xref: /linux/drivers/gpu/drm/tegra/dc.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 struct tegra_dc_soc_info {
27 	bool supports_border_color;
28 	bool supports_interlacing;
29 	bool supports_cursor;
30 	bool supports_block_linear;
31 	unsigned int pitch_align;
32 	bool has_powergate;
33 };
34 
35 struct tegra_plane {
36 	struct drm_plane base;
37 	unsigned int index;
38 };
39 
40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 {
42 	return container_of(plane, struct tegra_plane, base);
43 }
44 
45 struct tegra_dc_state {
46 	struct drm_crtc_state base;
47 
48 	struct clk *clk;
49 	unsigned long pclk;
50 	unsigned int div;
51 
52 	u32 planes;
53 };
54 
55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 {
57 	if (state)
58 		return container_of(state, struct tegra_dc_state, base);
59 
60 	return NULL;
61 }
62 
63 struct tegra_plane_state {
64 	struct drm_plane_state base;
65 
66 	struct tegra_bo_tiling tiling;
67 	u32 format;
68 	u32 swap;
69 };
70 
71 static inline struct tegra_plane_state *
72 to_tegra_plane_state(struct drm_plane_state *state)
73 {
74 	if (state)
75 		return container_of(state, struct tegra_plane_state, base);
76 
77 	return NULL;
78 }
79 
80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 {
82 	stats->frames = 0;
83 	stats->vblank = 0;
84 	stats->underflow = 0;
85 	stats->overflow = 0;
86 }
87 
88 /*
89  * Reads the active copy of a register. This takes the dc->lock spinlock to
90  * prevent races with the VBLANK processing which also needs access to the
91  * active copy of some registers.
92  */
93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
94 {
95 	unsigned long flags;
96 	u32 value;
97 
98 	spin_lock_irqsave(&dc->lock, flags);
99 
100 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
101 	value = tegra_dc_readl(dc, offset);
102 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
103 
104 	spin_unlock_irqrestore(&dc->lock, flags);
105 	return value;
106 }
107 
108 /*
109  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111  * Latching happens mmediately if the display controller is in STOP mode or
112  * on the next frame boundary otherwise.
113  *
114  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117  * into the ACTIVE copy, either immediately if the display controller is in
118  * STOP mode, or at the next frame boundary otherwise.
119  */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125 
126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
127 {
128 	/* assume no swapping of fetched data */
129 	if (swap)
130 		*swap = BYTE_SWAP_NOSWAP;
131 
132 	switch (fourcc) {
133 	case DRM_FORMAT_XBGR8888:
134 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
135 		break;
136 
137 	case DRM_FORMAT_XRGB8888:
138 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
139 		break;
140 
141 	case DRM_FORMAT_RGB565:
142 		*format = WIN_COLOR_DEPTH_B5G6R5;
143 		break;
144 
145 	case DRM_FORMAT_UYVY:
146 		*format = WIN_COLOR_DEPTH_YCbCr422;
147 		break;
148 
149 	case DRM_FORMAT_YUYV:
150 		if (swap)
151 			*swap = BYTE_SWAP_SWAP2;
152 
153 		*format = WIN_COLOR_DEPTH_YCbCr422;
154 		break;
155 
156 	case DRM_FORMAT_YUV420:
157 		*format = WIN_COLOR_DEPTH_YCbCr420P;
158 		break;
159 
160 	case DRM_FORMAT_YUV422:
161 		*format = WIN_COLOR_DEPTH_YCbCr422P;
162 		break;
163 
164 	default:
165 		return -EINVAL;
166 	}
167 
168 	return 0;
169 }
170 
171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
172 {
173 	switch (format) {
174 	case WIN_COLOR_DEPTH_YCbCr422:
175 	case WIN_COLOR_DEPTH_YUV422:
176 		if (planar)
177 			*planar = false;
178 
179 		return true;
180 
181 	case WIN_COLOR_DEPTH_YCbCr420P:
182 	case WIN_COLOR_DEPTH_YUV420P:
183 	case WIN_COLOR_DEPTH_YCbCr422P:
184 	case WIN_COLOR_DEPTH_YUV422P:
185 	case WIN_COLOR_DEPTH_YCbCr422R:
186 	case WIN_COLOR_DEPTH_YUV422R:
187 	case WIN_COLOR_DEPTH_YCbCr422RA:
188 	case WIN_COLOR_DEPTH_YUV422RA:
189 		if (planar)
190 			*planar = true;
191 
192 		return true;
193 	}
194 
195 	if (planar)
196 		*planar = false;
197 
198 	return false;
199 }
200 
201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
202 				  unsigned int bpp)
203 {
204 	fixed20_12 outf = dfixed_init(out);
205 	fixed20_12 inf = dfixed_init(in);
206 	u32 dda_inc;
207 	int max;
208 
209 	if (v)
210 		max = 15;
211 	else {
212 		switch (bpp) {
213 		case 2:
214 			max = 8;
215 			break;
216 
217 		default:
218 			WARN_ON_ONCE(1);
219 			/* fallthrough */
220 		case 4:
221 			max = 4;
222 			break;
223 		}
224 	}
225 
226 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
227 	inf.full -= dfixed_const(1);
228 
229 	dda_inc = dfixed_div(inf, outf);
230 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
231 
232 	return dda_inc;
233 }
234 
235 static inline u32 compute_initial_dda(unsigned int in)
236 {
237 	fixed20_12 inf = dfixed_init(in);
238 	return dfixed_frac(inf);
239 }
240 
241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
242 				  const struct tegra_dc_window *window)
243 {
244 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
245 	unsigned long value, flags;
246 	bool yuv, planar;
247 
248 	/*
249 	 * For YUV planar modes, the number of bytes per pixel takes into
250 	 * account only the luma component and therefore is 1.
251 	 */
252 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
253 	if (!yuv)
254 		bpp = window->bits_per_pixel / 8;
255 	else
256 		bpp = planar ? 1 : 2;
257 
258 	spin_lock_irqsave(&dc->lock, flags);
259 
260 	value = WINDOW_A_SELECT << index;
261 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
262 
263 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
264 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
265 
266 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
267 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
268 
269 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
270 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
271 
272 	h_offset = window->src.x * bpp;
273 	v_offset = window->src.y;
274 	h_size = window->src.w * bpp;
275 	v_size = window->src.h;
276 
277 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
278 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
279 
280 	/*
281 	 * For DDA computations the number of bytes per pixel for YUV planar
282 	 * modes needs to take into account all Y, U and V components.
283 	 */
284 	if (yuv && planar)
285 		bpp = 2;
286 
287 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
288 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
289 
290 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
291 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
292 
293 	h_dda = compute_initial_dda(window->src.x);
294 	v_dda = compute_initial_dda(window->src.y);
295 
296 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
297 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
298 
299 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
300 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
301 
302 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
303 
304 	if (yuv && planar) {
305 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
306 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
307 		value = window->stride[1] << 16 | window->stride[0];
308 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
309 	} else {
310 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
311 	}
312 
313 	if (window->bottom_up)
314 		v_offset += window->src.h - 1;
315 
316 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
317 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
318 
319 	if (dc->soc->supports_block_linear) {
320 		unsigned long height = window->tiling.value;
321 
322 		switch (window->tiling.mode) {
323 		case TEGRA_BO_TILING_MODE_PITCH:
324 			value = DC_WINBUF_SURFACE_KIND_PITCH;
325 			break;
326 
327 		case TEGRA_BO_TILING_MODE_TILED:
328 			value = DC_WINBUF_SURFACE_KIND_TILED;
329 			break;
330 
331 		case TEGRA_BO_TILING_MODE_BLOCK:
332 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
333 				DC_WINBUF_SURFACE_KIND_BLOCK;
334 			break;
335 		}
336 
337 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
338 	} else {
339 		switch (window->tiling.mode) {
340 		case TEGRA_BO_TILING_MODE_PITCH:
341 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
342 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
343 			break;
344 
345 		case TEGRA_BO_TILING_MODE_TILED:
346 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
347 				DC_WIN_BUFFER_ADDR_MODE_TILE;
348 			break;
349 
350 		case TEGRA_BO_TILING_MODE_BLOCK:
351 			/*
352 			 * No need to handle this here because ->atomic_check
353 			 * will already have filtered it out.
354 			 */
355 			break;
356 		}
357 
358 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
359 	}
360 
361 	value = WIN_ENABLE;
362 
363 	if (yuv) {
364 		/* setup default colorspace conversion coefficients */
365 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
366 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
367 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
368 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
369 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
370 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
371 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
372 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
373 
374 		value |= CSC_ENABLE;
375 	} else if (window->bits_per_pixel < 24) {
376 		value |= COLOR_EXPAND;
377 	}
378 
379 	if (window->bottom_up)
380 		value |= V_DIRECTION;
381 
382 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
383 
384 	/*
385 	 * Disable blending and assume Window A is the bottom-most window,
386 	 * Window C is the top-most window and Window B is in the middle.
387 	 */
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
389 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
390 
391 	switch (index) {
392 	case 0:
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
395 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
396 		break;
397 
398 	case 1:
399 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
401 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
402 		break;
403 
404 	case 2:
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
407 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
408 		break;
409 	}
410 
411 	spin_unlock_irqrestore(&dc->lock, flags);
412 }
413 
414 static void tegra_plane_destroy(struct drm_plane *plane)
415 {
416 	struct tegra_plane *p = to_tegra_plane(plane);
417 
418 	drm_plane_cleanup(plane);
419 	kfree(p);
420 }
421 
422 static const u32 tegra_primary_plane_formats[] = {
423 	DRM_FORMAT_XBGR8888,
424 	DRM_FORMAT_XRGB8888,
425 	DRM_FORMAT_RGB565,
426 };
427 
428 static void tegra_primary_plane_destroy(struct drm_plane *plane)
429 {
430 	tegra_plane_destroy(plane);
431 }
432 
433 static void tegra_plane_reset(struct drm_plane *plane)
434 {
435 	struct tegra_plane_state *state;
436 
437 	if (plane->state)
438 		__drm_atomic_helper_plane_destroy_state(plane->state);
439 
440 	kfree(plane->state);
441 	plane->state = NULL;
442 
443 	state = kzalloc(sizeof(*state), GFP_KERNEL);
444 	if (state) {
445 		plane->state = &state->base;
446 		plane->state->plane = plane;
447 	}
448 }
449 
450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
451 {
452 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
453 	struct tegra_plane_state *copy;
454 
455 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
456 	if (!copy)
457 		return NULL;
458 
459 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
460 	copy->tiling = state->tiling;
461 	copy->format = state->format;
462 	copy->swap = state->swap;
463 
464 	return &copy->base;
465 }
466 
467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
468 					     struct drm_plane_state *state)
469 {
470 	__drm_atomic_helper_plane_destroy_state(state);
471 	kfree(state);
472 }
473 
474 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
475 	.update_plane = drm_atomic_helper_update_plane,
476 	.disable_plane = drm_atomic_helper_disable_plane,
477 	.destroy = tegra_primary_plane_destroy,
478 	.reset = tegra_plane_reset,
479 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
480 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
481 };
482 
483 static int tegra_plane_state_add(struct tegra_plane *plane,
484 				 struct drm_plane_state *state)
485 {
486 	struct drm_crtc_state *crtc_state;
487 	struct tegra_dc_state *tegra;
488 
489 	/* Propagate errors from allocation or locking failures. */
490 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
491 	if (IS_ERR(crtc_state))
492 		return PTR_ERR(crtc_state);
493 
494 	tegra = to_dc_state(crtc_state);
495 
496 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
497 
498 	return 0;
499 }
500 
501 static int tegra_plane_atomic_check(struct drm_plane *plane,
502 				    struct drm_plane_state *state)
503 {
504 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
505 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
506 	struct tegra_plane *tegra = to_tegra_plane(plane);
507 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
508 	int err;
509 
510 	/* no need for further checks if the plane is being disabled */
511 	if (!state->crtc)
512 		return 0;
513 
514 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
515 			      &plane_state->swap);
516 	if (err < 0)
517 		return err;
518 
519 	err = tegra_fb_get_tiling(state->fb, tiling);
520 	if (err < 0)
521 		return err;
522 
523 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
524 	    !dc->soc->supports_block_linear) {
525 		DRM_ERROR("hardware doesn't support block linear mode\n");
526 		return -EINVAL;
527 	}
528 
529 	/*
530 	 * Tegra doesn't support different strides for U and V planes so we
531 	 * error out if the user tries to display a framebuffer with such a
532 	 * configuration.
533 	 */
534 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
535 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
536 			DRM_ERROR("unsupported UV-plane configuration\n");
537 			return -EINVAL;
538 		}
539 	}
540 
541 	err = tegra_plane_state_add(tegra, state);
542 	if (err < 0)
543 		return err;
544 
545 	return 0;
546 }
547 
548 static void tegra_plane_atomic_update(struct drm_plane *plane,
549 				      struct drm_plane_state *old_state)
550 {
551 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
552 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
553 	struct drm_framebuffer *fb = plane->state->fb;
554 	struct tegra_plane *p = to_tegra_plane(plane);
555 	struct tegra_dc_window window;
556 	unsigned int i;
557 
558 	/* rien ne va plus */
559 	if (!plane->state->crtc || !plane->state->fb)
560 		return;
561 
562 	memset(&window, 0, sizeof(window));
563 	window.src.x = plane->state->src_x >> 16;
564 	window.src.y = plane->state->src_y >> 16;
565 	window.src.w = plane->state->src_w >> 16;
566 	window.src.h = plane->state->src_h >> 16;
567 	window.dst.x = plane->state->crtc_x;
568 	window.dst.y = plane->state->crtc_y;
569 	window.dst.w = plane->state->crtc_w;
570 	window.dst.h = plane->state->crtc_h;
571 	window.bits_per_pixel = fb->bits_per_pixel;
572 	window.bottom_up = tegra_fb_is_bottom_up(fb);
573 
574 	/* copy from state */
575 	window.tiling = state->tiling;
576 	window.format = state->format;
577 	window.swap = state->swap;
578 
579 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
580 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
581 
582 		window.base[i] = bo->paddr + fb->offsets[i];
583 
584 		/*
585 		 * Tegra uses a shared stride for UV planes. Framebuffers are
586 		 * already checked for this in the tegra_plane_atomic_check()
587 		 * function, so it's safe to ignore the V-plane pitch here.
588 		 */
589 		if (i < 2)
590 			window.stride[i] = fb->pitches[i];
591 	}
592 
593 	tegra_dc_setup_window(dc, p->index, &window);
594 }
595 
596 static void tegra_plane_atomic_disable(struct drm_plane *plane,
597 				       struct drm_plane_state *old_state)
598 {
599 	struct tegra_plane *p = to_tegra_plane(plane);
600 	struct tegra_dc *dc;
601 	unsigned long flags;
602 	u32 value;
603 
604 	/* rien ne va plus */
605 	if (!old_state || !old_state->crtc)
606 		return;
607 
608 	dc = to_tegra_dc(old_state->crtc);
609 
610 	spin_lock_irqsave(&dc->lock, flags);
611 
612 	value = WINDOW_A_SELECT << p->index;
613 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
614 
615 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
616 	value &= ~WIN_ENABLE;
617 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
618 
619 	spin_unlock_irqrestore(&dc->lock, flags);
620 }
621 
622 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
623 	.atomic_check = tegra_plane_atomic_check,
624 	.atomic_update = tegra_plane_atomic_update,
625 	.atomic_disable = tegra_plane_atomic_disable,
626 };
627 
628 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
629 						       struct tegra_dc *dc)
630 {
631 	/*
632 	 * Ideally this would use drm_crtc_mask(), but that would require the
633 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
634 	 * will only be added to that list in the drm_crtc_init_with_planes()
635 	 * (in tegra_dc_init()), which in turn requires registration of these
636 	 * planes. So we have ourselves a nice little chicken and egg problem
637 	 * here.
638 	 *
639 	 * We work around this by manually creating the mask from the number
640 	 * of CRTCs that have been registered, and should therefore always be
641 	 * the same as drm_crtc_index() after registration.
642 	 */
643 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
644 	struct tegra_plane *plane;
645 	unsigned int num_formats;
646 	const u32 *formats;
647 	int err;
648 
649 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
650 	if (!plane)
651 		return ERR_PTR(-ENOMEM);
652 
653 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
654 	formats = tegra_primary_plane_formats;
655 
656 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
657 				       &tegra_primary_plane_funcs, formats,
658 				       num_formats, DRM_PLANE_TYPE_PRIMARY,
659 				       NULL);
660 	if (err < 0) {
661 		kfree(plane);
662 		return ERR_PTR(err);
663 	}
664 
665 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
666 
667 	return &plane->base;
668 }
669 
670 static const u32 tegra_cursor_plane_formats[] = {
671 	DRM_FORMAT_RGBA8888,
672 };
673 
674 static int tegra_cursor_atomic_check(struct drm_plane *plane,
675 				     struct drm_plane_state *state)
676 {
677 	struct tegra_plane *tegra = to_tegra_plane(plane);
678 	int err;
679 
680 	/* no need for further checks if the plane is being disabled */
681 	if (!state->crtc)
682 		return 0;
683 
684 	/* scaling not supported for cursor */
685 	if ((state->src_w >> 16 != state->crtc_w) ||
686 	    (state->src_h >> 16 != state->crtc_h))
687 		return -EINVAL;
688 
689 	/* only square cursors supported */
690 	if (state->src_w != state->src_h)
691 		return -EINVAL;
692 
693 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
694 	    state->crtc_w != 128 && state->crtc_w != 256)
695 		return -EINVAL;
696 
697 	err = tegra_plane_state_add(tegra, state);
698 	if (err < 0)
699 		return err;
700 
701 	return 0;
702 }
703 
704 static void tegra_cursor_atomic_update(struct drm_plane *plane,
705 				       struct drm_plane_state *old_state)
706 {
707 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
708 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
709 	struct drm_plane_state *state = plane->state;
710 	u32 value = CURSOR_CLIP_DISPLAY;
711 
712 	/* rien ne va plus */
713 	if (!plane->state->crtc || !plane->state->fb)
714 		return;
715 
716 	switch (state->crtc_w) {
717 	case 32:
718 		value |= CURSOR_SIZE_32x32;
719 		break;
720 
721 	case 64:
722 		value |= CURSOR_SIZE_64x64;
723 		break;
724 
725 	case 128:
726 		value |= CURSOR_SIZE_128x128;
727 		break;
728 
729 	case 256:
730 		value |= CURSOR_SIZE_256x256;
731 		break;
732 
733 	default:
734 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
735 		     state->crtc_h);
736 		return;
737 	}
738 
739 	value |= (bo->paddr >> 10) & 0x3fffff;
740 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
741 
742 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
743 	value = (bo->paddr >> 32) & 0x3;
744 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
745 #endif
746 
747 	/* enable cursor and set blend mode */
748 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
749 	value |= CURSOR_ENABLE;
750 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
751 
752 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
753 	value &= ~CURSOR_DST_BLEND_MASK;
754 	value &= ~CURSOR_SRC_BLEND_MASK;
755 	value |= CURSOR_MODE_NORMAL;
756 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
757 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
758 	value |= CURSOR_ALPHA;
759 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
760 
761 	/* position the cursor */
762 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
763 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
764 }
765 
766 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
767 					struct drm_plane_state *old_state)
768 {
769 	struct tegra_dc *dc;
770 	u32 value;
771 
772 	/* rien ne va plus */
773 	if (!old_state || !old_state->crtc)
774 		return;
775 
776 	dc = to_tegra_dc(old_state->crtc);
777 
778 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
779 	value &= ~CURSOR_ENABLE;
780 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
781 }
782 
783 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
784 	.update_plane = drm_atomic_helper_update_plane,
785 	.disable_plane = drm_atomic_helper_disable_plane,
786 	.destroy = tegra_plane_destroy,
787 	.reset = tegra_plane_reset,
788 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
789 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
790 };
791 
792 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
793 	.atomic_check = tegra_cursor_atomic_check,
794 	.atomic_update = tegra_cursor_atomic_update,
795 	.atomic_disable = tegra_cursor_atomic_disable,
796 };
797 
798 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
799 						      struct tegra_dc *dc)
800 {
801 	struct tegra_plane *plane;
802 	unsigned int num_formats;
803 	const u32 *formats;
804 	int err;
805 
806 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
807 	if (!plane)
808 		return ERR_PTR(-ENOMEM);
809 
810 	/*
811 	 * This index is kind of fake. The cursor isn't a regular plane, but
812 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
813 	 * use the same programming. Setting this fake index here allows the
814 	 * code in tegra_add_plane_state() to do the right thing without the
815 	 * need to special-casing the cursor plane.
816 	 */
817 	plane->index = 6;
818 
819 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
820 	formats = tegra_cursor_plane_formats;
821 
822 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
823 				       &tegra_cursor_plane_funcs, formats,
824 				       num_formats, DRM_PLANE_TYPE_CURSOR,
825 				       NULL);
826 	if (err < 0) {
827 		kfree(plane);
828 		return ERR_PTR(err);
829 	}
830 
831 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
832 
833 	return &plane->base;
834 }
835 
836 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
837 {
838 	tegra_plane_destroy(plane);
839 }
840 
841 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
842 	.update_plane = drm_atomic_helper_update_plane,
843 	.disable_plane = drm_atomic_helper_disable_plane,
844 	.destroy = tegra_overlay_plane_destroy,
845 	.reset = tegra_plane_reset,
846 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
847 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
848 };
849 
850 static const uint32_t tegra_overlay_plane_formats[] = {
851 	DRM_FORMAT_XBGR8888,
852 	DRM_FORMAT_XRGB8888,
853 	DRM_FORMAT_RGB565,
854 	DRM_FORMAT_UYVY,
855 	DRM_FORMAT_YUYV,
856 	DRM_FORMAT_YUV420,
857 	DRM_FORMAT_YUV422,
858 };
859 
860 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
861 	.atomic_check = tegra_plane_atomic_check,
862 	.atomic_update = tegra_plane_atomic_update,
863 	.atomic_disable = tegra_plane_atomic_disable,
864 };
865 
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 						       struct tegra_dc *dc,
868 						       unsigned int index)
869 {
870 	struct tegra_plane *plane;
871 	unsigned int num_formats;
872 	const u32 *formats;
873 	int err;
874 
875 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 	if (!plane)
877 		return ERR_PTR(-ENOMEM);
878 
879 	plane->index = index;
880 
881 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 	formats = tegra_overlay_plane_formats;
883 
884 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 				       &tegra_overlay_plane_funcs, formats,
886 				       num_formats, DRM_PLANE_TYPE_OVERLAY,
887 				       NULL);
888 	if (err < 0) {
889 		kfree(plane);
890 		return ERR_PTR(err);
891 	}
892 
893 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
894 
895 	return &plane->base;
896 }
897 
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 {
900 	struct drm_plane *plane;
901 	unsigned int i;
902 
903 	for (i = 0; i < 2; i++) {
904 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
905 		if (IS_ERR(plane))
906 			return PTR_ERR(plane);
907 	}
908 
909 	return 0;
910 }
911 
912 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
913 {
914 	if (dc->syncpt)
915 		return host1x_syncpt_read(dc->syncpt);
916 
917 	/* fallback to software emulated VBLANK counter */
918 	return drm_crtc_vblank_count(&dc->base);
919 }
920 
921 void tegra_dc_enable_vblank(struct tegra_dc *dc)
922 {
923 	unsigned long value, flags;
924 
925 	spin_lock_irqsave(&dc->lock, flags);
926 
927 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
928 	value |= VBLANK_INT;
929 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
930 
931 	spin_unlock_irqrestore(&dc->lock, flags);
932 }
933 
934 void tegra_dc_disable_vblank(struct tegra_dc *dc)
935 {
936 	unsigned long value, flags;
937 
938 	spin_lock_irqsave(&dc->lock, flags);
939 
940 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
941 	value &= ~VBLANK_INT;
942 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
943 
944 	spin_unlock_irqrestore(&dc->lock, flags);
945 }
946 
947 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
948 {
949 	struct drm_device *drm = dc->base.dev;
950 	struct drm_crtc *crtc = &dc->base;
951 	unsigned long flags, base;
952 	struct tegra_bo *bo;
953 
954 	spin_lock_irqsave(&drm->event_lock, flags);
955 
956 	if (!dc->event) {
957 		spin_unlock_irqrestore(&drm->event_lock, flags);
958 		return;
959 	}
960 
961 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
962 
963 	spin_lock(&dc->lock);
964 
965 	/* check if new start address has been latched */
966 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
967 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
968 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
969 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
970 
971 	spin_unlock(&dc->lock);
972 
973 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
974 		drm_crtc_send_vblank_event(crtc, dc->event);
975 		drm_crtc_vblank_put(crtc);
976 		dc->event = NULL;
977 	}
978 
979 	spin_unlock_irqrestore(&drm->event_lock, flags);
980 }
981 
982 static void tegra_dc_destroy(struct drm_crtc *crtc)
983 {
984 	drm_crtc_cleanup(crtc);
985 }
986 
987 static void tegra_crtc_reset(struct drm_crtc *crtc)
988 {
989 	struct tegra_dc_state *state;
990 
991 	if (crtc->state)
992 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
993 
994 	kfree(crtc->state);
995 	crtc->state = NULL;
996 
997 	state = kzalloc(sizeof(*state), GFP_KERNEL);
998 	if (state) {
999 		crtc->state = &state->base;
1000 		crtc->state->crtc = crtc;
1001 	}
1002 
1003 	drm_crtc_vblank_reset(crtc);
1004 }
1005 
1006 static struct drm_crtc_state *
1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1008 {
1009 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1010 	struct tegra_dc_state *copy;
1011 
1012 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1013 	if (!copy)
1014 		return NULL;
1015 
1016 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1017 	copy->clk = state->clk;
1018 	copy->pclk = state->pclk;
1019 	copy->div = state->div;
1020 	copy->planes = state->planes;
1021 
1022 	return &copy->base;
1023 }
1024 
1025 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1026 					    struct drm_crtc_state *state)
1027 {
1028 	__drm_atomic_helper_crtc_destroy_state(state);
1029 	kfree(state);
1030 }
1031 
1032 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1033 	.page_flip = drm_atomic_helper_page_flip,
1034 	.set_config = drm_atomic_helper_set_config,
1035 	.destroy = tegra_dc_destroy,
1036 	.reset = tegra_crtc_reset,
1037 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1038 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1039 };
1040 
1041 static int tegra_dc_set_timings(struct tegra_dc *dc,
1042 				struct drm_display_mode *mode)
1043 {
1044 	unsigned int h_ref_to_sync = 1;
1045 	unsigned int v_ref_to_sync = 1;
1046 	unsigned long value;
1047 
1048 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1049 
1050 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1051 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1052 
1053 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1054 		((mode->hsync_end - mode->hsync_start) <<  0);
1055 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1056 
1057 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1058 		((mode->htotal - mode->hsync_end) <<  0);
1059 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1060 
1061 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1062 		((mode->hsync_start - mode->hdisplay) <<  0);
1063 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1064 
1065 	value = (mode->vdisplay << 16) | mode->hdisplay;
1066 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1073  *     state
1074  * @dc: display controller
1075  * @crtc_state: CRTC atomic state
1076  * @clk: parent clock for display controller
1077  * @pclk: pixel clock
1078  * @div: shift clock divider
1079  *
1080  * Returns:
1081  * 0 on success or a negative error-code on failure.
1082  */
1083 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1084 			       struct drm_crtc_state *crtc_state,
1085 			       struct clk *clk, unsigned long pclk,
1086 			       unsigned int div)
1087 {
1088 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1089 
1090 	if (!clk_has_parent(dc->clk, clk))
1091 		return -EINVAL;
1092 
1093 	state->clk = clk;
1094 	state->pclk = pclk;
1095 	state->div = div;
1096 
1097 	return 0;
1098 }
1099 
1100 static void tegra_dc_commit_state(struct tegra_dc *dc,
1101 				  struct tegra_dc_state *state)
1102 {
1103 	u32 value;
1104 	int err;
1105 
1106 	err = clk_set_parent(dc->clk, state->clk);
1107 	if (err < 0)
1108 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1109 
1110 	/*
1111 	 * Outputs may not want to change the parent clock rate. This is only
1112 	 * relevant to Tegra20 where only a single display PLL is available.
1113 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1114 	 * panel would need to be driven by some other clock such as PLL_P
1115 	 * which is shared with other peripherals. Changing the clock rate
1116 	 * should therefore be avoided.
1117 	 */
1118 	if (state->pclk > 0) {
1119 		err = clk_set_rate(state->clk, state->pclk);
1120 		if (err < 0)
1121 			dev_err(dc->dev,
1122 				"failed to set clock rate to %lu Hz\n",
1123 				state->pclk);
1124 	}
1125 
1126 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1127 		      state->div);
1128 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1129 
1130 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1131 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1132 }
1133 
1134 static void tegra_dc_stop(struct tegra_dc *dc)
1135 {
1136 	u32 value;
1137 
1138 	/* stop the display controller */
1139 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1140 	value &= ~DISP_CTRL_MODE_MASK;
1141 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1142 
1143 	tegra_dc_commit(dc);
1144 }
1145 
1146 static bool tegra_dc_idle(struct tegra_dc *dc)
1147 {
1148 	u32 value;
1149 
1150 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1151 
1152 	return (value & DISP_CTRL_MODE_MASK) == 0;
1153 }
1154 
1155 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1156 {
1157 	timeout = jiffies + msecs_to_jiffies(timeout);
1158 
1159 	while (time_before(jiffies, timeout)) {
1160 		if (tegra_dc_idle(dc))
1161 			return 0;
1162 
1163 		usleep_range(1000, 2000);
1164 	}
1165 
1166 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1167 	return -ETIMEDOUT;
1168 }
1169 
1170 static void tegra_crtc_disable(struct drm_crtc *crtc)
1171 {
1172 	struct tegra_dc *dc = to_tegra_dc(crtc);
1173 	u32 value;
1174 
1175 	if (!tegra_dc_idle(dc)) {
1176 		tegra_dc_stop(dc);
1177 
1178 		/*
1179 		 * Ignore the return value, there isn't anything useful to do
1180 		 * in case this fails.
1181 		 */
1182 		tegra_dc_wait_idle(dc, 100);
1183 	}
1184 
1185 	/*
1186 	 * This should really be part of the RGB encoder driver, but clearing
1187 	 * these bits has the side-effect of stopping the display controller.
1188 	 * When that happens no VBLANK interrupts will be raised. At the same
1189 	 * time the encoder is disabled before the display controller, so the
1190 	 * above code is always going to timeout waiting for the controller
1191 	 * to go idle.
1192 	 *
1193 	 * Given the close coupling between the RGB encoder and the display
1194 	 * controller doing it here is still kind of okay. None of the other
1195 	 * encoder drivers require these bits to be cleared.
1196 	 *
1197 	 * XXX: Perhaps given that the display controller is switched off at
1198 	 * this point anyway maybe clearing these bits isn't even useful for
1199 	 * the RGB encoder?
1200 	 */
1201 	if (dc->rgb) {
1202 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1203 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1204 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1205 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1206 	}
1207 
1208 	tegra_dc_stats_reset(&dc->stats);
1209 	drm_crtc_vblank_off(crtc);
1210 
1211 	pm_runtime_put_sync(dc->dev);
1212 }
1213 
1214 static void tegra_crtc_enable(struct drm_crtc *crtc)
1215 {
1216 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1217 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1218 	struct tegra_dc *dc = to_tegra_dc(crtc);
1219 	u32 value;
1220 
1221 	pm_runtime_get_sync(dc->dev);
1222 
1223 	/* initialize display controller */
1224 	if (dc->syncpt) {
1225 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1226 
1227 		value = SYNCPT_CNTRL_NO_STALL;
1228 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1229 
1230 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1231 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1232 	}
1233 
1234 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1235 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1236 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1237 
1238 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1239 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1240 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1241 
1242 	/* initialize timer */
1243 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1244 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1245 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1246 
1247 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1248 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1249 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1250 
1251 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1252 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1253 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1254 
1255 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1256 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1257 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1258 
1259 	if (dc->soc->supports_border_color)
1260 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1261 
1262 	/* apply PLL and pixel clock changes */
1263 	tegra_dc_commit_state(dc, state);
1264 
1265 	/* program display mode */
1266 	tegra_dc_set_timings(dc, mode);
1267 
1268 	/* interlacing isn't supported yet, so disable it */
1269 	if (dc->soc->supports_interlacing) {
1270 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1271 		value &= ~INTERLACE_ENABLE;
1272 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1273 	}
1274 
1275 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1276 	value &= ~DISP_CTRL_MODE_MASK;
1277 	value |= DISP_CTRL_MODE_C_DISPLAY;
1278 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1279 
1280 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1281 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1282 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1283 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1284 
1285 	tegra_dc_commit(dc);
1286 
1287 	drm_crtc_vblank_on(crtc);
1288 }
1289 
1290 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1291 				   struct drm_crtc_state *state)
1292 {
1293 	return 0;
1294 }
1295 
1296 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1297 				    struct drm_crtc_state *old_crtc_state)
1298 {
1299 	struct tegra_dc *dc = to_tegra_dc(crtc);
1300 
1301 	if (crtc->state->event) {
1302 		crtc->state->event->pipe = drm_crtc_index(crtc);
1303 
1304 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1305 
1306 		dc->event = crtc->state->event;
1307 		crtc->state->event = NULL;
1308 	}
1309 }
1310 
1311 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1312 				    struct drm_crtc_state *old_crtc_state)
1313 {
1314 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1315 	struct tegra_dc *dc = to_tegra_dc(crtc);
1316 
1317 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1318 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1319 }
1320 
1321 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1322 	.disable = tegra_crtc_disable,
1323 	.enable = tegra_crtc_enable,
1324 	.atomic_check = tegra_crtc_atomic_check,
1325 	.atomic_begin = tegra_crtc_atomic_begin,
1326 	.atomic_flush = tegra_crtc_atomic_flush,
1327 };
1328 
1329 static irqreturn_t tegra_dc_irq(int irq, void *data)
1330 {
1331 	struct tegra_dc *dc = data;
1332 	unsigned long status;
1333 
1334 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1335 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1336 
1337 	if (status & FRAME_END_INT) {
1338 		/*
1339 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1340 		*/
1341 		dc->stats.frames++;
1342 	}
1343 
1344 	if (status & VBLANK_INT) {
1345 		/*
1346 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1347 		*/
1348 		drm_crtc_handle_vblank(&dc->base);
1349 		tegra_dc_finish_page_flip(dc);
1350 		dc->stats.vblank++;
1351 	}
1352 
1353 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1354 		/*
1355 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1356 		*/
1357 		dc->stats.underflow++;
1358 	}
1359 
1360 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1361 		/*
1362 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1363 		*/
1364 		dc->stats.overflow++;
1365 	}
1366 
1367 	return IRQ_HANDLED;
1368 }
1369 
1370 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1371 {
1372 	struct drm_info_node *node = s->private;
1373 	struct tegra_dc *dc = node->info_ent->data;
1374 	int err = 0;
1375 
1376 	drm_modeset_lock_crtc(&dc->base, NULL);
1377 
1378 	if (!dc->base.state->active) {
1379 		err = -EBUSY;
1380 		goto unlock;
1381 	}
1382 
1383 #define DUMP_REG(name)						\
1384 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1385 		   tegra_dc_readl(dc, name))
1386 
1387 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1388 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1389 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1390 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1391 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1392 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1393 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1394 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1395 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1396 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1397 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1398 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1399 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1400 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1401 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1402 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1403 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1404 	DUMP_REG(DC_CMD_INT_STATUS);
1405 	DUMP_REG(DC_CMD_INT_MASK);
1406 	DUMP_REG(DC_CMD_INT_ENABLE);
1407 	DUMP_REG(DC_CMD_INT_TYPE);
1408 	DUMP_REG(DC_CMD_INT_POLARITY);
1409 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1410 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1411 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1412 	DUMP_REG(DC_CMD_STATE_ACCESS);
1413 	DUMP_REG(DC_CMD_STATE_CONTROL);
1414 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1415 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1416 	DUMP_REG(DC_COM_CRC_CONTROL);
1417 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1418 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1419 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1420 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1421 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1422 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1423 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1424 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1425 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1426 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1427 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1428 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1429 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1430 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1431 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1432 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1433 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1434 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1435 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1436 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1437 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1438 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1439 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1440 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1441 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1442 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1443 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1444 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1445 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1446 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1447 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1448 	DUMP_REG(DC_COM_SPI_CONTROL);
1449 	DUMP_REG(DC_COM_SPI_START_BYTE);
1450 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1451 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1452 	DUMP_REG(DC_COM_HSPI_CS_DC);
1453 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1454 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1455 	DUMP_REG(DC_COM_GPIO_CTRL);
1456 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1457 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1458 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1459 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1460 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1461 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1462 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1463 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1464 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1465 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1466 	DUMP_REG(DC_DISP_BACK_PORCH);
1467 	DUMP_REG(DC_DISP_ACTIVE);
1468 	DUMP_REG(DC_DISP_FRONT_PORCH);
1469 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1470 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1471 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1472 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1473 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1474 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1475 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1476 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1477 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1478 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1479 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1480 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1481 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1482 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1483 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1484 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1485 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1486 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1487 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1488 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1489 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1490 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1491 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1492 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1493 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1494 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1495 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1496 	DUMP_REG(DC_DISP_M0_CONTROL);
1497 	DUMP_REG(DC_DISP_M1_CONTROL);
1498 	DUMP_REG(DC_DISP_DI_CONTROL);
1499 	DUMP_REG(DC_DISP_PP_CONTROL);
1500 	DUMP_REG(DC_DISP_PP_SELECT_A);
1501 	DUMP_REG(DC_DISP_PP_SELECT_B);
1502 	DUMP_REG(DC_DISP_PP_SELECT_C);
1503 	DUMP_REG(DC_DISP_PP_SELECT_D);
1504 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1505 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1506 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1507 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1508 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1509 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1510 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1511 	DUMP_REG(DC_DISP_BORDER_COLOR);
1512 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1513 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1514 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1515 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1516 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1517 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1518 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1519 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1520 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1521 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1522 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1523 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1524 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1525 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1526 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1527 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1528 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1529 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1530 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1531 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1532 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1533 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1534 	DUMP_REG(DC_DISP_SD_CONTROL);
1535 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1536 	DUMP_REG(DC_DISP_SD_LUT(0));
1537 	DUMP_REG(DC_DISP_SD_LUT(1));
1538 	DUMP_REG(DC_DISP_SD_LUT(2));
1539 	DUMP_REG(DC_DISP_SD_LUT(3));
1540 	DUMP_REG(DC_DISP_SD_LUT(4));
1541 	DUMP_REG(DC_DISP_SD_LUT(5));
1542 	DUMP_REG(DC_DISP_SD_LUT(6));
1543 	DUMP_REG(DC_DISP_SD_LUT(7));
1544 	DUMP_REG(DC_DISP_SD_LUT(8));
1545 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1546 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1547 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1548 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1549 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1550 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1551 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1552 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1553 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1554 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1555 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1556 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1557 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1558 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1559 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1560 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1561 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1562 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1563 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1564 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1565 	DUMP_REG(DC_WIN_BYTE_SWAP);
1566 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1567 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1568 	DUMP_REG(DC_WIN_POSITION);
1569 	DUMP_REG(DC_WIN_SIZE);
1570 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1571 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1572 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1573 	DUMP_REG(DC_WIN_DDA_INC);
1574 	DUMP_REG(DC_WIN_LINE_STRIDE);
1575 	DUMP_REG(DC_WIN_BUF_STRIDE);
1576 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1577 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1578 	DUMP_REG(DC_WIN_DV_CONTROL);
1579 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1580 	DUMP_REG(DC_WIN_BLEND_1WIN);
1581 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1582 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1583 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1584 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1585 	DUMP_REG(DC_WINBUF_START_ADDR);
1586 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1587 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1588 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1589 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1590 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1591 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1592 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1593 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1594 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1595 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1596 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1597 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1598 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1599 
1600 #undef DUMP_REG
1601 
1602 unlock:
1603 	drm_modeset_unlock_crtc(&dc->base);
1604 	return err;
1605 }
1606 
1607 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1608 {
1609 	struct drm_info_node *node = s->private;
1610 	struct tegra_dc *dc = node->info_ent->data;
1611 	int err = 0;
1612 	u32 value;
1613 
1614 	drm_modeset_lock_crtc(&dc->base, NULL);
1615 
1616 	if (!dc->base.state->active) {
1617 		err = -EBUSY;
1618 		goto unlock;
1619 	}
1620 
1621 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1622 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1623 	tegra_dc_commit(dc);
1624 
1625 	drm_crtc_wait_one_vblank(&dc->base);
1626 	drm_crtc_wait_one_vblank(&dc->base);
1627 
1628 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1629 	seq_printf(s, "%08x\n", value);
1630 
1631 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1632 
1633 unlock:
1634 	drm_modeset_unlock_crtc(&dc->base);
1635 	return err;
1636 }
1637 
1638 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1639 {
1640 	struct drm_info_node *node = s->private;
1641 	struct tegra_dc *dc = node->info_ent->data;
1642 
1643 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1644 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1645 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1646 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1647 
1648 	return 0;
1649 }
1650 
1651 static struct drm_info_list debugfs_files[] = {
1652 	{ "regs", tegra_dc_show_regs, 0, NULL },
1653 	{ "crc", tegra_dc_show_crc, 0, NULL },
1654 	{ "stats", tegra_dc_show_stats, 0, NULL },
1655 };
1656 
1657 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1658 {
1659 	unsigned int i;
1660 	char *name;
1661 	int err;
1662 
1663 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1664 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1665 	kfree(name);
1666 
1667 	if (!dc->debugfs)
1668 		return -ENOMEM;
1669 
1670 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1671 				    GFP_KERNEL);
1672 	if (!dc->debugfs_files) {
1673 		err = -ENOMEM;
1674 		goto remove;
1675 	}
1676 
1677 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1678 		dc->debugfs_files[i].data = dc;
1679 
1680 	err = drm_debugfs_create_files(dc->debugfs_files,
1681 				       ARRAY_SIZE(debugfs_files),
1682 				       dc->debugfs, minor);
1683 	if (err < 0)
1684 		goto free;
1685 
1686 	dc->minor = minor;
1687 
1688 	return 0;
1689 
1690 free:
1691 	kfree(dc->debugfs_files);
1692 	dc->debugfs_files = NULL;
1693 remove:
1694 	debugfs_remove(dc->debugfs);
1695 	dc->debugfs = NULL;
1696 
1697 	return err;
1698 }
1699 
1700 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1701 {
1702 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1703 				 dc->minor);
1704 	dc->minor = NULL;
1705 
1706 	kfree(dc->debugfs_files);
1707 	dc->debugfs_files = NULL;
1708 
1709 	debugfs_remove(dc->debugfs);
1710 	dc->debugfs = NULL;
1711 
1712 	return 0;
1713 }
1714 
1715 static int tegra_dc_init(struct host1x_client *client)
1716 {
1717 	struct drm_device *drm = dev_get_drvdata(client->parent);
1718 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1719 	struct tegra_dc *dc = host1x_client_to_dc(client);
1720 	struct tegra_drm *tegra = drm->dev_private;
1721 	struct drm_plane *primary = NULL;
1722 	struct drm_plane *cursor = NULL;
1723 	int err;
1724 
1725 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1726 	if (!dc->syncpt)
1727 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1728 
1729 	if (tegra->domain) {
1730 		err = iommu_attach_device(tegra->domain, dc->dev);
1731 		if (err < 0) {
1732 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1733 				err);
1734 			return err;
1735 		}
1736 
1737 		dc->domain = tegra->domain;
1738 	}
1739 
1740 	primary = tegra_dc_primary_plane_create(drm, dc);
1741 	if (IS_ERR(primary)) {
1742 		err = PTR_ERR(primary);
1743 		goto cleanup;
1744 	}
1745 
1746 	if (dc->soc->supports_cursor) {
1747 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1748 		if (IS_ERR(cursor)) {
1749 			err = PTR_ERR(cursor);
1750 			goto cleanup;
1751 		}
1752 	}
1753 
1754 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1755 					&tegra_crtc_funcs, NULL);
1756 	if (err < 0)
1757 		goto cleanup;
1758 
1759 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1760 
1761 	/*
1762 	 * Keep track of the minimum pitch alignment across all display
1763 	 * controllers.
1764 	 */
1765 	if (dc->soc->pitch_align > tegra->pitch_align)
1766 		tegra->pitch_align = dc->soc->pitch_align;
1767 
1768 	err = tegra_dc_rgb_init(drm, dc);
1769 	if (err < 0 && err != -ENODEV) {
1770 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1771 		goto cleanup;
1772 	}
1773 
1774 	err = tegra_dc_add_planes(drm, dc);
1775 	if (err < 0)
1776 		goto cleanup;
1777 
1778 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1779 		err = tegra_dc_debugfs_init(dc, drm->primary);
1780 		if (err < 0)
1781 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1782 	}
1783 
1784 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1785 			       dev_name(dc->dev), dc);
1786 	if (err < 0) {
1787 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1788 			err);
1789 		goto cleanup;
1790 	}
1791 
1792 	return 0;
1793 
1794 cleanup:
1795 	if (cursor)
1796 		drm_plane_cleanup(cursor);
1797 
1798 	if (primary)
1799 		drm_plane_cleanup(primary);
1800 
1801 	if (tegra->domain) {
1802 		iommu_detach_device(tegra->domain, dc->dev);
1803 		dc->domain = NULL;
1804 	}
1805 
1806 	return err;
1807 }
1808 
1809 static int tegra_dc_exit(struct host1x_client *client)
1810 {
1811 	struct tegra_dc *dc = host1x_client_to_dc(client);
1812 	int err;
1813 
1814 	devm_free_irq(dc->dev, dc->irq, dc);
1815 
1816 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1817 		err = tegra_dc_debugfs_exit(dc);
1818 		if (err < 0)
1819 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1820 	}
1821 
1822 	err = tegra_dc_rgb_exit(dc);
1823 	if (err) {
1824 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1825 		return err;
1826 	}
1827 
1828 	if (dc->domain) {
1829 		iommu_detach_device(dc->domain, dc->dev);
1830 		dc->domain = NULL;
1831 	}
1832 
1833 	host1x_syncpt_free(dc->syncpt);
1834 
1835 	return 0;
1836 }
1837 
1838 static const struct host1x_client_ops dc_client_ops = {
1839 	.init = tegra_dc_init,
1840 	.exit = tegra_dc_exit,
1841 };
1842 
1843 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1844 	.supports_border_color = true,
1845 	.supports_interlacing = false,
1846 	.supports_cursor = false,
1847 	.supports_block_linear = false,
1848 	.pitch_align = 8,
1849 	.has_powergate = false,
1850 };
1851 
1852 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1853 	.supports_border_color = true,
1854 	.supports_interlacing = false,
1855 	.supports_cursor = false,
1856 	.supports_block_linear = false,
1857 	.pitch_align = 8,
1858 	.has_powergate = false,
1859 };
1860 
1861 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1862 	.supports_border_color = true,
1863 	.supports_interlacing = false,
1864 	.supports_cursor = false,
1865 	.supports_block_linear = false,
1866 	.pitch_align = 64,
1867 	.has_powergate = true,
1868 };
1869 
1870 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1871 	.supports_border_color = false,
1872 	.supports_interlacing = true,
1873 	.supports_cursor = true,
1874 	.supports_block_linear = true,
1875 	.pitch_align = 64,
1876 	.has_powergate = true,
1877 };
1878 
1879 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1880 	.supports_border_color = false,
1881 	.supports_interlacing = true,
1882 	.supports_cursor = true,
1883 	.supports_block_linear = true,
1884 	.pitch_align = 64,
1885 	.has_powergate = true,
1886 };
1887 
1888 static const struct of_device_id tegra_dc_of_match[] = {
1889 	{
1890 		.compatible = "nvidia,tegra210-dc",
1891 		.data = &tegra210_dc_soc_info,
1892 	}, {
1893 		.compatible = "nvidia,tegra124-dc",
1894 		.data = &tegra124_dc_soc_info,
1895 	}, {
1896 		.compatible = "nvidia,tegra114-dc",
1897 		.data = &tegra114_dc_soc_info,
1898 	}, {
1899 		.compatible = "nvidia,tegra30-dc",
1900 		.data = &tegra30_dc_soc_info,
1901 	}, {
1902 		.compatible = "nvidia,tegra20-dc",
1903 		.data = &tegra20_dc_soc_info,
1904 	}, {
1905 		/* sentinel */
1906 	}
1907 };
1908 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1909 
1910 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1911 {
1912 	struct device_node *np;
1913 	u32 value = 0;
1914 	int err;
1915 
1916 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1917 	if (err < 0) {
1918 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1919 
1920 		/*
1921 		 * If the nvidia,head property isn't present, try to find the
1922 		 * correct head number by looking up the position of this
1923 		 * display controller's node within the device tree. Assuming
1924 		 * that the nodes are ordered properly in the DTS file and
1925 		 * that the translation into a flattened device tree blob
1926 		 * preserves that ordering this will actually yield the right
1927 		 * head number.
1928 		 *
1929 		 * If those assumptions don't hold, this will still work for
1930 		 * cases where only a single display controller is used.
1931 		 */
1932 		for_each_matching_node(np, tegra_dc_of_match) {
1933 			if (np == dc->dev->of_node) {
1934 				of_node_put(np);
1935 				break;
1936 			}
1937 
1938 			value++;
1939 		}
1940 	}
1941 
1942 	dc->pipe = value;
1943 
1944 	return 0;
1945 }
1946 
1947 static int tegra_dc_probe(struct platform_device *pdev)
1948 {
1949 	const struct of_device_id *id;
1950 	struct resource *regs;
1951 	struct tegra_dc *dc;
1952 	int err;
1953 
1954 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1955 	if (!dc)
1956 		return -ENOMEM;
1957 
1958 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1959 	if (!id)
1960 		return -ENODEV;
1961 
1962 	spin_lock_init(&dc->lock);
1963 	INIT_LIST_HEAD(&dc->list);
1964 	dc->dev = &pdev->dev;
1965 	dc->soc = id->data;
1966 
1967 	err = tegra_dc_parse_dt(dc);
1968 	if (err < 0)
1969 		return err;
1970 
1971 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1972 	if (IS_ERR(dc->clk)) {
1973 		dev_err(&pdev->dev, "failed to get clock\n");
1974 		return PTR_ERR(dc->clk);
1975 	}
1976 
1977 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1978 	if (IS_ERR(dc->rst)) {
1979 		dev_err(&pdev->dev, "failed to get reset\n");
1980 		return PTR_ERR(dc->rst);
1981 	}
1982 
1983 	reset_control_assert(dc->rst);
1984 
1985 	if (dc->soc->has_powergate) {
1986 		if (dc->pipe == 0)
1987 			dc->powergate = TEGRA_POWERGATE_DIS;
1988 		else
1989 			dc->powergate = TEGRA_POWERGATE_DISB;
1990 
1991 		tegra_powergate_power_off(dc->powergate);
1992 	}
1993 
1994 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1995 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1996 	if (IS_ERR(dc->regs))
1997 		return PTR_ERR(dc->regs);
1998 
1999 	dc->irq = platform_get_irq(pdev, 0);
2000 	if (dc->irq < 0) {
2001 		dev_err(&pdev->dev, "failed to get IRQ\n");
2002 		return -ENXIO;
2003 	}
2004 
2005 	err = tegra_dc_rgb_probe(dc);
2006 	if (err < 0 && err != -ENODEV) {
2007 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2008 		return err;
2009 	}
2010 
2011 	platform_set_drvdata(pdev, dc);
2012 	pm_runtime_enable(&pdev->dev);
2013 
2014 	INIT_LIST_HEAD(&dc->client.list);
2015 	dc->client.ops = &dc_client_ops;
2016 	dc->client.dev = &pdev->dev;
2017 
2018 	err = host1x_client_register(&dc->client);
2019 	if (err < 0) {
2020 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2021 			err);
2022 		return err;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static int tegra_dc_remove(struct platform_device *pdev)
2029 {
2030 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2031 	int err;
2032 
2033 	err = host1x_client_unregister(&dc->client);
2034 	if (err < 0) {
2035 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2036 			err);
2037 		return err;
2038 	}
2039 
2040 	err = tegra_dc_rgb_remove(dc);
2041 	if (err < 0) {
2042 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2043 		return err;
2044 	}
2045 
2046 	pm_runtime_disable(&pdev->dev);
2047 
2048 	return 0;
2049 }
2050 
2051 #ifdef CONFIG_PM
2052 static int tegra_dc_suspend(struct device *dev)
2053 {
2054 	struct tegra_dc *dc = dev_get_drvdata(dev);
2055 	int err;
2056 
2057 	err = reset_control_assert(dc->rst);
2058 	if (err < 0) {
2059 		dev_err(dev, "failed to assert reset: %d\n", err);
2060 		return err;
2061 	}
2062 
2063 	if (dc->soc->has_powergate)
2064 		tegra_powergate_power_off(dc->powergate);
2065 
2066 	clk_disable_unprepare(dc->clk);
2067 
2068 	return 0;
2069 }
2070 
2071 static int tegra_dc_resume(struct device *dev)
2072 {
2073 	struct tegra_dc *dc = dev_get_drvdata(dev);
2074 	int err;
2075 
2076 	if (dc->soc->has_powergate) {
2077 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2078 							dc->rst);
2079 		if (err < 0) {
2080 			dev_err(dev, "failed to power partition: %d\n", err);
2081 			return err;
2082 		}
2083 	} else {
2084 		err = clk_prepare_enable(dc->clk);
2085 		if (err < 0) {
2086 			dev_err(dev, "failed to enable clock: %d\n", err);
2087 			return err;
2088 		}
2089 
2090 		err = reset_control_deassert(dc->rst);
2091 		if (err < 0) {
2092 			dev_err(dev, "failed to deassert reset: %d\n", err);
2093 			return err;
2094 		}
2095 	}
2096 
2097 	return 0;
2098 }
2099 #endif
2100 
2101 static const struct dev_pm_ops tegra_dc_pm_ops = {
2102 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2103 };
2104 
2105 struct platform_driver tegra_dc_driver = {
2106 	.driver = {
2107 		.name = "tegra-dc",
2108 		.of_match_table = tegra_dc_of_match,
2109 		.pm = &tegra_dc_pm_ops,
2110 	},
2111 	.probe = tegra_dc_probe,
2112 	.remove = tegra_dc_remove,
2113 };
2114