266 	struct tegra_rgb *rgb;
267 
268 	if (!dc->rgb)
269 		return;
270 
271 	rgb = to_rgb(dc->rgb);
272 	clk_put(rgb->pll_d2_out0);
273 	clk_put(rgb->pll_d_out0);
274 
275 	tegra_output_remove(dc->rgb);
276 	dc->rgb = NULL;
277 }
278 
279 int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
280 {
281 	struct tegra_output *output = dc->rgb;
282 	struct drm_connector *connector;
283 	int err;
284 
285 	if (!dc->rgb)
286 		return -ENODEV;
287 
288 	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
289 	drm_encoder_helper_add(&output->encoder,
290 			       &tegra_rgb_encoder_helper_funcs);
291 
292 	/*
293 	 * Wrap directly-connected panel into DRM bridge in order to let
294 	 * DRM core to handle panel for us.
295 	 */
296 	if (output->panel) {
297 		output->bridge = devm_drm_panel_bridge_add(output->dev,
298 							   output->panel);
299 		if (IS_ERR(output->bridge)) {
300 			dev_err(output->dev,
301 				"failed to wrap panel into bridge: %pe\n",
302 				output->bridge);
303 			return PTR_ERR(output->bridge);
304 		}
305 
306 		output->panel = NULL;
307 	}
308 
309 	/*
310 	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
311 	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
312 	 * go to display panel's receiver.
313 	 *
314 	 * Encoder usually have a power-down control which needs to be enabled
315 	 * in order to transmit data to the panel.  Historically devices that
316 	 * use an older device-tree version didn't model the bridge, assuming
317 	 * that encoder is turned ON by default, while today's DRM allows us
318 	 * to model LVDS encoder properly.
319 	 *
320 	 * Newer device-trees utilize LVDS encoder bridge, which provides
321 	 * us with a connector and handles the display panel.
322 	 *
323 	 * For older device-trees we wrapped panel into the panel-bridge.
324 	 */
325 	if (output->bridge) {
326 		err = drm_bridge_attach(&output->encoder, output->bridge,
327 					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
328 		if (err)
329 			return err;
330 
331 		connector = drm_bridge_connector_init(drm, &output->encoder);
332 		if (IS_ERR(connector)) {
333 			dev_err(output->dev,
334 				"failed to initialize bridge connector: %pe\n",
335 				connector);
336 			return PTR_ERR(connector);
337 		}
338 
339 		drm_connector_attach_encoder(connector, &output->encoder);
340 	}
341 
342 	err = tegra_output_init(drm, output);
343 	if (err < 0) {
344 		dev_err(output->dev, "failed to initialize output: %d\n", err);
345 		return err;
346 	}
347 
348 	/*
349 	 * Other outputs can be attached to either display controller. The RGB
350 	 * outputs are an exception and work only with their parent display
351 	 * controller.
352 	 */
353 	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
354 
355 	return 0;
356 }
357 
358 int tegra_dc_rgb_exit(struct tegra_dc *dc)
359 {
360 	if (dc->rgb)
361 		tegra_output_exit(dc->rgb);
362 
363 	return 0;
364 }
365