1 /* 2 * Copyright (C) 2012 Avionic Design GmbH 3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/debugfs.h> 12 #include <linux/iommu.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/reset.h> 15 16 #include <soc/tegra/pmc.h> 17 18 #include "dc.h" 19 #include "drm.h" 20 #include "gem.h" 21 22 #include <drm/drm_atomic.h> 23 #include <drm/drm_atomic_helper.h> 24 #include <drm/drm_plane_helper.h> 25 26 struct tegra_dc_soc_info { 27 bool supports_border_color; 28 bool supports_interlacing; 29 bool supports_cursor; 30 bool supports_block_linear; 31 unsigned int pitch_align; 32 bool has_powergate; 33 }; 34 35 struct tegra_plane { 36 struct drm_plane base; 37 unsigned int index; 38 }; 39 40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane) 41 { 42 return container_of(plane, struct tegra_plane, base); 43 } 44 45 struct tegra_dc_state { 46 struct drm_crtc_state base; 47 48 struct clk *clk; 49 unsigned long pclk; 50 unsigned int div; 51 52 u32 planes; 53 }; 54 55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state) 56 { 57 if (state) 58 return container_of(state, struct tegra_dc_state, base); 59 60 return NULL; 61 } 62 63 struct tegra_plane_state { 64 struct drm_plane_state base; 65 66 struct tegra_bo_tiling tiling; 67 u32 format; 68 u32 swap; 69 }; 70 71 static inline struct tegra_plane_state * 72 to_tegra_plane_state(struct drm_plane_state *state) 73 { 74 if (state) 75 return container_of(state, struct tegra_plane_state, base); 76 77 return NULL; 78 } 79 80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 81 { 82 stats->frames = 0; 83 stats->vblank = 0; 84 stats->underflow = 0; 85 stats->overflow = 0; 86 } 87 88 /* 89 * Reads the active copy of a register. This takes the dc->lock spinlock to 90 * prevent races with the VBLANK processing which also needs access to the 91 * active copy of some registers. 92 */ 93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 94 { 95 unsigned long flags; 96 u32 value; 97 98 spin_lock_irqsave(&dc->lock, flags); 99 100 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 101 value = tegra_dc_readl(dc, offset); 102 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 103 104 spin_unlock_irqrestore(&dc->lock, flags); 105 return value; 106 } 107 108 /* 109 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 110 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 111 * Latching happens mmediately if the display controller is in STOP mode or 112 * on the next frame boundary otherwise. 113 * 114 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 115 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 116 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 117 * into the ACTIVE copy, either immediately if the display controller is in 118 * STOP mode, or at the next frame boundary otherwise. 119 */ 120 void tegra_dc_commit(struct tegra_dc *dc) 121 { 122 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 123 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 124 } 125 126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap) 127 { 128 /* assume no swapping of fetched data */ 129 if (swap) 130 *swap = BYTE_SWAP_NOSWAP; 131 132 switch (fourcc) { 133 case DRM_FORMAT_XBGR8888: 134 *format = WIN_COLOR_DEPTH_R8G8B8A8; 135 break; 136 137 case DRM_FORMAT_XRGB8888: 138 *format = WIN_COLOR_DEPTH_B8G8R8A8; 139 break; 140 141 case DRM_FORMAT_RGB565: 142 *format = WIN_COLOR_DEPTH_B5G6R5; 143 break; 144 145 case DRM_FORMAT_UYVY: 146 *format = WIN_COLOR_DEPTH_YCbCr422; 147 break; 148 149 case DRM_FORMAT_YUYV: 150 if (swap) 151 *swap = BYTE_SWAP_SWAP2; 152 153 *format = WIN_COLOR_DEPTH_YCbCr422; 154 break; 155 156 case DRM_FORMAT_YUV420: 157 *format = WIN_COLOR_DEPTH_YCbCr420P; 158 break; 159 160 case DRM_FORMAT_YUV422: 161 *format = WIN_COLOR_DEPTH_YCbCr422P; 162 break; 163 164 default: 165 return -EINVAL; 166 } 167 168 return 0; 169 } 170 171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar) 172 { 173 switch (format) { 174 case WIN_COLOR_DEPTH_YCbCr422: 175 case WIN_COLOR_DEPTH_YUV422: 176 if (planar) 177 *planar = false; 178 179 return true; 180 181 case WIN_COLOR_DEPTH_YCbCr420P: 182 case WIN_COLOR_DEPTH_YUV420P: 183 case WIN_COLOR_DEPTH_YCbCr422P: 184 case WIN_COLOR_DEPTH_YUV422P: 185 case WIN_COLOR_DEPTH_YCbCr422R: 186 case WIN_COLOR_DEPTH_YUV422R: 187 case WIN_COLOR_DEPTH_YCbCr422RA: 188 case WIN_COLOR_DEPTH_YUV422RA: 189 if (planar) 190 *planar = true; 191 192 return true; 193 } 194 195 if (planar) 196 *planar = false; 197 198 return false; 199 } 200 201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 202 unsigned int bpp) 203 { 204 fixed20_12 outf = dfixed_init(out); 205 fixed20_12 inf = dfixed_init(in); 206 u32 dda_inc; 207 int max; 208 209 if (v) 210 max = 15; 211 else { 212 switch (bpp) { 213 case 2: 214 max = 8; 215 break; 216 217 default: 218 WARN_ON_ONCE(1); 219 /* fallthrough */ 220 case 4: 221 max = 4; 222 break; 223 } 224 } 225 226 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 227 inf.full -= dfixed_const(1); 228 229 dda_inc = dfixed_div(inf, outf); 230 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 231 232 return dda_inc; 233 } 234 235 static inline u32 compute_initial_dda(unsigned int in) 236 { 237 fixed20_12 inf = dfixed_init(in); 238 return dfixed_frac(inf); 239 } 240 241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index, 242 const struct tegra_dc_window *window) 243 { 244 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 245 unsigned long value, flags; 246 bool yuv, planar; 247 248 /* 249 * For YUV planar modes, the number of bytes per pixel takes into 250 * account only the luma component and therefore is 1. 251 */ 252 yuv = tegra_dc_format_is_yuv(window->format, &planar); 253 if (!yuv) 254 bpp = window->bits_per_pixel / 8; 255 else 256 bpp = planar ? 1 : 2; 257 258 spin_lock_irqsave(&dc->lock, flags); 259 260 value = WINDOW_A_SELECT << index; 261 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 262 263 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH); 264 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP); 265 266 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 267 tegra_dc_writel(dc, value, DC_WIN_POSITION); 268 269 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 270 tegra_dc_writel(dc, value, DC_WIN_SIZE); 271 272 h_offset = window->src.x * bpp; 273 v_offset = window->src.y; 274 h_size = window->src.w * bpp; 275 v_size = window->src.h; 276 277 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 278 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE); 279 280 /* 281 * For DDA computations the number of bytes per pixel for YUV planar 282 * modes needs to take into account all Y, U and V components. 283 */ 284 if (yuv && planar) 285 bpp = 2; 286 287 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 288 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 289 290 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 291 tegra_dc_writel(dc, value, DC_WIN_DDA_INC); 292 293 h_dda = compute_initial_dda(window->src.x); 294 v_dda = compute_initial_dda(window->src.y); 295 296 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA); 297 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA); 298 299 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE); 300 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE); 301 302 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR); 303 304 if (yuv && planar) { 305 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U); 306 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V); 307 value = window->stride[1] << 16 | window->stride[0]; 308 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE); 309 } else { 310 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE); 311 } 312 313 if (window->bottom_up) 314 v_offset += window->src.h - 1; 315 316 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET); 317 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET); 318 319 if (dc->soc->supports_block_linear) { 320 unsigned long height = window->tiling.value; 321 322 switch (window->tiling.mode) { 323 case TEGRA_BO_TILING_MODE_PITCH: 324 value = DC_WINBUF_SURFACE_KIND_PITCH; 325 break; 326 327 case TEGRA_BO_TILING_MODE_TILED: 328 value = DC_WINBUF_SURFACE_KIND_TILED; 329 break; 330 331 case TEGRA_BO_TILING_MODE_BLOCK: 332 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 333 DC_WINBUF_SURFACE_KIND_BLOCK; 334 break; 335 } 336 337 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND); 338 } else { 339 switch (window->tiling.mode) { 340 case TEGRA_BO_TILING_MODE_PITCH: 341 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 342 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 343 break; 344 345 case TEGRA_BO_TILING_MODE_TILED: 346 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 347 DC_WIN_BUFFER_ADDR_MODE_TILE; 348 break; 349 350 case TEGRA_BO_TILING_MODE_BLOCK: 351 /* 352 * No need to handle this here because ->atomic_check 353 * will already have filtered it out. 354 */ 355 break; 356 } 357 358 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE); 359 } 360 361 value = WIN_ENABLE; 362 363 if (yuv) { 364 /* setup default colorspace conversion coefficients */ 365 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF); 366 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB); 367 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR); 368 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR); 369 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG); 370 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG); 371 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB); 372 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB); 373 374 value |= CSC_ENABLE; 375 } else if (window->bits_per_pixel < 24) { 376 value |= COLOR_EXPAND; 377 } 378 379 if (window->bottom_up) 380 value |= V_DIRECTION; 381 382 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 383 384 /* 385 * Disable blending and assume Window A is the bottom-most window, 386 * Window C is the top-most window and Window B is in the middle. 387 */ 388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY); 389 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN); 390 391 switch (index) { 392 case 0: 393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X); 394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 395 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 396 break; 397 398 case 1: 399 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 401 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 402 break; 403 404 case 2: 405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y); 407 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY); 408 break; 409 } 410 411 spin_unlock_irqrestore(&dc->lock, flags); 412 } 413 414 static void tegra_plane_destroy(struct drm_plane *plane) 415 { 416 struct tegra_plane *p = to_tegra_plane(plane); 417 418 drm_plane_cleanup(plane); 419 kfree(p); 420 } 421 422 static const u32 tegra_primary_plane_formats[] = { 423 DRM_FORMAT_XBGR8888, 424 DRM_FORMAT_XRGB8888, 425 DRM_FORMAT_RGB565, 426 }; 427 428 static void tegra_primary_plane_destroy(struct drm_plane *plane) 429 { 430 tegra_plane_destroy(plane); 431 } 432 433 static void tegra_plane_reset(struct drm_plane *plane) 434 { 435 struct tegra_plane_state *state; 436 437 if (plane->state) 438 __drm_atomic_helper_plane_destroy_state(plane->state); 439 440 kfree(plane->state); 441 plane->state = NULL; 442 443 state = kzalloc(sizeof(*state), GFP_KERNEL); 444 if (state) { 445 plane->state = &state->base; 446 plane->state->plane = plane; 447 } 448 } 449 450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane) 451 { 452 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 453 struct tegra_plane_state *copy; 454 455 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 456 if (!copy) 457 return NULL; 458 459 __drm_atomic_helper_plane_duplicate_state(plane, ©->base); 460 copy->tiling = state->tiling; 461 copy->format = state->format; 462 copy->swap = state->swap; 463 464 return ©->base; 465 } 466 467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane, 468 struct drm_plane_state *state) 469 { 470 __drm_atomic_helper_plane_destroy_state(state); 471 kfree(state); 472 } 473 474 static const struct drm_plane_funcs tegra_primary_plane_funcs = { 475 .update_plane = drm_atomic_helper_update_plane, 476 .disable_plane = drm_atomic_helper_disable_plane, 477 .destroy = tegra_primary_plane_destroy, 478 .reset = tegra_plane_reset, 479 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 480 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 481 }; 482 483 static int tegra_plane_state_add(struct tegra_plane *plane, 484 struct drm_plane_state *state) 485 { 486 struct drm_crtc_state *crtc_state; 487 struct tegra_dc_state *tegra; 488 489 /* Propagate errors from allocation or locking failures. */ 490 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc); 491 if (IS_ERR(crtc_state)) 492 return PTR_ERR(crtc_state); 493 494 tegra = to_dc_state(crtc_state); 495 496 tegra->planes |= WIN_A_ACT_REQ << plane->index; 497 498 return 0; 499 } 500 501 static int tegra_plane_atomic_check(struct drm_plane *plane, 502 struct drm_plane_state *state) 503 { 504 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 505 struct tegra_bo_tiling *tiling = &plane_state->tiling; 506 struct tegra_plane *tegra = to_tegra_plane(plane); 507 struct tegra_dc *dc = to_tegra_dc(state->crtc); 508 int err; 509 510 /* no need for further checks if the plane is being disabled */ 511 if (!state->crtc) 512 return 0; 513 514 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format, 515 &plane_state->swap); 516 if (err < 0) 517 return err; 518 519 err = tegra_fb_get_tiling(state->fb, tiling); 520 if (err < 0) 521 return err; 522 523 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 524 !dc->soc->supports_block_linear) { 525 DRM_ERROR("hardware doesn't support block linear mode\n"); 526 return -EINVAL; 527 } 528 529 /* 530 * Tegra doesn't support different strides for U and V planes so we 531 * error out if the user tries to display a framebuffer with such a 532 * configuration. 533 */ 534 if (drm_format_num_planes(state->fb->pixel_format) > 2) { 535 if (state->fb->pitches[2] != state->fb->pitches[1]) { 536 DRM_ERROR("unsupported UV-plane configuration\n"); 537 return -EINVAL; 538 } 539 } 540 541 err = tegra_plane_state_add(tegra, state); 542 if (err < 0) 543 return err; 544 545 return 0; 546 } 547 548 static void tegra_plane_atomic_update(struct drm_plane *plane, 549 struct drm_plane_state *old_state) 550 { 551 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 552 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 553 struct drm_framebuffer *fb = plane->state->fb; 554 struct tegra_plane *p = to_tegra_plane(plane); 555 struct tegra_dc_window window; 556 unsigned int i; 557 558 /* rien ne va plus */ 559 if (!plane->state->crtc || !plane->state->fb) 560 return; 561 562 memset(&window, 0, sizeof(window)); 563 window.src.x = plane->state->src_x >> 16; 564 window.src.y = plane->state->src_y >> 16; 565 window.src.w = plane->state->src_w >> 16; 566 window.src.h = plane->state->src_h >> 16; 567 window.dst.x = plane->state->crtc_x; 568 window.dst.y = plane->state->crtc_y; 569 window.dst.w = plane->state->crtc_w; 570 window.dst.h = plane->state->crtc_h; 571 window.bits_per_pixel = fb->bits_per_pixel; 572 window.bottom_up = tegra_fb_is_bottom_up(fb); 573 574 /* copy from state */ 575 window.tiling = state->tiling; 576 window.format = state->format; 577 window.swap = state->swap; 578 579 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) { 580 struct tegra_bo *bo = tegra_fb_get_plane(fb, i); 581 582 window.base[i] = bo->paddr + fb->offsets[i]; 583 584 /* 585 * Tegra uses a shared stride for UV planes. Framebuffers are 586 * already checked for this in the tegra_plane_atomic_check() 587 * function, so it's safe to ignore the V-plane pitch here. 588 */ 589 if (i < 2) 590 window.stride[i] = fb->pitches[i]; 591 } 592 593 tegra_dc_setup_window(dc, p->index, &window); 594 } 595 596 static void tegra_plane_atomic_disable(struct drm_plane *plane, 597 struct drm_plane_state *old_state) 598 { 599 struct tegra_plane *p = to_tegra_plane(plane); 600 struct tegra_dc *dc; 601 unsigned long flags; 602 u32 value; 603 604 /* rien ne va plus */ 605 if (!old_state || !old_state->crtc) 606 return; 607 608 dc = to_tegra_dc(old_state->crtc); 609 610 spin_lock_irqsave(&dc->lock, flags); 611 612 value = WINDOW_A_SELECT << p->index; 613 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 614 615 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS); 616 value &= ~WIN_ENABLE; 617 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 618 619 spin_unlock_irqrestore(&dc->lock, flags); 620 } 621 622 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = { 623 .atomic_check = tegra_plane_atomic_check, 624 .atomic_update = tegra_plane_atomic_update, 625 .atomic_disable = tegra_plane_atomic_disable, 626 }; 627 628 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm, 629 struct tegra_dc *dc) 630 { 631 /* 632 * Ideally this would use drm_crtc_mask(), but that would require the 633 * CRTC to already be in the mode_config's list of CRTCs. However, it 634 * will only be added to that list in the drm_crtc_init_with_planes() 635 * (in tegra_dc_init()), which in turn requires registration of these 636 * planes. So we have ourselves a nice little chicken and egg problem 637 * here. 638 * 639 * We work around this by manually creating the mask from the number 640 * of CRTCs that have been registered, and should therefore always be 641 * the same as drm_crtc_index() after registration. 642 */ 643 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc; 644 struct tegra_plane *plane; 645 unsigned int num_formats; 646 const u32 *formats; 647 int err; 648 649 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 650 if (!plane) 651 return ERR_PTR(-ENOMEM); 652 653 num_formats = ARRAY_SIZE(tegra_primary_plane_formats); 654 formats = tegra_primary_plane_formats; 655 656 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 657 &tegra_primary_plane_funcs, formats, 658 num_formats, DRM_PLANE_TYPE_PRIMARY, 659 NULL); 660 if (err < 0) { 661 kfree(plane); 662 return ERR_PTR(err); 663 } 664 665 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs); 666 667 return &plane->base; 668 } 669 670 static const u32 tegra_cursor_plane_formats[] = { 671 DRM_FORMAT_RGBA8888, 672 }; 673 674 static int tegra_cursor_atomic_check(struct drm_plane *plane, 675 struct drm_plane_state *state) 676 { 677 struct tegra_plane *tegra = to_tegra_plane(plane); 678 int err; 679 680 /* no need for further checks if the plane is being disabled */ 681 if (!state->crtc) 682 return 0; 683 684 /* scaling not supported for cursor */ 685 if ((state->src_w >> 16 != state->crtc_w) || 686 (state->src_h >> 16 != state->crtc_h)) 687 return -EINVAL; 688 689 /* only square cursors supported */ 690 if (state->src_w != state->src_h) 691 return -EINVAL; 692 693 if (state->crtc_w != 32 && state->crtc_w != 64 && 694 state->crtc_w != 128 && state->crtc_w != 256) 695 return -EINVAL; 696 697 err = tegra_plane_state_add(tegra, state); 698 if (err < 0) 699 return err; 700 701 return 0; 702 } 703 704 static void tegra_cursor_atomic_update(struct drm_plane *plane, 705 struct drm_plane_state *old_state) 706 { 707 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0); 708 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 709 struct drm_plane_state *state = plane->state; 710 u32 value = CURSOR_CLIP_DISPLAY; 711 712 /* rien ne va plus */ 713 if (!plane->state->crtc || !plane->state->fb) 714 return; 715 716 switch (state->crtc_w) { 717 case 32: 718 value |= CURSOR_SIZE_32x32; 719 break; 720 721 case 64: 722 value |= CURSOR_SIZE_64x64; 723 break; 724 725 case 128: 726 value |= CURSOR_SIZE_128x128; 727 break; 728 729 case 256: 730 value |= CURSOR_SIZE_256x256; 731 break; 732 733 default: 734 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w, 735 state->crtc_h); 736 return; 737 } 738 739 value |= (bo->paddr >> 10) & 0x3fffff; 740 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 741 742 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 743 value = (bo->paddr >> 32) & 0x3; 744 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 745 #endif 746 747 /* enable cursor and set blend mode */ 748 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 749 value |= CURSOR_ENABLE; 750 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 751 752 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 753 value &= ~CURSOR_DST_BLEND_MASK; 754 value &= ~CURSOR_SRC_BLEND_MASK; 755 value |= CURSOR_MODE_NORMAL; 756 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 757 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 758 value |= CURSOR_ALPHA; 759 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 760 761 /* position the cursor */ 762 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff); 763 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 764 } 765 766 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 767 struct drm_plane_state *old_state) 768 { 769 struct tegra_dc *dc; 770 u32 value; 771 772 /* rien ne va plus */ 773 if (!old_state || !old_state->crtc) 774 return; 775 776 dc = to_tegra_dc(old_state->crtc); 777 778 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 779 value &= ~CURSOR_ENABLE; 780 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 781 } 782 783 static const struct drm_plane_funcs tegra_cursor_plane_funcs = { 784 .update_plane = drm_atomic_helper_update_plane, 785 .disable_plane = drm_atomic_helper_disable_plane, 786 .destroy = tegra_plane_destroy, 787 .reset = tegra_plane_reset, 788 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 789 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 790 }; 791 792 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 793 .atomic_check = tegra_cursor_atomic_check, 794 .atomic_update = tegra_cursor_atomic_update, 795 .atomic_disable = tegra_cursor_atomic_disable, 796 }; 797 798 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 799 struct tegra_dc *dc) 800 { 801 struct tegra_plane *plane; 802 unsigned int num_formats; 803 const u32 *formats; 804 int err; 805 806 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 807 if (!plane) 808 return ERR_PTR(-ENOMEM); 809 810 /* 811 * This index is kind of fake. The cursor isn't a regular plane, but 812 * its update and activation request bits in DC_CMD_STATE_CONTROL do 813 * use the same programming. Setting this fake index here allows the 814 * code in tegra_add_plane_state() to do the right thing without the 815 * need to special-casing the cursor plane. 816 */ 817 plane->index = 6; 818 819 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 820 formats = tegra_cursor_plane_formats; 821 822 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 823 &tegra_cursor_plane_funcs, formats, 824 num_formats, DRM_PLANE_TYPE_CURSOR, 825 NULL); 826 if (err < 0) { 827 kfree(plane); 828 return ERR_PTR(err); 829 } 830 831 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 832 833 return &plane->base; 834 } 835 836 static void tegra_overlay_plane_destroy(struct drm_plane *plane) 837 { 838 tegra_plane_destroy(plane); 839 } 840 841 static const struct drm_plane_funcs tegra_overlay_plane_funcs = { 842 .update_plane = drm_atomic_helper_update_plane, 843 .disable_plane = drm_atomic_helper_disable_plane, 844 .destroy = tegra_overlay_plane_destroy, 845 .reset = tegra_plane_reset, 846 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 847 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 848 }; 849 850 static const uint32_t tegra_overlay_plane_formats[] = { 851 DRM_FORMAT_XBGR8888, 852 DRM_FORMAT_XRGB8888, 853 DRM_FORMAT_RGB565, 854 DRM_FORMAT_UYVY, 855 DRM_FORMAT_YUYV, 856 DRM_FORMAT_YUV420, 857 DRM_FORMAT_YUV422, 858 }; 859 860 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = { 861 .atomic_check = tegra_plane_atomic_check, 862 .atomic_update = tegra_plane_atomic_update, 863 .atomic_disable = tegra_plane_atomic_disable, 864 }; 865 866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 867 struct tegra_dc *dc, 868 unsigned int index) 869 { 870 struct tegra_plane *plane; 871 unsigned int num_formats; 872 const u32 *formats; 873 int err; 874 875 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 876 if (!plane) 877 return ERR_PTR(-ENOMEM); 878 879 plane->index = index; 880 881 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats); 882 formats = tegra_overlay_plane_formats; 883 884 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 885 &tegra_overlay_plane_funcs, formats, 886 num_formats, DRM_PLANE_TYPE_OVERLAY, 887 NULL); 888 if (err < 0) { 889 kfree(plane); 890 return ERR_PTR(err); 891 } 892 893 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs); 894 895 return &plane->base; 896 } 897 898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc) 899 { 900 struct drm_plane *plane; 901 unsigned int i; 902 903 for (i = 0; i < 2; i++) { 904 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i); 905 if (IS_ERR(plane)) 906 return PTR_ERR(plane); 907 } 908 909 return 0; 910 } 911 912 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc) 913 { 914 if (dc->syncpt) 915 return host1x_syncpt_read(dc->syncpt); 916 917 /* fallback to software emulated VBLANK counter */ 918 return drm_crtc_vblank_count(&dc->base); 919 } 920 921 void tegra_dc_enable_vblank(struct tegra_dc *dc) 922 { 923 unsigned long value, flags; 924 925 spin_lock_irqsave(&dc->lock, flags); 926 927 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 928 value |= VBLANK_INT; 929 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 930 931 spin_unlock_irqrestore(&dc->lock, flags); 932 } 933 934 void tegra_dc_disable_vblank(struct tegra_dc *dc) 935 { 936 unsigned long value, flags; 937 938 spin_lock_irqsave(&dc->lock, flags); 939 940 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 941 value &= ~VBLANK_INT; 942 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 943 944 spin_unlock_irqrestore(&dc->lock, flags); 945 } 946 947 static void tegra_dc_finish_page_flip(struct tegra_dc *dc) 948 { 949 struct drm_device *drm = dc->base.dev; 950 struct drm_crtc *crtc = &dc->base; 951 unsigned long flags, base; 952 struct tegra_bo *bo; 953 954 spin_lock_irqsave(&drm->event_lock, flags); 955 956 if (!dc->event) { 957 spin_unlock_irqrestore(&drm->event_lock, flags); 958 return; 959 } 960 961 bo = tegra_fb_get_plane(crtc->primary->fb, 0); 962 963 spin_lock(&dc->lock); 964 965 /* check if new start address has been latched */ 966 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER); 967 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 968 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR); 969 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 970 971 spin_unlock(&dc->lock); 972 973 if (base == bo->paddr + crtc->primary->fb->offsets[0]) { 974 drm_crtc_send_vblank_event(crtc, dc->event); 975 drm_crtc_vblank_put(crtc); 976 dc->event = NULL; 977 } 978 979 spin_unlock_irqrestore(&drm->event_lock, flags); 980 } 981 982 static void tegra_dc_destroy(struct drm_crtc *crtc) 983 { 984 drm_crtc_cleanup(crtc); 985 } 986 987 static void tegra_crtc_reset(struct drm_crtc *crtc) 988 { 989 struct tegra_dc_state *state; 990 991 if (crtc->state) 992 __drm_atomic_helper_crtc_destroy_state(crtc->state); 993 994 kfree(crtc->state); 995 crtc->state = NULL; 996 997 state = kzalloc(sizeof(*state), GFP_KERNEL); 998 if (state) { 999 crtc->state = &state->base; 1000 crtc->state->crtc = crtc; 1001 } 1002 1003 drm_crtc_vblank_reset(crtc); 1004 } 1005 1006 static struct drm_crtc_state * 1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1008 { 1009 struct tegra_dc_state *state = to_dc_state(crtc->state); 1010 struct tegra_dc_state *copy; 1011 1012 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1013 if (!copy) 1014 return NULL; 1015 1016 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1017 copy->clk = state->clk; 1018 copy->pclk = state->pclk; 1019 copy->div = state->div; 1020 copy->planes = state->planes; 1021 1022 return ©->base; 1023 } 1024 1025 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1026 struct drm_crtc_state *state) 1027 { 1028 __drm_atomic_helper_crtc_destroy_state(state); 1029 kfree(state); 1030 } 1031 1032 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1033 .page_flip = drm_atomic_helper_page_flip, 1034 .set_config = drm_atomic_helper_set_config, 1035 .destroy = tegra_dc_destroy, 1036 .reset = tegra_crtc_reset, 1037 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1038 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1039 }; 1040 1041 static int tegra_dc_set_timings(struct tegra_dc *dc, 1042 struct drm_display_mode *mode) 1043 { 1044 unsigned int h_ref_to_sync = 1; 1045 unsigned int v_ref_to_sync = 1; 1046 unsigned long value; 1047 1048 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1049 1050 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1051 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1052 1053 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1054 ((mode->hsync_end - mode->hsync_start) << 0); 1055 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1056 1057 value = ((mode->vtotal - mode->vsync_end) << 16) | 1058 ((mode->htotal - mode->hsync_end) << 0); 1059 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1060 1061 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1062 ((mode->hsync_start - mode->hdisplay) << 0); 1063 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1064 1065 value = (mode->vdisplay << 16) | mode->hdisplay; 1066 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1067 1068 return 0; 1069 } 1070 1071 /** 1072 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1073 * state 1074 * @dc: display controller 1075 * @crtc_state: CRTC atomic state 1076 * @clk: parent clock for display controller 1077 * @pclk: pixel clock 1078 * @div: shift clock divider 1079 * 1080 * Returns: 1081 * 0 on success or a negative error-code on failure. 1082 */ 1083 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1084 struct drm_crtc_state *crtc_state, 1085 struct clk *clk, unsigned long pclk, 1086 unsigned int div) 1087 { 1088 struct tegra_dc_state *state = to_dc_state(crtc_state); 1089 1090 if (!clk_has_parent(dc->clk, clk)) 1091 return -EINVAL; 1092 1093 state->clk = clk; 1094 state->pclk = pclk; 1095 state->div = div; 1096 1097 return 0; 1098 } 1099 1100 static void tegra_dc_commit_state(struct tegra_dc *dc, 1101 struct tegra_dc_state *state) 1102 { 1103 u32 value; 1104 int err; 1105 1106 err = clk_set_parent(dc->clk, state->clk); 1107 if (err < 0) 1108 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1109 1110 /* 1111 * Outputs may not want to change the parent clock rate. This is only 1112 * relevant to Tegra20 where only a single display PLL is available. 1113 * Since that PLL would typically be used for HDMI, an internal LVDS 1114 * panel would need to be driven by some other clock such as PLL_P 1115 * which is shared with other peripherals. Changing the clock rate 1116 * should therefore be avoided. 1117 */ 1118 if (state->pclk > 0) { 1119 err = clk_set_rate(state->clk, state->pclk); 1120 if (err < 0) 1121 dev_err(dc->dev, 1122 "failed to set clock rate to %lu Hz\n", 1123 state->pclk); 1124 } 1125 1126 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1127 state->div); 1128 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1129 1130 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1131 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1132 } 1133 1134 static void tegra_dc_stop(struct tegra_dc *dc) 1135 { 1136 u32 value; 1137 1138 /* stop the display controller */ 1139 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1140 value &= ~DISP_CTRL_MODE_MASK; 1141 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1142 1143 tegra_dc_commit(dc); 1144 } 1145 1146 static bool tegra_dc_idle(struct tegra_dc *dc) 1147 { 1148 u32 value; 1149 1150 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1151 1152 return (value & DISP_CTRL_MODE_MASK) == 0; 1153 } 1154 1155 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1156 { 1157 timeout = jiffies + msecs_to_jiffies(timeout); 1158 1159 while (time_before(jiffies, timeout)) { 1160 if (tegra_dc_idle(dc)) 1161 return 0; 1162 1163 usleep_range(1000, 2000); 1164 } 1165 1166 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1167 return -ETIMEDOUT; 1168 } 1169 1170 static void tegra_crtc_disable(struct drm_crtc *crtc) 1171 { 1172 struct tegra_dc *dc = to_tegra_dc(crtc); 1173 u32 value; 1174 1175 if (!tegra_dc_idle(dc)) { 1176 tegra_dc_stop(dc); 1177 1178 /* 1179 * Ignore the return value, there isn't anything useful to do 1180 * in case this fails. 1181 */ 1182 tegra_dc_wait_idle(dc, 100); 1183 } 1184 1185 /* 1186 * This should really be part of the RGB encoder driver, but clearing 1187 * these bits has the side-effect of stopping the display controller. 1188 * When that happens no VBLANK interrupts will be raised. At the same 1189 * time the encoder is disabled before the display controller, so the 1190 * above code is always going to timeout waiting for the controller 1191 * to go idle. 1192 * 1193 * Given the close coupling between the RGB encoder and the display 1194 * controller doing it here is still kind of okay. None of the other 1195 * encoder drivers require these bits to be cleared. 1196 * 1197 * XXX: Perhaps given that the display controller is switched off at 1198 * this point anyway maybe clearing these bits isn't even useful for 1199 * the RGB encoder? 1200 */ 1201 if (dc->rgb) { 1202 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1203 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1204 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1205 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1206 } 1207 1208 tegra_dc_stats_reset(&dc->stats); 1209 drm_crtc_vblank_off(crtc); 1210 1211 pm_runtime_put_sync(dc->dev); 1212 } 1213 1214 static void tegra_crtc_enable(struct drm_crtc *crtc) 1215 { 1216 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1217 struct tegra_dc_state *state = to_dc_state(crtc->state); 1218 struct tegra_dc *dc = to_tegra_dc(crtc); 1219 u32 value; 1220 1221 pm_runtime_get_sync(dc->dev); 1222 1223 /* initialize display controller */ 1224 if (dc->syncpt) { 1225 u32 syncpt = host1x_syncpt_id(dc->syncpt); 1226 1227 value = SYNCPT_CNTRL_NO_STALL; 1228 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1229 1230 value = SYNCPT_VSYNC_ENABLE | syncpt; 1231 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1232 } 1233 1234 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1235 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1236 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1237 1238 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1239 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1240 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1241 1242 /* initialize timer */ 1243 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1244 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1245 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1246 1247 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1248 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1249 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1250 1251 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1252 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1253 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1254 1255 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1256 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1257 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1258 1259 if (dc->soc->supports_border_color) 1260 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1261 1262 /* apply PLL and pixel clock changes */ 1263 tegra_dc_commit_state(dc, state); 1264 1265 /* program display mode */ 1266 tegra_dc_set_timings(dc, mode); 1267 1268 /* interlacing isn't supported yet, so disable it */ 1269 if (dc->soc->supports_interlacing) { 1270 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1271 value &= ~INTERLACE_ENABLE; 1272 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1273 } 1274 1275 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1276 value &= ~DISP_CTRL_MODE_MASK; 1277 value |= DISP_CTRL_MODE_C_DISPLAY; 1278 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1279 1280 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1281 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1282 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1283 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1284 1285 tegra_dc_commit(dc); 1286 1287 drm_crtc_vblank_on(crtc); 1288 } 1289 1290 static int tegra_crtc_atomic_check(struct drm_crtc *crtc, 1291 struct drm_crtc_state *state) 1292 { 1293 return 0; 1294 } 1295 1296 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1297 struct drm_crtc_state *old_crtc_state) 1298 { 1299 struct tegra_dc *dc = to_tegra_dc(crtc); 1300 1301 if (crtc->state->event) { 1302 crtc->state->event->pipe = drm_crtc_index(crtc); 1303 1304 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1305 1306 dc->event = crtc->state->event; 1307 crtc->state->event = NULL; 1308 } 1309 } 1310 1311 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1312 struct drm_crtc_state *old_crtc_state) 1313 { 1314 struct tegra_dc_state *state = to_dc_state(crtc->state); 1315 struct tegra_dc *dc = to_tegra_dc(crtc); 1316 1317 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL); 1318 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL); 1319 } 1320 1321 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1322 .disable = tegra_crtc_disable, 1323 .enable = tegra_crtc_enable, 1324 .atomic_check = tegra_crtc_atomic_check, 1325 .atomic_begin = tegra_crtc_atomic_begin, 1326 .atomic_flush = tegra_crtc_atomic_flush, 1327 }; 1328 1329 static irqreturn_t tegra_dc_irq(int irq, void *data) 1330 { 1331 struct tegra_dc *dc = data; 1332 unsigned long status; 1333 1334 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1335 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1336 1337 if (status & FRAME_END_INT) { 1338 /* 1339 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1340 */ 1341 dc->stats.frames++; 1342 } 1343 1344 if (status & VBLANK_INT) { 1345 /* 1346 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1347 */ 1348 drm_crtc_handle_vblank(&dc->base); 1349 tegra_dc_finish_page_flip(dc); 1350 dc->stats.vblank++; 1351 } 1352 1353 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1354 /* 1355 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1356 */ 1357 dc->stats.underflow++; 1358 } 1359 1360 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 1361 /* 1362 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 1363 */ 1364 dc->stats.overflow++; 1365 } 1366 1367 return IRQ_HANDLED; 1368 } 1369 1370 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1371 { 1372 struct drm_info_node *node = s->private; 1373 struct tegra_dc *dc = node->info_ent->data; 1374 int err = 0; 1375 1376 drm_modeset_lock_crtc(&dc->base, NULL); 1377 1378 if (!dc->base.state->active) { 1379 err = -EBUSY; 1380 goto unlock; 1381 } 1382 1383 #define DUMP_REG(name) \ 1384 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \ 1385 tegra_dc_readl(dc, name)) 1386 1387 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT); 1388 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1389 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR); 1390 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT); 1391 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL); 1392 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR); 1393 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT); 1394 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL); 1395 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR); 1396 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT); 1397 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL); 1398 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR); 1399 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC); 1400 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0); 1401 DUMP_REG(DC_CMD_DISPLAY_COMMAND); 1402 DUMP_REG(DC_CMD_SIGNAL_RAISE); 1403 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL); 1404 DUMP_REG(DC_CMD_INT_STATUS); 1405 DUMP_REG(DC_CMD_INT_MASK); 1406 DUMP_REG(DC_CMD_INT_ENABLE); 1407 DUMP_REG(DC_CMD_INT_TYPE); 1408 DUMP_REG(DC_CMD_INT_POLARITY); 1409 DUMP_REG(DC_CMD_SIGNAL_RAISE1); 1410 DUMP_REG(DC_CMD_SIGNAL_RAISE2); 1411 DUMP_REG(DC_CMD_SIGNAL_RAISE3); 1412 DUMP_REG(DC_CMD_STATE_ACCESS); 1413 DUMP_REG(DC_CMD_STATE_CONTROL); 1414 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER); 1415 DUMP_REG(DC_CMD_REG_ACT_CONTROL); 1416 DUMP_REG(DC_COM_CRC_CONTROL); 1417 DUMP_REG(DC_COM_CRC_CHECKSUM); 1418 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0)); 1419 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1)); 1420 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2)); 1421 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3)); 1422 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0)); 1423 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1)); 1424 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2)); 1425 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3)); 1426 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0)); 1427 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1)); 1428 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2)); 1429 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3)); 1430 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0)); 1431 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1)); 1432 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2)); 1433 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3)); 1434 DUMP_REG(DC_COM_PIN_INPUT_DATA(0)); 1435 DUMP_REG(DC_COM_PIN_INPUT_DATA(1)); 1436 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0)); 1437 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1)); 1438 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2)); 1439 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3)); 1440 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4)); 1441 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5)); 1442 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6)); 1443 DUMP_REG(DC_COM_PIN_MISC_CONTROL); 1444 DUMP_REG(DC_COM_PIN_PM0_CONTROL); 1445 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE); 1446 DUMP_REG(DC_COM_PIN_PM1_CONTROL); 1447 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE); 1448 DUMP_REG(DC_COM_SPI_CONTROL); 1449 DUMP_REG(DC_COM_SPI_START_BYTE); 1450 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB); 1451 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD); 1452 DUMP_REG(DC_COM_HSPI_CS_DC); 1453 DUMP_REG(DC_COM_SCRATCH_REGISTER_A); 1454 DUMP_REG(DC_COM_SCRATCH_REGISTER_B); 1455 DUMP_REG(DC_COM_GPIO_CTRL); 1456 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER); 1457 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED); 1458 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0); 1459 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1); 1460 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS); 1461 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY); 1462 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1463 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS); 1464 DUMP_REG(DC_DISP_REF_TO_SYNC); 1465 DUMP_REG(DC_DISP_SYNC_WIDTH); 1466 DUMP_REG(DC_DISP_BACK_PORCH); 1467 DUMP_REG(DC_DISP_ACTIVE); 1468 DUMP_REG(DC_DISP_FRONT_PORCH); 1469 DUMP_REG(DC_DISP_H_PULSE0_CONTROL); 1470 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A); 1471 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B); 1472 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C); 1473 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D); 1474 DUMP_REG(DC_DISP_H_PULSE1_CONTROL); 1475 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A); 1476 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B); 1477 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C); 1478 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D); 1479 DUMP_REG(DC_DISP_H_PULSE2_CONTROL); 1480 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A); 1481 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B); 1482 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C); 1483 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D); 1484 DUMP_REG(DC_DISP_V_PULSE0_CONTROL); 1485 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A); 1486 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B); 1487 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C); 1488 DUMP_REG(DC_DISP_V_PULSE1_CONTROL); 1489 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A); 1490 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B); 1491 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C); 1492 DUMP_REG(DC_DISP_V_PULSE2_CONTROL); 1493 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A); 1494 DUMP_REG(DC_DISP_V_PULSE3_CONTROL); 1495 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A); 1496 DUMP_REG(DC_DISP_M0_CONTROL); 1497 DUMP_REG(DC_DISP_M1_CONTROL); 1498 DUMP_REG(DC_DISP_DI_CONTROL); 1499 DUMP_REG(DC_DISP_PP_CONTROL); 1500 DUMP_REG(DC_DISP_PP_SELECT_A); 1501 DUMP_REG(DC_DISP_PP_SELECT_B); 1502 DUMP_REG(DC_DISP_PP_SELECT_C); 1503 DUMP_REG(DC_DISP_PP_SELECT_D); 1504 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL); 1505 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL); 1506 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL); 1507 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS); 1508 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS); 1509 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS); 1510 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS); 1511 DUMP_REG(DC_DISP_BORDER_COLOR); 1512 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER); 1513 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER); 1514 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER); 1515 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER); 1516 DUMP_REG(DC_DISP_CURSOR_FOREGROUND); 1517 DUMP_REG(DC_DISP_CURSOR_BACKGROUND); 1518 DUMP_REG(DC_DISP_CURSOR_START_ADDR); 1519 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS); 1520 DUMP_REG(DC_DISP_CURSOR_POSITION); 1521 DUMP_REG(DC_DISP_CURSOR_POSITION_NS); 1522 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL); 1523 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A); 1524 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B); 1525 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C); 1526 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D); 1527 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL); 1528 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST); 1529 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST); 1530 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST); 1531 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST); 1532 DUMP_REG(DC_DISP_DAC_CRT_CTRL); 1533 DUMP_REG(DC_DISP_DISP_MISC_CONTROL); 1534 DUMP_REG(DC_DISP_SD_CONTROL); 1535 DUMP_REG(DC_DISP_SD_CSC_COEFF); 1536 DUMP_REG(DC_DISP_SD_LUT(0)); 1537 DUMP_REG(DC_DISP_SD_LUT(1)); 1538 DUMP_REG(DC_DISP_SD_LUT(2)); 1539 DUMP_REG(DC_DISP_SD_LUT(3)); 1540 DUMP_REG(DC_DISP_SD_LUT(4)); 1541 DUMP_REG(DC_DISP_SD_LUT(5)); 1542 DUMP_REG(DC_DISP_SD_LUT(6)); 1543 DUMP_REG(DC_DISP_SD_LUT(7)); 1544 DUMP_REG(DC_DISP_SD_LUT(8)); 1545 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL); 1546 DUMP_REG(DC_DISP_DC_PIXEL_COUNT); 1547 DUMP_REG(DC_DISP_SD_HISTOGRAM(0)); 1548 DUMP_REG(DC_DISP_SD_HISTOGRAM(1)); 1549 DUMP_REG(DC_DISP_SD_HISTOGRAM(2)); 1550 DUMP_REG(DC_DISP_SD_HISTOGRAM(3)); 1551 DUMP_REG(DC_DISP_SD_HISTOGRAM(4)); 1552 DUMP_REG(DC_DISP_SD_HISTOGRAM(5)); 1553 DUMP_REG(DC_DISP_SD_HISTOGRAM(6)); 1554 DUMP_REG(DC_DISP_SD_HISTOGRAM(7)); 1555 DUMP_REG(DC_DISP_SD_BL_TF(0)); 1556 DUMP_REG(DC_DISP_SD_BL_TF(1)); 1557 DUMP_REG(DC_DISP_SD_BL_TF(2)); 1558 DUMP_REG(DC_DISP_SD_BL_TF(3)); 1559 DUMP_REG(DC_DISP_SD_BL_CONTROL); 1560 DUMP_REG(DC_DISP_SD_HW_K_VALUES); 1561 DUMP_REG(DC_DISP_SD_MAN_K_VALUES); 1562 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI); 1563 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL); 1564 DUMP_REG(DC_WIN_WIN_OPTIONS); 1565 DUMP_REG(DC_WIN_BYTE_SWAP); 1566 DUMP_REG(DC_WIN_BUFFER_CONTROL); 1567 DUMP_REG(DC_WIN_COLOR_DEPTH); 1568 DUMP_REG(DC_WIN_POSITION); 1569 DUMP_REG(DC_WIN_SIZE); 1570 DUMP_REG(DC_WIN_PRESCALED_SIZE); 1571 DUMP_REG(DC_WIN_H_INITIAL_DDA); 1572 DUMP_REG(DC_WIN_V_INITIAL_DDA); 1573 DUMP_REG(DC_WIN_DDA_INC); 1574 DUMP_REG(DC_WIN_LINE_STRIDE); 1575 DUMP_REG(DC_WIN_BUF_STRIDE); 1576 DUMP_REG(DC_WIN_UV_BUF_STRIDE); 1577 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE); 1578 DUMP_REG(DC_WIN_DV_CONTROL); 1579 DUMP_REG(DC_WIN_BLEND_NOKEY); 1580 DUMP_REG(DC_WIN_BLEND_1WIN); 1581 DUMP_REG(DC_WIN_BLEND_2WIN_X); 1582 DUMP_REG(DC_WIN_BLEND_2WIN_Y); 1583 DUMP_REG(DC_WIN_BLEND_3WIN_XY); 1584 DUMP_REG(DC_WIN_HP_FETCH_CONTROL); 1585 DUMP_REG(DC_WINBUF_START_ADDR); 1586 DUMP_REG(DC_WINBUF_START_ADDR_NS); 1587 DUMP_REG(DC_WINBUF_START_ADDR_U); 1588 DUMP_REG(DC_WINBUF_START_ADDR_U_NS); 1589 DUMP_REG(DC_WINBUF_START_ADDR_V); 1590 DUMP_REG(DC_WINBUF_START_ADDR_V_NS); 1591 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET); 1592 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS); 1593 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET); 1594 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS); 1595 DUMP_REG(DC_WINBUF_UFLOW_STATUS); 1596 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS); 1597 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS); 1598 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS); 1599 1600 #undef DUMP_REG 1601 1602 unlock: 1603 drm_modeset_unlock_crtc(&dc->base); 1604 return err; 1605 } 1606 1607 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1608 { 1609 struct drm_info_node *node = s->private; 1610 struct tegra_dc *dc = node->info_ent->data; 1611 int err = 0; 1612 u32 value; 1613 1614 drm_modeset_lock_crtc(&dc->base, NULL); 1615 1616 if (!dc->base.state->active) { 1617 err = -EBUSY; 1618 goto unlock; 1619 } 1620 1621 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1622 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1623 tegra_dc_commit(dc); 1624 1625 drm_crtc_wait_one_vblank(&dc->base); 1626 drm_crtc_wait_one_vblank(&dc->base); 1627 1628 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1629 seq_printf(s, "%08x\n", value); 1630 1631 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1632 1633 unlock: 1634 drm_modeset_unlock_crtc(&dc->base); 1635 return err; 1636 } 1637 1638 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1639 { 1640 struct drm_info_node *node = s->private; 1641 struct tegra_dc *dc = node->info_ent->data; 1642 1643 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1644 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1645 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1646 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1647 1648 return 0; 1649 } 1650 1651 static struct drm_info_list debugfs_files[] = { 1652 { "regs", tegra_dc_show_regs, 0, NULL }, 1653 { "crc", tegra_dc_show_crc, 0, NULL }, 1654 { "stats", tegra_dc_show_stats, 0, NULL }, 1655 }; 1656 1657 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor) 1658 { 1659 unsigned int i; 1660 char *name; 1661 int err; 1662 1663 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe); 1664 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root); 1665 kfree(name); 1666 1667 if (!dc->debugfs) 1668 return -ENOMEM; 1669 1670 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1671 GFP_KERNEL); 1672 if (!dc->debugfs_files) { 1673 err = -ENOMEM; 1674 goto remove; 1675 } 1676 1677 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 1678 dc->debugfs_files[i].data = dc; 1679 1680 err = drm_debugfs_create_files(dc->debugfs_files, 1681 ARRAY_SIZE(debugfs_files), 1682 dc->debugfs, minor); 1683 if (err < 0) 1684 goto free; 1685 1686 dc->minor = minor; 1687 1688 return 0; 1689 1690 free: 1691 kfree(dc->debugfs_files); 1692 dc->debugfs_files = NULL; 1693 remove: 1694 debugfs_remove(dc->debugfs); 1695 dc->debugfs = NULL; 1696 1697 return err; 1698 } 1699 1700 static int tegra_dc_debugfs_exit(struct tegra_dc *dc) 1701 { 1702 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files), 1703 dc->minor); 1704 dc->minor = NULL; 1705 1706 kfree(dc->debugfs_files); 1707 dc->debugfs_files = NULL; 1708 1709 debugfs_remove(dc->debugfs); 1710 dc->debugfs = NULL; 1711 1712 return 0; 1713 } 1714 1715 static int tegra_dc_init(struct host1x_client *client) 1716 { 1717 struct drm_device *drm = dev_get_drvdata(client->parent); 1718 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 1719 struct tegra_dc *dc = host1x_client_to_dc(client); 1720 struct tegra_drm *tegra = drm->dev_private; 1721 struct drm_plane *primary = NULL; 1722 struct drm_plane *cursor = NULL; 1723 int err; 1724 1725 dc->syncpt = host1x_syncpt_request(dc->dev, flags); 1726 if (!dc->syncpt) 1727 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 1728 1729 if (tegra->domain) { 1730 err = iommu_attach_device(tegra->domain, dc->dev); 1731 if (err < 0) { 1732 dev_err(dc->dev, "failed to attach to domain: %d\n", 1733 err); 1734 return err; 1735 } 1736 1737 dc->domain = tegra->domain; 1738 } 1739 1740 primary = tegra_dc_primary_plane_create(drm, dc); 1741 if (IS_ERR(primary)) { 1742 err = PTR_ERR(primary); 1743 goto cleanup; 1744 } 1745 1746 if (dc->soc->supports_cursor) { 1747 cursor = tegra_dc_cursor_plane_create(drm, dc); 1748 if (IS_ERR(cursor)) { 1749 err = PTR_ERR(cursor); 1750 goto cleanup; 1751 } 1752 } 1753 1754 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 1755 &tegra_crtc_funcs, NULL); 1756 if (err < 0) 1757 goto cleanup; 1758 1759 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 1760 1761 /* 1762 * Keep track of the minimum pitch alignment across all display 1763 * controllers. 1764 */ 1765 if (dc->soc->pitch_align > tegra->pitch_align) 1766 tegra->pitch_align = dc->soc->pitch_align; 1767 1768 err = tegra_dc_rgb_init(drm, dc); 1769 if (err < 0 && err != -ENODEV) { 1770 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 1771 goto cleanup; 1772 } 1773 1774 err = tegra_dc_add_planes(drm, dc); 1775 if (err < 0) 1776 goto cleanup; 1777 1778 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1779 err = tegra_dc_debugfs_init(dc, drm->primary); 1780 if (err < 0) 1781 dev_err(dc->dev, "debugfs setup failed: %d\n", err); 1782 } 1783 1784 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 1785 dev_name(dc->dev), dc); 1786 if (err < 0) { 1787 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 1788 err); 1789 goto cleanup; 1790 } 1791 1792 return 0; 1793 1794 cleanup: 1795 if (cursor) 1796 drm_plane_cleanup(cursor); 1797 1798 if (primary) 1799 drm_plane_cleanup(primary); 1800 1801 if (tegra->domain) { 1802 iommu_detach_device(tegra->domain, dc->dev); 1803 dc->domain = NULL; 1804 } 1805 1806 return err; 1807 } 1808 1809 static int tegra_dc_exit(struct host1x_client *client) 1810 { 1811 struct tegra_dc *dc = host1x_client_to_dc(client); 1812 int err; 1813 1814 devm_free_irq(dc->dev, dc->irq, dc); 1815 1816 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1817 err = tegra_dc_debugfs_exit(dc); 1818 if (err < 0) 1819 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err); 1820 } 1821 1822 err = tegra_dc_rgb_exit(dc); 1823 if (err) { 1824 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 1825 return err; 1826 } 1827 1828 if (dc->domain) { 1829 iommu_detach_device(dc->domain, dc->dev); 1830 dc->domain = NULL; 1831 } 1832 1833 host1x_syncpt_free(dc->syncpt); 1834 1835 return 0; 1836 } 1837 1838 static const struct host1x_client_ops dc_client_ops = { 1839 .init = tegra_dc_init, 1840 .exit = tegra_dc_exit, 1841 }; 1842 1843 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 1844 .supports_border_color = true, 1845 .supports_interlacing = false, 1846 .supports_cursor = false, 1847 .supports_block_linear = false, 1848 .pitch_align = 8, 1849 .has_powergate = false, 1850 }; 1851 1852 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 1853 .supports_border_color = true, 1854 .supports_interlacing = false, 1855 .supports_cursor = false, 1856 .supports_block_linear = false, 1857 .pitch_align = 8, 1858 .has_powergate = false, 1859 }; 1860 1861 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 1862 .supports_border_color = true, 1863 .supports_interlacing = false, 1864 .supports_cursor = false, 1865 .supports_block_linear = false, 1866 .pitch_align = 64, 1867 .has_powergate = true, 1868 }; 1869 1870 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 1871 .supports_border_color = false, 1872 .supports_interlacing = true, 1873 .supports_cursor = true, 1874 .supports_block_linear = true, 1875 .pitch_align = 64, 1876 .has_powergate = true, 1877 }; 1878 1879 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 1880 .supports_border_color = false, 1881 .supports_interlacing = true, 1882 .supports_cursor = true, 1883 .supports_block_linear = true, 1884 .pitch_align = 64, 1885 .has_powergate = true, 1886 }; 1887 1888 static const struct of_device_id tegra_dc_of_match[] = { 1889 { 1890 .compatible = "nvidia,tegra210-dc", 1891 .data = &tegra210_dc_soc_info, 1892 }, { 1893 .compatible = "nvidia,tegra124-dc", 1894 .data = &tegra124_dc_soc_info, 1895 }, { 1896 .compatible = "nvidia,tegra114-dc", 1897 .data = &tegra114_dc_soc_info, 1898 }, { 1899 .compatible = "nvidia,tegra30-dc", 1900 .data = &tegra30_dc_soc_info, 1901 }, { 1902 .compatible = "nvidia,tegra20-dc", 1903 .data = &tegra20_dc_soc_info, 1904 }, { 1905 /* sentinel */ 1906 } 1907 }; 1908 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 1909 1910 static int tegra_dc_parse_dt(struct tegra_dc *dc) 1911 { 1912 struct device_node *np; 1913 u32 value = 0; 1914 int err; 1915 1916 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 1917 if (err < 0) { 1918 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 1919 1920 /* 1921 * If the nvidia,head property isn't present, try to find the 1922 * correct head number by looking up the position of this 1923 * display controller's node within the device tree. Assuming 1924 * that the nodes are ordered properly in the DTS file and 1925 * that the translation into a flattened device tree blob 1926 * preserves that ordering this will actually yield the right 1927 * head number. 1928 * 1929 * If those assumptions don't hold, this will still work for 1930 * cases where only a single display controller is used. 1931 */ 1932 for_each_matching_node(np, tegra_dc_of_match) { 1933 if (np == dc->dev->of_node) { 1934 of_node_put(np); 1935 break; 1936 } 1937 1938 value++; 1939 } 1940 } 1941 1942 dc->pipe = value; 1943 1944 return 0; 1945 } 1946 1947 static int tegra_dc_probe(struct platform_device *pdev) 1948 { 1949 const struct of_device_id *id; 1950 struct resource *regs; 1951 struct tegra_dc *dc; 1952 int err; 1953 1954 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 1955 if (!dc) 1956 return -ENOMEM; 1957 1958 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node); 1959 if (!id) 1960 return -ENODEV; 1961 1962 spin_lock_init(&dc->lock); 1963 INIT_LIST_HEAD(&dc->list); 1964 dc->dev = &pdev->dev; 1965 dc->soc = id->data; 1966 1967 err = tegra_dc_parse_dt(dc); 1968 if (err < 0) 1969 return err; 1970 1971 dc->clk = devm_clk_get(&pdev->dev, NULL); 1972 if (IS_ERR(dc->clk)) { 1973 dev_err(&pdev->dev, "failed to get clock\n"); 1974 return PTR_ERR(dc->clk); 1975 } 1976 1977 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 1978 if (IS_ERR(dc->rst)) { 1979 dev_err(&pdev->dev, "failed to get reset\n"); 1980 return PTR_ERR(dc->rst); 1981 } 1982 1983 reset_control_assert(dc->rst); 1984 1985 if (dc->soc->has_powergate) { 1986 if (dc->pipe == 0) 1987 dc->powergate = TEGRA_POWERGATE_DIS; 1988 else 1989 dc->powergate = TEGRA_POWERGATE_DISB; 1990 1991 tegra_powergate_power_off(dc->powergate); 1992 } 1993 1994 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1995 dc->regs = devm_ioremap_resource(&pdev->dev, regs); 1996 if (IS_ERR(dc->regs)) 1997 return PTR_ERR(dc->regs); 1998 1999 dc->irq = platform_get_irq(pdev, 0); 2000 if (dc->irq < 0) { 2001 dev_err(&pdev->dev, "failed to get IRQ\n"); 2002 return -ENXIO; 2003 } 2004 2005 err = tegra_dc_rgb_probe(dc); 2006 if (err < 0 && err != -ENODEV) { 2007 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err); 2008 return err; 2009 } 2010 2011 platform_set_drvdata(pdev, dc); 2012 pm_runtime_enable(&pdev->dev); 2013 2014 INIT_LIST_HEAD(&dc->client.list); 2015 dc->client.ops = &dc_client_ops; 2016 dc->client.dev = &pdev->dev; 2017 2018 err = host1x_client_register(&dc->client); 2019 if (err < 0) { 2020 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2021 err); 2022 return err; 2023 } 2024 2025 return 0; 2026 } 2027 2028 static int tegra_dc_remove(struct platform_device *pdev) 2029 { 2030 struct tegra_dc *dc = platform_get_drvdata(pdev); 2031 int err; 2032 2033 err = host1x_client_unregister(&dc->client); 2034 if (err < 0) { 2035 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2036 err); 2037 return err; 2038 } 2039 2040 err = tegra_dc_rgb_remove(dc); 2041 if (err < 0) { 2042 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2043 return err; 2044 } 2045 2046 pm_runtime_disable(&pdev->dev); 2047 2048 return 0; 2049 } 2050 2051 #ifdef CONFIG_PM 2052 static int tegra_dc_suspend(struct device *dev) 2053 { 2054 struct tegra_dc *dc = dev_get_drvdata(dev); 2055 int err; 2056 2057 err = reset_control_assert(dc->rst); 2058 if (err < 0) { 2059 dev_err(dev, "failed to assert reset: %d\n", err); 2060 return err; 2061 } 2062 2063 if (dc->soc->has_powergate) 2064 tegra_powergate_power_off(dc->powergate); 2065 2066 clk_disable_unprepare(dc->clk); 2067 2068 return 0; 2069 } 2070 2071 static int tegra_dc_resume(struct device *dev) 2072 { 2073 struct tegra_dc *dc = dev_get_drvdata(dev); 2074 int err; 2075 2076 if (dc->soc->has_powergate) { 2077 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2078 dc->rst); 2079 if (err < 0) { 2080 dev_err(dev, "failed to power partition: %d\n", err); 2081 return err; 2082 } 2083 } else { 2084 err = clk_prepare_enable(dc->clk); 2085 if (err < 0) { 2086 dev_err(dev, "failed to enable clock: %d\n", err); 2087 return err; 2088 } 2089 2090 err = reset_control_deassert(dc->rst); 2091 if (err < 0) { 2092 dev_err(dev, "failed to deassert reset: %d\n", err); 2093 return err; 2094 } 2095 } 2096 2097 return 0; 2098 } 2099 #endif 2100 2101 static const struct dev_pm_ops tegra_dc_pm_ops = { 2102 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL) 2103 }; 2104 2105 struct platform_driver tegra_dc_driver = { 2106 .driver = { 2107 .name = "tegra-dc", 2108 .of_match_table = tegra_dc_of_match, 2109 .pm = &tegra_dc_pm_ops, 2110 }, 2111 .probe = tegra_dc_probe, 2112 .remove = tegra_dc_remove, 2113 }; 2114