xref: /linux/drivers/gpu/drm/tegra/dc.c (revision aacdf19849734d1be5e407932228ae101ba5b92f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			/* fallthrough */
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
372 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
373 
374 	/*
375 	 * For DDA computations the number of bytes per pixel for YUV planar
376 	 * modes needs to take into account all Y, U and V components.
377 	 */
378 	if (yuv && planar)
379 		bpp = 2;
380 
381 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
382 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
383 
384 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
385 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
386 
387 	h_dda = compute_initial_dda(window->src.x);
388 	v_dda = compute_initial_dda(window->src.y);
389 
390 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
391 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
392 
393 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
394 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
395 
396 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
397 
398 	if (yuv && planar) {
399 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
400 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
401 		value = window->stride[1] << 16 | window->stride[0];
402 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
403 	} else {
404 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
405 	}
406 
407 	if (window->bottom_up)
408 		v_offset += window->src.h - 1;
409 
410 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
411 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
412 
413 	if (dc->soc->supports_block_linear) {
414 		unsigned long height = window->tiling.value;
415 
416 		switch (window->tiling.mode) {
417 		case TEGRA_BO_TILING_MODE_PITCH:
418 			value = DC_WINBUF_SURFACE_KIND_PITCH;
419 			break;
420 
421 		case TEGRA_BO_TILING_MODE_TILED:
422 			value = DC_WINBUF_SURFACE_KIND_TILED;
423 			break;
424 
425 		case TEGRA_BO_TILING_MODE_BLOCK:
426 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
427 				DC_WINBUF_SURFACE_KIND_BLOCK;
428 			break;
429 		}
430 
431 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
432 	} else {
433 		switch (window->tiling.mode) {
434 		case TEGRA_BO_TILING_MODE_PITCH:
435 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
436 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_TILED:
440 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
441 				DC_WIN_BUFFER_ADDR_MODE_TILE;
442 			break;
443 
444 		case TEGRA_BO_TILING_MODE_BLOCK:
445 			/*
446 			 * No need to handle this here because ->atomic_check
447 			 * will already have filtered it out.
448 			 */
449 			break;
450 		}
451 
452 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
453 	}
454 
455 	value = WIN_ENABLE;
456 
457 	if (yuv) {
458 		/* setup default colorspace conversion coefficients */
459 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
460 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
461 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
462 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
463 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
464 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
465 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
466 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
467 
468 		value |= CSC_ENABLE;
469 	} else if (window->bits_per_pixel < 24) {
470 		value |= COLOR_EXPAND;
471 	}
472 
473 	if (window->bottom_up)
474 		value |= V_DIRECTION;
475 
476 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
477 		/*
478 		 * Enable horizontal 6-tap filter and set filtering
479 		 * coefficients to the default values defined in TRM.
480 		 */
481 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
482 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
483 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
484 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
485 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
486 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
487 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
488 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
489 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
490 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
491 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
492 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
493 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
494 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
495 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
496 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
497 
498 		value |= H_FILTER;
499 	}
500 
501 	if (tegra_plane_use_vertical_filtering(plane, window)) {
502 		unsigned int i, k;
503 
504 		/*
505 		 * Enable vertical 2-tap filter and set filtering
506 		 * coefficients to the default values defined in TRM.
507 		 */
508 		for (i = 0, k = 128; i < 16; i++, k -= 8)
509 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
510 
511 		value |= V_FILTER;
512 	}
513 
514 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
515 
516 	if (dc->soc->has_legacy_blending)
517 		tegra_plane_setup_blending_legacy(plane);
518 	else
519 		tegra_plane_setup_blending(plane, window);
520 }
521 
522 static const u32 tegra20_primary_formats[] = {
523 	DRM_FORMAT_ARGB4444,
524 	DRM_FORMAT_ARGB1555,
525 	DRM_FORMAT_RGB565,
526 	DRM_FORMAT_RGBA5551,
527 	DRM_FORMAT_ABGR8888,
528 	DRM_FORMAT_ARGB8888,
529 	/* non-native formats */
530 	DRM_FORMAT_XRGB1555,
531 	DRM_FORMAT_RGBX5551,
532 	DRM_FORMAT_XBGR8888,
533 	DRM_FORMAT_XRGB8888,
534 };
535 
536 static const u64 tegra20_modifiers[] = {
537 	DRM_FORMAT_MOD_LINEAR,
538 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
539 	DRM_FORMAT_MOD_INVALID
540 };
541 
542 static const u32 tegra114_primary_formats[] = {
543 	DRM_FORMAT_ARGB4444,
544 	DRM_FORMAT_ARGB1555,
545 	DRM_FORMAT_RGB565,
546 	DRM_FORMAT_RGBA5551,
547 	DRM_FORMAT_ABGR8888,
548 	DRM_FORMAT_ARGB8888,
549 	/* new on Tegra114 */
550 	DRM_FORMAT_ABGR4444,
551 	DRM_FORMAT_ABGR1555,
552 	DRM_FORMAT_BGRA5551,
553 	DRM_FORMAT_XRGB1555,
554 	DRM_FORMAT_RGBX5551,
555 	DRM_FORMAT_XBGR1555,
556 	DRM_FORMAT_BGRX5551,
557 	DRM_FORMAT_BGR565,
558 	DRM_FORMAT_BGRA8888,
559 	DRM_FORMAT_RGBA8888,
560 	DRM_FORMAT_XRGB8888,
561 	DRM_FORMAT_XBGR8888,
562 };
563 
564 static const u32 tegra124_primary_formats[] = {
565 	DRM_FORMAT_ARGB4444,
566 	DRM_FORMAT_ARGB1555,
567 	DRM_FORMAT_RGB565,
568 	DRM_FORMAT_RGBA5551,
569 	DRM_FORMAT_ABGR8888,
570 	DRM_FORMAT_ARGB8888,
571 	/* new on Tegra114 */
572 	DRM_FORMAT_ABGR4444,
573 	DRM_FORMAT_ABGR1555,
574 	DRM_FORMAT_BGRA5551,
575 	DRM_FORMAT_XRGB1555,
576 	DRM_FORMAT_RGBX5551,
577 	DRM_FORMAT_XBGR1555,
578 	DRM_FORMAT_BGRX5551,
579 	DRM_FORMAT_BGR565,
580 	DRM_FORMAT_BGRA8888,
581 	DRM_FORMAT_RGBA8888,
582 	DRM_FORMAT_XRGB8888,
583 	DRM_FORMAT_XBGR8888,
584 	/* new on Tegra124 */
585 	DRM_FORMAT_RGBX8888,
586 	DRM_FORMAT_BGRX8888,
587 };
588 
589 static const u64 tegra124_modifiers[] = {
590 	DRM_FORMAT_MOD_LINEAR,
591 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
592 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
593 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
594 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
595 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
596 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
597 	DRM_FORMAT_MOD_INVALID
598 };
599 
600 static int tegra_plane_atomic_check(struct drm_plane *plane,
601 				    struct drm_plane_state *state)
602 {
603 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
604 	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
605 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
606 	struct tegra_plane *tegra = to_tegra_plane(plane);
607 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
608 	int err;
609 
610 	/* no need for further checks if the plane is being disabled */
611 	if (!state->crtc)
612 		return 0;
613 
614 	err = tegra_plane_format(state->fb->format->format,
615 				 &plane_state->format,
616 				 &plane_state->swap);
617 	if (err < 0)
618 		return err;
619 
620 	/*
621 	 * Tegra20 and Tegra30 are special cases here because they support
622 	 * only variants of specific formats with an alpha component, but not
623 	 * the corresponding opaque formats. However, the opaque formats can
624 	 * be emulated by disabling alpha blending for the plane.
625 	 */
626 	if (dc->soc->has_legacy_blending) {
627 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
628 		if (err < 0)
629 			return err;
630 	}
631 
632 	err = tegra_fb_get_tiling(state->fb, tiling);
633 	if (err < 0)
634 		return err;
635 
636 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
637 	    !dc->soc->supports_block_linear) {
638 		DRM_ERROR("hardware doesn't support block linear mode\n");
639 		return -EINVAL;
640 	}
641 
642 	rotation = drm_rotation_simplify(state->rotation, rotation);
643 
644 	if (rotation & DRM_MODE_REFLECT_Y)
645 		plane_state->bottom_up = true;
646 	else
647 		plane_state->bottom_up = false;
648 
649 	/*
650 	 * Tegra doesn't support different strides for U and V planes so we
651 	 * error out if the user tries to display a framebuffer with such a
652 	 * configuration.
653 	 */
654 	if (state->fb->format->num_planes > 2) {
655 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
656 			DRM_ERROR("unsupported UV-plane configuration\n");
657 			return -EINVAL;
658 		}
659 	}
660 
661 	err = tegra_plane_state_add(tegra, state);
662 	if (err < 0)
663 		return err;
664 
665 	return 0;
666 }
667 
668 static void tegra_plane_atomic_disable(struct drm_plane *plane,
669 				       struct drm_plane_state *old_state)
670 {
671 	struct tegra_plane *p = to_tegra_plane(plane);
672 	u32 value;
673 
674 	/* rien ne va plus */
675 	if (!old_state || !old_state->crtc)
676 		return;
677 
678 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
679 	value &= ~WIN_ENABLE;
680 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
681 }
682 
683 static void tegra_plane_atomic_update(struct drm_plane *plane,
684 				      struct drm_plane_state *old_state)
685 {
686 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
687 	struct drm_framebuffer *fb = plane->state->fb;
688 	struct tegra_plane *p = to_tegra_plane(plane);
689 	struct tegra_dc_window window;
690 	unsigned int i;
691 
692 	/* rien ne va plus */
693 	if (!plane->state->crtc || !plane->state->fb)
694 		return;
695 
696 	if (!plane->state->visible)
697 		return tegra_plane_atomic_disable(plane, old_state);
698 
699 	memset(&window, 0, sizeof(window));
700 	window.src.x = plane->state->src.x1 >> 16;
701 	window.src.y = plane->state->src.y1 >> 16;
702 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
703 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
704 	window.dst.x = plane->state->dst.x1;
705 	window.dst.y = plane->state->dst.y1;
706 	window.dst.w = drm_rect_width(&plane->state->dst);
707 	window.dst.h = drm_rect_height(&plane->state->dst);
708 	window.bits_per_pixel = fb->format->cpp[0] * 8;
709 	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
710 
711 	/* copy from state */
712 	window.zpos = plane->state->normalized_zpos;
713 	window.tiling = state->tiling;
714 	window.format = state->format;
715 	window.swap = state->swap;
716 
717 	for (i = 0; i < fb->format->num_planes; i++) {
718 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
719 
720 		window.base[i] = bo->paddr + fb->offsets[i];
721 
722 		/*
723 		 * Tegra uses a shared stride for UV planes. Framebuffers are
724 		 * already checked for this in the tegra_plane_atomic_check()
725 		 * function, so it's safe to ignore the V-plane pitch here.
726 		 */
727 		if (i < 2)
728 			window.stride[i] = fb->pitches[i];
729 	}
730 
731 	tegra_dc_setup_window(p, &window);
732 }
733 
734 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
735 	.atomic_check = tegra_plane_atomic_check,
736 	.atomic_disable = tegra_plane_atomic_disable,
737 	.atomic_update = tegra_plane_atomic_update,
738 };
739 
740 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
741 {
742 	/*
743 	 * Ideally this would use drm_crtc_mask(), but that would require the
744 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
745 	 * will only be added to that list in the drm_crtc_init_with_planes()
746 	 * (in tegra_dc_init()), which in turn requires registration of these
747 	 * planes. So we have ourselves a nice little chicken and egg problem
748 	 * here.
749 	 *
750 	 * We work around this by manually creating the mask from the number
751 	 * of CRTCs that have been registered, and should therefore always be
752 	 * the same as drm_crtc_index() after registration.
753 	 */
754 	return 1 << drm->mode_config.num_crtc;
755 }
756 
757 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
758 						    struct tegra_dc *dc)
759 {
760 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
761 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
762 	struct tegra_plane *plane;
763 	unsigned int num_formats;
764 	const u64 *modifiers;
765 	const u32 *formats;
766 	int err;
767 
768 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
769 	if (!plane)
770 		return ERR_PTR(-ENOMEM);
771 
772 	/* Always use window A as primary window */
773 	plane->offset = 0xa00;
774 	plane->index = 0;
775 	plane->dc = dc;
776 
777 	num_formats = dc->soc->num_primary_formats;
778 	formats = dc->soc->primary_formats;
779 	modifiers = dc->soc->modifiers;
780 
781 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
782 				       &tegra_plane_funcs, formats,
783 				       num_formats, modifiers, type, NULL);
784 	if (err < 0) {
785 		kfree(plane);
786 		return ERR_PTR(err);
787 	}
788 
789 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
790 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
791 
792 	err = drm_plane_create_rotation_property(&plane->base,
793 						 DRM_MODE_ROTATE_0,
794 						 DRM_MODE_ROTATE_0 |
795 						 DRM_MODE_REFLECT_Y);
796 	if (err < 0)
797 		dev_err(dc->dev, "failed to create rotation property: %d\n",
798 			err);
799 
800 	return &plane->base;
801 }
802 
803 static const u32 tegra_cursor_plane_formats[] = {
804 	DRM_FORMAT_RGBA8888,
805 };
806 
807 static int tegra_cursor_atomic_check(struct drm_plane *plane,
808 				     struct drm_plane_state *state)
809 {
810 	struct tegra_plane *tegra = to_tegra_plane(plane);
811 	int err;
812 
813 	/* no need for further checks if the plane is being disabled */
814 	if (!state->crtc)
815 		return 0;
816 
817 	/* scaling not supported for cursor */
818 	if ((state->src_w >> 16 != state->crtc_w) ||
819 	    (state->src_h >> 16 != state->crtc_h))
820 		return -EINVAL;
821 
822 	/* only square cursors supported */
823 	if (state->src_w != state->src_h)
824 		return -EINVAL;
825 
826 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
827 	    state->crtc_w != 128 && state->crtc_w != 256)
828 		return -EINVAL;
829 
830 	err = tegra_plane_state_add(tegra, state);
831 	if (err < 0)
832 		return err;
833 
834 	return 0;
835 }
836 
837 static void tegra_cursor_atomic_update(struct drm_plane *plane,
838 				       struct drm_plane_state *old_state)
839 {
840 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
841 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
842 	struct drm_plane_state *state = plane->state;
843 	u32 value = CURSOR_CLIP_DISPLAY;
844 
845 	/* rien ne va plus */
846 	if (!plane->state->crtc || !plane->state->fb)
847 		return;
848 
849 	switch (state->crtc_w) {
850 	case 32:
851 		value |= CURSOR_SIZE_32x32;
852 		break;
853 
854 	case 64:
855 		value |= CURSOR_SIZE_64x64;
856 		break;
857 
858 	case 128:
859 		value |= CURSOR_SIZE_128x128;
860 		break;
861 
862 	case 256:
863 		value |= CURSOR_SIZE_256x256;
864 		break;
865 
866 	default:
867 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
868 		     state->crtc_h);
869 		return;
870 	}
871 
872 	value |= (bo->paddr >> 10) & 0x3fffff;
873 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
874 
875 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
876 	value = (bo->paddr >> 32) & 0x3;
877 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
878 #endif
879 
880 	/* enable cursor and set blend mode */
881 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
882 	value |= CURSOR_ENABLE;
883 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
884 
885 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
886 	value &= ~CURSOR_DST_BLEND_MASK;
887 	value &= ~CURSOR_SRC_BLEND_MASK;
888 	value |= CURSOR_MODE_NORMAL;
889 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
890 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
891 	value |= CURSOR_ALPHA;
892 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
893 
894 	/* position the cursor */
895 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
896 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
897 }
898 
899 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
900 					struct drm_plane_state *old_state)
901 {
902 	struct tegra_dc *dc;
903 	u32 value;
904 
905 	/* rien ne va plus */
906 	if (!old_state || !old_state->crtc)
907 		return;
908 
909 	dc = to_tegra_dc(old_state->crtc);
910 
911 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
912 	value &= ~CURSOR_ENABLE;
913 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
914 }
915 
916 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
917 	.atomic_check = tegra_cursor_atomic_check,
918 	.atomic_update = tegra_cursor_atomic_update,
919 	.atomic_disable = tegra_cursor_atomic_disable,
920 };
921 
922 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
923 						      struct tegra_dc *dc)
924 {
925 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
926 	struct tegra_plane *plane;
927 	unsigned int num_formats;
928 	const u32 *formats;
929 	int err;
930 
931 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
932 	if (!plane)
933 		return ERR_PTR(-ENOMEM);
934 
935 	/*
936 	 * This index is kind of fake. The cursor isn't a regular plane, but
937 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
938 	 * use the same programming. Setting this fake index here allows the
939 	 * code in tegra_add_plane_state() to do the right thing without the
940 	 * need to special-casing the cursor plane.
941 	 */
942 	plane->index = 6;
943 	plane->dc = dc;
944 
945 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
946 	formats = tegra_cursor_plane_formats;
947 
948 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
949 				       &tegra_plane_funcs, formats,
950 				       num_formats, NULL,
951 				       DRM_PLANE_TYPE_CURSOR, NULL);
952 	if (err < 0) {
953 		kfree(plane);
954 		return ERR_PTR(err);
955 	}
956 
957 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
958 
959 	return &plane->base;
960 }
961 
962 static const u32 tegra20_overlay_formats[] = {
963 	DRM_FORMAT_ARGB4444,
964 	DRM_FORMAT_ARGB1555,
965 	DRM_FORMAT_RGB565,
966 	DRM_FORMAT_RGBA5551,
967 	DRM_FORMAT_ABGR8888,
968 	DRM_FORMAT_ARGB8888,
969 	/* non-native formats */
970 	DRM_FORMAT_XRGB1555,
971 	DRM_FORMAT_RGBX5551,
972 	DRM_FORMAT_XBGR8888,
973 	DRM_FORMAT_XRGB8888,
974 	/* planar formats */
975 	DRM_FORMAT_UYVY,
976 	DRM_FORMAT_YUYV,
977 	DRM_FORMAT_YUV420,
978 	DRM_FORMAT_YUV422,
979 };
980 
981 static const u32 tegra114_overlay_formats[] = {
982 	DRM_FORMAT_ARGB4444,
983 	DRM_FORMAT_ARGB1555,
984 	DRM_FORMAT_RGB565,
985 	DRM_FORMAT_RGBA5551,
986 	DRM_FORMAT_ABGR8888,
987 	DRM_FORMAT_ARGB8888,
988 	/* new on Tegra114 */
989 	DRM_FORMAT_ABGR4444,
990 	DRM_FORMAT_ABGR1555,
991 	DRM_FORMAT_BGRA5551,
992 	DRM_FORMAT_XRGB1555,
993 	DRM_FORMAT_RGBX5551,
994 	DRM_FORMAT_XBGR1555,
995 	DRM_FORMAT_BGRX5551,
996 	DRM_FORMAT_BGR565,
997 	DRM_FORMAT_BGRA8888,
998 	DRM_FORMAT_RGBA8888,
999 	DRM_FORMAT_XRGB8888,
1000 	DRM_FORMAT_XBGR8888,
1001 	/* planar formats */
1002 	DRM_FORMAT_UYVY,
1003 	DRM_FORMAT_YUYV,
1004 	DRM_FORMAT_YUV420,
1005 	DRM_FORMAT_YUV422,
1006 };
1007 
1008 static const u32 tegra124_overlay_formats[] = {
1009 	DRM_FORMAT_ARGB4444,
1010 	DRM_FORMAT_ARGB1555,
1011 	DRM_FORMAT_RGB565,
1012 	DRM_FORMAT_RGBA5551,
1013 	DRM_FORMAT_ABGR8888,
1014 	DRM_FORMAT_ARGB8888,
1015 	/* new on Tegra114 */
1016 	DRM_FORMAT_ABGR4444,
1017 	DRM_FORMAT_ABGR1555,
1018 	DRM_FORMAT_BGRA5551,
1019 	DRM_FORMAT_XRGB1555,
1020 	DRM_FORMAT_RGBX5551,
1021 	DRM_FORMAT_XBGR1555,
1022 	DRM_FORMAT_BGRX5551,
1023 	DRM_FORMAT_BGR565,
1024 	DRM_FORMAT_BGRA8888,
1025 	DRM_FORMAT_RGBA8888,
1026 	DRM_FORMAT_XRGB8888,
1027 	DRM_FORMAT_XBGR8888,
1028 	/* new on Tegra124 */
1029 	DRM_FORMAT_RGBX8888,
1030 	DRM_FORMAT_BGRX8888,
1031 	/* planar formats */
1032 	DRM_FORMAT_UYVY,
1033 	DRM_FORMAT_YUYV,
1034 	DRM_FORMAT_YUV420,
1035 	DRM_FORMAT_YUV422,
1036 };
1037 
1038 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1039 						       struct tegra_dc *dc,
1040 						       unsigned int index,
1041 						       bool cursor)
1042 {
1043 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1044 	struct tegra_plane *plane;
1045 	unsigned int num_formats;
1046 	enum drm_plane_type type;
1047 	const u32 *formats;
1048 	int err;
1049 
1050 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1051 	if (!plane)
1052 		return ERR_PTR(-ENOMEM);
1053 
1054 	plane->offset = 0xa00 + 0x200 * index;
1055 	plane->index = index;
1056 	plane->dc = dc;
1057 
1058 	num_formats = dc->soc->num_overlay_formats;
1059 	formats = dc->soc->overlay_formats;
1060 
1061 	if (!cursor)
1062 		type = DRM_PLANE_TYPE_OVERLAY;
1063 	else
1064 		type = DRM_PLANE_TYPE_CURSOR;
1065 
1066 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1067 				       &tegra_plane_funcs, formats,
1068 				       num_formats, NULL, type, NULL);
1069 	if (err < 0) {
1070 		kfree(plane);
1071 		return ERR_PTR(err);
1072 	}
1073 
1074 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1075 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1076 
1077 	err = drm_plane_create_rotation_property(&plane->base,
1078 						 DRM_MODE_ROTATE_0,
1079 						 DRM_MODE_ROTATE_0 |
1080 						 DRM_MODE_REFLECT_Y);
1081 	if (err < 0)
1082 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1083 			err);
1084 
1085 	return &plane->base;
1086 }
1087 
1088 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1089 						    struct tegra_dc *dc)
1090 {
1091 	struct drm_plane *plane, *primary = NULL;
1092 	unsigned int i, j;
1093 
1094 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1095 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1096 
1097 		if (wgrp->dc == dc->pipe) {
1098 			for (j = 0; j < wgrp->num_windows; j++) {
1099 				unsigned int index = wgrp->windows[j];
1100 
1101 				plane = tegra_shared_plane_create(drm, dc,
1102 								  wgrp->index,
1103 								  index);
1104 				if (IS_ERR(plane))
1105 					return plane;
1106 
1107 				/*
1108 				 * Choose the first shared plane owned by this
1109 				 * head as the primary plane.
1110 				 */
1111 				if (!primary) {
1112 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1113 					primary = plane;
1114 				}
1115 			}
1116 		}
1117 	}
1118 
1119 	return primary;
1120 }
1121 
1122 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1123 					     struct tegra_dc *dc)
1124 {
1125 	struct drm_plane *planes[2], *primary;
1126 	unsigned int planes_num;
1127 	unsigned int i;
1128 	int err;
1129 
1130 	primary = tegra_primary_plane_create(drm, dc);
1131 	if (IS_ERR(primary))
1132 		return primary;
1133 
1134 	if (dc->soc->supports_cursor)
1135 		planes_num = 2;
1136 	else
1137 		planes_num = 1;
1138 
1139 	for (i = 0; i < planes_num; i++) {
1140 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1141 							  false);
1142 		if (IS_ERR(planes[i])) {
1143 			err = PTR_ERR(planes[i]);
1144 
1145 			while (i--)
1146 				tegra_plane_funcs.destroy(planes[i]);
1147 
1148 			tegra_plane_funcs.destroy(primary);
1149 			return ERR_PTR(err);
1150 		}
1151 	}
1152 
1153 	return primary;
1154 }
1155 
1156 static void tegra_dc_destroy(struct drm_crtc *crtc)
1157 {
1158 	drm_crtc_cleanup(crtc);
1159 }
1160 
1161 static void tegra_crtc_reset(struct drm_crtc *crtc)
1162 {
1163 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1164 
1165 	if (crtc->state)
1166 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1167 
1168 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1169 	drm_crtc_vblank_reset(crtc);
1170 }
1171 
1172 static struct drm_crtc_state *
1173 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1174 {
1175 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1176 	struct tegra_dc_state *copy;
1177 
1178 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1179 	if (!copy)
1180 		return NULL;
1181 
1182 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1183 	copy->clk = state->clk;
1184 	copy->pclk = state->pclk;
1185 	copy->div = state->div;
1186 	copy->planes = state->planes;
1187 
1188 	return &copy->base;
1189 }
1190 
1191 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1192 					    struct drm_crtc_state *state)
1193 {
1194 	__drm_atomic_helper_crtc_destroy_state(state);
1195 	kfree(state);
1196 }
1197 
1198 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1199 
1200 static const struct debugfs_reg32 tegra_dc_regs[] = {
1201 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1202 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1203 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1204 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1205 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1206 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1207 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1208 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1209 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1210 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1211 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1212 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1213 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1214 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1215 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1216 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1217 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1218 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1219 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1220 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1221 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1222 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1223 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1224 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1225 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1226 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1227 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1228 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1229 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1230 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1231 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1232 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1233 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1234 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1235 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1236 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1237 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1238 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1239 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1240 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1241 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1242 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1243 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1244 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1245 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1246 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1247 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1248 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1249 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1250 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1251 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1252 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1253 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1254 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1255 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1256 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1257 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1258 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1259 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1260 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1261 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1262 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1263 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1264 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1265 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1266 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1267 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1268 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1269 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1270 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1271 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1272 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1273 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1274 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1275 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1276 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1277 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1278 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1279 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1280 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1281 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1282 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1283 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1284 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1285 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1286 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1287 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1288 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1289 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1290 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1291 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1292 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1293 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1294 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1295 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1296 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1297 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1298 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1299 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1300 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1301 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1302 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1303 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1304 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1305 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1306 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1307 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1308 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1309 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1310 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1311 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1312 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1313 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1315 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1316 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1317 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1318 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1319 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1320 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1321 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1322 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1323 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1324 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1325 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1326 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1327 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1328 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1329 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1330 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1331 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1332 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1333 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1334 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1335 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1336 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1337 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1338 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1339 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1340 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1341 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1342 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1343 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1344 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1345 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1346 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1347 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1348 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1349 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1350 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1351 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1352 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1353 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1354 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1355 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1356 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1357 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1358 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1359 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1360 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1361 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1362 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1363 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1364 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1365 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1366 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1367 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1368 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1369 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1370 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1371 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1372 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1373 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1374 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1375 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1376 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1377 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1378 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1379 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1380 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1381 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1382 	DEBUGFS_REG32(DC_WIN_POSITION),
1383 	DEBUGFS_REG32(DC_WIN_SIZE),
1384 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1385 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1386 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1387 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1388 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1389 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1390 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1391 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1392 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1393 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1394 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1395 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1396 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1397 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1398 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1399 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1400 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1401 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1402 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1403 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1404 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1405 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1406 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1407 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1408 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1409 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1410 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1411 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1412 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1413 };
1414 
1415 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1416 {
1417 	struct drm_info_node *node = s->private;
1418 	struct tegra_dc *dc = node->info_ent->data;
1419 	unsigned int i;
1420 	int err = 0;
1421 
1422 	drm_modeset_lock(&dc->base.mutex, NULL);
1423 
1424 	if (!dc->base.state->active) {
1425 		err = -EBUSY;
1426 		goto unlock;
1427 	}
1428 
1429 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1430 		unsigned int offset = tegra_dc_regs[i].offset;
1431 
1432 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1433 			   offset, tegra_dc_readl(dc, offset));
1434 	}
1435 
1436 unlock:
1437 	drm_modeset_unlock(&dc->base.mutex);
1438 	return err;
1439 }
1440 
1441 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1442 {
1443 	struct drm_info_node *node = s->private;
1444 	struct tegra_dc *dc = node->info_ent->data;
1445 	int err = 0;
1446 	u32 value;
1447 
1448 	drm_modeset_lock(&dc->base.mutex, NULL);
1449 
1450 	if (!dc->base.state->active) {
1451 		err = -EBUSY;
1452 		goto unlock;
1453 	}
1454 
1455 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1456 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1457 	tegra_dc_commit(dc);
1458 
1459 	drm_crtc_wait_one_vblank(&dc->base);
1460 	drm_crtc_wait_one_vblank(&dc->base);
1461 
1462 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1463 	seq_printf(s, "%08x\n", value);
1464 
1465 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1466 
1467 unlock:
1468 	drm_modeset_unlock(&dc->base.mutex);
1469 	return err;
1470 }
1471 
1472 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1473 {
1474 	struct drm_info_node *node = s->private;
1475 	struct tegra_dc *dc = node->info_ent->data;
1476 
1477 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1478 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1479 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1480 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1481 
1482 	return 0;
1483 }
1484 
1485 static struct drm_info_list debugfs_files[] = {
1486 	{ "regs", tegra_dc_show_regs, 0, NULL },
1487 	{ "crc", tegra_dc_show_crc, 0, NULL },
1488 	{ "stats", tegra_dc_show_stats, 0, NULL },
1489 };
1490 
1491 static int tegra_dc_late_register(struct drm_crtc *crtc)
1492 {
1493 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1494 	struct drm_minor *minor = crtc->dev->primary;
1495 	struct dentry *root;
1496 	struct tegra_dc *dc = to_tegra_dc(crtc);
1497 	int err;
1498 
1499 #ifdef CONFIG_DEBUG_FS
1500 	root = crtc->debugfs_entry;
1501 #else
1502 	root = NULL;
1503 #endif
1504 
1505 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1506 				    GFP_KERNEL);
1507 	if (!dc->debugfs_files)
1508 		return -ENOMEM;
1509 
1510 	for (i = 0; i < count; i++)
1511 		dc->debugfs_files[i].data = dc;
1512 
1513 	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1514 	if (err < 0)
1515 		goto free;
1516 
1517 	return 0;
1518 
1519 free:
1520 	kfree(dc->debugfs_files);
1521 	dc->debugfs_files = NULL;
1522 
1523 	return err;
1524 }
1525 
1526 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1527 {
1528 	unsigned int count = ARRAY_SIZE(debugfs_files);
1529 	struct drm_minor *minor = crtc->dev->primary;
1530 	struct tegra_dc *dc = to_tegra_dc(crtc);
1531 
1532 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1533 	kfree(dc->debugfs_files);
1534 	dc->debugfs_files = NULL;
1535 }
1536 
1537 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1538 {
1539 	struct tegra_dc *dc = to_tegra_dc(crtc);
1540 
1541 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1542 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1543 		return host1x_syncpt_read(dc->syncpt);
1544 
1545 	/* fallback to software emulated VBLANK counter */
1546 	return (u32)drm_crtc_vblank_count(&dc->base);
1547 }
1548 
1549 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1550 {
1551 	struct tegra_dc *dc = to_tegra_dc(crtc);
1552 	u32 value;
1553 
1554 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1555 	value |= VBLANK_INT;
1556 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1557 
1558 	return 0;
1559 }
1560 
1561 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1562 {
1563 	struct tegra_dc *dc = to_tegra_dc(crtc);
1564 	u32 value;
1565 
1566 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1567 	value &= ~VBLANK_INT;
1568 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1569 }
1570 
1571 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1572 	.page_flip = drm_atomic_helper_page_flip,
1573 	.set_config = drm_atomic_helper_set_config,
1574 	.destroy = tegra_dc_destroy,
1575 	.reset = tegra_crtc_reset,
1576 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1577 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1578 	.late_register = tegra_dc_late_register,
1579 	.early_unregister = tegra_dc_early_unregister,
1580 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1581 	.enable_vblank = tegra_dc_enable_vblank,
1582 	.disable_vblank = tegra_dc_disable_vblank,
1583 };
1584 
1585 static int tegra_dc_set_timings(struct tegra_dc *dc,
1586 				struct drm_display_mode *mode)
1587 {
1588 	unsigned int h_ref_to_sync = 1;
1589 	unsigned int v_ref_to_sync = 1;
1590 	unsigned long value;
1591 
1592 	if (!dc->soc->has_nvdisplay) {
1593 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1594 
1595 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1596 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1597 	}
1598 
1599 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1600 		((mode->hsync_end - mode->hsync_start) <<  0);
1601 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1602 
1603 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1604 		((mode->htotal - mode->hsync_end) <<  0);
1605 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1606 
1607 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1608 		((mode->hsync_start - mode->hdisplay) <<  0);
1609 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1610 
1611 	value = (mode->vdisplay << 16) | mode->hdisplay;
1612 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1613 
1614 	return 0;
1615 }
1616 
1617 /**
1618  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1619  *     state
1620  * @dc: display controller
1621  * @crtc_state: CRTC atomic state
1622  * @clk: parent clock for display controller
1623  * @pclk: pixel clock
1624  * @div: shift clock divider
1625  *
1626  * Returns:
1627  * 0 on success or a negative error-code on failure.
1628  */
1629 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1630 			       struct drm_crtc_state *crtc_state,
1631 			       struct clk *clk, unsigned long pclk,
1632 			       unsigned int div)
1633 {
1634 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1635 
1636 	if (!clk_has_parent(dc->clk, clk))
1637 		return -EINVAL;
1638 
1639 	state->clk = clk;
1640 	state->pclk = pclk;
1641 	state->div = div;
1642 
1643 	return 0;
1644 }
1645 
1646 static void tegra_dc_commit_state(struct tegra_dc *dc,
1647 				  struct tegra_dc_state *state)
1648 {
1649 	u32 value;
1650 	int err;
1651 
1652 	err = clk_set_parent(dc->clk, state->clk);
1653 	if (err < 0)
1654 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1655 
1656 	/*
1657 	 * Outputs may not want to change the parent clock rate. This is only
1658 	 * relevant to Tegra20 where only a single display PLL is available.
1659 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1660 	 * panel would need to be driven by some other clock such as PLL_P
1661 	 * which is shared with other peripherals. Changing the clock rate
1662 	 * should therefore be avoided.
1663 	 */
1664 	if (state->pclk > 0) {
1665 		err = clk_set_rate(state->clk, state->pclk);
1666 		if (err < 0)
1667 			dev_err(dc->dev,
1668 				"failed to set clock rate to %lu Hz\n",
1669 				state->pclk);
1670 	}
1671 
1672 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1673 		      state->div);
1674 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1675 
1676 	if (!dc->soc->has_nvdisplay) {
1677 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1678 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1679 	}
1680 
1681 	err = clk_set_rate(dc->clk, state->pclk);
1682 	if (err < 0)
1683 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1684 			dc->clk, state->pclk, err);
1685 }
1686 
1687 static void tegra_dc_stop(struct tegra_dc *dc)
1688 {
1689 	u32 value;
1690 
1691 	/* stop the display controller */
1692 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1693 	value &= ~DISP_CTRL_MODE_MASK;
1694 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1695 
1696 	tegra_dc_commit(dc);
1697 }
1698 
1699 static bool tegra_dc_idle(struct tegra_dc *dc)
1700 {
1701 	u32 value;
1702 
1703 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1704 
1705 	return (value & DISP_CTRL_MODE_MASK) == 0;
1706 }
1707 
1708 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1709 {
1710 	timeout = jiffies + msecs_to_jiffies(timeout);
1711 
1712 	while (time_before(jiffies, timeout)) {
1713 		if (tegra_dc_idle(dc))
1714 			return 0;
1715 
1716 		usleep_range(1000, 2000);
1717 	}
1718 
1719 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1720 	return -ETIMEDOUT;
1721 }
1722 
1723 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1724 				      struct drm_crtc_state *old_state)
1725 {
1726 	struct tegra_dc *dc = to_tegra_dc(crtc);
1727 	u32 value;
1728 
1729 	if (!tegra_dc_idle(dc)) {
1730 		tegra_dc_stop(dc);
1731 
1732 		/*
1733 		 * Ignore the return value, there isn't anything useful to do
1734 		 * in case this fails.
1735 		 */
1736 		tegra_dc_wait_idle(dc, 100);
1737 	}
1738 
1739 	/*
1740 	 * This should really be part of the RGB encoder driver, but clearing
1741 	 * these bits has the side-effect of stopping the display controller.
1742 	 * When that happens no VBLANK interrupts will be raised. At the same
1743 	 * time the encoder is disabled before the display controller, so the
1744 	 * above code is always going to timeout waiting for the controller
1745 	 * to go idle.
1746 	 *
1747 	 * Given the close coupling between the RGB encoder and the display
1748 	 * controller doing it here is still kind of okay. None of the other
1749 	 * encoder drivers require these bits to be cleared.
1750 	 *
1751 	 * XXX: Perhaps given that the display controller is switched off at
1752 	 * this point anyway maybe clearing these bits isn't even useful for
1753 	 * the RGB encoder?
1754 	 */
1755 	if (dc->rgb) {
1756 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1757 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1758 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1759 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1760 	}
1761 
1762 	tegra_dc_stats_reset(&dc->stats);
1763 	drm_crtc_vblank_off(crtc);
1764 
1765 	spin_lock_irq(&crtc->dev->event_lock);
1766 
1767 	if (crtc->state->event) {
1768 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1769 		crtc->state->event = NULL;
1770 	}
1771 
1772 	spin_unlock_irq(&crtc->dev->event_lock);
1773 
1774 	pm_runtime_put_sync(dc->dev);
1775 }
1776 
1777 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1778 				     struct drm_crtc_state *old_state)
1779 {
1780 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1781 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1782 	struct tegra_dc *dc = to_tegra_dc(crtc);
1783 	u32 value;
1784 
1785 	pm_runtime_get_sync(dc->dev);
1786 
1787 	/* initialize display controller */
1788 	if (dc->syncpt) {
1789 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1790 
1791 		if (dc->soc->has_nvdisplay)
1792 			enable = 1 << 31;
1793 		else
1794 			enable = 1 << 8;
1795 
1796 		value = SYNCPT_CNTRL_NO_STALL;
1797 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1798 
1799 		value = enable | syncpt;
1800 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1801 	}
1802 
1803 	if (dc->soc->has_nvdisplay) {
1804 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1805 			DSC_OBUF_UF_INT;
1806 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1807 
1808 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1809 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1810 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1811 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1812 			VBLANK_INT | FRAME_END_INT;
1813 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1814 
1815 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1816 			FRAME_END_INT;
1817 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1818 
1819 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1820 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1821 
1822 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1823 	} else {
1824 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1825 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1826 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1827 
1828 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1829 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1830 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1831 
1832 		/* initialize timer */
1833 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1834 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1835 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1836 
1837 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1838 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1839 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1840 
1841 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1842 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1843 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1844 
1845 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1846 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1847 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1848 	}
1849 
1850 	if (dc->soc->supports_background_color)
1851 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1852 	else
1853 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1854 
1855 	/* apply PLL and pixel clock changes */
1856 	tegra_dc_commit_state(dc, state);
1857 
1858 	/* program display mode */
1859 	tegra_dc_set_timings(dc, mode);
1860 
1861 	/* interlacing isn't supported yet, so disable it */
1862 	if (dc->soc->supports_interlacing) {
1863 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1864 		value &= ~INTERLACE_ENABLE;
1865 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1866 	}
1867 
1868 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1869 	value &= ~DISP_CTRL_MODE_MASK;
1870 	value |= DISP_CTRL_MODE_C_DISPLAY;
1871 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1872 
1873 	if (!dc->soc->has_nvdisplay) {
1874 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1875 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1876 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1877 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1878 	}
1879 
1880 	/* enable underflow reporting and display red for missing pixels */
1881 	if (dc->soc->has_nvdisplay) {
1882 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1883 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1884 	}
1885 
1886 	tegra_dc_commit(dc);
1887 
1888 	drm_crtc_vblank_on(crtc);
1889 }
1890 
1891 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1892 				    struct drm_crtc_state *old_crtc_state)
1893 {
1894 	unsigned long flags;
1895 
1896 	if (crtc->state->event) {
1897 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1898 
1899 		if (drm_crtc_vblank_get(crtc) != 0)
1900 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1901 		else
1902 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1903 
1904 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1905 
1906 		crtc->state->event = NULL;
1907 	}
1908 }
1909 
1910 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1911 				    struct drm_crtc_state *old_crtc_state)
1912 {
1913 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1914 	struct tegra_dc *dc = to_tegra_dc(crtc);
1915 	u32 value;
1916 
1917 	value = state->planes << 8 | GENERAL_UPDATE;
1918 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1919 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1920 
1921 	value = state->planes | GENERAL_ACT_REQ;
1922 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1923 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1924 }
1925 
1926 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1927 	.atomic_begin = tegra_crtc_atomic_begin,
1928 	.atomic_flush = tegra_crtc_atomic_flush,
1929 	.atomic_enable = tegra_crtc_atomic_enable,
1930 	.atomic_disable = tegra_crtc_atomic_disable,
1931 };
1932 
1933 static irqreturn_t tegra_dc_irq(int irq, void *data)
1934 {
1935 	struct tegra_dc *dc = data;
1936 	unsigned long status;
1937 
1938 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1939 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1940 
1941 	if (status & FRAME_END_INT) {
1942 		/*
1943 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1944 		*/
1945 		dc->stats.frames++;
1946 	}
1947 
1948 	if (status & VBLANK_INT) {
1949 		/*
1950 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1951 		*/
1952 		drm_crtc_handle_vblank(&dc->base);
1953 		dc->stats.vblank++;
1954 	}
1955 
1956 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1957 		/*
1958 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1959 		*/
1960 		dc->stats.underflow++;
1961 	}
1962 
1963 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1964 		/*
1965 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1966 		*/
1967 		dc->stats.overflow++;
1968 	}
1969 
1970 	if (status & HEAD_UF_INT) {
1971 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1972 		dc->stats.underflow++;
1973 	}
1974 
1975 	return IRQ_HANDLED;
1976 }
1977 
1978 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1979 {
1980 	unsigned int i;
1981 
1982 	if (!dc->soc->wgrps)
1983 		return true;
1984 
1985 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1986 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1987 
1988 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1989 			return true;
1990 	}
1991 
1992 	return false;
1993 }
1994 
1995 static int tegra_dc_init(struct host1x_client *client)
1996 {
1997 	struct drm_device *drm = dev_get_drvdata(client->parent);
1998 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1999 	struct tegra_dc *dc = host1x_client_to_dc(client);
2000 	struct tegra_drm *tegra = drm->dev_private;
2001 	struct drm_plane *primary = NULL;
2002 	struct drm_plane *cursor = NULL;
2003 	int err;
2004 
2005 	/*
2006 	 * XXX do not register DCs with no window groups because we cannot
2007 	 * assign a primary plane to them, which in turn will cause KMS to
2008 	 * crash.
2009 	 */
2010 	if (!tegra_dc_has_window_groups(dc))
2011 		return 0;
2012 
2013 	dc->syncpt = host1x_syncpt_request(client, flags);
2014 	if (!dc->syncpt)
2015 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2016 
2017 	err = host1x_client_iommu_attach(client, true);
2018 	if (err < 0) {
2019 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2020 		return err;
2021 	}
2022 
2023 	if (dc->soc->wgrps)
2024 		primary = tegra_dc_add_shared_planes(drm, dc);
2025 	else
2026 		primary = tegra_dc_add_planes(drm, dc);
2027 
2028 	if (IS_ERR(primary)) {
2029 		err = PTR_ERR(primary);
2030 		goto cleanup;
2031 	}
2032 
2033 	if (dc->soc->supports_cursor) {
2034 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2035 		if (IS_ERR(cursor)) {
2036 			err = PTR_ERR(cursor);
2037 			goto cleanup;
2038 		}
2039 	} else {
2040 		/* dedicate one overlay to mouse cursor */
2041 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2042 		if (IS_ERR(cursor)) {
2043 			err = PTR_ERR(cursor);
2044 			goto cleanup;
2045 		}
2046 	}
2047 
2048 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2049 					&tegra_crtc_funcs, NULL);
2050 	if (err < 0)
2051 		goto cleanup;
2052 
2053 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2054 
2055 	/*
2056 	 * Keep track of the minimum pitch alignment across all display
2057 	 * controllers.
2058 	 */
2059 	if (dc->soc->pitch_align > tegra->pitch_align)
2060 		tegra->pitch_align = dc->soc->pitch_align;
2061 
2062 	err = tegra_dc_rgb_init(drm, dc);
2063 	if (err < 0 && err != -ENODEV) {
2064 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2065 		goto cleanup;
2066 	}
2067 
2068 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2069 			       dev_name(dc->dev), dc);
2070 	if (err < 0) {
2071 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2072 			err);
2073 		goto cleanup;
2074 	}
2075 
2076 	/*
2077 	 * Inherit the DMA parameters (such as maximum segment size) from the
2078 	 * parent device.
2079 	 */
2080 	client->dev->dma_parms = client->parent->dma_parms;
2081 
2082 	return 0;
2083 
2084 cleanup:
2085 	if (!IS_ERR_OR_NULL(cursor))
2086 		drm_plane_cleanup(cursor);
2087 
2088 	if (!IS_ERR(primary))
2089 		drm_plane_cleanup(primary);
2090 
2091 	host1x_client_iommu_detach(client);
2092 	host1x_syncpt_free(dc->syncpt);
2093 
2094 	return err;
2095 }
2096 
2097 static int tegra_dc_exit(struct host1x_client *client)
2098 {
2099 	struct tegra_dc *dc = host1x_client_to_dc(client);
2100 	int err;
2101 
2102 	if (!tegra_dc_has_window_groups(dc))
2103 		return 0;
2104 
2105 	/* avoid a dangling pointer just in case this disappears */
2106 	client->dev->dma_parms = NULL;
2107 
2108 	devm_free_irq(dc->dev, dc->irq, dc);
2109 
2110 	err = tegra_dc_rgb_exit(dc);
2111 	if (err) {
2112 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2113 		return err;
2114 	}
2115 
2116 	host1x_client_iommu_detach(client);
2117 	host1x_syncpt_free(dc->syncpt);
2118 
2119 	return 0;
2120 }
2121 
2122 static const struct host1x_client_ops dc_client_ops = {
2123 	.init = tegra_dc_init,
2124 	.exit = tegra_dc_exit,
2125 };
2126 
2127 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2128 	.supports_background_color = false,
2129 	.supports_interlacing = false,
2130 	.supports_cursor = false,
2131 	.supports_block_linear = false,
2132 	.has_legacy_blending = true,
2133 	.pitch_align = 8,
2134 	.has_powergate = false,
2135 	.coupled_pm = true,
2136 	.has_nvdisplay = false,
2137 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2138 	.primary_formats = tegra20_primary_formats,
2139 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2140 	.overlay_formats = tegra20_overlay_formats,
2141 	.modifiers = tegra20_modifiers,
2142 	.has_win_a_without_filters = true,
2143 	.has_win_c_without_vert_filter = true,
2144 };
2145 
2146 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2147 	.supports_background_color = false,
2148 	.supports_interlacing = false,
2149 	.supports_cursor = false,
2150 	.supports_block_linear = false,
2151 	.has_legacy_blending = true,
2152 	.pitch_align = 8,
2153 	.has_powergate = false,
2154 	.coupled_pm = false,
2155 	.has_nvdisplay = false,
2156 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2157 	.primary_formats = tegra20_primary_formats,
2158 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2159 	.overlay_formats = tegra20_overlay_formats,
2160 	.modifiers = tegra20_modifiers,
2161 	.has_win_a_without_filters = false,
2162 	.has_win_c_without_vert_filter = false,
2163 };
2164 
2165 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2166 	.supports_background_color = false,
2167 	.supports_interlacing = false,
2168 	.supports_cursor = false,
2169 	.supports_block_linear = false,
2170 	.has_legacy_blending = true,
2171 	.pitch_align = 64,
2172 	.has_powergate = true,
2173 	.coupled_pm = false,
2174 	.has_nvdisplay = false,
2175 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2176 	.primary_formats = tegra114_primary_formats,
2177 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2178 	.overlay_formats = tegra114_overlay_formats,
2179 	.modifiers = tegra20_modifiers,
2180 	.has_win_a_without_filters = false,
2181 	.has_win_c_without_vert_filter = false,
2182 };
2183 
2184 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2185 	.supports_background_color = true,
2186 	.supports_interlacing = true,
2187 	.supports_cursor = true,
2188 	.supports_block_linear = true,
2189 	.has_legacy_blending = false,
2190 	.pitch_align = 64,
2191 	.has_powergate = true,
2192 	.coupled_pm = false,
2193 	.has_nvdisplay = false,
2194 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2195 	.primary_formats = tegra124_primary_formats,
2196 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2197 	.overlay_formats = tegra124_overlay_formats,
2198 	.modifiers = tegra124_modifiers,
2199 	.has_win_a_without_filters = false,
2200 	.has_win_c_without_vert_filter = false,
2201 };
2202 
2203 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2204 	.supports_background_color = true,
2205 	.supports_interlacing = true,
2206 	.supports_cursor = true,
2207 	.supports_block_linear = true,
2208 	.has_legacy_blending = false,
2209 	.pitch_align = 64,
2210 	.has_powergate = true,
2211 	.coupled_pm = false,
2212 	.has_nvdisplay = false,
2213 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2214 	.primary_formats = tegra114_primary_formats,
2215 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2216 	.overlay_formats = tegra114_overlay_formats,
2217 	.modifiers = tegra124_modifiers,
2218 	.has_win_a_without_filters = false,
2219 	.has_win_c_without_vert_filter = false,
2220 };
2221 
2222 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2223 	{
2224 		.index = 0,
2225 		.dc = 0,
2226 		.windows = (const unsigned int[]) { 0 },
2227 		.num_windows = 1,
2228 	}, {
2229 		.index = 1,
2230 		.dc = 1,
2231 		.windows = (const unsigned int[]) { 1 },
2232 		.num_windows = 1,
2233 	}, {
2234 		.index = 2,
2235 		.dc = 1,
2236 		.windows = (const unsigned int[]) { 2 },
2237 		.num_windows = 1,
2238 	}, {
2239 		.index = 3,
2240 		.dc = 2,
2241 		.windows = (const unsigned int[]) { 3 },
2242 		.num_windows = 1,
2243 	}, {
2244 		.index = 4,
2245 		.dc = 2,
2246 		.windows = (const unsigned int[]) { 4 },
2247 		.num_windows = 1,
2248 	}, {
2249 		.index = 5,
2250 		.dc = 2,
2251 		.windows = (const unsigned int[]) { 5 },
2252 		.num_windows = 1,
2253 	},
2254 };
2255 
2256 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2257 	.supports_background_color = true,
2258 	.supports_interlacing = true,
2259 	.supports_cursor = true,
2260 	.supports_block_linear = true,
2261 	.has_legacy_blending = false,
2262 	.pitch_align = 64,
2263 	.has_powergate = false,
2264 	.coupled_pm = false,
2265 	.has_nvdisplay = true,
2266 	.wgrps = tegra186_dc_wgrps,
2267 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2268 };
2269 
2270 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2271 	{
2272 		.index = 0,
2273 		.dc = 0,
2274 		.windows = (const unsigned int[]) { 0 },
2275 		.num_windows = 1,
2276 	}, {
2277 		.index = 1,
2278 		.dc = 1,
2279 		.windows = (const unsigned int[]) { 1 },
2280 		.num_windows = 1,
2281 	}, {
2282 		.index = 2,
2283 		.dc = 1,
2284 		.windows = (const unsigned int[]) { 2 },
2285 		.num_windows = 1,
2286 	}, {
2287 		.index = 3,
2288 		.dc = 2,
2289 		.windows = (const unsigned int[]) { 3 },
2290 		.num_windows = 1,
2291 	}, {
2292 		.index = 4,
2293 		.dc = 2,
2294 		.windows = (const unsigned int[]) { 4 },
2295 		.num_windows = 1,
2296 	}, {
2297 		.index = 5,
2298 		.dc = 2,
2299 		.windows = (const unsigned int[]) { 5 },
2300 		.num_windows = 1,
2301 	},
2302 };
2303 
2304 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2305 	.supports_background_color = true,
2306 	.supports_interlacing = true,
2307 	.supports_cursor = true,
2308 	.supports_block_linear = true,
2309 	.has_legacy_blending = false,
2310 	.pitch_align = 64,
2311 	.has_powergate = false,
2312 	.coupled_pm = false,
2313 	.has_nvdisplay = true,
2314 	.wgrps = tegra194_dc_wgrps,
2315 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2316 };
2317 
2318 static const struct of_device_id tegra_dc_of_match[] = {
2319 	{
2320 		.compatible = "nvidia,tegra194-dc",
2321 		.data = &tegra194_dc_soc_info,
2322 	}, {
2323 		.compatible = "nvidia,tegra186-dc",
2324 		.data = &tegra186_dc_soc_info,
2325 	}, {
2326 		.compatible = "nvidia,tegra210-dc",
2327 		.data = &tegra210_dc_soc_info,
2328 	}, {
2329 		.compatible = "nvidia,tegra124-dc",
2330 		.data = &tegra124_dc_soc_info,
2331 	}, {
2332 		.compatible = "nvidia,tegra114-dc",
2333 		.data = &tegra114_dc_soc_info,
2334 	}, {
2335 		.compatible = "nvidia,tegra30-dc",
2336 		.data = &tegra30_dc_soc_info,
2337 	}, {
2338 		.compatible = "nvidia,tegra20-dc",
2339 		.data = &tegra20_dc_soc_info,
2340 	}, {
2341 		/* sentinel */
2342 	}
2343 };
2344 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2345 
2346 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2347 {
2348 	struct device_node *np;
2349 	u32 value = 0;
2350 	int err;
2351 
2352 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2353 	if (err < 0) {
2354 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2355 
2356 		/*
2357 		 * If the nvidia,head property isn't present, try to find the
2358 		 * correct head number by looking up the position of this
2359 		 * display controller's node within the device tree. Assuming
2360 		 * that the nodes are ordered properly in the DTS file and
2361 		 * that the translation into a flattened device tree blob
2362 		 * preserves that ordering this will actually yield the right
2363 		 * head number.
2364 		 *
2365 		 * If those assumptions don't hold, this will still work for
2366 		 * cases where only a single display controller is used.
2367 		 */
2368 		for_each_matching_node(np, tegra_dc_of_match) {
2369 			if (np == dc->dev->of_node) {
2370 				of_node_put(np);
2371 				break;
2372 			}
2373 
2374 			value++;
2375 		}
2376 	}
2377 
2378 	dc->pipe = value;
2379 
2380 	return 0;
2381 }
2382 
2383 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2384 {
2385 	struct tegra_dc *dc = dev_get_drvdata(dev);
2386 	unsigned int pipe = (unsigned long)(void *)data;
2387 
2388 	return dc->pipe == pipe;
2389 }
2390 
2391 static int tegra_dc_couple(struct tegra_dc *dc)
2392 {
2393 	/*
2394 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2395 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2396 	 * POWER_CONTROL registers during CRTC enabling.
2397 	 */
2398 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2399 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2400 		struct device_link *link;
2401 		struct device *partner;
2402 
2403 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2404 					     tegra_dc_match_by_pipe);
2405 		if (!partner)
2406 			return -EPROBE_DEFER;
2407 
2408 		link = device_link_add(dc->dev, partner, flags);
2409 		if (!link) {
2410 			dev_err(dc->dev, "failed to link controllers\n");
2411 			return -EINVAL;
2412 		}
2413 
2414 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int tegra_dc_probe(struct platform_device *pdev)
2421 {
2422 	struct resource *regs;
2423 	struct tegra_dc *dc;
2424 	int err;
2425 
2426 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2427 	if (!dc)
2428 		return -ENOMEM;
2429 
2430 	dc->soc = of_device_get_match_data(&pdev->dev);
2431 
2432 	INIT_LIST_HEAD(&dc->list);
2433 	dc->dev = &pdev->dev;
2434 
2435 	err = tegra_dc_parse_dt(dc);
2436 	if (err < 0)
2437 		return err;
2438 
2439 	err = tegra_dc_couple(dc);
2440 	if (err < 0)
2441 		return err;
2442 
2443 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2444 	if (IS_ERR(dc->clk)) {
2445 		dev_err(&pdev->dev, "failed to get clock\n");
2446 		return PTR_ERR(dc->clk);
2447 	}
2448 
2449 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2450 	if (IS_ERR(dc->rst)) {
2451 		dev_err(&pdev->dev, "failed to get reset\n");
2452 		return PTR_ERR(dc->rst);
2453 	}
2454 
2455 	/* assert reset and disable clock */
2456 	err = clk_prepare_enable(dc->clk);
2457 	if (err < 0)
2458 		return err;
2459 
2460 	usleep_range(2000, 4000);
2461 
2462 	err = reset_control_assert(dc->rst);
2463 	if (err < 0)
2464 		return err;
2465 
2466 	usleep_range(2000, 4000);
2467 
2468 	clk_disable_unprepare(dc->clk);
2469 
2470 	if (dc->soc->has_powergate) {
2471 		if (dc->pipe == 0)
2472 			dc->powergate = TEGRA_POWERGATE_DIS;
2473 		else
2474 			dc->powergate = TEGRA_POWERGATE_DISB;
2475 
2476 		tegra_powergate_power_off(dc->powergate);
2477 	}
2478 
2479 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2480 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2481 	if (IS_ERR(dc->regs))
2482 		return PTR_ERR(dc->regs);
2483 
2484 	dc->irq = platform_get_irq(pdev, 0);
2485 	if (dc->irq < 0) {
2486 		dev_err(&pdev->dev, "failed to get IRQ\n");
2487 		return -ENXIO;
2488 	}
2489 
2490 	err = tegra_dc_rgb_probe(dc);
2491 	if (err < 0 && err != -ENODEV) {
2492 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2493 		return err;
2494 	}
2495 
2496 	platform_set_drvdata(pdev, dc);
2497 	pm_runtime_enable(&pdev->dev);
2498 
2499 	INIT_LIST_HEAD(&dc->client.list);
2500 	dc->client.ops = &dc_client_ops;
2501 	dc->client.dev = &pdev->dev;
2502 
2503 	err = host1x_client_register(&dc->client);
2504 	if (err < 0) {
2505 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2506 			err);
2507 		return err;
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static int tegra_dc_remove(struct platform_device *pdev)
2514 {
2515 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2516 	int err;
2517 
2518 	err = host1x_client_unregister(&dc->client);
2519 	if (err < 0) {
2520 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2521 			err);
2522 		return err;
2523 	}
2524 
2525 	err = tegra_dc_rgb_remove(dc);
2526 	if (err < 0) {
2527 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2528 		return err;
2529 	}
2530 
2531 	pm_runtime_disable(&pdev->dev);
2532 
2533 	return 0;
2534 }
2535 
2536 #ifdef CONFIG_PM
2537 static int tegra_dc_suspend(struct device *dev)
2538 {
2539 	struct tegra_dc *dc = dev_get_drvdata(dev);
2540 	int err;
2541 
2542 	err = reset_control_assert(dc->rst);
2543 	if (err < 0) {
2544 		dev_err(dev, "failed to assert reset: %d\n", err);
2545 		return err;
2546 	}
2547 
2548 	if (dc->soc->has_powergate)
2549 		tegra_powergate_power_off(dc->powergate);
2550 
2551 	clk_disable_unprepare(dc->clk);
2552 
2553 	return 0;
2554 }
2555 
2556 static int tegra_dc_resume(struct device *dev)
2557 {
2558 	struct tegra_dc *dc = dev_get_drvdata(dev);
2559 	int err;
2560 
2561 	if (dc->soc->has_powergate) {
2562 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2563 							dc->rst);
2564 		if (err < 0) {
2565 			dev_err(dev, "failed to power partition: %d\n", err);
2566 			return err;
2567 		}
2568 	} else {
2569 		err = clk_prepare_enable(dc->clk);
2570 		if (err < 0) {
2571 			dev_err(dev, "failed to enable clock: %d\n", err);
2572 			return err;
2573 		}
2574 
2575 		err = reset_control_deassert(dc->rst);
2576 		if (err < 0) {
2577 			dev_err(dev, "failed to deassert reset: %d\n", err);
2578 			return err;
2579 		}
2580 	}
2581 
2582 	return 0;
2583 }
2584 #endif
2585 
2586 static const struct dev_pm_ops tegra_dc_pm_ops = {
2587 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2588 };
2589 
2590 struct platform_driver tegra_dc_driver = {
2591 	.driver = {
2592 		.name = "tegra-dc",
2593 		.of_match_table = tegra_dc_of_match,
2594 		.pm = &tegra_dc_pm_ops,
2595 	},
2596 	.probe = tegra_dc_probe,
2597 	.remove = tegra_dc_remove,
2598 };
2599