xref: /linux/drivers/gpu/drm/tegra/dc.c (revision f217d94fc632fece2a41030c2eebc4ed34a48b2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_domain.h>
16 #include <linux/pm_opp.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <soc/tegra/common.h>
21 #include <soc/tegra/pmc.h>
22 
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_blend.h>
26 #include <drm/drm_debugfs.h>
27 #include <drm/drm_fourcc.h>
28 #include <drm/drm_framebuffer.h>
29 #include <drm/drm_vblank.h>
30 
31 #include "dc.h"
32 #include "drm.h"
33 #include "gem.h"
34 #include "hub.h"
35 #include "plane.h"
36 
37 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
38 					    struct drm_crtc_state *state);
39 
40 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
41 {
42 	stats->frames = 0;
43 	stats->vblank = 0;
44 	stats->underflow = 0;
45 	stats->overflow = 0;
46 }
47 
48 /* Reads the active copy of a register. */
49 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
50 {
51 	u32 value;
52 
53 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
54 	value = tegra_dc_readl(dc, offset);
55 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
56 
57 	return value;
58 }
59 
60 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
61 					      unsigned int offset)
62 {
63 	if (offset >= 0x500 && offset <= 0x638) {
64 		offset = 0x000 + (offset - 0x500);
65 		return plane->offset + offset;
66 	}
67 
68 	if (offset >= 0x700 && offset <= 0x719) {
69 		offset = 0x180 + (offset - 0x700);
70 		return plane->offset + offset;
71 	}
72 
73 	if (offset >= 0x800 && offset <= 0x839) {
74 		offset = 0x1c0 + (offset - 0x800);
75 		return plane->offset + offset;
76 	}
77 
78 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
79 
80 	return plane->offset + offset;
81 }
82 
83 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
84 				    unsigned int offset)
85 {
86 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
87 }
88 
89 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
90 				      unsigned int offset)
91 {
92 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
93 }
94 
95 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
96 {
97 	struct device_node *np = dc->dev->of_node;
98 	struct of_phandle_iterator it;
99 	int err;
100 
101 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
102 		if (it.node == dev->of_node)
103 			return true;
104 
105 	return false;
106 }
107 
108 /*
109  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111  * Latching happens mmediately if the display controller is in STOP mode or
112  * on the next frame boundary otherwise.
113  *
114  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117  * into the ACTIVE copy, either immediately if the display controller is in
118  * STOP mode, or at the next frame boundary otherwise.
119  */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125 
126 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
127 				  unsigned int bpp)
128 {
129 	fixed20_12 outf = dfixed_init(out);
130 	fixed20_12 inf = dfixed_init(in);
131 	u32 dda_inc;
132 	int max;
133 
134 	if (v)
135 		max = 15;
136 	else {
137 		switch (bpp) {
138 		case 2:
139 			max = 8;
140 			break;
141 
142 		default:
143 			WARN_ON_ONCE(1);
144 			fallthrough;
145 		case 4:
146 			max = 4;
147 			break;
148 		}
149 	}
150 
151 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
152 	inf.full -= dfixed_const(1);
153 
154 	dda_inc = dfixed_div(inf, outf);
155 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
156 
157 	return dda_inc;
158 }
159 
160 static inline u32 compute_initial_dda(unsigned int in)
161 {
162 	fixed20_12 inf = dfixed_init(in);
163 	return dfixed_frac(inf);
164 }
165 
166 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
167 {
168 	u32 background[3] = {
169 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
170 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 	};
173 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
174 			 BLEND_COLOR_KEY_NONE;
175 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
176 	struct tegra_plane_state *state;
177 	u32 blending[2];
178 	unsigned int i;
179 
180 	/* disable blending for non-overlapping case */
181 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
182 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
183 
184 	state = to_tegra_plane_state(plane->base.state);
185 
186 	if (state->opaque) {
187 		/*
188 		 * Since custom fix-weight blending isn't utilized and weight
189 		 * of top window is set to max, we can enforce dependent
190 		 * blending which in this case results in transparent bottom
191 		 * window if top window is opaque and if top window enables
192 		 * alpha blending, then bottom window is getting alpha value
193 		 * of 1 minus the sum of alpha components of the overlapping
194 		 * plane.
195 		 */
196 		background[0] |= BLEND_CONTROL_DEPENDENT;
197 		background[1] |= BLEND_CONTROL_DEPENDENT;
198 
199 		/*
200 		 * The region where three windows overlap is the intersection
201 		 * of the two regions where two windows overlap. It contributes
202 		 * to the area if all of the windows on top of it have an alpha
203 		 * component.
204 		 */
205 		switch (state->base.normalized_zpos) {
206 		case 0:
207 			if (state->blending[0].alpha &&
208 			    state->blending[1].alpha)
209 				background[2] |= BLEND_CONTROL_DEPENDENT;
210 			break;
211 
212 		case 1:
213 			background[2] |= BLEND_CONTROL_DEPENDENT;
214 			break;
215 		}
216 	} else {
217 		/*
218 		 * Enable alpha blending if pixel format has an alpha
219 		 * component.
220 		 */
221 		foreground |= BLEND_CONTROL_ALPHA;
222 
223 		/*
224 		 * If any of the windows on top of this window is opaque, it
225 		 * will completely conceal this window within that area. If
226 		 * top window has an alpha component, it is blended over the
227 		 * bottom window.
228 		 */
229 		for (i = 0; i < 2; i++) {
230 			if (state->blending[i].alpha &&
231 			    state->blending[i].top)
232 				background[i] |= BLEND_CONTROL_DEPENDENT;
233 		}
234 
235 		switch (state->base.normalized_zpos) {
236 		case 0:
237 			if (state->blending[0].alpha &&
238 			    state->blending[1].alpha)
239 				background[2] |= BLEND_CONTROL_DEPENDENT;
240 			break;
241 
242 		case 1:
243 			/*
244 			 * When both middle and topmost windows have an alpha,
245 			 * these windows a mixed together and then the result
246 			 * is blended over the bottom window.
247 			 */
248 			if (state->blending[0].alpha &&
249 			    state->blending[0].top)
250 				background[2] |= BLEND_CONTROL_ALPHA;
251 
252 			if (state->blending[1].alpha &&
253 			    state->blending[1].top)
254 				background[2] |= BLEND_CONTROL_ALPHA;
255 			break;
256 		}
257 	}
258 
259 	switch (state->base.normalized_zpos) {
260 	case 0:
261 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
262 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
263 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
264 		break;
265 
266 	case 1:
267 		/*
268 		 * If window B / C is topmost, then X / Y registers are
269 		 * matching the order of blending[...] state indices,
270 		 * otherwise a swap is required.
271 		 */
272 		if (!state->blending[0].top && state->blending[1].top) {
273 			blending[0] = foreground;
274 			blending[1] = background[1];
275 		} else {
276 			blending[0] = background[0];
277 			blending[1] = foreground;
278 		}
279 
280 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
283 		break;
284 
285 	case 2:
286 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
287 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
288 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
289 		break;
290 	}
291 }
292 
293 static void tegra_plane_setup_blending(struct tegra_plane *plane,
294 				       const struct tegra_dc_window *window)
295 {
296 	u32 value;
297 
298 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
299 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
300 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
301 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
302 
303 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
304 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
305 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
306 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
307 
308 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
309 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
310 }
311 
312 static bool
313 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
314 				     const struct tegra_dc_window *window)
315 {
316 	struct tegra_dc *dc = plane->dc;
317 
318 	if (window->src.w == window->dst.w)
319 		return false;
320 
321 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
322 		return false;
323 
324 	return true;
325 }
326 
327 static bool
328 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
329 				   const struct tegra_dc_window *window)
330 {
331 	struct tegra_dc *dc = plane->dc;
332 
333 	if (window->src.h == window->dst.h)
334 		return false;
335 
336 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
337 		return false;
338 
339 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
340 		return false;
341 
342 	return true;
343 }
344 
345 static void tegra_dc_setup_window(struct tegra_plane *plane,
346 				  const struct tegra_dc_window *window)
347 {
348 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
349 	struct tegra_dc *dc = plane->dc;
350 	unsigned int planes;
351 	u32 value;
352 	bool yuv;
353 
354 	/*
355 	 * For YUV planar modes, the number of bytes per pixel takes into
356 	 * account only the luma component and therefore is 1.
357 	 */
358 	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
359 	if (!yuv)
360 		bpp = window->bits_per_pixel / 8;
361 	else
362 		bpp = (planes > 1) ? 1 : 2;
363 
364 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
365 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
366 
367 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
368 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
369 
370 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
371 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
372 
373 	h_offset = window->src.x * bpp;
374 	v_offset = window->src.y;
375 	h_size = window->src.w * bpp;
376 	v_size = window->src.h;
377 
378 	if (window->reflect_x)
379 		h_offset += (window->src.w - 1) * bpp;
380 
381 	if (window->reflect_y)
382 		v_offset += window->src.h - 1;
383 
384 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
385 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
386 
387 	/*
388 	 * For DDA computations the number of bytes per pixel for YUV planar
389 	 * modes needs to take into account all Y, U and V components.
390 	 */
391 	if (yuv && planes > 1)
392 		bpp = 2;
393 
394 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
395 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
396 
397 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
398 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
399 
400 	h_dda = compute_initial_dda(window->src.x);
401 	v_dda = compute_initial_dda(window->src.y);
402 
403 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
404 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
405 
406 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
407 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
408 
409 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
410 
411 	if (yuv && planes > 1) {
412 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
413 
414 		if (planes > 2)
415 			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
416 
417 		value = window->stride[1] << 16 | window->stride[0];
418 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
419 	} else {
420 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
421 	}
422 
423 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
424 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
425 
426 	if (dc->soc->supports_block_linear) {
427 		unsigned long height = window->tiling.value;
428 
429 		switch (window->tiling.mode) {
430 		case TEGRA_BO_TILING_MODE_PITCH:
431 			value = DC_WINBUF_SURFACE_KIND_PITCH;
432 			break;
433 
434 		case TEGRA_BO_TILING_MODE_TILED:
435 			value = DC_WINBUF_SURFACE_KIND_TILED;
436 			break;
437 
438 		case TEGRA_BO_TILING_MODE_BLOCK:
439 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
440 				DC_WINBUF_SURFACE_KIND_BLOCK;
441 			break;
442 		}
443 
444 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
445 	} else {
446 		switch (window->tiling.mode) {
447 		case TEGRA_BO_TILING_MODE_PITCH:
448 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
449 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
450 			break;
451 
452 		case TEGRA_BO_TILING_MODE_TILED:
453 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
454 				DC_WIN_BUFFER_ADDR_MODE_TILE;
455 			break;
456 
457 		case TEGRA_BO_TILING_MODE_BLOCK:
458 			/*
459 			 * No need to handle this here because ->atomic_check
460 			 * will already have filtered it out.
461 			 */
462 			break;
463 		}
464 
465 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
466 	}
467 
468 	value = WIN_ENABLE;
469 
470 	if (yuv) {
471 		/* setup default colorspace conversion coefficients */
472 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
473 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
474 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
475 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
476 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
477 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
478 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
479 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
480 
481 		value |= CSC_ENABLE;
482 	} else if (window->bits_per_pixel < 24) {
483 		value |= COLOR_EXPAND;
484 	}
485 
486 	if (window->reflect_x)
487 		value |= H_DIRECTION;
488 
489 	if (window->reflect_y)
490 		value |= V_DIRECTION;
491 
492 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
493 		/*
494 		 * Enable horizontal 6-tap filter and set filtering
495 		 * coefficients to the default values defined in TRM.
496 		 */
497 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
498 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
499 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
500 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
501 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
502 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
503 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
504 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
505 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
506 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
507 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
508 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
509 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
510 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
511 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
512 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
513 
514 		value |= H_FILTER;
515 	}
516 
517 	if (tegra_plane_use_vertical_filtering(plane, window)) {
518 		unsigned int i, k;
519 
520 		/*
521 		 * Enable vertical 2-tap filter and set filtering
522 		 * coefficients to the default values defined in TRM.
523 		 */
524 		for (i = 0, k = 128; i < 16; i++, k -= 8)
525 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
526 
527 		value |= V_FILTER;
528 	}
529 
530 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
531 
532 	if (dc->soc->has_legacy_blending)
533 		tegra_plane_setup_blending_legacy(plane);
534 	else
535 		tegra_plane_setup_blending(plane, window);
536 }
537 
538 static const u32 tegra20_primary_formats[] = {
539 	DRM_FORMAT_ARGB4444,
540 	DRM_FORMAT_ARGB1555,
541 	DRM_FORMAT_RGB565,
542 	DRM_FORMAT_RGBA5551,
543 	DRM_FORMAT_ABGR8888,
544 	DRM_FORMAT_ARGB8888,
545 	/* non-native formats */
546 	DRM_FORMAT_XRGB1555,
547 	DRM_FORMAT_RGBX5551,
548 	DRM_FORMAT_XBGR8888,
549 	DRM_FORMAT_XRGB8888,
550 };
551 
552 static const u64 tegra20_modifiers[] = {
553 	DRM_FORMAT_MOD_LINEAR,
554 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
555 	DRM_FORMAT_MOD_INVALID
556 };
557 
558 static const u32 tegra114_primary_formats[] = {
559 	DRM_FORMAT_ARGB4444,
560 	DRM_FORMAT_ARGB1555,
561 	DRM_FORMAT_RGB565,
562 	DRM_FORMAT_RGBA5551,
563 	DRM_FORMAT_ABGR8888,
564 	DRM_FORMAT_ARGB8888,
565 	/* new on Tegra114 */
566 	DRM_FORMAT_ABGR4444,
567 	DRM_FORMAT_ABGR1555,
568 	DRM_FORMAT_BGRA5551,
569 	DRM_FORMAT_XRGB1555,
570 	DRM_FORMAT_RGBX5551,
571 	DRM_FORMAT_XBGR1555,
572 	DRM_FORMAT_BGRX5551,
573 	DRM_FORMAT_BGR565,
574 	DRM_FORMAT_BGRA8888,
575 	DRM_FORMAT_RGBA8888,
576 	DRM_FORMAT_XRGB8888,
577 	DRM_FORMAT_XBGR8888,
578 };
579 
580 static const u32 tegra124_primary_formats[] = {
581 	DRM_FORMAT_ARGB4444,
582 	DRM_FORMAT_ARGB1555,
583 	DRM_FORMAT_RGB565,
584 	DRM_FORMAT_RGBA5551,
585 	DRM_FORMAT_ABGR8888,
586 	DRM_FORMAT_ARGB8888,
587 	/* new on Tegra114 */
588 	DRM_FORMAT_ABGR4444,
589 	DRM_FORMAT_ABGR1555,
590 	DRM_FORMAT_BGRA5551,
591 	DRM_FORMAT_XRGB1555,
592 	DRM_FORMAT_RGBX5551,
593 	DRM_FORMAT_XBGR1555,
594 	DRM_FORMAT_BGRX5551,
595 	DRM_FORMAT_BGR565,
596 	DRM_FORMAT_BGRA8888,
597 	DRM_FORMAT_RGBA8888,
598 	DRM_FORMAT_XRGB8888,
599 	DRM_FORMAT_XBGR8888,
600 	/* new on Tegra124 */
601 	DRM_FORMAT_RGBX8888,
602 	DRM_FORMAT_BGRX8888,
603 };
604 
605 static const u64 tegra124_modifiers[] = {
606 	DRM_FORMAT_MOD_LINEAR,
607 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
608 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
609 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
610 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
611 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
612 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
613 	DRM_FORMAT_MOD_INVALID
614 };
615 
616 static int tegra_plane_atomic_check(struct drm_plane *plane,
617 				    struct drm_atomic_state *state)
618 {
619 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
620 										 plane);
621 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
622 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
623 					  DRM_MODE_REFLECT_X |
624 					  DRM_MODE_REFLECT_Y;
625 	unsigned int rotation = new_plane_state->rotation;
626 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
627 	struct tegra_plane *tegra = to_tegra_plane(plane);
628 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
629 	int err;
630 
631 	plane_state->peak_memory_bandwidth = 0;
632 	plane_state->avg_memory_bandwidth = 0;
633 
634 	/* no need for further checks if the plane is being disabled */
635 	if (!new_plane_state->crtc) {
636 		plane_state->total_peak_memory_bandwidth = 0;
637 		return 0;
638 	}
639 
640 	err = tegra_plane_format(new_plane_state->fb->format->format,
641 				 &plane_state->format,
642 				 &plane_state->swap);
643 	if (err < 0)
644 		return err;
645 
646 	/*
647 	 * Tegra20 and Tegra30 are special cases here because they support
648 	 * only variants of specific formats with an alpha component, but not
649 	 * the corresponding opaque formats. However, the opaque formats can
650 	 * be emulated by disabling alpha blending for the plane.
651 	 */
652 	if (dc->soc->has_legacy_blending) {
653 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
654 		if (err < 0)
655 			return err;
656 	}
657 
658 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
659 	if (err < 0)
660 		return err;
661 
662 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
663 	    !dc->soc->supports_block_linear) {
664 		DRM_ERROR("hardware doesn't support block linear mode\n");
665 		return -EINVAL;
666 	}
667 
668 	/*
669 	 * Older userspace used custom BO flag in order to specify the Y
670 	 * reflection, while modern userspace uses the generic DRM rotation
671 	 * property in order to achieve the same result.  The legacy BO flag
672 	 * duplicates the DRM rotation property when both are set.
673 	 */
674 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
675 		rotation |= DRM_MODE_REFLECT_Y;
676 
677 	rotation = drm_rotation_simplify(rotation, supported_rotation);
678 
679 	if (rotation & DRM_MODE_REFLECT_X)
680 		plane_state->reflect_x = true;
681 	else
682 		plane_state->reflect_x = false;
683 
684 	if (rotation & DRM_MODE_REFLECT_Y)
685 		plane_state->reflect_y = true;
686 	else
687 		plane_state->reflect_y = false;
688 
689 	/*
690 	 * Tegra doesn't support different strides for U and V planes so we
691 	 * error out if the user tries to display a framebuffer with such a
692 	 * configuration.
693 	 */
694 	if (new_plane_state->fb->format->num_planes > 2) {
695 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
696 			DRM_ERROR("unsupported UV-plane configuration\n");
697 			return -EINVAL;
698 		}
699 	}
700 
701 	err = tegra_plane_state_add(tegra, new_plane_state);
702 	if (err < 0)
703 		return err;
704 
705 	return 0;
706 }
707 
708 static void tegra_plane_atomic_disable(struct drm_plane *plane,
709 				       struct drm_atomic_state *state)
710 {
711 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
712 									   plane);
713 	struct tegra_plane *p = to_tegra_plane(plane);
714 	u32 value;
715 
716 	/* rien ne va plus */
717 	if (!old_state || !old_state->crtc)
718 		return;
719 
720 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
721 	value &= ~WIN_ENABLE;
722 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
723 }
724 
725 static void tegra_plane_atomic_update(struct drm_plane *plane,
726 				      struct drm_atomic_state *state)
727 {
728 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
729 									   plane);
730 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
731 	struct drm_framebuffer *fb = new_state->fb;
732 	struct tegra_plane *p = to_tegra_plane(plane);
733 	struct tegra_dc_window window;
734 	unsigned int i;
735 
736 	/* rien ne va plus */
737 	if (!new_state->crtc || !new_state->fb)
738 		return;
739 
740 	if (!new_state->visible)
741 		return tegra_plane_atomic_disable(plane, state);
742 
743 	memset(&window, 0, sizeof(window));
744 	window.src.x = new_state->src.x1 >> 16;
745 	window.src.y = new_state->src.y1 >> 16;
746 	window.src.w = drm_rect_width(&new_state->src) >> 16;
747 	window.src.h = drm_rect_height(&new_state->src) >> 16;
748 	window.dst.x = new_state->dst.x1;
749 	window.dst.y = new_state->dst.y1;
750 	window.dst.w = drm_rect_width(&new_state->dst);
751 	window.dst.h = drm_rect_height(&new_state->dst);
752 	window.bits_per_pixel = fb->format->cpp[0] * 8;
753 	window.reflect_x = tegra_plane_state->reflect_x;
754 	window.reflect_y = tegra_plane_state->reflect_y;
755 
756 	/* copy from state */
757 	window.zpos = new_state->normalized_zpos;
758 	window.tiling = tegra_plane_state->tiling;
759 	window.format = tegra_plane_state->format;
760 	window.swap = tegra_plane_state->swap;
761 
762 	for (i = 0; i < fb->format->num_planes; i++) {
763 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
764 
765 		/*
766 		 * Tegra uses a shared stride for UV planes. Framebuffers are
767 		 * already checked for this in the tegra_plane_atomic_check()
768 		 * function, so it's safe to ignore the V-plane pitch here.
769 		 */
770 		if (i < 2)
771 			window.stride[i] = fb->pitches[i];
772 	}
773 
774 	tegra_dc_setup_window(p, &window);
775 }
776 
777 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
778 	.prepare_fb = tegra_plane_prepare_fb,
779 	.cleanup_fb = tegra_plane_cleanup_fb,
780 	.atomic_check = tegra_plane_atomic_check,
781 	.atomic_disable = tegra_plane_atomic_disable,
782 	.atomic_update = tegra_plane_atomic_update,
783 };
784 
785 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
786 {
787 	/*
788 	 * Ideally this would use drm_crtc_mask(), but that would require the
789 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
790 	 * will only be added to that list in the drm_crtc_init_with_planes()
791 	 * (in tegra_dc_init()), which in turn requires registration of these
792 	 * planes. So we have ourselves a nice little chicken and egg problem
793 	 * here.
794 	 *
795 	 * We work around this by manually creating the mask from the number
796 	 * of CRTCs that have been registered, and should therefore always be
797 	 * the same as drm_crtc_index() after registration.
798 	 */
799 	return 1 << drm->mode_config.num_crtc;
800 }
801 
802 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
803 						    struct tegra_dc *dc)
804 {
805 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
806 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
807 	struct tegra_plane *plane;
808 	unsigned int num_formats;
809 	const u64 *modifiers;
810 	const u32 *formats;
811 	int err;
812 
813 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814 	if (!plane)
815 		return ERR_PTR(-ENOMEM);
816 
817 	/* Always use window A as primary window */
818 	plane->offset = 0xa00;
819 	plane->index = 0;
820 	plane->dc = dc;
821 
822 	num_formats = dc->soc->num_primary_formats;
823 	formats = dc->soc->primary_formats;
824 	modifiers = dc->soc->modifiers;
825 
826 	err = tegra_plane_interconnect_init(plane);
827 	if (err) {
828 		kfree(plane);
829 		return ERR_PTR(err);
830 	}
831 
832 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
833 				       &tegra_plane_funcs, formats,
834 				       num_formats, modifiers, type, NULL);
835 	if (err < 0) {
836 		kfree(plane);
837 		return ERR_PTR(err);
838 	}
839 
840 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
841 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
842 
843 	err = drm_plane_create_rotation_property(&plane->base,
844 						 DRM_MODE_ROTATE_0,
845 						 DRM_MODE_ROTATE_0 |
846 						 DRM_MODE_ROTATE_180 |
847 						 DRM_MODE_REFLECT_X |
848 						 DRM_MODE_REFLECT_Y);
849 	if (err < 0)
850 		dev_err(dc->dev, "failed to create rotation property: %d\n",
851 			err);
852 
853 	return &plane->base;
854 }
855 
856 static const u32 tegra_legacy_cursor_plane_formats[] = {
857 	DRM_FORMAT_RGBA8888,
858 };
859 
860 static const u32 tegra_cursor_plane_formats[] = {
861 	DRM_FORMAT_ARGB8888,
862 };
863 
864 static int tegra_cursor_atomic_check(struct drm_plane *plane,
865 				     struct drm_atomic_state *state)
866 {
867 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
868 										 plane);
869 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
870 	struct tegra_plane *tegra = to_tegra_plane(plane);
871 	int err;
872 
873 	plane_state->peak_memory_bandwidth = 0;
874 	plane_state->avg_memory_bandwidth = 0;
875 
876 	/* no need for further checks if the plane is being disabled */
877 	if (!new_plane_state->crtc) {
878 		plane_state->total_peak_memory_bandwidth = 0;
879 		return 0;
880 	}
881 
882 	/* scaling not supported for cursor */
883 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
884 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
885 		return -EINVAL;
886 
887 	/* only square cursors supported */
888 	if (new_plane_state->src_w != new_plane_state->src_h)
889 		return -EINVAL;
890 
891 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
892 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
893 		return -EINVAL;
894 
895 	err = tegra_plane_state_add(tegra, new_plane_state);
896 	if (err < 0)
897 		return err;
898 
899 	return 0;
900 }
901 
902 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
903 					 struct drm_plane_state *new_state)
904 {
905 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
906 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
907 	struct tegra_drm *tegra = plane->dev->dev_private;
908 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
909 	u64 dma_mask = *dc->dev->dma_mask;
910 #endif
911 	unsigned int x, y;
912 	u32 value = 0;
913 
914 	/* rien ne va plus */
915 	if (!new_state->crtc || !new_state->fb)
916 		return;
917 
918 	/*
919 	 * Legacy display supports hardware clipping of the cursor, but
920 	 * nvdisplay relies on software to clip the cursor to the screen.
921 	 */
922 	if (!dc->soc->has_nvdisplay)
923 		value |= CURSOR_CLIP_DISPLAY;
924 
925 	switch (new_state->crtc_w) {
926 	case 32:
927 		value |= CURSOR_SIZE_32x32;
928 		break;
929 
930 	case 64:
931 		value |= CURSOR_SIZE_64x64;
932 		break;
933 
934 	case 128:
935 		value |= CURSOR_SIZE_128x128;
936 		break;
937 
938 	case 256:
939 		value |= CURSOR_SIZE_256x256;
940 		break;
941 
942 	default:
943 		WARN(1, "cursor size %ux%u not supported\n",
944 		     new_state->crtc_w, new_state->crtc_h);
945 		return;
946 	}
947 
948 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
949 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
950 
951 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
952 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
953 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
954 #endif
955 
956 	/* enable cursor and set blend mode */
957 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
958 	value |= CURSOR_ENABLE;
959 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
960 
961 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
962 	value &= ~CURSOR_DST_BLEND_MASK;
963 	value &= ~CURSOR_SRC_BLEND_MASK;
964 
965 	if (dc->soc->has_nvdisplay)
966 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
967 	else
968 		value |= CURSOR_MODE_NORMAL;
969 
970 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
971 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
972 	value |= CURSOR_ALPHA;
973 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
974 
975 	/* nvdisplay relies on software for clipping */
976 	if (dc->soc->has_nvdisplay) {
977 		struct drm_rect src;
978 
979 		x = new_state->dst.x1;
980 		y = new_state->dst.y1;
981 
982 		drm_rect_fp_to_int(&src, &new_state->src);
983 
984 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
985 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
986 
987 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
988 			(drm_rect_width(&src) & tegra->hmask);
989 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
990 	} else {
991 		x = new_state->crtc_x;
992 		y = new_state->crtc_y;
993 	}
994 
995 	/* position the cursor */
996 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
997 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
998 }
999 
1000 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1001 				       struct drm_atomic_state *state)
1002 {
1003 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1004 
1005 	__tegra_cursor_atomic_update(plane, new_state);
1006 }
1007 
1008 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1009 					struct drm_atomic_state *state)
1010 {
1011 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1012 									   plane);
1013 	struct tegra_dc *dc;
1014 	u32 value;
1015 
1016 	/* rien ne va plus */
1017 	if (!old_state || !old_state->crtc)
1018 		return;
1019 
1020 	dc = to_tegra_dc(old_state->crtc);
1021 
1022 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1023 	value &= ~CURSOR_ENABLE;
1024 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1025 }
1026 
1027 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1028 {
1029 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1030 	struct drm_crtc_state *crtc_state;
1031 	int min_scale, max_scale;
1032 	int err;
1033 
1034 	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1035 	if (WARN_ON(!crtc_state))
1036 		return -EINVAL;
1037 
1038 	if (!crtc_state->active)
1039 		return -EINVAL;
1040 
1041 	if (plane->state->crtc != new_state->crtc ||
1042 	    plane->state->src_w != new_state->src_w ||
1043 	    plane->state->src_h != new_state->src_h ||
1044 	    plane->state->crtc_w != new_state->crtc_w ||
1045 	    plane->state->crtc_h != new_state->crtc_h ||
1046 	    plane->state->fb != new_state->fb ||
1047 	    plane->state->fb == NULL)
1048 		return -EINVAL;
1049 
1050 	min_scale = (1 << 16) / 8;
1051 	max_scale = (8 << 16) / 1;
1052 
1053 	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1054 						  true, true);
1055 	if (err < 0)
1056 		return err;
1057 
1058 	if (new_state->visible != plane->state->visible)
1059 		return -EINVAL;
1060 
1061 	return 0;
1062 }
1063 
1064 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1065 					     struct drm_atomic_state *state)
1066 {
1067 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1068 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1069 
1070 	plane->state->src_x = new_state->src_x;
1071 	plane->state->src_y = new_state->src_y;
1072 	plane->state->crtc_x = new_state->crtc_x;
1073 	plane->state->crtc_y = new_state->crtc_y;
1074 
1075 	if (new_state->visible) {
1076 		struct tegra_plane *p = to_tegra_plane(plane);
1077 		u32 value;
1078 
1079 		__tegra_cursor_atomic_update(plane, new_state);
1080 
1081 		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1082 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1083 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1084 
1085 		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1086 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1087 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1088 	}
1089 }
1090 
1091 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1092 	.prepare_fb = tegra_plane_prepare_fb,
1093 	.cleanup_fb = tegra_plane_cleanup_fb,
1094 	.atomic_check = tegra_cursor_atomic_check,
1095 	.atomic_update = tegra_cursor_atomic_update,
1096 	.atomic_disable = tegra_cursor_atomic_disable,
1097 	.atomic_async_check = tegra_cursor_atomic_async_check,
1098 	.atomic_async_update = tegra_cursor_atomic_async_update,
1099 };
1100 
1101 static const uint64_t linear_modifiers[] = {
1102 	DRM_FORMAT_MOD_LINEAR,
1103 	DRM_FORMAT_MOD_INVALID
1104 };
1105 
1106 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1107 						      struct tegra_dc *dc)
1108 {
1109 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1110 	struct tegra_plane *plane;
1111 	unsigned int num_formats;
1112 	const u32 *formats;
1113 	int err;
1114 
1115 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1116 	if (!plane)
1117 		return ERR_PTR(-ENOMEM);
1118 
1119 	/*
1120 	 * This index is kind of fake. The cursor isn't a regular plane, but
1121 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1122 	 * use the same programming. Setting this fake index here allows the
1123 	 * code in tegra_add_plane_state() to do the right thing without the
1124 	 * need to special-casing the cursor plane.
1125 	 */
1126 	plane->index = 6;
1127 	plane->dc = dc;
1128 
1129 	if (!dc->soc->has_nvdisplay) {
1130 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1131 		formats = tegra_legacy_cursor_plane_formats;
1132 
1133 		err = tegra_plane_interconnect_init(plane);
1134 		if (err) {
1135 			kfree(plane);
1136 			return ERR_PTR(err);
1137 		}
1138 	} else {
1139 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1140 		formats = tegra_cursor_plane_formats;
1141 	}
1142 
1143 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1144 				       &tegra_plane_funcs, formats,
1145 				       num_formats, linear_modifiers,
1146 				       DRM_PLANE_TYPE_CURSOR, NULL);
1147 	if (err < 0) {
1148 		kfree(plane);
1149 		return ERR_PTR(err);
1150 	}
1151 
1152 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1153 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1154 
1155 	return &plane->base;
1156 }
1157 
1158 static const u32 tegra20_overlay_formats[] = {
1159 	DRM_FORMAT_ARGB4444,
1160 	DRM_FORMAT_ARGB1555,
1161 	DRM_FORMAT_RGB565,
1162 	DRM_FORMAT_RGBA5551,
1163 	DRM_FORMAT_ABGR8888,
1164 	DRM_FORMAT_ARGB8888,
1165 	/* non-native formats */
1166 	DRM_FORMAT_XRGB1555,
1167 	DRM_FORMAT_RGBX5551,
1168 	DRM_FORMAT_XBGR8888,
1169 	DRM_FORMAT_XRGB8888,
1170 	/* planar formats */
1171 	DRM_FORMAT_UYVY,
1172 	DRM_FORMAT_YUYV,
1173 	DRM_FORMAT_YUV420,
1174 	DRM_FORMAT_YUV422,
1175 };
1176 
1177 static const u32 tegra114_overlay_formats[] = {
1178 	DRM_FORMAT_ARGB4444,
1179 	DRM_FORMAT_ARGB1555,
1180 	DRM_FORMAT_RGB565,
1181 	DRM_FORMAT_RGBA5551,
1182 	DRM_FORMAT_ABGR8888,
1183 	DRM_FORMAT_ARGB8888,
1184 	/* new on Tegra114 */
1185 	DRM_FORMAT_ABGR4444,
1186 	DRM_FORMAT_ABGR1555,
1187 	DRM_FORMAT_BGRA5551,
1188 	DRM_FORMAT_XRGB1555,
1189 	DRM_FORMAT_RGBX5551,
1190 	DRM_FORMAT_XBGR1555,
1191 	DRM_FORMAT_BGRX5551,
1192 	DRM_FORMAT_BGR565,
1193 	DRM_FORMAT_BGRA8888,
1194 	DRM_FORMAT_RGBA8888,
1195 	DRM_FORMAT_XRGB8888,
1196 	DRM_FORMAT_XBGR8888,
1197 	/* planar formats */
1198 	DRM_FORMAT_UYVY,
1199 	DRM_FORMAT_YUYV,
1200 	DRM_FORMAT_YUV420,
1201 	DRM_FORMAT_YUV422,
1202 	/* semi-planar formats */
1203 	DRM_FORMAT_NV12,
1204 	DRM_FORMAT_NV21,
1205 	DRM_FORMAT_NV16,
1206 	DRM_FORMAT_NV61,
1207 	DRM_FORMAT_NV24,
1208 	DRM_FORMAT_NV42,
1209 };
1210 
1211 static const u32 tegra124_overlay_formats[] = {
1212 	DRM_FORMAT_ARGB4444,
1213 	DRM_FORMAT_ARGB1555,
1214 	DRM_FORMAT_RGB565,
1215 	DRM_FORMAT_RGBA5551,
1216 	DRM_FORMAT_ABGR8888,
1217 	DRM_FORMAT_ARGB8888,
1218 	/* new on Tegra114 */
1219 	DRM_FORMAT_ABGR4444,
1220 	DRM_FORMAT_ABGR1555,
1221 	DRM_FORMAT_BGRA5551,
1222 	DRM_FORMAT_XRGB1555,
1223 	DRM_FORMAT_RGBX5551,
1224 	DRM_FORMAT_XBGR1555,
1225 	DRM_FORMAT_BGRX5551,
1226 	DRM_FORMAT_BGR565,
1227 	DRM_FORMAT_BGRA8888,
1228 	DRM_FORMAT_RGBA8888,
1229 	DRM_FORMAT_XRGB8888,
1230 	DRM_FORMAT_XBGR8888,
1231 	/* new on Tegra124 */
1232 	DRM_FORMAT_RGBX8888,
1233 	DRM_FORMAT_BGRX8888,
1234 	/* planar formats */
1235 	DRM_FORMAT_UYVY,
1236 	DRM_FORMAT_YUYV,
1237 	DRM_FORMAT_YVYU,
1238 	DRM_FORMAT_VYUY,
1239 	DRM_FORMAT_YUV420, /* YU12 */
1240 	DRM_FORMAT_YUV422, /* YU16 */
1241 	DRM_FORMAT_YUV444, /* YU24 */
1242 	/* semi-planar formats */
1243 	DRM_FORMAT_NV12,
1244 	DRM_FORMAT_NV21,
1245 	DRM_FORMAT_NV16,
1246 	DRM_FORMAT_NV61,
1247 	DRM_FORMAT_NV24,
1248 	DRM_FORMAT_NV42,
1249 };
1250 
1251 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1252 						       struct tegra_dc *dc,
1253 						       unsigned int index,
1254 						       bool cursor)
1255 {
1256 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1257 	struct tegra_plane *plane;
1258 	unsigned int num_formats;
1259 	enum drm_plane_type type;
1260 	const u32 *formats;
1261 	int err;
1262 
1263 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1264 	if (!plane)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	plane->offset = 0xa00 + 0x200 * index;
1268 	plane->index = index;
1269 	plane->dc = dc;
1270 
1271 	num_formats = dc->soc->num_overlay_formats;
1272 	formats = dc->soc->overlay_formats;
1273 
1274 	err = tegra_plane_interconnect_init(plane);
1275 	if (err) {
1276 		kfree(plane);
1277 		return ERR_PTR(err);
1278 	}
1279 
1280 	if (!cursor)
1281 		type = DRM_PLANE_TYPE_OVERLAY;
1282 	else
1283 		type = DRM_PLANE_TYPE_CURSOR;
1284 
1285 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1286 				       &tegra_plane_funcs, formats,
1287 				       num_formats, linear_modifiers,
1288 				       type, NULL);
1289 	if (err < 0) {
1290 		kfree(plane);
1291 		return ERR_PTR(err);
1292 	}
1293 
1294 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1295 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1296 
1297 	err = drm_plane_create_rotation_property(&plane->base,
1298 						 DRM_MODE_ROTATE_0,
1299 						 DRM_MODE_ROTATE_0 |
1300 						 DRM_MODE_ROTATE_180 |
1301 						 DRM_MODE_REFLECT_X |
1302 						 DRM_MODE_REFLECT_Y);
1303 	if (err < 0)
1304 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1305 			err);
1306 
1307 	return &plane->base;
1308 }
1309 
1310 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1311 						    struct tegra_dc *dc)
1312 {
1313 	struct drm_plane *plane, *primary = NULL;
1314 	unsigned int i, j;
1315 
1316 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1317 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1318 
1319 		if (wgrp->dc == dc->pipe) {
1320 			for (j = 0; j < wgrp->num_windows; j++) {
1321 				unsigned int index = wgrp->windows[j];
1322 
1323 				plane = tegra_shared_plane_create(drm, dc,
1324 								  wgrp->index,
1325 								  index);
1326 				if (IS_ERR(plane))
1327 					return plane;
1328 
1329 				/*
1330 				 * Choose the first shared plane owned by this
1331 				 * head as the primary plane.
1332 				 */
1333 				if (!primary) {
1334 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1335 					primary = plane;
1336 				}
1337 			}
1338 		}
1339 	}
1340 
1341 	return primary;
1342 }
1343 
1344 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1345 					     struct tegra_dc *dc)
1346 {
1347 	struct drm_plane *planes[2], *primary;
1348 	unsigned int planes_num;
1349 	unsigned int i;
1350 	int err;
1351 
1352 	primary = tegra_primary_plane_create(drm, dc);
1353 	if (IS_ERR(primary))
1354 		return primary;
1355 
1356 	if (dc->soc->supports_cursor)
1357 		planes_num = 2;
1358 	else
1359 		planes_num = 1;
1360 
1361 	for (i = 0; i < planes_num; i++) {
1362 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1363 							  false);
1364 		if (IS_ERR(planes[i])) {
1365 			err = PTR_ERR(planes[i]);
1366 
1367 			while (i--)
1368 				planes[i]->funcs->destroy(planes[i]);
1369 
1370 			primary->funcs->destroy(primary);
1371 			return ERR_PTR(err);
1372 		}
1373 	}
1374 
1375 	return primary;
1376 }
1377 
1378 static void tegra_dc_destroy(struct drm_crtc *crtc)
1379 {
1380 	drm_crtc_cleanup(crtc);
1381 }
1382 
1383 static void tegra_crtc_reset(struct drm_crtc *crtc)
1384 {
1385 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1386 
1387 	if (crtc->state)
1388 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1389 
1390 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1391 }
1392 
1393 static struct drm_crtc_state *
1394 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1395 {
1396 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1397 	struct tegra_dc_state *copy;
1398 
1399 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1400 	if (!copy)
1401 		return NULL;
1402 
1403 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1404 	copy->clk = state->clk;
1405 	copy->pclk = state->pclk;
1406 	copy->div = state->div;
1407 	copy->planes = state->planes;
1408 
1409 	return &copy->base;
1410 }
1411 
1412 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1413 					    struct drm_crtc_state *state)
1414 {
1415 	__drm_atomic_helper_crtc_destroy_state(state);
1416 	kfree(state);
1417 }
1418 
1419 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1420 
1421 static const struct debugfs_reg32 tegra_dc_regs[] = {
1422 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1423 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1424 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1425 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1426 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1427 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1428 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1429 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1430 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1431 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1432 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1433 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1434 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1435 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1436 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1437 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1438 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1439 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1440 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1441 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1442 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1443 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1444 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1445 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1446 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1447 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1448 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1449 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1450 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1451 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1452 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1453 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1454 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1455 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1456 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1457 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1458 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1459 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1460 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1461 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1462 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1463 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1464 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1465 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1466 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1467 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1468 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1469 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1470 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1471 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1472 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1473 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1474 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1475 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1476 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1477 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1478 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1479 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1480 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1481 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1482 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1483 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1484 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1485 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1486 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1487 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1488 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1489 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1490 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1491 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1492 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1493 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1494 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1495 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1496 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1497 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1498 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1499 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1500 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1501 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1502 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1503 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1504 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1505 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1506 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1507 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1508 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1509 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1510 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1511 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1512 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1513 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1514 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1515 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1516 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1517 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1518 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1519 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1520 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1521 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1522 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1523 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1524 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1525 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1526 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1527 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1528 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1529 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1530 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1531 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1532 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1533 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1534 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1535 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1536 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1537 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1538 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1539 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1540 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1541 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1542 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1543 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1544 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1545 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1546 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1547 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1548 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1549 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1550 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1551 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1552 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1553 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1554 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1555 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1556 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1557 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1558 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1559 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1560 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1561 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1562 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1563 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1564 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1565 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1566 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1567 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1568 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1569 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1570 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1571 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1572 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1573 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1574 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1575 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1576 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1577 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1578 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1579 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1580 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1581 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1582 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1583 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1584 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1585 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1586 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1587 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1588 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1589 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1590 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1591 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1592 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1593 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1594 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1595 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1596 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1597 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1598 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1599 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1600 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1601 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1602 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1603 	DEBUGFS_REG32(DC_WIN_POSITION),
1604 	DEBUGFS_REG32(DC_WIN_SIZE),
1605 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1606 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1607 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1608 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1609 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1610 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1611 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1612 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1613 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1614 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1615 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1616 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1617 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1618 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1619 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1620 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1621 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1622 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1623 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1624 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1625 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1626 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1627 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1628 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1629 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1630 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1631 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1632 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1633 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1634 };
1635 
1636 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1637 {
1638 	struct drm_info_node *node = s->private;
1639 	struct tegra_dc *dc = node->info_ent->data;
1640 	unsigned int i;
1641 	int err = 0;
1642 
1643 	drm_modeset_lock(&dc->base.mutex, NULL);
1644 
1645 	if (!dc->base.state->active) {
1646 		err = -EBUSY;
1647 		goto unlock;
1648 	}
1649 
1650 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1651 		unsigned int offset = tegra_dc_regs[i].offset;
1652 
1653 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1654 			   offset, tegra_dc_readl(dc, offset));
1655 	}
1656 
1657 unlock:
1658 	drm_modeset_unlock(&dc->base.mutex);
1659 	return err;
1660 }
1661 
1662 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1663 {
1664 	struct drm_info_node *node = s->private;
1665 	struct tegra_dc *dc = node->info_ent->data;
1666 	int err = 0;
1667 	u32 value;
1668 
1669 	drm_modeset_lock(&dc->base.mutex, NULL);
1670 
1671 	if (!dc->base.state->active) {
1672 		err = -EBUSY;
1673 		goto unlock;
1674 	}
1675 
1676 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1677 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1678 	tegra_dc_commit(dc);
1679 
1680 	drm_crtc_wait_one_vblank(&dc->base);
1681 	drm_crtc_wait_one_vblank(&dc->base);
1682 
1683 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1684 	seq_printf(s, "%08x\n", value);
1685 
1686 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1687 
1688 unlock:
1689 	drm_modeset_unlock(&dc->base.mutex);
1690 	return err;
1691 }
1692 
1693 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1694 {
1695 	struct drm_info_node *node = s->private;
1696 	struct tegra_dc *dc = node->info_ent->data;
1697 
1698 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1699 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1700 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1701 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1702 
1703 	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1704 	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1705 	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1706 	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1707 
1708 	return 0;
1709 }
1710 
1711 static struct drm_info_list debugfs_files[] = {
1712 	{ "regs", tegra_dc_show_regs, 0, NULL },
1713 	{ "crc", tegra_dc_show_crc, 0, NULL },
1714 	{ "stats", tegra_dc_show_stats, 0, NULL },
1715 };
1716 
1717 static int tegra_dc_late_register(struct drm_crtc *crtc)
1718 {
1719 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1720 	struct drm_minor *minor = crtc->dev->primary;
1721 	struct dentry *root;
1722 	struct tegra_dc *dc = to_tegra_dc(crtc);
1723 
1724 #ifdef CONFIG_DEBUG_FS
1725 	root = crtc->debugfs_entry;
1726 #else
1727 	root = NULL;
1728 #endif
1729 
1730 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1731 				    GFP_KERNEL);
1732 	if (!dc->debugfs_files)
1733 		return -ENOMEM;
1734 
1735 	for (i = 0; i < count; i++)
1736 		dc->debugfs_files[i].data = dc;
1737 
1738 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1739 
1740 	return 0;
1741 }
1742 
1743 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1744 {
1745 	unsigned int count = ARRAY_SIZE(debugfs_files);
1746 	struct drm_minor *minor = crtc->dev->primary;
1747 	struct tegra_dc *dc = to_tegra_dc(crtc);
1748 
1749 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1750 	kfree(dc->debugfs_files);
1751 	dc->debugfs_files = NULL;
1752 }
1753 
1754 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1755 {
1756 	struct tegra_dc *dc = to_tegra_dc(crtc);
1757 
1758 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1759 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1760 		return host1x_syncpt_read(dc->syncpt);
1761 
1762 	/* fallback to software emulated VBLANK counter */
1763 	return (u32)drm_crtc_vblank_count(&dc->base);
1764 }
1765 
1766 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1767 {
1768 	struct tegra_dc *dc = to_tegra_dc(crtc);
1769 	u32 value;
1770 
1771 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1772 	value |= VBLANK_INT;
1773 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1774 
1775 	return 0;
1776 }
1777 
1778 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1779 {
1780 	struct tegra_dc *dc = to_tegra_dc(crtc);
1781 	u32 value;
1782 
1783 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1784 	value &= ~VBLANK_INT;
1785 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1786 }
1787 
1788 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1789 	.page_flip = drm_atomic_helper_page_flip,
1790 	.set_config = drm_atomic_helper_set_config,
1791 	.destroy = tegra_dc_destroy,
1792 	.reset = tegra_crtc_reset,
1793 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1794 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1795 	.late_register = tegra_dc_late_register,
1796 	.early_unregister = tegra_dc_early_unregister,
1797 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1798 	.enable_vblank = tegra_dc_enable_vblank,
1799 	.disable_vblank = tegra_dc_disable_vblank,
1800 };
1801 
1802 static int tegra_dc_set_timings(struct tegra_dc *dc,
1803 				struct drm_display_mode *mode)
1804 {
1805 	unsigned int h_ref_to_sync = 1;
1806 	unsigned int v_ref_to_sync = 1;
1807 	unsigned long value;
1808 
1809 	if (!dc->soc->has_nvdisplay) {
1810 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1811 
1812 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1813 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1814 	}
1815 
1816 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1817 		((mode->hsync_end - mode->hsync_start) <<  0);
1818 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1819 
1820 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1821 		((mode->htotal - mode->hsync_end) <<  0);
1822 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1823 
1824 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1825 		((mode->hsync_start - mode->hdisplay) <<  0);
1826 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1827 
1828 	value = (mode->vdisplay << 16) | mode->hdisplay;
1829 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1836  *     state
1837  * @dc: display controller
1838  * @crtc_state: CRTC atomic state
1839  * @clk: parent clock for display controller
1840  * @pclk: pixel clock
1841  * @div: shift clock divider
1842  *
1843  * Returns:
1844  * 0 on success or a negative error-code on failure.
1845  */
1846 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1847 			       struct drm_crtc_state *crtc_state,
1848 			       struct clk *clk, unsigned long pclk,
1849 			       unsigned int div)
1850 {
1851 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1852 
1853 	if (!clk_has_parent(dc->clk, clk))
1854 		return -EINVAL;
1855 
1856 	state->clk = clk;
1857 	state->pclk = pclk;
1858 	state->div = div;
1859 
1860 	return 0;
1861 }
1862 
1863 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1864 					  struct tegra_dc_state *state)
1865 {
1866 	unsigned long rate, pstate;
1867 	struct dev_pm_opp *opp;
1868 	int err;
1869 
1870 	if (!dc->has_opp_table)
1871 		return;
1872 
1873 	/* calculate actual pixel clock rate which depends on internal divider */
1874 	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1875 
1876 	/* find suitable OPP for the rate */
1877 	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1878 
1879 	/*
1880 	 * Very high resolution modes may results in a clock rate that is
1881 	 * above the characterized maximum. In this case it's okay to fall
1882 	 * back to the characterized maximum.
1883 	 */
1884 	if (opp == ERR_PTR(-ERANGE))
1885 		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1886 
1887 	if (IS_ERR(opp)) {
1888 		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1889 			rate, opp);
1890 		return;
1891 	}
1892 
1893 	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1894 	dev_pm_opp_put(opp);
1895 
1896 	/*
1897 	 * The minimum core voltage depends on the pixel clock rate (which
1898 	 * depends on internal clock divider of the CRTC) and not on the
1899 	 * rate of the display controller clock. This is why we're not using
1900 	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1901 	 * directly.
1902 	 */
1903 	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1904 	if (err)
1905 		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1906 			pstate, err);
1907 }
1908 
1909 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1910 				    struct tegra_dc_state *state)
1911 {
1912 	int err;
1913 
1914 	err = clk_set_parent(dc->clk, state->clk);
1915 	if (err < 0)
1916 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1917 
1918 	/*
1919 	 * Outputs may not want to change the parent clock rate. This is only
1920 	 * relevant to Tegra20 where only a single display PLL is available.
1921 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1922 	 * panel would need to be driven by some other clock such as PLL_P
1923 	 * which is shared with other peripherals. Changing the clock rate
1924 	 * should therefore be avoided.
1925 	 */
1926 	if (state->pclk > 0) {
1927 		err = clk_set_rate(state->clk, state->pclk);
1928 		if (err < 0)
1929 			dev_err(dc->dev,
1930 				"failed to set clock rate to %lu Hz\n",
1931 				state->pclk);
1932 
1933 		err = clk_set_rate(dc->clk, state->pclk);
1934 		if (err < 0)
1935 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1936 				dc->clk, state->pclk, err);
1937 	}
1938 
1939 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1940 		      state->div);
1941 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1942 
1943 	tegra_dc_update_voltage_state(dc, state);
1944 }
1945 
1946 static void tegra_dc_stop(struct tegra_dc *dc)
1947 {
1948 	u32 value;
1949 
1950 	/* stop the display controller */
1951 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1952 	value &= ~DISP_CTRL_MODE_MASK;
1953 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1954 
1955 	tegra_dc_commit(dc);
1956 }
1957 
1958 static bool tegra_dc_idle(struct tegra_dc *dc)
1959 {
1960 	u32 value;
1961 
1962 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1963 
1964 	return (value & DISP_CTRL_MODE_MASK) == 0;
1965 }
1966 
1967 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1968 {
1969 	timeout = jiffies + msecs_to_jiffies(timeout);
1970 
1971 	while (time_before(jiffies, timeout)) {
1972 		if (tegra_dc_idle(dc))
1973 			return 0;
1974 
1975 		usleep_range(1000, 2000);
1976 	}
1977 
1978 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1979 	return -ETIMEDOUT;
1980 }
1981 
1982 static void
1983 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1984 				   struct drm_atomic_state *state,
1985 				   bool prepare_bandwidth_transition)
1986 {
1987 	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1988 	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1989 	const struct drm_plane_state *old_plane_state;
1990 	const struct drm_crtc_state *old_crtc_state;
1991 	struct tegra_dc_window window, old_window;
1992 	struct tegra_dc *dc = to_tegra_dc(crtc);
1993 	struct tegra_plane *tegra;
1994 	struct drm_plane *plane;
1995 
1996 	if (dc->soc->has_nvdisplay)
1997 		return;
1998 
1999 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2000 
2001 	if (!crtc->state->active) {
2002 		if (!old_crtc_state->active)
2003 			return;
2004 
2005 		/*
2006 		 * When CRTC is disabled on DPMS, the state of attached planes
2007 		 * is kept unchanged. Hence we need to enforce removal of the
2008 		 * bandwidths from the ICC paths.
2009 		 */
2010 		drm_atomic_crtc_for_each_plane(plane, crtc) {
2011 			tegra = to_tegra_plane(plane);
2012 
2013 			icc_set_bw(tegra->icc_mem, 0, 0);
2014 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2015 		}
2016 
2017 		return;
2018 	}
2019 
2020 	for_each_old_plane_in_state(old_crtc_state->state, plane,
2021 				    old_plane_state, i) {
2022 		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2023 		new_tegra_state = to_const_tegra_plane_state(plane->state);
2024 		tegra = to_tegra_plane(plane);
2025 
2026 		/*
2027 		 * We're iterating over the global atomic state and it contains
2028 		 * planes from another CRTC, hence we need to filter out the
2029 		 * planes unrelated to this CRTC.
2030 		 */
2031 		if (tegra->dc != dc)
2032 			continue;
2033 
2034 		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2035 		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2036 
2037 		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2038 		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2039 
2040 		/*
2041 		 * See the comment related to !crtc->state->active above,
2042 		 * which explains why bandwidths need to be updated when
2043 		 * CRTC is turning ON.
2044 		 */
2045 		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2046 		    old_crtc_state->active)
2047 			continue;
2048 
2049 		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2050 		window.dst.h = drm_rect_height(&plane->state->dst);
2051 
2052 		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2053 		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2054 
2055 		/*
2056 		 * During the preparation phase (atomic_begin), the memory
2057 		 * freq should go high before the DC changes are committed
2058 		 * if bandwidth requirement goes up, otherwise memory freq
2059 		 * should to stay high if BW requirement goes down.  The
2060 		 * opposite applies to the completion phase (post_commit).
2061 		 */
2062 		if (prepare_bandwidth_transition) {
2063 			new_avg_bw = max(old_avg_bw, new_avg_bw);
2064 			new_peak_bw = max(old_peak_bw, new_peak_bw);
2065 
2066 			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2067 				window = old_window;
2068 		}
2069 
2070 		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2071 
2072 		if (tegra_plane_use_vertical_filtering(tegra, &window))
2073 			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2074 		else
2075 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2076 	}
2077 }
2078 
2079 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2080 				      struct drm_atomic_state *state)
2081 {
2082 	struct tegra_dc *dc = to_tegra_dc(crtc);
2083 	u32 value;
2084 	int err;
2085 
2086 	if (!tegra_dc_idle(dc)) {
2087 		tegra_dc_stop(dc);
2088 
2089 		/*
2090 		 * Ignore the return value, there isn't anything useful to do
2091 		 * in case this fails.
2092 		 */
2093 		tegra_dc_wait_idle(dc, 100);
2094 	}
2095 
2096 	/*
2097 	 * This should really be part of the RGB encoder driver, but clearing
2098 	 * these bits has the side-effect of stopping the display controller.
2099 	 * When that happens no VBLANK interrupts will be raised. At the same
2100 	 * time the encoder is disabled before the display controller, so the
2101 	 * above code is always going to timeout waiting for the controller
2102 	 * to go idle.
2103 	 *
2104 	 * Given the close coupling between the RGB encoder and the display
2105 	 * controller doing it here is still kind of okay. None of the other
2106 	 * encoder drivers require these bits to be cleared.
2107 	 *
2108 	 * XXX: Perhaps given that the display controller is switched off at
2109 	 * this point anyway maybe clearing these bits isn't even useful for
2110 	 * the RGB encoder?
2111 	 */
2112 	if (dc->rgb) {
2113 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2114 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2115 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2116 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2117 	}
2118 
2119 	tegra_dc_stats_reset(&dc->stats);
2120 	drm_crtc_vblank_off(crtc);
2121 
2122 	spin_lock_irq(&crtc->dev->event_lock);
2123 
2124 	if (crtc->state->event) {
2125 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2126 		crtc->state->event = NULL;
2127 	}
2128 
2129 	spin_unlock_irq(&crtc->dev->event_lock);
2130 
2131 	err = host1x_client_suspend(&dc->client);
2132 	if (err < 0)
2133 		dev_err(dc->dev, "failed to suspend: %d\n", err);
2134 
2135 	if (dc->has_opp_table) {
2136 		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2137 		if (err)
2138 			dev_err(dc->dev,
2139 				"failed to clear power domain state: %d\n", err);
2140 	}
2141 }
2142 
2143 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2144 				     struct drm_atomic_state *state)
2145 {
2146 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2147 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2148 	struct tegra_dc *dc = to_tegra_dc(crtc);
2149 	u32 value;
2150 	int err;
2151 
2152 	/* apply PLL changes */
2153 	tegra_dc_set_clock_rate(dc, crtc_state);
2154 
2155 	err = host1x_client_resume(&dc->client);
2156 	if (err < 0) {
2157 		dev_err(dc->dev, "failed to resume: %d\n", err);
2158 		return;
2159 	}
2160 
2161 	/* initialize display controller */
2162 	if (dc->syncpt) {
2163 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2164 
2165 		if (dc->soc->has_nvdisplay)
2166 			enable = 1 << 31;
2167 		else
2168 			enable = 1 << 8;
2169 
2170 		value = SYNCPT_CNTRL_NO_STALL;
2171 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2172 
2173 		value = enable | syncpt;
2174 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2175 	}
2176 
2177 	if (dc->soc->has_nvdisplay) {
2178 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2179 			DSC_OBUF_UF_INT;
2180 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2181 
2182 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2183 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2184 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2185 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2186 			VBLANK_INT | FRAME_END_INT;
2187 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2188 
2189 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2190 			FRAME_END_INT;
2191 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2192 
2193 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2194 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2195 
2196 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2197 	} else {
2198 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2199 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2200 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2201 
2202 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2203 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2204 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205 
2206 		/* initialize timer */
2207 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2208 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2209 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2210 
2211 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2212 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2213 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2214 
2215 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2218 
2219 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2222 	}
2223 
2224 	if (dc->soc->supports_background_color)
2225 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2226 	else
2227 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2228 
2229 	/* apply pixel clock changes */
2230 	if (!dc->soc->has_nvdisplay) {
2231 		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2232 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2233 	}
2234 
2235 	/* program display mode */
2236 	tegra_dc_set_timings(dc, mode);
2237 
2238 	/* interlacing isn't supported yet, so disable it */
2239 	if (dc->soc->supports_interlacing) {
2240 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2241 		value &= ~INTERLACE_ENABLE;
2242 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2243 	}
2244 
2245 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2246 	value &= ~DISP_CTRL_MODE_MASK;
2247 	value |= DISP_CTRL_MODE_C_DISPLAY;
2248 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2249 
2250 	if (!dc->soc->has_nvdisplay) {
2251 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2252 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2253 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2254 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2255 	}
2256 
2257 	/* enable underflow reporting and display red for missing pixels */
2258 	if (dc->soc->has_nvdisplay) {
2259 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2260 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2261 	}
2262 
2263 	if (dc->rgb) {
2264 		/* XXX: parameterize? */
2265 		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2266 		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2267 	}
2268 
2269 	tegra_dc_commit(dc);
2270 
2271 	drm_crtc_vblank_on(crtc);
2272 }
2273 
2274 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2275 				    struct drm_atomic_state *state)
2276 {
2277 	unsigned long flags;
2278 
2279 	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2280 
2281 	if (crtc->state->event) {
2282 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2283 
2284 		if (drm_crtc_vblank_get(crtc) != 0)
2285 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2286 		else
2287 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2288 
2289 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2290 
2291 		crtc->state->event = NULL;
2292 	}
2293 }
2294 
2295 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2296 				    struct drm_atomic_state *state)
2297 {
2298 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2299 									  crtc);
2300 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2301 	struct tegra_dc *dc = to_tegra_dc(crtc);
2302 	u32 value;
2303 
2304 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2305 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2306 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2307 
2308 	value = dc_state->planes | GENERAL_ACT_REQ;
2309 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2310 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2311 }
2312 
2313 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2314 {
2315 	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2316 	const struct drm_format_info *fmt = state->fb->format;
2317 	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2318 	unsigned int dst_w = drm_rect_width(&state->dst);
2319 
2320 	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2321 		return false;
2322 
2323 	if (soc->supports_cursor)
2324 		return true;
2325 
2326 	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2327 		return false;
2328 
2329 	return true;
2330 }
2331 
2332 static unsigned long
2333 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2334 			 const struct drm_plane_state *plane_state)
2335 {
2336 	const struct drm_plane_state *other_state;
2337 	const struct tegra_plane *tegra;
2338 	unsigned long overlap_mask = 0;
2339 	struct drm_plane *plane;
2340 	struct drm_rect rect;
2341 
2342 	if (!plane_state->visible || !plane_state->fb)
2343 		return 0;
2344 
2345 	/*
2346 	 * Data-prefetch FIFO will easily help to overcome temporal memory
2347 	 * pressure if other plane overlaps with the cursor plane.
2348 	 */
2349 	if (tegra_plane_is_cursor(plane_state))
2350 		return 0;
2351 
2352 	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2353 		rect = plane_state->dst;
2354 
2355 		tegra = to_tegra_plane(other_state->plane);
2356 
2357 		if (!other_state->visible || !other_state->fb)
2358 			continue;
2359 
2360 		/*
2361 		 * Ignore cursor plane overlaps because it's not practical to
2362 		 * assume that it contributes to the bandwidth in overlapping
2363 		 * area if window width is small.
2364 		 */
2365 		if (tegra_plane_is_cursor(other_state))
2366 			continue;
2367 
2368 		if (drm_rect_intersect(&rect, &other_state->dst))
2369 			overlap_mask |= BIT(tegra->index);
2370 	}
2371 
2372 	return overlap_mask;
2373 }
2374 
2375 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2376 						 struct drm_atomic_state *state)
2377 {
2378 	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2379 	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2380 	bool all_planes_overlap_simultaneously = true;
2381 	const struct tegra_plane_state *tegra_state;
2382 	const struct drm_plane_state *plane_state;
2383 	struct tegra_dc *dc = to_tegra_dc(crtc);
2384 	struct drm_crtc_state *new_state;
2385 	struct tegra_plane *tegra;
2386 	struct drm_plane *plane;
2387 
2388 	/*
2389 	 * The nv-display uses shared planes.  The algorithm below assumes
2390 	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2391 	 * the nv-display.  Note that T124 support has additional windows,
2392 	 * but currently they aren't supported by the driver.
2393 	 */
2394 	if (dc->soc->has_nvdisplay)
2395 		return 0;
2396 
2397 	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2398 
2399 	/*
2400 	 * For overlapping planes pixel's data is fetched for each plane at
2401 	 * the same time, hence bandwidths are accumulated in this case.
2402 	 * This needs to be taken into account for calculating total bandwidth
2403 	 * consumed by all planes.
2404 	 *
2405 	 * Here we get the overlapping state of each plane, which is a
2406 	 * bitmask of plane indices telling with what planes there is an
2407 	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2408 	 * to make further code nicer and simpler.
2409 	 */
2410 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2411 		tegra_state = to_const_tegra_plane_state(plane_state);
2412 		tegra = to_tegra_plane(plane);
2413 
2414 		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2415 			return -EINVAL;
2416 
2417 		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2418 		mask = tegra_plane_overlap_mask(new_state, plane_state);
2419 		overlap_mask[tegra->index] = mask;
2420 
2421 		if (hweight_long(mask) != 3)
2422 			all_planes_overlap_simultaneously = false;
2423 	}
2424 
2425 	/*
2426 	 * Then we calculate maximum bandwidth of each plane state.
2427 	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2428 	 * overlapping planes, where "simultaneously" means areas where DC
2429 	 * fetches from the planes simultaneously during of scan-out process.
2430 	 *
2431 	 * For example, if plane A overlaps with planes B and C, but B and C
2432 	 * don't overlap, then the peak bandwidth will be either in area where
2433 	 * A-and-B or A-and-C planes overlap.
2434 	 *
2435 	 * The plane_peak_bw[] contains peak memory bandwidth values of
2436 	 * each plane, this information is needed by interconnect provider
2437 	 * in order to set up latency allowance based on the peak BW, see
2438 	 * tegra_crtc_update_memory_bandwidth().
2439 	 */
2440 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2441 		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2442 
2443 		/*
2444 		 * Note that plane's atomic check doesn't touch the
2445 		 * total_peak_memory_bandwidth of enabled plane, hence the
2446 		 * current state contains the old bandwidth state from the
2447 		 * previous CRTC commit.
2448 		 */
2449 		tegra_state = to_const_tegra_plane_state(plane_state);
2450 		tegra = to_tegra_plane(plane);
2451 
2452 		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2453 			if (i == tegra->index)
2454 				continue;
2455 
2456 			if (all_planes_overlap_simultaneously)
2457 				overlap_bw += plane_peak_bw[i];
2458 			else
2459 				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2460 		}
2461 
2462 		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2463 		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2464 
2465 		/*
2466 		 * If plane's peak bandwidth changed (for example plane isn't
2467 		 * overlapped anymore) and plane isn't in the atomic state,
2468 		 * then add plane to the state in order to have the bandwidth
2469 		 * updated.
2470 		 */
2471 		if (old_peak_bw != new_peak_bw) {
2472 			struct tegra_plane_state *new_tegra_state;
2473 			struct drm_plane_state *new_plane_state;
2474 
2475 			new_plane_state = drm_atomic_get_plane_state(state, plane);
2476 			if (IS_ERR(new_plane_state))
2477 				return PTR_ERR(new_plane_state);
2478 
2479 			new_tegra_state = to_tegra_plane_state(new_plane_state);
2480 			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2481 		}
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2488 				   struct drm_atomic_state *state)
2489 {
2490 	int err;
2491 
2492 	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2493 	if (err)
2494 		return err;
2495 
2496 	return 0;
2497 }
2498 
2499 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2500 				   struct drm_atomic_state *state)
2501 {
2502 	/*
2503 	 * Display bandwidth is allowed to go down only once hardware state
2504 	 * is known to be armed, i.e. state was committed and VBLANK event
2505 	 * received.
2506 	 */
2507 	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2508 }
2509 
2510 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2511 	.atomic_check = tegra_crtc_atomic_check,
2512 	.atomic_begin = tegra_crtc_atomic_begin,
2513 	.atomic_flush = tegra_crtc_atomic_flush,
2514 	.atomic_enable = tegra_crtc_atomic_enable,
2515 	.atomic_disable = tegra_crtc_atomic_disable,
2516 };
2517 
2518 static irqreturn_t tegra_dc_irq(int irq, void *data)
2519 {
2520 	struct tegra_dc *dc = data;
2521 	unsigned long status;
2522 
2523 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2524 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2525 
2526 	if (status & FRAME_END_INT) {
2527 		/*
2528 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2529 		*/
2530 		dc->stats.frames_total++;
2531 		dc->stats.frames++;
2532 	}
2533 
2534 	if (status & VBLANK_INT) {
2535 		/*
2536 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2537 		*/
2538 		drm_crtc_handle_vblank(&dc->base);
2539 		dc->stats.vblank_total++;
2540 		dc->stats.vblank++;
2541 	}
2542 
2543 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2544 		/*
2545 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2546 		*/
2547 		dc->stats.underflow_total++;
2548 		dc->stats.underflow++;
2549 	}
2550 
2551 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2552 		/*
2553 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2554 		*/
2555 		dc->stats.overflow_total++;
2556 		dc->stats.overflow++;
2557 	}
2558 
2559 	if (status & HEAD_UF_INT) {
2560 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2561 		dc->stats.underflow_total++;
2562 		dc->stats.underflow++;
2563 	}
2564 
2565 	return IRQ_HANDLED;
2566 }
2567 
2568 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2569 {
2570 	unsigned int i;
2571 
2572 	if (!dc->soc->wgrps)
2573 		return true;
2574 
2575 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2576 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2577 
2578 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2579 			return true;
2580 	}
2581 
2582 	return false;
2583 }
2584 
2585 static int tegra_dc_early_init(struct host1x_client *client)
2586 {
2587 	struct drm_device *drm = dev_get_drvdata(client->host);
2588 	struct tegra_drm *tegra = drm->dev_private;
2589 
2590 	tegra->num_crtcs++;
2591 
2592 	return 0;
2593 }
2594 
2595 static int tegra_dc_init(struct host1x_client *client)
2596 {
2597 	struct drm_device *drm = dev_get_drvdata(client->host);
2598 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2599 	struct tegra_dc *dc = host1x_client_to_dc(client);
2600 	struct tegra_drm *tegra = drm->dev_private;
2601 	struct drm_plane *primary = NULL;
2602 	struct drm_plane *cursor = NULL;
2603 	int err;
2604 
2605 	/*
2606 	 * DC has been reset by now, so VBLANK syncpoint can be released
2607 	 * for general use.
2608 	 */
2609 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2610 
2611 	/*
2612 	 * XXX do not register DCs with no window groups because we cannot
2613 	 * assign a primary plane to them, which in turn will cause KMS to
2614 	 * crash.
2615 	 */
2616 	if (!tegra_dc_has_window_groups(dc))
2617 		return 0;
2618 
2619 	/*
2620 	 * Set the display hub as the host1x client parent for the display
2621 	 * controller. This is needed for the runtime reference counting that
2622 	 * ensures the display hub is always powered when any of the display
2623 	 * controllers are.
2624 	 */
2625 	if (dc->soc->has_nvdisplay)
2626 		client->parent = &tegra->hub->client;
2627 
2628 	dc->syncpt = host1x_syncpt_request(client, flags);
2629 	if (!dc->syncpt)
2630 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2631 
2632 	err = host1x_client_iommu_attach(client);
2633 	if (err < 0 && err != -ENODEV) {
2634 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2635 		return err;
2636 	}
2637 
2638 	if (dc->soc->wgrps)
2639 		primary = tegra_dc_add_shared_planes(drm, dc);
2640 	else
2641 		primary = tegra_dc_add_planes(drm, dc);
2642 
2643 	if (IS_ERR(primary)) {
2644 		err = PTR_ERR(primary);
2645 		goto cleanup;
2646 	}
2647 
2648 	if (dc->soc->supports_cursor) {
2649 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2650 		if (IS_ERR(cursor)) {
2651 			err = PTR_ERR(cursor);
2652 			goto cleanup;
2653 		}
2654 	} else {
2655 		/* dedicate one overlay to mouse cursor */
2656 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2657 		if (IS_ERR(cursor)) {
2658 			err = PTR_ERR(cursor);
2659 			goto cleanup;
2660 		}
2661 	}
2662 
2663 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2664 					&tegra_crtc_funcs, NULL);
2665 	if (err < 0)
2666 		goto cleanup;
2667 
2668 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2669 
2670 	/*
2671 	 * Keep track of the minimum pitch alignment across all display
2672 	 * controllers.
2673 	 */
2674 	if (dc->soc->pitch_align > tegra->pitch_align)
2675 		tegra->pitch_align = dc->soc->pitch_align;
2676 
2677 	/* track maximum resolution */
2678 	if (dc->soc->has_nvdisplay)
2679 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2680 	else
2681 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2682 
2683 	err = tegra_dc_rgb_init(drm, dc);
2684 	if (err < 0 && err != -ENODEV) {
2685 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2686 		goto cleanup;
2687 	}
2688 
2689 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2690 			       dev_name(dc->dev), dc);
2691 	if (err < 0) {
2692 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2693 			err);
2694 		goto cleanup;
2695 	}
2696 
2697 	/*
2698 	 * Inherit the DMA parameters (such as maximum segment size) from the
2699 	 * parent host1x device.
2700 	 */
2701 	client->dev->dma_parms = client->host->dma_parms;
2702 
2703 	return 0;
2704 
2705 cleanup:
2706 	if (!IS_ERR_OR_NULL(cursor))
2707 		drm_plane_cleanup(cursor);
2708 
2709 	if (!IS_ERR(primary))
2710 		drm_plane_cleanup(primary);
2711 
2712 	host1x_client_iommu_detach(client);
2713 	host1x_syncpt_put(dc->syncpt);
2714 
2715 	return err;
2716 }
2717 
2718 static int tegra_dc_exit(struct host1x_client *client)
2719 {
2720 	struct tegra_dc *dc = host1x_client_to_dc(client);
2721 	int err;
2722 
2723 	if (!tegra_dc_has_window_groups(dc))
2724 		return 0;
2725 
2726 	/* avoid a dangling pointer just in case this disappears */
2727 	client->dev->dma_parms = NULL;
2728 
2729 	devm_free_irq(dc->dev, dc->irq, dc);
2730 
2731 	err = tegra_dc_rgb_exit(dc);
2732 	if (err) {
2733 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2734 		return err;
2735 	}
2736 
2737 	host1x_client_iommu_detach(client);
2738 	host1x_syncpt_put(dc->syncpt);
2739 
2740 	return 0;
2741 }
2742 
2743 static int tegra_dc_late_exit(struct host1x_client *client)
2744 {
2745 	struct drm_device *drm = dev_get_drvdata(client->host);
2746 	struct tegra_drm *tegra = drm->dev_private;
2747 
2748 	tegra->num_crtcs--;
2749 
2750 	return 0;
2751 }
2752 
2753 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2754 {
2755 	struct tegra_dc *dc = host1x_client_to_dc(client);
2756 	struct device *dev = client->dev;
2757 	int err;
2758 
2759 	err = reset_control_assert(dc->rst);
2760 	if (err < 0) {
2761 		dev_err(dev, "failed to assert reset: %d\n", err);
2762 		return err;
2763 	}
2764 
2765 	if (dc->soc->has_powergate)
2766 		tegra_powergate_power_off(dc->powergate);
2767 
2768 	clk_disable_unprepare(dc->clk);
2769 	pm_runtime_put_sync(dev);
2770 
2771 	return 0;
2772 }
2773 
2774 static int tegra_dc_runtime_resume(struct host1x_client *client)
2775 {
2776 	struct tegra_dc *dc = host1x_client_to_dc(client);
2777 	struct device *dev = client->dev;
2778 	int err;
2779 
2780 	err = pm_runtime_resume_and_get(dev);
2781 	if (err < 0) {
2782 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2783 		return err;
2784 	}
2785 
2786 	if (dc->soc->has_powergate) {
2787 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2788 							dc->rst);
2789 		if (err < 0) {
2790 			dev_err(dev, "failed to power partition: %d\n", err);
2791 			goto put_rpm;
2792 		}
2793 	} else {
2794 		err = clk_prepare_enable(dc->clk);
2795 		if (err < 0) {
2796 			dev_err(dev, "failed to enable clock: %d\n", err);
2797 			goto put_rpm;
2798 		}
2799 
2800 		err = reset_control_deassert(dc->rst);
2801 		if (err < 0) {
2802 			dev_err(dev, "failed to deassert reset: %d\n", err);
2803 			goto disable_clk;
2804 		}
2805 	}
2806 
2807 	return 0;
2808 
2809 disable_clk:
2810 	clk_disable_unprepare(dc->clk);
2811 put_rpm:
2812 	pm_runtime_put_sync(dev);
2813 	return err;
2814 }
2815 
2816 static const struct host1x_client_ops dc_client_ops = {
2817 	.early_init = tegra_dc_early_init,
2818 	.init = tegra_dc_init,
2819 	.exit = tegra_dc_exit,
2820 	.late_exit = tegra_dc_late_exit,
2821 	.suspend = tegra_dc_runtime_suspend,
2822 	.resume = tegra_dc_runtime_resume,
2823 };
2824 
2825 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2826 	.supports_background_color = false,
2827 	.supports_interlacing = false,
2828 	.supports_cursor = false,
2829 	.supports_block_linear = false,
2830 	.supports_sector_layout = false,
2831 	.has_legacy_blending = true,
2832 	.pitch_align = 8,
2833 	.has_powergate = false,
2834 	.coupled_pm = true,
2835 	.has_nvdisplay = false,
2836 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2837 	.primary_formats = tegra20_primary_formats,
2838 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2839 	.overlay_formats = tegra20_overlay_formats,
2840 	.modifiers = tegra20_modifiers,
2841 	.has_win_a_without_filters = true,
2842 	.has_win_b_vfilter_mem_client = true,
2843 	.has_win_c_without_vert_filter = true,
2844 	.plane_tiled_memory_bandwidth_x2 = false,
2845 	.has_pll_d2_out0 = false,
2846 };
2847 
2848 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2849 	.supports_background_color = false,
2850 	.supports_interlacing = false,
2851 	.supports_cursor = false,
2852 	.supports_block_linear = false,
2853 	.supports_sector_layout = false,
2854 	.has_legacy_blending = true,
2855 	.pitch_align = 8,
2856 	.has_powergate = false,
2857 	.coupled_pm = false,
2858 	.has_nvdisplay = false,
2859 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2860 	.primary_formats = tegra20_primary_formats,
2861 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2862 	.overlay_formats = tegra20_overlay_formats,
2863 	.modifiers = tegra20_modifiers,
2864 	.has_win_a_without_filters = false,
2865 	.has_win_b_vfilter_mem_client = true,
2866 	.has_win_c_without_vert_filter = false,
2867 	.plane_tiled_memory_bandwidth_x2 = true,
2868 	.has_pll_d2_out0 = true,
2869 };
2870 
2871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2872 	.supports_background_color = false,
2873 	.supports_interlacing = false,
2874 	.supports_cursor = false,
2875 	.supports_block_linear = false,
2876 	.supports_sector_layout = false,
2877 	.has_legacy_blending = true,
2878 	.pitch_align = 64,
2879 	.has_powergate = true,
2880 	.coupled_pm = false,
2881 	.has_nvdisplay = false,
2882 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2883 	.primary_formats = tegra114_primary_formats,
2884 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2885 	.overlay_formats = tegra114_overlay_formats,
2886 	.modifiers = tegra20_modifiers,
2887 	.has_win_a_without_filters = false,
2888 	.has_win_b_vfilter_mem_client = false,
2889 	.has_win_c_without_vert_filter = false,
2890 	.plane_tiled_memory_bandwidth_x2 = true,
2891 	.has_pll_d2_out0 = true,
2892 };
2893 
2894 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2895 	.supports_background_color = true,
2896 	.supports_interlacing = true,
2897 	.supports_cursor = true,
2898 	.supports_block_linear = true,
2899 	.supports_sector_layout = false,
2900 	.has_legacy_blending = false,
2901 	.pitch_align = 64,
2902 	.has_powergate = true,
2903 	.coupled_pm = false,
2904 	.has_nvdisplay = false,
2905 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2906 	.primary_formats = tegra124_primary_formats,
2907 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2908 	.overlay_formats = tegra124_overlay_formats,
2909 	.modifiers = tegra124_modifiers,
2910 	.has_win_a_without_filters = false,
2911 	.has_win_b_vfilter_mem_client = false,
2912 	.has_win_c_without_vert_filter = false,
2913 	.plane_tiled_memory_bandwidth_x2 = false,
2914 	.has_pll_d2_out0 = true,
2915 };
2916 
2917 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2918 	.supports_background_color = true,
2919 	.supports_interlacing = true,
2920 	.supports_cursor = true,
2921 	.supports_block_linear = true,
2922 	.supports_sector_layout = false,
2923 	.has_legacy_blending = false,
2924 	.pitch_align = 64,
2925 	.has_powergate = true,
2926 	.coupled_pm = false,
2927 	.has_nvdisplay = false,
2928 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2929 	.primary_formats = tegra114_primary_formats,
2930 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2931 	.overlay_formats = tegra114_overlay_formats,
2932 	.modifiers = tegra124_modifiers,
2933 	.has_win_a_without_filters = false,
2934 	.has_win_b_vfilter_mem_client = false,
2935 	.has_win_c_without_vert_filter = false,
2936 	.plane_tiled_memory_bandwidth_x2 = false,
2937 	.has_pll_d2_out0 = true,
2938 };
2939 
2940 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2941 	{
2942 		.index = 0,
2943 		.dc = 0,
2944 		.windows = (const unsigned int[]) { 0 },
2945 		.num_windows = 1,
2946 	}, {
2947 		.index = 1,
2948 		.dc = 1,
2949 		.windows = (const unsigned int[]) { 1 },
2950 		.num_windows = 1,
2951 	}, {
2952 		.index = 2,
2953 		.dc = 1,
2954 		.windows = (const unsigned int[]) { 2 },
2955 		.num_windows = 1,
2956 	}, {
2957 		.index = 3,
2958 		.dc = 2,
2959 		.windows = (const unsigned int[]) { 3 },
2960 		.num_windows = 1,
2961 	}, {
2962 		.index = 4,
2963 		.dc = 2,
2964 		.windows = (const unsigned int[]) { 4 },
2965 		.num_windows = 1,
2966 	}, {
2967 		.index = 5,
2968 		.dc = 2,
2969 		.windows = (const unsigned int[]) { 5 },
2970 		.num_windows = 1,
2971 	},
2972 };
2973 
2974 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2975 	.supports_background_color = true,
2976 	.supports_interlacing = true,
2977 	.supports_cursor = true,
2978 	.supports_block_linear = true,
2979 	.supports_sector_layout = false,
2980 	.has_legacy_blending = false,
2981 	.pitch_align = 64,
2982 	.has_powergate = false,
2983 	.coupled_pm = false,
2984 	.has_nvdisplay = true,
2985 	.wgrps = tegra186_dc_wgrps,
2986 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2987 	.plane_tiled_memory_bandwidth_x2 = false,
2988 	.has_pll_d2_out0 = false,
2989 };
2990 
2991 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2992 	{
2993 		.index = 0,
2994 		.dc = 0,
2995 		.windows = (const unsigned int[]) { 0 },
2996 		.num_windows = 1,
2997 	}, {
2998 		.index = 1,
2999 		.dc = 1,
3000 		.windows = (const unsigned int[]) { 1 },
3001 		.num_windows = 1,
3002 	}, {
3003 		.index = 2,
3004 		.dc = 1,
3005 		.windows = (const unsigned int[]) { 2 },
3006 		.num_windows = 1,
3007 	}, {
3008 		.index = 3,
3009 		.dc = 2,
3010 		.windows = (const unsigned int[]) { 3 },
3011 		.num_windows = 1,
3012 	}, {
3013 		.index = 4,
3014 		.dc = 2,
3015 		.windows = (const unsigned int[]) { 4 },
3016 		.num_windows = 1,
3017 	}, {
3018 		.index = 5,
3019 		.dc = 2,
3020 		.windows = (const unsigned int[]) { 5 },
3021 		.num_windows = 1,
3022 	},
3023 };
3024 
3025 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3026 	.supports_background_color = true,
3027 	.supports_interlacing = true,
3028 	.supports_cursor = true,
3029 	.supports_block_linear = true,
3030 	.supports_sector_layout = true,
3031 	.has_legacy_blending = false,
3032 	.pitch_align = 64,
3033 	.has_powergate = false,
3034 	.coupled_pm = false,
3035 	.has_nvdisplay = true,
3036 	.wgrps = tegra194_dc_wgrps,
3037 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3038 	.plane_tiled_memory_bandwidth_x2 = false,
3039 	.has_pll_d2_out0 = false,
3040 };
3041 
3042 static const struct of_device_id tegra_dc_of_match[] = {
3043 	{
3044 		.compatible = "nvidia,tegra194-dc",
3045 		.data = &tegra194_dc_soc_info,
3046 	}, {
3047 		.compatible = "nvidia,tegra186-dc",
3048 		.data = &tegra186_dc_soc_info,
3049 	}, {
3050 		.compatible = "nvidia,tegra210-dc",
3051 		.data = &tegra210_dc_soc_info,
3052 	}, {
3053 		.compatible = "nvidia,tegra124-dc",
3054 		.data = &tegra124_dc_soc_info,
3055 	}, {
3056 		.compatible = "nvidia,tegra114-dc",
3057 		.data = &tegra114_dc_soc_info,
3058 	}, {
3059 		.compatible = "nvidia,tegra30-dc",
3060 		.data = &tegra30_dc_soc_info,
3061 	}, {
3062 		.compatible = "nvidia,tegra20-dc",
3063 		.data = &tegra20_dc_soc_info,
3064 	}, {
3065 		/* sentinel */
3066 	}
3067 };
3068 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3069 
3070 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3071 {
3072 	struct device_node *np;
3073 	u32 value = 0;
3074 	int err;
3075 
3076 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3077 	if (err < 0) {
3078 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3079 
3080 		/*
3081 		 * If the nvidia,head property isn't present, try to find the
3082 		 * correct head number by looking up the position of this
3083 		 * display controller's node within the device tree. Assuming
3084 		 * that the nodes are ordered properly in the DTS file and
3085 		 * that the translation into a flattened device tree blob
3086 		 * preserves that ordering this will actually yield the right
3087 		 * head number.
3088 		 *
3089 		 * If those assumptions don't hold, this will still work for
3090 		 * cases where only a single display controller is used.
3091 		 */
3092 		for_each_matching_node(np, tegra_dc_of_match) {
3093 			if (np == dc->dev->of_node) {
3094 				of_node_put(np);
3095 				break;
3096 			}
3097 
3098 			value++;
3099 		}
3100 	}
3101 
3102 	dc->pipe = value;
3103 
3104 	return 0;
3105 }
3106 
3107 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3108 {
3109 	struct tegra_dc *dc = dev_get_drvdata(dev);
3110 	unsigned int pipe = (unsigned long)(void *)data;
3111 
3112 	return dc->pipe == pipe;
3113 }
3114 
3115 static int tegra_dc_couple(struct tegra_dc *dc)
3116 {
3117 	/*
3118 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3119 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3120 	 * POWER_CONTROL registers during CRTC enabling.
3121 	 */
3122 	if (dc->soc->coupled_pm && dc->pipe == 1) {
3123 		struct device *companion;
3124 		struct tegra_dc *parent;
3125 
3126 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3127 					       tegra_dc_match_by_pipe);
3128 		if (!companion)
3129 			return -EPROBE_DEFER;
3130 
3131 		parent = dev_get_drvdata(companion);
3132 		dc->client.parent = &parent->client;
3133 
3134 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3141 {
3142 	struct tegra_core_opp_params opp_params = {};
3143 	int err;
3144 
3145 	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3146 	if (err && err != -ENODEV)
3147 		return err;
3148 
3149 	if (err)
3150 		dc->has_opp_table = false;
3151 	else
3152 		dc->has_opp_table = true;
3153 
3154 	return 0;
3155 }
3156 
3157 static int tegra_dc_probe(struct platform_device *pdev)
3158 {
3159 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
3160 	struct tegra_dc *dc;
3161 	int err;
3162 
3163 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3164 	if (err < 0) {
3165 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3166 		return err;
3167 	}
3168 
3169 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3170 	if (!dc)
3171 		return -ENOMEM;
3172 
3173 	dc->soc = of_device_get_match_data(&pdev->dev);
3174 
3175 	INIT_LIST_HEAD(&dc->list);
3176 	dc->dev = &pdev->dev;
3177 
3178 	err = tegra_dc_parse_dt(dc);
3179 	if (err < 0)
3180 		return err;
3181 
3182 	err = tegra_dc_couple(dc);
3183 	if (err < 0)
3184 		return err;
3185 
3186 	dc->clk = devm_clk_get(&pdev->dev, NULL);
3187 	if (IS_ERR(dc->clk)) {
3188 		dev_err(&pdev->dev, "failed to get clock\n");
3189 		return PTR_ERR(dc->clk);
3190 	}
3191 
3192 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3193 	if (IS_ERR(dc->rst)) {
3194 		dev_err(&pdev->dev, "failed to get reset\n");
3195 		return PTR_ERR(dc->rst);
3196 	}
3197 
3198 	/* assert reset and disable clock */
3199 	err = clk_prepare_enable(dc->clk);
3200 	if (err < 0)
3201 		return err;
3202 
3203 	usleep_range(2000, 4000);
3204 
3205 	err = reset_control_assert(dc->rst);
3206 	if (err < 0) {
3207 		clk_disable_unprepare(dc->clk);
3208 		return err;
3209 	}
3210 
3211 	usleep_range(2000, 4000);
3212 
3213 	clk_disable_unprepare(dc->clk);
3214 
3215 	if (dc->soc->has_powergate) {
3216 		if (dc->pipe == 0)
3217 			dc->powergate = TEGRA_POWERGATE_DIS;
3218 		else
3219 			dc->powergate = TEGRA_POWERGATE_DISB;
3220 
3221 		tegra_powergate_power_off(dc->powergate);
3222 	}
3223 
3224 	err = tegra_dc_init_opp_table(dc);
3225 	if (err < 0)
3226 		return err;
3227 
3228 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3229 	if (IS_ERR(dc->regs))
3230 		return PTR_ERR(dc->regs);
3231 
3232 	dc->irq = platform_get_irq(pdev, 0);
3233 	if (dc->irq < 0)
3234 		return -ENXIO;
3235 
3236 	err = tegra_dc_rgb_probe(dc);
3237 	if (err < 0 && err != -ENODEV)
3238 		return dev_err_probe(&pdev->dev, err,
3239 				     "failed to probe RGB output\n");
3240 
3241 	platform_set_drvdata(pdev, dc);
3242 	pm_runtime_enable(&pdev->dev);
3243 
3244 	INIT_LIST_HEAD(&dc->client.list);
3245 	dc->client.ops = &dc_client_ops;
3246 	dc->client.dev = &pdev->dev;
3247 
3248 	err = host1x_client_register(&dc->client);
3249 	if (err < 0) {
3250 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3251 			err);
3252 		goto disable_pm;
3253 	}
3254 
3255 	return 0;
3256 
3257 disable_pm:
3258 	pm_runtime_disable(&pdev->dev);
3259 	tegra_dc_rgb_remove(dc);
3260 
3261 	return err;
3262 }
3263 
3264 static void tegra_dc_remove(struct platform_device *pdev)
3265 {
3266 	struct tegra_dc *dc = platform_get_drvdata(pdev);
3267 
3268 	host1x_client_unregister(&dc->client);
3269 
3270 	tegra_dc_rgb_remove(dc);
3271 
3272 	pm_runtime_disable(&pdev->dev);
3273 }
3274 
3275 struct platform_driver tegra_dc_driver = {
3276 	.driver = {
3277 		.name = "tegra-dc",
3278 		.of_match_table = tegra_dc_of_match,
3279 	},
3280 	.probe = tegra_dc_probe,
3281 	.remove_new = tegra_dc_remove,
3282 };
3283