xref: /linux/drivers/gpu/drm/tegra/rgb.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/of.h>
9 
10 #include <drm/drm_atomic_helper.h>
11 #include <drm/drm_bridge_connector.h>
12 #include <drm/drm_simple_kms_helper.h>
13 
14 #include "drm.h"
15 #include "dc.h"
16 
17 struct tegra_rgb {
18 	struct tegra_output output;
19 	struct tegra_dc *dc;
20 
21 	struct clk *pll_d_out0;
22 	struct clk *pll_d2_out0;
23 	struct clk *clk_parent;
24 	struct clk *clk;
25 };
26 
27 static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
28 {
29 	return container_of(output, struct tegra_rgb, output);
30 }
31 
32 struct reg_entry {
33 	unsigned long offset;
34 	unsigned long value;
35 };
36 
37 static const struct reg_entry rgb_enable[] = {
38 	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
39 	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
40 	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
41 	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
42 	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
43 	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
44 	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
45 	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
46 	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
47 	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
48 	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
49 	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
50 	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
51 	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
52 	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
53 	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
54 	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
55 	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
56 	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
57 };
58 
59 static const struct reg_entry rgb_disable[] = {
60 	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
61 	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
62 	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
63 	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
64 	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
65 	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
66 	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
67 	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
68 	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
69 	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
70 	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
71 	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
72 	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
73 	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
74 	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
75 	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
76 	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
77 	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
78 	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
79 };
80 
81 static void tegra_dc_write_regs(struct tegra_dc *dc,
82 				const struct reg_entry *table,
83 				unsigned int num)
84 {
85 	unsigned int i;
86 
87 	for (i = 0; i < num; i++)
88 		tegra_dc_writel(dc, table[i].value, table[i].offset);
89 }
90 
91 static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
92 {
93 	struct tegra_output *output = encoder_to_output(encoder);
94 	struct tegra_rgb *rgb = to_rgb(output);
95 
96 	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
97 	tegra_dc_commit(rgb->dc);
98 }
99 
100 static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
101 {
102 	struct tegra_output *output = encoder_to_output(encoder);
103 	struct tegra_rgb *rgb = to_rgb(output);
104 	u32 value;
105 
106 	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
107 
108 	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
109 	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
110 
111 	/* XXX: parameterize? */
112 	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
113 	value &= ~LVS_OUTPUT_POLARITY_LOW;
114 	value &= ~LHS_OUTPUT_POLARITY_LOW;
115 	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
116 
117 	/* XXX: parameterize? */
118 	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
119 		DISP_ORDER_RED_BLUE;
120 	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
121 
122 	tegra_dc_commit(rgb->dc);
123 }
124 
125 static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
126 {
127 	if (!rgb->pll_d2_out0)
128 		return false;
129 
130 	if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
131 	    !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
132 		return false;
133 
134 	return true;
135 }
136 
137 static int
138 tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
139 			       struct drm_crtc_state *crtc_state,
140 			       struct drm_connector_state *conn_state)
141 {
142 	struct tegra_output *output = encoder_to_output(encoder);
143 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
144 	unsigned long pclk = crtc_state->mode.clock * 1000;
145 	struct tegra_rgb *rgb = to_rgb(output);
146 	unsigned int div;
147 	int err;
148 
149 	/*
150 	 * We may not want to change the frequency of the parent clock, since
151 	 * it may be a parent for other peripherals. This is due to the fact
152 	 * that on Tegra20 there's only a single clock dedicated to display
153 	 * (pll_d_out0), whereas later generations have a second one that can
154 	 * be used to independently drive a second output (pll_d2_out0).
155 	 *
156 	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
157 	 * typically used as the parent clock for the display controllers.
158 	 * But this comes at a cost: pll_p is the parent of several other
159 	 * peripherals, so its frequency shouldn't change out of the blue.
160 	 *
161 	 * The best we can do at this point is to use the shift clock divider
162 	 * and hope that the desired frequency can be matched (or at least
163 	 * matched sufficiently close that the panel will still work).
164 	 */
165 	if (tegra_rgb_pll_rate_change_allowed(rgb)) {
166 		/*
167 		 * Set display controller clock to x2 of PCLK in order to
168 		 * produce higher resolution pulse positions.
169 		 */
170 		div = 2;
171 		pclk *= 2;
172 	} else {
173 		div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
174 		pclk = 0;
175 	}
176 
177 	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
178 					 pclk, div);
179 	if (err < 0) {
180 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
181 		return err;
182 	}
183 
184 	return err;
185 }
186 
187 static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
188 	.disable = tegra_rgb_encoder_disable,
189 	.enable = tegra_rgb_encoder_enable,
190 	.atomic_check = tegra_rgb_encoder_atomic_check,
191 };
192 
193 int tegra_dc_rgb_probe(struct tegra_dc *dc)
194 {
195 	struct device_node *np;
196 	struct tegra_rgb *rgb;
197 	int err;
198 
199 	np = of_get_child_by_name(dc->dev->of_node, "rgb");
200 	if (!np || !of_device_is_available(np))
201 		return -ENODEV;
202 
203 	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
204 	if (!rgb)
205 		return -ENOMEM;
206 
207 	rgb->output.dev = dc->dev;
208 	rgb->output.of_node = np;
209 	rgb->dc = dc;
210 
211 	err = tegra_output_probe(&rgb->output);
212 	if (err < 0)
213 		return err;
214 
215 	rgb->clk = devm_clk_get(dc->dev, NULL);
216 	if (IS_ERR(rgb->clk)) {
217 		dev_err(dc->dev, "failed to get clock\n");
218 		return PTR_ERR(rgb->clk);
219 	}
220 
221 	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
222 	if (IS_ERR(rgb->clk_parent)) {
223 		dev_err(dc->dev, "failed to get parent clock\n");
224 		return PTR_ERR(rgb->clk_parent);
225 	}
226 
227 	err = clk_set_parent(rgb->clk, rgb->clk_parent);
228 	if (err < 0) {
229 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
230 		return err;
231 	}
232 
233 	rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
234 	if (IS_ERR(rgb->pll_d_out0)) {
235 		err = PTR_ERR(rgb->pll_d_out0);
236 		dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
237 		return err;
238 	}
239 
240 	if (dc->soc->has_pll_d2_out0) {
241 		rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
242 		if (IS_ERR(rgb->pll_d2_out0)) {
243 			err = PTR_ERR(rgb->pll_d2_out0);
244 			dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
245 			return err;
246 		}
247 	}
248 
249 	dc->rgb = &rgb->output;
250 
251 	return 0;
252 }
253 
254 void tegra_dc_rgb_remove(struct tegra_dc *dc)
255 {
256 	struct tegra_rgb *rgb;
257 
258 	if (!dc->rgb)
259 		return;
260 
261 	rgb = to_rgb(dc->rgb);
262 	clk_put(rgb->pll_d2_out0);
263 	clk_put(rgb->pll_d_out0);
264 
265 	tegra_output_remove(dc->rgb);
266 	dc->rgb = NULL;
267 }
268 
269 int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
270 {
271 	struct tegra_output *output = dc->rgb;
272 	struct drm_connector *connector;
273 	int err;
274 
275 	if (!dc->rgb)
276 		return -ENODEV;
277 
278 	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
279 	drm_encoder_helper_add(&output->encoder,
280 			       &tegra_rgb_encoder_helper_funcs);
281 
282 	/*
283 	 * Wrap directly-connected panel into DRM bridge in order to let
284 	 * DRM core to handle panel for us.
285 	 */
286 	if (output->panel) {
287 		output->bridge = devm_drm_panel_bridge_add(output->dev,
288 							   output->panel);
289 		if (IS_ERR(output->bridge)) {
290 			dev_err(output->dev,
291 				"failed to wrap panel into bridge: %pe\n",
292 				output->bridge);
293 			return PTR_ERR(output->bridge);
294 		}
295 
296 		output->panel = NULL;
297 	}
298 
299 	/*
300 	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
301 	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
302 	 * go to display panel's receiver.
303 	 *
304 	 * Encoder usually have a power-down control which needs to be enabled
305 	 * in order to transmit data to the panel.  Historically devices that
306 	 * use an older device-tree version didn't model the bridge, assuming
307 	 * that encoder is turned ON by default, while today's DRM allows us
308 	 * to model LVDS encoder properly.
309 	 *
310 	 * Newer device-trees utilize LVDS encoder bridge, which provides
311 	 * us with a connector and handles the display panel.
312 	 *
313 	 * For older device-trees we wrapped panel into the panel-bridge.
314 	 */
315 	if (output->bridge) {
316 		err = drm_bridge_attach(&output->encoder, output->bridge,
317 					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
318 		if (err)
319 			return err;
320 
321 		connector = drm_bridge_connector_init(drm, &output->encoder);
322 		if (IS_ERR(connector)) {
323 			dev_err(output->dev,
324 				"failed to initialize bridge connector: %pe\n",
325 				connector);
326 			return PTR_ERR(connector);
327 		}
328 
329 		drm_connector_attach_encoder(connector, &output->encoder);
330 	}
331 
332 	err = tegra_output_init(drm, output);
333 	if (err < 0) {
334 		dev_err(output->dev, "failed to initialize output: %d\n", err);
335 		return err;
336 	}
337 
338 	/*
339 	 * Other outputs can be attached to either display controller. The RGB
340 	 * outputs are an exception and work only with their parent display
341 	 * controller.
342 	 */
343 	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
344 
345 	return 0;
346 }
347 
348 int tegra_dc_rgb_exit(struct tegra_dc *dc)
349 {
350 	if (dc->rgb)
351 		tegra_output_exit(dc->rgb);
352 
353 	return 0;
354 }
355