1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Avionic Design GmbH 4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/debugfs.h> 9 #include <linux/delay.h> 10 #include <linux/iommu.h> 11 #include <linux/module.h> 12 #include <linux/of_device.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/reset.h> 15 16 #include <soc/tegra/pmc.h> 17 18 #include <drm/drm_atomic.h> 19 #include <drm/drm_atomic_helper.h> 20 #include <drm/drm_debugfs.h> 21 #include <drm/drm_fourcc.h> 22 #include <drm/drm_plane_helper.h> 23 #include <drm/drm_vblank.h> 24 25 #include "dc.h" 26 #include "drm.h" 27 #include "gem.h" 28 #include "hub.h" 29 #include "plane.h" 30 31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 32 struct drm_crtc_state *state); 33 34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 35 { 36 stats->frames = 0; 37 stats->vblank = 0; 38 stats->underflow = 0; 39 stats->overflow = 0; 40 } 41 42 /* Reads the active copy of a register. */ 43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 44 { 45 u32 value; 46 47 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 48 value = tegra_dc_readl(dc, offset); 49 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 50 51 return value; 52 } 53 54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 55 unsigned int offset) 56 { 57 if (offset >= 0x500 && offset <= 0x638) { 58 offset = 0x000 + (offset - 0x500); 59 return plane->offset + offset; 60 } 61 62 if (offset >= 0x700 && offset <= 0x719) { 63 offset = 0x180 + (offset - 0x700); 64 return plane->offset + offset; 65 } 66 67 if (offset >= 0x800 && offset <= 0x839) { 68 offset = 0x1c0 + (offset - 0x800); 69 return plane->offset + offset; 70 } 71 72 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 73 74 return plane->offset + offset; 75 } 76 77 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 78 unsigned int offset) 79 { 80 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 81 } 82 83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 84 unsigned int offset) 85 { 86 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 87 } 88 89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 90 { 91 struct device_node *np = dc->dev->of_node; 92 struct of_phandle_iterator it; 93 int err; 94 95 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 96 if (it.node == dev->of_node) 97 return true; 98 99 return false; 100 } 101 102 /* 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 105 * Latching happens mmediately if the display controller is in STOP mode or 106 * on the next frame boundary otherwise. 107 * 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 111 * into the ACTIVE copy, either immediately if the display controller is in 112 * STOP mode, or at the next frame boundary otherwise. 113 */ 114 void tegra_dc_commit(struct tegra_dc *dc) 115 { 116 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 117 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 118 } 119 120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 121 unsigned int bpp) 122 { 123 fixed20_12 outf = dfixed_init(out); 124 fixed20_12 inf = dfixed_init(in); 125 u32 dda_inc; 126 int max; 127 128 if (v) 129 max = 15; 130 else { 131 switch (bpp) { 132 case 2: 133 max = 8; 134 break; 135 136 default: 137 WARN_ON_ONCE(1); 138 fallthrough; 139 case 4: 140 max = 4; 141 break; 142 } 143 } 144 145 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 146 inf.full -= dfixed_const(1); 147 148 dda_inc = dfixed_div(inf, outf); 149 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 150 151 return dda_inc; 152 } 153 154 static inline u32 compute_initial_dda(unsigned int in) 155 { 156 fixed20_12 inf = dfixed_init(in); 157 return dfixed_frac(inf); 158 } 159 160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 161 { 162 u32 background[3] = { 163 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 166 }; 167 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 168 BLEND_COLOR_KEY_NONE; 169 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 170 struct tegra_plane_state *state; 171 u32 blending[2]; 172 unsigned int i; 173 174 /* disable blending for non-overlapping case */ 175 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 176 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 177 178 state = to_tegra_plane_state(plane->base.state); 179 180 if (state->opaque) { 181 /* 182 * Since custom fix-weight blending isn't utilized and weight 183 * of top window is set to max, we can enforce dependent 184 * blending which in this case results in transparent bottom 185 * window if top window is opaque and if top window enables 186 * alpha blending, then bottom window is getting alpha value 187 * of 1 minus the sum of alpha components of the overlapping 188 * plane. 189 */ 190 background[0] |= BLEND_CONTROL_DEPENDENT; 191 background[1] |= BLEND_CONTROL_DEPENDENT; 192 193 /* 194 * The region where three windows overlap is the intersection 195 * of the two regions where two windows overlap. It contributes 196 * to the area if all of the windows on top of it have an alpha 197 * component. 198 */ 199 switch (state->base.normalized_zpos) { 200 case 0: 201 if (state->blending[0].alpha && 202 state->blending[1].alpha) 203 background[2] |= BLEND_CONTROL_DEPENDENT; 204 break; 205 206 case 1: 207 background[2] |= BLEND_CONTROL_DEPENDENT; 208 break; 209 } 210 } else { 211 /* 212 * Enable alpha blending if pixel format has an alpha 213 * component. 214 */ 215 foreground |= BLEND_CONTROL_ALPHA; 216 217 /* 218 * If any of the windows on top of this window is opaque, it 219 * will completely conceal this window within that area. If 220 * top window has an alpha component, it is blended over the 221 * bottom window. 222 */ 223 for (i = 0; i < 2; i++) { 224 if (state->blending[i].alpha && 225 state->blending[i].top) 226 background[i] |= BLEND_CONTROL_DEPENDENT; 227 } 228 229 switch (state->base.normalized_zpos) { 230 case 0: 231 if (state->blending[0].alpha && 232 state->blending[1].alpha) 233 background[2] |= BLEND_CONTROL_DEPENDENT; 234 break; 235 236 case 1: 237 /* 238 * When both middle and topmost windows have an alpha, 239 * these windows a mixed together and then the result 240 * is blended over the bottom window. 241 */ 242 if (state->blending[0].alpha && 243 state->blending[0].top) 244 background[2] |= BLEND_CONTROL_ALPHA; 245 246 if (state->blending[1].alpha && 247 state->blending[1].top) 248 background[2] |= BLEND_CONTROL_ALPHA; 249 break; 250 } 251 } 252 253 switch (state->base.normalized_zpos) { 254 case 0: 255 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 256 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 257 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 258 break; 259 260 case 1: 261 /* 262 * If window B / C is topmost, then X / Y registers are 263 * matching the order of blending[...] state indices, 264 * otherwise a swap is required. 265 */ 266 if (!state->blending[0].top && state->blending[1].top) { 267 blending[0] = foreground; 268 blending[1] = background[1]; 269 } else { 270 blending[0] = background[0]; 271 blending[1] = foreground; 272 } 273 274 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 275 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 276 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 277 break; 278 279 case 2: 280 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 283 break; 284 } 285 } 286 287 static void tegra_plane_setup_blending(struct tegra_plane *plane, 288 const struct tegra_dc_window *window) 289 { 290 u32 value; 291 292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 295 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 296 297 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 298 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 299 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 300 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 301 302 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 303 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 304 } 305 306 static bool 307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 308 const struct tegra_dc_window *window) 309 { 310 struct tegra_dc *dc = plane->dc; 311 312 if (window->src.w == window->dst.w) 313 return false; 314 315 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 316 return false; 317 318 return true; 319 } 320 321 static bool 322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 323 const struct tegra_dc_window *window) 324 { 325 struct tegra_dc *dc = plane->dc; 326 327 if (window->src.h == window->dst.h) 328 return false; 329 330 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 331 return false; 332 333 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 334 return false; 335 336 return true; 337 } 338 339 static void tegra_dc_setup_window(struct tegra_plane *plane, 340 const struct tegra_dc_window *window) 341 { 342 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 343 struct tegra_dc *dc = plane->dc; 344 bool yuv, planar; 345 u32 value; 346 347 /* 348 * For YUV planar modes, the number of bytes per pixel takes into 349 * account only the luma component and therefore is 1. 350 */ 351 yuv = tegra_plane_format_is_yuv(window->format, &planar); 352 if (!yuv) 353 bpp = window->bits_per_pixel / 8; 354 else 355 bpp = planar ? 1 : 2; 356 357 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 358 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 359 360 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 361 tegra_plane_writel(plane, value, DC_WIN_POSITION); 362 363 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 364 tegra_plane_writel(plane, value, DC_WIN_SIZE); 365 366 h_offset = window->src.x * bpp; 367 v_offset = window->src.y; 368 h_size = window->src.w * bpp; 369 v_size = window->src.h; 370 371 if (window->reflect_x) 372 h_offset += (window->src.w - 1) * bpp; 373 374 if (window->reflect_y) 375 v_offset += window->src.h - 1; 376 377 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 378 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 379 380 /* 381 * For DDA computations the number of bytes per pixel for YUV planar 382 * modes needs to take into account all Y, U and V components. 383 */ 384 if (yuv && planar) 385 bpp = 2; 386 387 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 388 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 389 390 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 391 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 392 393 h_dda = compute_initial_dda(window->src.x); 394 v_dda = compute_initial_dda(window->src.y); 395 396 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 397 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 398 399 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 400 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 401 402 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 403 404 if (yuv && planar) { 405 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 406 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 407 value = window->stride[1] << 16 | window->stride[0]; 408 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 409 } else { 410 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 411 } 412 413 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 414 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 415 416 if (dc->soc->supports_block_linear) { 417 unsigned long height = window->tiling.value; 418 419 switch (window->tiling.mode) { 420 case TEGRA_BO_TILING_MODE_PITCH: 421 value = DC_WINBUF_SURFACE_KIND_PITCH; 422 break; 423 424 case TEGRA_BO_TILING_MODE_TILED: 425 value = DC_WINBUF_SURFACE_KIND_TILED; 426 break; 427 428 case TEGRA_BO_TILING_MODE_BLOCK: 429 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 430 DC_WINBUF_SURFACE_KIND_BLOCK; 431 break; 432 } 433 434 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 435 } else { 436 switch (window->tiling.mode) { 437 case TEGRA_BO_TILING_MODE_PITCH: 438 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 439 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 440 break; 441 442 case TEGRA_BO_TILING_MODE_TILED: 443 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 444 DC_WIN_BUFFER_ADDR_MODE_TILE; 445 break; 446 447 case TEGRA_BO_TILING_MODE_BLOCK: 448 /* 449 * No need to handle this here because ->atomic_check 450 * will already have filtered it out. 451 */ 452 break; 453 } 454 455 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 456 } 457 458 value = WIN_ENABLE; 459 460 if (yuv) { 461 /* setup default colorspace conversion coefficients */ 462 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 463 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 464 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 465 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 466 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 467 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 468 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 469 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 470 471 value |= CSC_ENABLE; 472 } else if (window->bits_per_pixel < 24) { 473 value |= COLOR_EXPAND; 474 } 475 476 if (window->reflect_x) 477 value |= H_DIRECTION; 478 479 if (window->reflect_y) 480 value |= V_DIRECTION; 481 482 if (tegra_plane_use_horizontal_filtering(plane, window)) { 483 /* 484 * Enable horizontal 6-tap filter and set filtering 485 * coefficients to the default values defined in TRM. 486 */ 487 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 488 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 489 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 490 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 491 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 492 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 493 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 494 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 495 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 496 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 497 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 498 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 499 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 500 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 501 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 502 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 503 504 value |= H_FILTER; 505 } 506 507 if (tegra_plane_use_vertical_filtering(plane, window)) { 508 unsigned int i, k; 509 510 /* 511 * Enable vertical 2-tap filter and set filtering 512 * coefficients to the default values defined in TRM. 513 */ 514 for (i = 0, k = 128; i < 16; i++, k -= 8) 515 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 516 517 value |= V_FILTER; 518 } 519 520 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 521 522 if (dc->soc->has_legacy_blending) 523 tegra_plane_setup_blending_legacy(plane); 524 else 525 tegra_plane_setup_blending(plane, window); 526 } 527 528 static const u32 tegra20_primary_formats[] = { 529 DRM_FORMAT_ARGB4444, 530 DRM_FORMAT_ARGB1555, 531 DRM_FORMAT_RGB565, 532 DRM_FORMAT_RGBA5551, 533 DRM_FORMAT_ABGR8888, 534 DRM_FORMAT_ARGB8888, 535 /* non-native formats */ 536 DRM_FORMAT_XRGB1555, 537 DRM_FORMAT_RGBX5551, 538 DRM_FORMAT_XBGR8888, 539 DRM_FORMAT_XRGB8888, 540 }; 541 542 static const u64 tegra20_modifiers[] = { 543 DRM_FORMAT_MOD_LINEAR, 544 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 545 DRM_FORMAT_MOD_INVALID 546 }; 547 548 static const u32 tegra114_primary_formats[] = { 549 DRM_FORMAT_ARGB4444, 550 DRM_FORMAT_ARGB1555, 551 DRM_FORMAT_RGB565, 552 DRM_FORMAT_RGBA5551, 553 DRM_FORMAT_ABGR8888, 554 DRM_FORMAT_ARGB8888, 555 /* new on Tegra114 */ 556 DRM_FORMAT_ABGR4444, 557 DRM_FORMAT_ABGR1555, 558 DRM_FORMAT_BGRA5551, 559 DRM_FORMAT_XRGB1555, 560 DRM_FORMAT_RGBX5551, 561 DRM_FORMAT_XBGR1555, 562 DRM_FORMAT_BGRX5551, 563 DRM_FORMAT_BGR565, 564 DRM_FORMAT_BGRA8888, 565 DRM_FORMAT_RGBA8888, 566 DRM_FORMAT_XRGB8888, 567 DRM_FORMAT_XBGR8888, 568 }; 569 570 static const u32 tegra124_primary_formats[] = { 571 DRM_FORMAT_ARGB4444, 572 DRM_FORMAT_ARGB1555, 573 DRM_FORMAT_RGB565, 574 DRM_FORMAT_RGBA5551, 575 DRM_FORMAT_ABGR8888, 576 DRM_FORMAT_ARGB8888, 577 /* new on Tegra114 */ 578 DRM_FORMAT_ABGR4444, 579 DRM_FORMAT_ABGR1555, 580 DRM_FORMAT_BGRA5551, 581 DRM_FORMAT_XRGB1555, 582 DRM_FORMAT_RGBX5551, 583 DRM_FORMAT_XBGR1555, 584 DRM_FORMAT_BGRX5551, 585 DRM_FORMAT_BGR565, 586 DRM_FORMAT_BGRA8888, 587 DRM_FORMAT_RGBA8888, 588 DRM_FORMAT_XRGB8888, 589 DRM_FORMAT_XBGR8888, 590 /* new on Tegra124 */ 591 DRM_FORMAT_RGBX8888, 592 DRM_FORMAT_BGRX8888, 593 }; 594 595 static const u64 tegra124_modifiers[] = { 596 DRM_FORMAT_MOD_LINEAR, 597 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 603 DRM_FORMAT_MOD_INVALID 604 }; 605 606 static int tegra_plane_atomic_check(struct drm_plane *plane, 607 struct drm_atomic_state *state) 608 { 609 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 610 plane); 611 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); 612 unsigned int supported_rotation = DRM_MODE_ROTATE_0 | 613 DRM_MODE_REFLECT_X | 614 DRM_MODE_REFLECT_Y; 615 unsigned int rotation = new_plane_state->rotation; 616 struct tegra_bo_tiling *tiling = &plane_state->tiling; 617 struct tegra_plane *tegra = to_tegra_plane(plane); 618 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc); 619 int err; 620 621 /* no need for further checks if the plane is being disabled */ 622 if (!new_plane_state->crtc) 623 return 0; 624 625 err = tegra_plane_format(new_plane_state->fb->format->format, 626 &plane_state->format, 627 &plane_state->swap); 628 if (err < 0) 629 return err; 630 631 /* 632 * Tegra20 and Tegra30 are special cases here because they support 633 * only variants of specific formats with an alpha component, but not 634 * the corresponding opaque formats. However, the opaque formats can 635 * be emulated by disabling alpha blending for the plane. 636 */ 637 if (dc->soc->has_legacy_blending) { 638 err = tegra_plane_setup_legacy_state(tegra, plane_state); 639 if (err < 0) 640 return err; 641 } 642 643 err = tegra_fb_get_tiling(new_plane_state->fb, tiling); 644 if (err < 0) 645 return err; 646 647 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 648 !dc->soc->supports_block_linear) { 649 DRM_ERROR("hardware doesn't support block linear mode\n"); 650 return -EINVAL; 651 } 652 653 /* 654 * Older userspace used custom BO flag in order to specify the Y 655 * reflection, while modern userspace uses the generic DRM rotation 656 * property in order to achieve the same result. The legacy BO flag 657 * duplicates the DRM rotation property when both are set. 658 */ 659 if (tegra_fb_is_bottom_up(new_plane_state->fb)) 660 rotation |= DRM_MODE_REFLECT_Y; 661 662 rotation = drm_rotation_simplify(rotation, supported_rotation); 663 664 if (rotation & DRM_MODE_REFLECT_X) 665 plane_state->reflect_x = true; 666 else 667 plane_state->reflect_x = false; 668 669 if (rotation & DRM_MODE_REFLECT_Y) 670 plane_state->reflect_y = true; 671 else 672 plane_state->reflect_y = false; 673 674 /* 675 * Tegra doesn't support different strides for U and V planes so we 676 * error out if the user tries to display a framebuffer with such a 677 * configuration. 678 */ 679 if (new_plane_state->fb->format->num_planes > 2) { 680 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) { 681 DRM_ERROR("unsupported UV-plane configuration\n"); 682 return -EINVAL; 683 } 684 } 685 686 err = tegra_plane_state_add(tegra, new_plane_state); 687 if (err < 0) 688 return err; 689 690 return 0; 691 } 692 693 static void tegra_plane_atomic_disable(struct drm_plane *plane, 694 struct drm_atomic_state *state) 695 { 696 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 697 plane); 698 struct tegra_plane *p = to_tegra_plane(plane); 699 u32 value; 700 701 /* rien ne va plus */ 702 if (!old_state || !old_state->crtc) 703 return; 704 705 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 706 value &= ~WIN_ENABLE; 707 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 708 } 709 710 static void tegra_plane_atomic_update(struct drm_plane *plane, 711 struct drm_atomic_state *state) 712 { 713 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 714 plane); 715 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 716 struct drm_framebuffer *fb = new_state->fb; 717 struct tegra_plane *p = to_tegra_plane(plane); 718 struct tegra_dc_window window; 719 unsigned int i; 720 721 /* rien ne va plus */ 722 if (!new_state->crtc || !new_state->fb) 723 return; 724 725 if (!new_state->visible) 726 return tegra_plane_atomic_disable(plane, state); 727 728 memset(&window, 0, sizeof(window)); 729 window.src.x = new_state->src.x1 >> 16; 730 window.src.y = new_state->src.y1 >> 16; 731 window.src.w = drm_rect_width(&new_state->src) >> 16; 732 window.src.h = drm_rect_height(&new_state->src) >> 16; 733 window.dst.x = new_state->dst.x1; 734 window.dst.y = new_state->dst.y1; 735 window.dst.w = drm_rect_width(&new_state->dst); 736 window.dst.h = drm_rect_height(&new_state->dst); 737 window.bits_per_pixel = fb->format->cpp[0] * 8; 738 window.reflect_x = tegra_plane_state->reflect_x; 739 window.reflect_y = tegra_plane_state->reflect_y; 740 741 /* copy from state */ 742 window.zpos = new_state->normalized_zpos; 743 window.tiling = tegra_plane_state->tiling; 744 window.format = tegra_plane_state->format; 745 window.swap = tegra_plane_state->swap; 746 747 for (i = 0; i < fb->format->num_planes; i++) { 748 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i]; 749 750 /* 751 * Tegra uses a shared stride for UV planes. Framebuffers are 752 * already checked for this in the tegra_plane_atomic_check() 753 * function, so it's safe to ignore the V-plane pitch here. 754 */ 755 if (i < 2) 756 window.stride[i] = fb->pitches[i]; 757 } 758 759 tegra_dc_setup_window(p, &window); 760 } 761 762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 763 .prepare_fb = tegra_plane_prepare_fb, 764 .cleanup_fb = tegra_plane_cleanup_fb, 765 .atomic_check = tegra_plane_atomic_check, 766 .atomic_disable = tegra_plane_atomic_disable, 767 .atomic_update = tegra_plane_atomic_update, 768 }; 769 770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 771 { 772 /* 773 * Ideally this would use drm_crtc_mask(), but that would require the 774 * CRTC to already be in the mode_config's list of CRTCs. However, it 775 * will only be added to that list in the drm_crtc_init_with_planes() 776 * (in tegra_dc_init()), which in turn requires registration of these 777 * planes. So we have ourselves a nice little chicken and egg problem 778 * here. 779 * 780 * We work around this by manually creating the mask from the number 781 * of CRTCs that have been registered, and should therefore always be 782 * the same as drm_crtc_index() after registration. 783 */ 784 return 1 << drm->mode_config.num_crtc; 785 } 786 787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 788 struct tegra_dc *dc) 789 { 790 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 791 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 792 struct tegra_plane *plane; 793 unsigned int num_formats; 794 const u64 *modifiers; 795 const u32 *formats; 796 int err; 797 798 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 799 if (!plane) 800 return ERR_PTR(-ENOMEM); 801 802 /* Always use window A as primary window */ 803 plane->offset = 0xa00; 804 plane->index = 0; 805 plane->dc = dc; 806 807 num_formats = dc->soc->num_primary_formats; 808 formats = dc->soc->primary_formats; 809 modifiers = dc->soc->modifiers; 810 811 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 812 &tegra_plane_funcs, formats, 813 num_formats, modifiers, type, NULL); 814 if (err < 0) { 815 kfree(plane); 816 return ERR_PTR(err); 817 } 818 819 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 820 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 821 822 err = drm_plane_create_rotation_property(&plane->base, 823 DRM_MODE_ROTATE_0, 824 DRM_MODE_ROTATE_0 | 825 DRM_MODE_ROTATE_180 | 826 DRM_MODE_REFLECT_X | 827 DRM_MODE_REFLECT_Y); 828 if (err < 0) 829 dev_err(dc->dev, "failed to create rotation property: %d\n", 830 err); 831 832 return &plane->base; 833 } 834 835 static const u32 tegra_cursor_plane_formats[] = { 836 DRM_FORMAT_RGBA8888, 837 }; 838 839 static int tegra_cursor_atomic_check(struct drm_plane *plane, 840 struct drm_atomic_state *state) 841 { 842 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 843 plane); 844 struct tegra_plane *tegra = to_tegra_plane(plane); 845 int err; 846 847 /* no need for further checks if the plane is being disabled */ 848 if (!new_plane_state->crtc) 849 return 0; 850 851 /* scaling not supported for cursor */ 852 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) || 853 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h)) 854 return -EINVAL; 855 856 /* only square cursors supported */ 857 if (new_plane_state->src_w != new_plane_state->src_h) 858 return -EINVAL; 859 860 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 && 861 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256) 862 return -EINVAL; 863 864 err = tegra_plane_state_add(tegra, new_plane_state); 865 if (err < 0) 866 return err; 867 868 return 0; 869 } 870 871 static void tegra_cursor_atomic_update(struct drm_plane *plane, 872 struct drm_atomic_state *state) 873 { 874 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 875 plane); 876 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 877 struct tegra_dc *dc = to_tegra_dc(new_state->crtc); 878 u32 value = CURSOR_CLIP_DISPLAY; 879 880 /* rien ne va plus */ 881 if (!new_state->crtc || !new_state->fb) 882 return; 883 884 switch (new_state->crtc_w) { 885 case 32: 886 value |= CURSOR_SIZE_32x32; 887 break; 888 889 case 64: 890 value |= CURSOR_SIZE_64x64; 891 break; 892 893 case 128: 894 value |= CURSOR_SIZE_128x128; 895 break; 896 897 case 256: 898 value |= CURSOR_SIZE_256x256; 899 break; 900 901 default: 902 WARN(1, "cursor size %ux%u not supported\n", 903 new_state->crtc_w, new_state->crtc_h); 904 return; 905 } 906 907 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff; 908 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 909 910 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 911 value = (tegra_plane_state->iova[0] >> 32) & 0x3; 912 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 913 #endif 914 915 /* enable cursor and set blend mode */ 916 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 917 value |= CURSOR_ENABLE; 918 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 919 920 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 921 value &= ~CURSOR_DST_BLEND_MASK; 922 value &= ~CURSOR_SRC_BLEND_MASK; 923 value |= CURSOR_MODE_NORMAL; 924 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 925 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 926 value |= CURSOR_ALPHA; 927 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 928 929 /* position the cursor */ 930 value = (new_state->crtc_y & 0x3fff) << 16 | 931 (new_state->crtc_x & 0x3fff); 932 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 933 } 934 935 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 936 struct drm_atomic_state *state) 937 { 938 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 939 plane); 940 struct tegra_dc *dc; 941 u32 value; 942 943 /* rien ne va plus */ 944 if (!old_state || !old_state->crtc) 945 return; 946 947 dc = to_tegra_dc(old_state->crtc); 948 949 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 950 value &= ~CURSOR_ENABLE; 951 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 952 } 953 954 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 955 .prepare_fb = tegra_plane_prepare_fb, 956 .cleanup_fb = tegra_plane_cleanup_fb, 957 .atomic_check = tegra_cursor_atomic_check, 958 .atomic_update = tegra_cursor_atomic_update, 959 .atomic_disable = tegra_cursor_atomic_disable, 960 }; 961 962 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 963 struct tegra_dc *dc) 964 { 965 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 966 struct tegra_plane *plane; 967 unsigned int num_formats; 968 const u32 *formats; 969 int err; 970 971 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 972 if (!plane) 973 return ERR_PTR(-ENOMEM); 974 975 /* 976 * This index is kind of fake. The cursor isn't a regular plane, but 977 * its update and activation request bits in DC_CMD_STATE_CONTROL do 978 * use the same programming. Setting this fake index here allows the 979 * code in tegra_add_plane_state() to do the right thing without the 980 * need to special-casing the cursor plane. 981 */ 982 plane->index = 6; 983 plane->dc = dc; 984 985 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 986 formats = tegra_cursor_plane_formats; 987 988 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 989 &tegra_plane_funcs, formats, 990 num_formats, NULL, 991 DRM_PLANE_TYPE_CURSOR, NULL); 992 if (err < 0) { 993 kfree(plane); 994 return ERR_PTR(err); 995 } 996 997 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 998 drm_plane_create_zpos_immutable_property(&plane->base, 255); 999 1000 return &plane->base; 1001 } 1002 1003 static const u32 tegra20_overlay_formats[] = { 1004 DRM_FORMAT_ARGB4444, 1005 DRM_FORMAT_ARGB1555, 1006 DRM_FORMAT_RGB565, 1007 DRM_FORMAT_RGBA5551, 1008 DRM_FORMAT_ABGR8888, 1009 DRM_FORMAT_ARGB8888, 1010 /* non-native formats */ 1011 DRM_FORMAT_XRGB1555, 1012 DRM_FORMAT_RGBX5551, 1013 DRM_FORMAT_XBGR8888, 1014 DRM_FORMAT_XRGB8888, 1015 /* planar formats */ 1016 DRM_FORMAT_UYVY, 1017 DRM_FORMAT_YUYV, 1018 DRM_FORMAT_YUV420, 1019 DRM_FORMAT_YUV422, 1020 }; 1021 1022 static const u32 tegra114_overlay_formats[] = { 1023 DRM_FORMAT_ARGB4444, 1024 DRM_FORMAT_ARGB1555, 1025 DRM_FORMAT_RGB565, 1026 DRM_FORMAT_RGBA5551, 1027 DRM_FORMAT_ABGR8888, 1028 DRM_FORMAT_ARGB8888, 1029 /* new on Tegra114 */ 1030 DRM_FORMAT_ABGR4444, 1031 DRM_FORMAT_ABGR1555, 1032 DRM_FORMAT_BGRA5551, 1033 DRM_FORMAT_XRGB1555, 1034 DRM_FORMAT_RGBX5551, 1035 DRM_FORMAT_XBGR1555, 1036 DRM_FORMAT_BGRX5551, 1037 DRM_FORMAT_BGR565, 1038 DRM_FORMAT_BGRA8888, 1039 DRM_FORMAT_RGBA8888, 1040 DRM_FORMAT_XRGB8888, 1041 DRM_FORMAT_XBGR8888, 1042 /* planar formats */ 1043 DRM_FORMAT_UYVY, 1044 DRM_FORMAT_YUYV, 1045 DRM_FORMAT_YUV420, 1046 DRM_FORMAT_YUV422, 1047 }; 1048 1049 static const u32 tegra124_overlay_formats[] = { 1050 DRM_FORMAT_ARGB4444, 1051 DRM_FORMAT_ARGB1555, 1052 DRM_FORMAT_RGB565, 1053 DRM_FORMAT_RGBA5551, 1054 DRM_FORMAT_ABGR8888, 1055 DRM_FORMAT_ARGB8888, 1056 /* new on Tegra114 */ 1057 DRM_FORMAT_ABGR4444, 1058 DRM_FORMAT_ABGR1555, 1059 DRM_FORMAT_BGRA5551, 1060 DRM_FORMAT_XRGB1555, 1061 DRM_FORMAT_RGBX5551, 1062 DRM_FORMAT_XBGR1555, 1063 DRM_FORMAT_BGRX5551, 1064 DRM_FORMAT_BGR565, 1065 DRM_FORMAT_BGRA8888, 1066 DRM_FORMAT_RGBA8888, 1067 DRM_FORMAT_XRGB8888, 1068 DRM_FORMAT_XBGR8888, 1069 /* new on Tegra124 */ 1070 DRM_FORMAT_RGBX8888, 1071 DRM_FORMAT_BGRX8888, 1072 /* planar formats */ 1073 DRM_FORMAT_UYVY, 1074 DRM_FORMAT_YUYV, 1075 DRM_FORMAT_YUV420, 1076 DRM_FORMAT_YUV422, 1077 }; 1078 1079 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1080 struct tegra_dc *dc, 1081 unsigned int index, 1082 bool cursor) 1083 { 1084 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1085 struct tegra_plane *plane; 1086 unsigned int num_formats; 1087 enum drm_plane_type type; 1088 const u32 *formats; 1089 int err; 1090 1091 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1092 if (!plane) 1093 return ERR_PTR(-ENOMEM); 1094 1095 plane->offset = 0xa00 + 0x200 * index; 1096 plane->index = index; 1097 plane->dc = dc; 1098 1099 num_formats = dc->soc->num_overlay_formats; 1100 formats = dc->soc->overlay_formats; 1101 1102 if (!cursor) 1103 type = DRM_PLANE_TYPE_OVERLAY; 1104 else 1105 type = DRM_PLANE_TYPE_CURSOR; 1106 1107 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1108 &tegra_plane_funcs, formats, 1109 num_formats, NULL, type, NULL); 1110 if (err < 0) { 1111 kfree(plane); 1112 return ERR_PTR(err); 1113 } 1114 1115 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1116 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1117 1118 err = drm_plane_create_rotation_property(&plane->base, 1119 DRM_MODE_ROTATE_0, 1120 DRM_MODE_ROTATE_0 | 1121 DRM_MODE_ROTATE_180 | 1122 DRM_MODE_REFLECT_X | 1123 DRM_MODE_REFLECT_Y); 1124 if (err < 0) 1125 dev_err(dc->dev, "failed to create rotation property: %d\n", 1126 err); 1127 1128 return &plane->base; 1129 } 1130 1131 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1132 struct tegra_dc *dc) 1133 { 1134 struct drm_plane *plane, *primary = NULL; 1135 unsigned int i, j; 1136 1137 for (i = 0; i < dc->soc->num_wgrps; i++) { 1138 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1139 1140 if (wgrp->dc == dc->pipe) { 1141 for (j = 0; j < wgrp->num_windows; j++) { 1142 unsigned int index = wgrp->windows[j]; 1143 1144 plane = tegra_shared_plane_create(drm, dc, 1145 wgrp->index, 1146 index); 1147 if (IS_ERR(plane)) 1148 return plane; 1149 1150 /* 1151 * Choose the first shared plane owned by this 1152 * head as the primary plane. 1153 */ 1154 if (!primary) { 1155 plane->type = DRM_PLANE_TYPE_PRIMARY; 1156 primary = plane; 1157 } 1158 } 1159 } 1160 } 1161 1162 return primary; 1163 } 1164 1165 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1166 struct tegra_dc *dc) 1167 { 1168 struct drm_plane *planes[2], *primary; 1169 unsigned int planes_num; 1170 unsigned int i; 1171 int err; 1172 1173 primary = tegra_primary_plane_create(drm, dc); 1174 if (IS_ERR(primary)) 1175 return primary; 1176 1177 if (dc->soc->supports_cursor) 1178 planes_num = 2; 1179 else 1180 planes_num = 1; 1181 1182 for (i = 0; i < planes_num; i++) { 1183 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1184 false); 1185 if (IS_ERR(planes[i])) { 1186 err = PTR_ERR(planes[i]); 1187 1188 while (i--) 1189 tegra_plane_funcs.destroy(planes[i]); 1190 1191 tegra_plane_funcs.destroy(primary); 1192 return ERR_PTR(err); 1193 } 1194 } 1195 1196 return primary; 1197 } 1198 1199 static void tegra_dc_destroy(struct drm_crtc *crtc) 1200 { 1201 drm_crtc_cleanup(crtc); 1202 } 1203 1204 static void tegra_crtc_reset(struct drm_crtc *crtc) 1205 { 1206 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); 1207 1208 if (crtc->state) 1209 tegra_crtc_atomic_destroy_state(crtc, crtc->state); 1210 1211 __drm_atomic_helper_crtc_reset(crtc, &state->base); 1212 } 1213 1214 static struct drm_crtc_state * 1215 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1216 { 1217 struct tegra_dc_state *state = to_dc_state(crtc->state); 1218 struct tegra_dc_state *copy; 1219 1220 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1221 if (!copy) 1222 return NULL; 1223 1224 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1225 copy->clk = state->clk; 1226 copy->pclk = state->pclk; 1227 copy->div = state->div; 1228 copy->planes = state->planes; 1229 1230 return ©->base; 1231 } 1232 1233 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1234 struct drm_crtc_state *state) 1235 { 1236 __drm_atomic_helper_crtc_destroy_state(state); 1237 kfree(state); 1238 } 1239 1240 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1241 1242 static const struct debugfs_reg32 tegra_dc_regs[] = { 1243 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1244 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1245 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1246 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1247 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1248 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1249 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1250 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1251 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1252 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1253 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1254 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1255 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1256 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1257 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1258 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1259 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1260 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1261 DEBUGFS_REG32(DC_CMD_INT_MASK), 1262 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1263 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1264 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1265 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1266 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1267 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1268 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1269 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1270 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1271 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1272 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1273 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1274 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1275 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1276 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1277 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1278 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1279 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1280 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1281 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1282 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1283 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1284 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1285 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1286 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1287 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1288 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1289 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1290 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1291 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1292 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1293 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1294 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1295 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1296 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1297 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1298 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1299 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1300 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1301 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1302 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1303 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1304 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1305 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1306 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1307 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1308 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1309 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1310 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1311 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1312 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1313 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1314 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1315 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1316 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1317 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1318 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1319 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1320 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1321 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1322 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1323 DEBUGFS_REG32(DC_DISP_ACTIVE), 1324 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1325 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1326 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1327 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1328 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1329 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1330 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1331 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1332 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1333 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1334 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1335 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1336 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1337 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1338 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1339 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1340 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1341 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1342 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1343 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1344 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1345 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1346 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1347 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1348 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1349 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1350 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1351 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1352 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1353 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1354 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1355 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1356 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1357 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1358 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1359 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1360 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1361 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1362 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1363 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1364 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1365 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1366 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1367 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1368 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1369 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1370 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1371 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1372 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1373 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1374 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1375 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1376 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1377 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1378 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1379 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1380 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1381 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1382 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1383 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1384 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1385 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1386 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1387 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1388 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1389 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1390 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1391 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1392 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1393 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1394 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1395 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1396 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1397 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1398 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1399 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1400 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1401 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1402 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1403 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1404 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1405 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1406 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1407 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1408 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1409 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1410 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1411 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1412 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1413 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1414 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1415 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1416 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1417 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1418 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1419 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1420 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1421 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1422 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1423 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1424 DEBUGFS_REG32(DC_WIN_POSITION), 1425 DEBUGFS_REG32(DC_WIN_SIZE), 1426 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1427 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1428 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1429 DEBUGFS_REG32(DC_WIN_DDA_INC), 1430 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1431 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1432 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1433 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1434 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1435 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1436 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1437 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1438 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1439 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1440 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1441 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1442 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1443 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1444 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1445 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1446 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1447 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1448 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1449 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1450 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1451 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1452 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1453 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1454 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1455 }; 1456 1457 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1458 { 1459 struct drm_info_node *node = s->private; 1460 struct tegra_dc *dc = node->info_ent->data; 1461 unsigned int i; 1462 int err = 0; 1463 1464 drm_modeset_lock(&dc->base.mutex, NULL); 1465 1466 if (!dc->base.state->active) { 1467 err = -EBUSY; 1468 goto unlock; 1469 } 1470 1471 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1472 unsigned int offset = tegra_dc_regs[i].offset; 1473 1474 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1475 offset, tegra_dc_readl(dc, offset)); 1476 } 1477 1478 unlock: 1479 drm_modeset_unlock(&dc->base.mutex); 1480 return err; 1481 } 1482 1483 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1484 { 1485 struct drm_info_node *node = s->private; 1486 struct tegra_dc *dc = node->info_ent->data; 1487 int err = 0; 1488 u32 value; 1489 1490 drm_modeset_lock(&dc->base.mutex, NULL); 1491 1492 if (!dc->base.state->active) { 1493 err = -EBUSY; 1494 goto unlock; 1495 } 1496 1497 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1498 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1499 tegra_dc_commit(dc); 1500 1501 drm_crtc_wait_one_vblank(&dc->base); 1502 drm_crtc_wait_one_vblank(&dc->base); 1503 1504 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1505 seq_printf(s, "%08x\n", value); 1506 1507 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1508 1509 unlock: 1510 drm_modeset_unlock(&dc->base.mutex); 1511 return err; 1512 } 1513 1514 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1515 { 1516 struct drm_info_node *node = s->private; 1517 struct tegra_dc *dc = node->info_ent->data; 1518 1519 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1520 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1521 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1522 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1523 1524 return 0; 1525 } 1526 1527 static struct drm_info_list debugfs_files[] = { 1528 { "regs", tegra_dc_show_regs, 0, NULL }, 1529 { "crc", tegra_dc_show_crc, 0, NULL }, 1530 { "stats", tegra_dc_show_stats, 0, NULL }, 1531 }; 1532 1533 static int tegra_dc_late_register(struct drm_crtc *crtc) 1534 { 1535 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1536 struct drm_minor *minor = crtc->dev->primary; 1537 struct dentry *root; 1538 struct tegra_dc *dc = to_tegra_dc(crtc); 1539 1540 #ifdef CONFIG_DEBUG_FS 1541 root = crtc->debugfs_entry; 1542 #else 1543 root = NULL; 1544 #endif 1545 1546 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1547 GFP_KERNEL); 1548 if (!dc->debugfs_files) 1549 return -ENOMEM; 1550 1551 for (i = 0; i < count; i++) 1552 dc->debugfs_files[i].data = dc; 1553 1554 drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1555 1556 return 0; 1557 } 1558 1559 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1560 { 1561 unsigned int count = ARRAY_SIZE(debugfs_files); 1562 struct drm_minor *minor = crtc->dev->primary; 1563 struct tegra_dc *dc = to_tegra_dc(crtc); 1564 1565 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1566 kfree(dc->debugfs_files); 1567 dc->debugfs_files = NULL; 1568 } 1569 1570 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1571 { 1572 struct tegra_dc *dc = to_tegra_dc(crtc); 1573 1574 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1575 if (dc->syncpt && !dc->soc->has_nvdisplay) 1576 return host1x_syncpt_read(dc->syncpt); 1577 1578 /* fallback to software emulated VBLANK counter */ 1579 return (u32)drm_crtc_vblank_count(&dc->base); 1580 } 1581 1582 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1583 { 1584 struct tegra_dc *dc = to_tegra_dc(crtc); 1585 u32 value; 1586 1587 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1588 value |= VBLANK_INT; 1589 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1590 1591 return 0; 1592 } 1593 1594 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1595 { 1596 struct tegra_dc *dc = to_tegra_dc(crtc); 1597 u32 value; 1598 1599 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1600 value &= ~VBLANK_INT; 1601 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1602 } 1603 1604 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1605 .page_flip = drm_atomic_helper_page_flip, 1606 .set_config = drm_atomic_helper_set_config, 1607 .destroy = tegra_dc_destroy, 1608 .reset = tegra_crtc_reset, 1609 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1610 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1611 .late_register = tegra_dc_late_register, 1612 .early_unregister = tegra_dc_early_unregister, 1613 .get_vblank_counter = tegra_dc_get_vblank_counter, 1614 .enable_vblank = tegra_dc_enable_vblank, 1615 .disable_vblank = tegra_dc_disable_vblank, 1616 }; 1617 1618 static int tegra_dc_set_timings(struct tegra_dc *dc, 1619 struct drm_display_mode *mode) 1620 { 1621 unsigned int h_ref_to_sync = 1; 1622 unsigned int v_ref_to_sync = 1; 1623 unsigned long value; 1624 1625 if (!dc->soc->has_nvdisplay) { 1626 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1627 1628 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1629 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1630 } 1631 1632 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1633 ((mode->hsync_end - mode->hsync_start) << 0); 1634 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1635 1636 value = ((mode->vtotal - mode->vsync_end) << 16) | 1637 ((mode->htotal - mode->hsync_end) << 0); 1638 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1639 1640 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1641 ((mode->hsync_start - mode->hdisplay) << 0); 1642 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1643 1644 value = (mode->vdisplay << 16) | mode->hdisplay; 1645 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1646 1647 return 0; 1648 } 1649 1650 /** 1651 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1652 * state 1653 * @dc: display controller 1654 * @crtc_state: CRTC atomic state 1655 * @clk: parent clock for display controller 1656 * @pclk: pixel clock 1657 * @div: shift clock divider 1658 * 1659 * Returns: 1660 * 0 on success or a negative error-code on failure. 1661 */ 1662 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1663 struct drm_crtc_state *crtc_state, 1664 struct clk *clk, unsigned long pclk, 1665 unsigned int div) 1666 { 1667 struct tegra_dc_state *state = to_dc_state(crtc_state); 1668 1669 if (!clk_has_parent(dc->clk, clk)) 1670 return -EINVAL; 1671 1672 state->clk = clk; 1673 state->pclk = pclk; 1674 state->div = div; 1675 1676 return 0; 1677 } 1678 1679 static void tegra_dc_commit_state(struct tegra_dc *dc, 1680 struct tegra_dc_state *state) 1681 { 1682 u32 value; 1683 int err; 1684 1685 err = clk_set_parent(dc->clk, state->clk); 1686 if (err < 0) 1687 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1688 1689 /* 1690 * Outputs may not want to change the parent clock rate. This is only 1691 * relevant to Tegra20 where only a single display PLL is available. 1692 * Since that PLL would typically be used for HDMI, an internal LVDS 1693 * panel would need to be driven by some other clock such as PLL_P 1694 * which is shared with other peripherals. Changing the clock rate 1695 * should therefore be avoided. 1696 */ 1697 if (state->pclk > 0) { 1698 err = clk_set_rate(state->clk, state->pclk); 1699 if (err < 0) 1700 dev_err(dc->dev, 1701 "failed to set clock rate to %lu Hz\n", 1702 state->pclk); 1703 } 1704 1705 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1706 state->div); 1707 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1708 1709 if (!dc->soc->has_nvdisplay) { 1710 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1711 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1712 } 1713 1714 err = clk_set_rate(dc->clk, state->pclk); 1715 if (err < 0) 1716 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1717 dc->clk, state->pclk, err); 1718 } 1719 1720 static void tegra_dc_stop(struct tegra_dc *dc) 1721 { 1722 u32 value; 1723 1724 /* stop the display controller */ 1725 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1726 value &= ~DISP_CTRL_MODE_MASK; 1727 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1728 1729 tegra_dc_commit(dc); 1730 } 1731 1732 static bool tegra_dc_idle(struct tegra_dc *dc) 1733 { 1734 u32 value; 1735 1736 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1737 1738 return (value & DISP_CTRL_MODE_MASK) == 0; 1739 } 1740 1741 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1742 { 1743 timeout = jiffies + msecs_to_jiffies(timeout); 1744 1745 while (time_before(jiffies, timeout)) { 1746 if (tegra_dc_idle(dc)) 1747 return 0; 1748 1749 usleep_range(1000, 2000); 1750 } 1751 1752 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1753 return -ETIMEDOUT; 1754 } 1755 1756 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 1757 struct drm_atomic_state *state) 1758 { 1759 struct tegra_dc *dc = to_tegra_dc(crtc); 1760 u32 value; 1761 int err; 1762 1763 if (!tegra_dc_idle(dc)) { 1764 tegra_dc_stop(dc); 1765 1766 /* 1767 * Ignore the return value, there isn't anything useful to do 1768 * in case this fails. 1769 */ 1770 tegra_dc_wait_idle(dc, 100); 1771 } 1772 1773 /* 1774 * This should really be part of the RGB encoder driver, but clearing 1775 * these bits has the side-effect of stopping the display controller. 1776 * When that happens no VBLANK interrupts will be raised. At the same 1777 * time the encoder is disabled before the display controller, so the 1778 * above code is always going to timeout waiting for the controller 1779 * to go idle. 1780 * 1781 * Given the close coupling between the RGB encoder and the display 1782 * controller doing it here is still kind of okay. None of the other 1783 * encoder drivers require these bits to be cleared. 1784 * 1785 * XXX: Perhaps given that the display controller is switched off at 1786 * this point anyway maybe clearing these bits isn't even useful for 1787 * the RGB encoder? 1788 */ 1789 if (dc->rgb) { 1790 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1791 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1792 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1793 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1794 } 1795 1796 tegra_dc_stats_reset(&dc->stats); 1797 drm_crtc_vblank_off(crtc); 1798 1799 spin_lock_irq(&crtc->dev->event_lock); 1800 1801 if (crtc->state->event) { 1802 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1803 crtc->state->event = NULL; 1804 } 1805 1806 spin_unlock_irq(&crtc->dev->event_lock); 1807 1808 err = host1x_client_suspend(&dc->client); 1809 if (err < 0) 1810 dev_err(dc->dev, "failed to suspend: %d\n", err); 1811 } 1812 1813 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 1814 struct drm_atomic_state *state) 1815 { 1816 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1817 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); 1818 struct tegra_dc *dc = to_tegra_dc(crtc); 1819 u32 value; 1820 int err; 1821 1822 err = host1x_client_resume(&dc->client); 1823 if (err < 0) { 1824 dev_err(dc->dev, "failed to resume: %d\n", err); 1825 return; 1826 } 1827 1828 /* initialize display controller */ 1829 if (dc->syncpt) { 1830 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 1831 1832 if (dc->soc->has_nvdisplay) 1833 enable = 1 << 31; 1834 else 1835 enable = 1 << 8; 1836 1837 value = SYNCPT_CNTRL_NO_STALL; 1838 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1839 1840 value = enable | syncpt; 1841 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1842 } 1843 1844 if (dc->soc->has_nvdisplay) { 1845 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1846 DSC_OBUF_UF_INT; 1847 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1848 1849 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1850 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 1851 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 1852 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 1853 VBLANK_INT | FRAME_END_INT; 1854 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1855 1856 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 1857 FRAME_END_INT; 1858 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1859 1860 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 1861 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1862 1863 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 1864 } else { 1865 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1866 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1867 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1868 1869 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1870 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1871 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1872 1873 /* initialize timer */ 1874 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1875 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1876 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1877 1878 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1879 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1880 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1881 1882 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1883 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1884 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1885 1886 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1887 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1888 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1889 } 1890 1891 if (dc->soc->supports_background_color) 1892 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 1893 else 1894 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1895 1896 /* apply PLL and pixel clock changes */ 1897 tegra_dc_commit_state(dc, crtc_state); 1898 1899 /* program display mode */ 1900 tegra_dc_set_timings(dc, mode); 1901 1902 /* interlacing isn't supported yet, so disable it */ 1903 if (dc->soc->supports_interlacing) { 1904 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1905 value &= ~INTERLACE_ENABLE; 1906 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1907 } 1908 1909 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1910 value &= ~DISP_CTRL_MODE_MASK; 1911 value |= DISP_CTRL_MODE_C_DISPLAY; 1912 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1913 1914 if (!dc->soc->has_nvdisplay) { 1915 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1916 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1917 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1918 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1919 } 1920 1921 /* enable underflow reporting and display red for missing pixels */ 1922 if (dc->soc->has_nvdisplay) { 1923 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 1924 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 1925 } 1926 1927 tegra_dc_commit(dc); 1928 1929 drm_crtc_vblank_on(crtc); 1930 } 1931 1932 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1933 struct drm_atomic_state *state) 1934 { 1935 unsigned long flags; 1936 1937 if (crtc->state->event) { 1938 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1939 1940 if (drm_crtc_vblank_get(crtc) != 0) 1941 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1942 else 1943 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 1944 1945 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1946 1947 crtc->state->event = NULL; 1948 } 1949 } 1950 1951 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1952 struct drm_atomic_state *state) 1953 { 1954 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1955 crtc); 1956 struct tegra_dc_state *dc_state = to_dc_state(crtc_state); 1957 struct tegra_dc *dc = to_tegra_dc(crtc); 1958 u32 value; 1959 1960 value = dc_state->planes << 8 | GENERAL_UPDATE; 1961 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1962 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1963 1964 value = dc_state->planes | GENERAL_ACT_REQ; 1965 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1966 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1967 } 1968 1969 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1970 .atomic_begin = tegra_crtc_atomic_begin, 1971 .atomic_flush = tegra_crtc_atomic_flush, 1972 .atomic_enable = tegra_crtc_atomic_enable, 1973 .atomic_disable = tegra_crtc_atomic_disable, 1974 }; 1975 1976 static irqreturn_t tegra_dc_irq(int irq, void *data) 1977 { 1978 struct tegra_dc *dc = data; 1979 unsigned long status; 1980 1981 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1982 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1983 1984 if (status & FRAME_END_INT) { 1985 /* 1986 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1987 */ 1988 dc->stats.frames++; 1989 } 1990 1991 if (status & VBLANK_INT) { 1992 /* 1993 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1994 */ 1995 drm_crtc_handle_vblank(&dc->base); 1996 dc->stats.vblank++; 1997 } 1998 1999 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 2000 /* 2001 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 2002 */ 2003 dc->stats.underflow++; 2004 } 2005 2006 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 2007 /* 2008 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 2009 */ 2010 dc->stats.overflow++; 2011 } 2012 2013 if (status & HEAD_UF_INT) { 2014 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 2015 dc->stats.underflow++; 2016 } 2017 2018 return IRQ_HANDLED; 2019 } 2020 2021 static bool tegra_dc_has_window_groups(struct tegra_dc *dc) 2022 { 2023 unsigned int i; 2024 2025 if (!dc->soc->wgrps) 2026 return true; 2027 2028 for (i = 0; i < dc->soc->num_wgrps; i++) { 2029 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 2030 2031 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) 2032 return true; 2033 } 2034 2035 return false; 2036 } 2037 2038 static int tegra_dc_init(struct host1x_client *client) 2039 { 2040 struct drm_device *drm = dev_get_drvdata(client->host); 2041 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 2042 struct tegra_dc *dc = host1x_client_to_dc(client); 2043 struct tegra_drm *tegra = drm->dev_private; 2044 struct drm_plane *primary = NULL; 2045 struct drm_plane *cursor = NULL; 2046 int err; 2047 2048 /* 2049 * XXX do not register DCs with no window groups because we cannot 2050 * assign a primary plane to them, which in turn will cause KMS to 2051 * crash. 2052 */ 2053 if (!tegra_dc_has_window_groups(dc)) 2054 return 0; 2055 2056 /* 2057 * Set the display hub as the host1x client parent for the display 2058 * controller. This is needed for the runtime reference counting that 2059 * ensures the display hub is always powered when any of the display 2060 * controllers are. 2061 */ 2062 if (dc->soc->has_nvdisplay) 2063 client->parent = &tegra->hub->client; 2064 2065 dc->syncpt = host1x_syncpt_request(client, flags); 2066 if (!dc->syncpt) 2067 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2068 2069 err = host1x_client_iommu_attach(client); 2070 if (err < 0 && err != -ENODEV) { 2071 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2072 return err; 2073 } 2074 2075 if (dc->soc->wgrps) 2076 primary = tegra_dc_add_shared_planes(drm, dc); 2077 else 2078 primary = tegra_dc_add_planes(drm, dc); 2079 2080 if (IS_ERR(primary)) { 2081 err = PTR_ERR(primary); 2082 goto cleanup; 2083 } 2084 2085 if (dc->soc->supports_cursor) { 2086 cursor = tegra_dc_cursor_plane_create(drm, dc); 2087 if (IS_ERR(cursor)) { 2088 err = PTR_ERR(cursor); 2089 goto cleanup; 2090 } 2091 } else { 2092 /* dedicate one overlay to mouse cursor */ 2093 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2094 if (IS_ERR(cursor)) { 2095 err = PTR_ERR(cursor); 2096 goto cleanup; 2097 } 2098 } 2099 2100 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2101 &tegra_crtc_funcs, NULL); 2102 if (err < 0) 2103 goto cleanup; 2104 2105 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2106 2107 /* 2108 * Keep track of the minimum pitch alignment across all display 2109 * controllers. 2110 */ 2111 if (dc->soc->pitch_align > tegra->pitch_align) 2112 tegra->pitch_align = dc->soc->pitch_align; 2113 2114 err = tegra_dc_rgb_init(drm, dc); 2115 if (err < 0 && err != -ENODEV) { 2116 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2117 goto cleanup; 2118 } 2119 2120 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2121 dev_name(dc->dev), dc); 2122 if (err < 0) { 2123 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2124 err); 2125 goto cleanup; 2126 } 2127 2128 /* 2129 * Inherit the DMA parameters (such as maximum segment size) from the 2130 * parent host1x device. 2131 */ 2132 client->dev->dma_parms = client->host->dma_parms; 2133 2134 return 0; 2135 2136 cleanup: 2137 if (!IS_ERR_OR_NULL(cursor)) 2138 drm_plane_cleanup(cursor); 2139 2140 if (!IS_ERR(primary)) 2141 drm_plane_cleanup(primary); 2142 2143 host1x_client_iommu_detach(client); 2144 host1x_syncpt_free(dc->syncpt); 2145 2146 return err; 2147 } 2148 2149 static int tegra_dc_exit(struct host1x_client *client) 2150 { 2151 struct tegra_dc *dc = host1x_client_to_dc(client); 2152 int err; 2153 2154 if (!tegra_dc_has_window_groups(dc)) 2155 return 0; 2156 2157 /* avoid a dangling pointer just in case this disappears */ 2158 client->dev->dma_parms = NULL; 2159 2160 devm_free_irq(dc->dev, dc->irq, dc); 2161 2162 err = tegra_dc_rgb_exit(dc); 2163 if (err) { 2164 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2165 return err; 2166 } 2167 2168 host1x_client_iommu_detach(client); 2169 host1x_syncpt_free(dc->syncpt); 2170 2171 return 0; 2172 } 2173 2174 static int tegra_dc_runtime_suspend(struct host1x_client *client) 2175 { 2176 struct tegra_dc *dc = host1x_client_to_dc(client); 2177 struct device *dev = client->dev; 2178 int err; 2179 2180 err = reset_control_assert(dc->rst); 2181 if (err < 0) { 2182 dev_err(dev, "failed to assert reset: %d\n", err); 2183 return err; 2184 } 2185 2186 if (dc->soc->has_powergate) 2187 tegra_powergate_power_off(dc->powergate); 2188 2189 clk_disable_unprepare(dc->clk); 2190 pm_runtime_put_sync(dev); 2191 2192 return 0; 2193 } 2194 2195 static int tegra_dc_runtime_resume(struct host1x_client *client) 2196 { 2197 struct tegra_dc *dc = host1x_client_to_dc(client); 2198 struct device *dev = client->dev; 2199 int err; 2200 2201 err = pm_runtime_resume_and_get(dev); 2202 if (err < 0) { 2203 dev_err(dev, "failed to get runtime PM: %d\n", err); 2204 return err; 2205 } 2206 2207 if (dc->soc->has_powergate) { 2208 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2209 dc->rst); 2210 if (err < 0) { 2211 dev_err(dev, "failed to power partition: %d\n", err); 2212 goto put_rpm; 2213 } 2214 } else { 2215 err = clk_prepare_enable(dc->clk); 2216 if (err < 0) { 2217 dev_err(dev, "failed to enable clock: %d\n", err); 2218 goto put_rpm; 2219 } 2220 2221 err = reset_control_deassert(dc->rst); 2222 if (err < 0) { 2223 dev_err(dev, "failed to deassert reset: %d\n", err); 2224 goto disable_clk; 2225 } 2226 } 2227 2228 return 0; 2229 2230 disable_clk: 2231 clk_disable_unprepare(dc->clk); 2232 put_rpm: 2233 pm_runtime_put_sync(dev); 2234 return err; 2235 } 2236 2237 static const struct host1x_client_ops dc_client_ops = { 2238 .init = tegra_dc_init, 2239 .exit = tegra_dc_exit, 2240 .suspend = tegra_dc_runtime_suspend, 2241 .resume = tegra_dc_runtime_resume, 2242 }; 2243 2244 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2245 .supports_background_color = false, 2246 .supports_interlacing = false, 2247 .supports_cursor = false, 2248 .supports_block_linear = false, 2249 .has_legacy_blending = true, 2250 .pitch_align = 8, 2251 .has_powergate = false, 2252 .coupled_pm = true, 2253 .has_nvdisplay = false, 2254 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2255 .primary_formats = tegra20_primary_formats, 2256 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2257 .overlay_formats = tegra20_overlay_formats, 2258 .modifiers = tegra20_modifiers, 2259 .has_win_a_without_filters = true, 2260 .has_win_c_without_vert_filter = true, 2261 }; 2262 2263 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2264 .supports_background_color = false, 2265 .supports_interlacing = false, 2266 .supports_cursor = false, 2267 .supports_block_linear = false, 2268 .has_legacy_blending = true, 2269 .pitch_align = 8, 2270 .has_powergate = false, 2271 .coupled_pm = false, 2272 .has_nvdisplay = false, 2273 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2274 .primary_formats = tegra20_primary_formats, 2275 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2276 .overlay_formats = tegra20_overlay_formats, 2277 .modifiers = tegra20_modifiers, 2278 .has_win_a_without_filters = false, 2279 .has_win_c_without_vert_filter = false, 2280 }; 2281 2282 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2283 .supports_background_color = false, 2284 .supports_interlacing = false, 2285 .supports_cursor = false, 2286 .supports_block_linear = false, 2287 .has_legacy_blending = true, 2288 .pitch_align = 64, 2289 .has_powergate = true, 2290 .coupled_pm = false, 2291 .has_nvdisplay = false, 2292 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2293 .primary_formats = tegra114_primary_formats, 2294 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2295 .overlay_formats = tegra114_overlay_formats, 2296 .modifiers = tegra20_modifiers, 2297 .has_win_a_without_filters = false, 2298 .has_win_c_without_vert_filter = false, 2299 }; 2300 2301 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2302 .supports_background_color = true, 2303 .supports_interlacing = true, 2304 .supports_cursor = true, 2305 .supports_block_linear = true, 2306 .has_legacy_blending = false, 2307 .pitch_align = 64, 2308 .has_powergate = true, 2309 .coupled_pm = false, 2310 .has_nvdisplay = false, 2311 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2312 .primary_formats = tegra124_primary_formats, 2313 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2314 .overlay_formats = tegra124_overlay_formats, 2315 .modifiers = tegra124_modifiers, 2316 .has_win_a_without_filters = false, 2317 .has_win_c_without_vert_filter = false, 2318 }; 2319 2320 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2321 .supports_background_color = true, 2322 .supports_interlacing = true, 2323 .supports_cursor = true, 2324 .supports_block_linear = true, 2325 .has_legacy_blending = false, 2326 .pitch_align = 64, 2327 .has_powergate = true, 2328 .coupled_pm = false, 2329 .has_nvdisplay = false, 2330 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2331 .primary_formats = tegra114_primary_formats, 2332 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2333 .overlay_formats = tegra114_overlay_formats, 2334 .modifiers = tegra124_modifiers, 2335 .has_win_a_without_filters = false, 2336 .has_win_c_without_vert_filter = false, 2337 }; 2338 2339 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2340 { 2341 .index = 0, 2342 .dc = 0, 2343 .windows = (const unsigned int[]) { 0 }, 2344 .num_windows = 1, 2345 }, { 2346 .index = 1, 2347 .dc = 1, 2348 .windows = (const unsigned int[]) { 1 }, 2349 .num_windows = 1, 2350 }, { 2351 .index = 2, 2352 .dc = 1, 2353 .windows = (const unsigned int[]) { 2 }, 2354 .num_windows = 1, 2355 }, { 2356 .index = 3, 2357 .dc = 2, 2358 .windows = (const unsigned int[]) { 3 }, 2359 .num_windows = 1, 2360 }, { 2361 .index = 4, 2362 .dc = 2, 2363 .windows = (const unsigned int[]) { 4 }, 2364 .num_windows = 1, 2365 }, { 2366 .index = 5, 2367 .dc = 2, 2368 .windows = (const unsigned int[]) { 5 }, 2369 .num_windows = 1, 2370 }, 2371 }; 2372 2373 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2374 .supports_background_color = true, 2375 .supports_interlacing = true, 2376 .supports_cursor = true, 2377 .supports_block_linear = true, 2378 .has_legacy_blending = false, 2379 .pitch_align = 64, 2380 .has_powergate = false, 2381 .coupled_pm = false, 2382 .has_nvdisplay = true, 2383 .wgrps = tegra186_dc_wgrps, 2384 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2385 }; 2386 2387 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2388 { 2389 .index = 0, 2390 .dc = 0, 2391 .windows = (const unsigned int[]) { 0 }, 2392 .num_windows = 1, 2393 }, { 2394 .index = 1, 2395 .dc = 1, 2396 .windows = (const unsigned int[]) { 1 }, 2397 .num_windows = 1, 2398 }, { 2399 .index = 2, 2400 .dc = 1, 2401 .windows = (const unsigned int[]) { 2 }, 2402 .num_windows = 1, 2403 }, { 2404 .index = 3, 2405 .dc = 2, 2406 .windows = (const unsigned int[]) { 3 }, 2407 .num_windows = 1, 2408 }, { 2409 .index = 4, 2410 .dc = 2, 2411 .windows = (const unsigned int[]) { 4 }, 2412 .num_windows = 1, 2413 }, { 2414 .index = 5, 2415 .dc = 2, 2416 .windows = (const unsigned int[]) { 5 }, 2417 .num_windows = 1, 2418 }, 2419 }; 2420 2421 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 2422 .supports_background_color = true, 2423 .supports_interlacing = true, 2424 .supports_cursor = true, 2425 .supports_block_linear = true, 2426 .has_legacy_blending = false, 2427 .pitch_align = 64, 2428 .has_powergate = false, 2429 .coupled_pm = false, 2430 .has_nvdisplay = true, 2431 .wgrps = tegra194_dc_wgrps, 2432 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 2433 }; 2434 2435 static const struct of_device_id tegra_dc_of_match[] = { 2436 { 2437 .compatible = "nvidia,tegra194-dc", 2438 .data = &tegra194_dc_soc_info, 2439 }, { 2440 .compatible = "nvidia,tegra186-dc", 2441 .data = &tegra186_dc_soc_info, 2442 }, { 2443 .compatible = "nvidia,tegra210-dc", 2444 .data = &tegra210_dc_soc_info, 2445 }, { 2446 .compatible = "nvidia,tegra124-dc", 2447 .data = &tegra124_dc_soc_info, 2448 }, { 2449 .compatible = "nvidia,tegra114-dc", 2450 .data = &tegra114_dc_soc_info, 2451 }, { 2452 .compatible = "nvidia,tegra30-dc", 2453 .data = &tegra30_dc_soc_info, 2454 }, { 2455 .compatible = "nvidia,tegra20-dc", 2456 .data = &tegra20_dc_soc_info, 2457 }, { 2458 /* sentinel */ 2459 } 2460 }; 2461 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 2462 2463 static int tegra_dc_parse_dt(struct tegra_dc *dc) 2464 { 2465 struct device_node *np; 2466 u32 value = 0; 2467 int err; 2468 2469 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 2470 if (err < 0) { 2471 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 2472 2473 /* 2474 * If the nvidia,head property isn't present, try to find the 2475 * correct head number by looking up the position of this 2476 * display controller's node within the device tree. Assuming 2477 * that the nodes are ordered properly in the DTS file and 2478 * that the translation into a flattened device tree blob 2479 * preserves that ordering this will actually yield the right 2480 * head number. 2481 * 2482 * If those assumptions don't hold, this will still work for 2483 * cases where only a single display controller is used. 2484 */ 2485 for_each_matching_node(np, tegra_dc_of_match) { 2486 if (np == dc->dev->of_node) { 2487 of_node_put(np); 2488 break; 2489 } 2490 2491 value++; 2492 } 2493 } 2494 2495 dc->pipe = value; 2496 2497 return 0; 2498 } 2499 2500 static int tegra_dc_match_by_pipe(struct device *dev, const void *data) 2501 { 2502 struct tegra_dc *dc = dev_get_drvdata(dev); 2503 unsigned int pipe = (unsigned long)(void *)data; 2504 2505 return dc->pipe == pipe; 2506 } 2507 2508 static int tegra_dc_couple(struct tegra_dc *dc) 2509 { 2510 /* 2511 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 2512 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 2513 * POWER_CONTROL registers during CRTC enabling. 2514 */ 2515 if (dc->soc->coupled_pm && dc->pipe == 1) { 2516 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER; 2517 struct device_link *link; 2518 struct device *partner; 2519 2520 partner = driver_find_device(dc->dev->driver, NULL, NULL, 2521 tegra_dc_match_by_pipe); 2522 if (!partner) 2523 return -EPROBE_DEFER; 2524 2525 link = device_link_add(dc->dev, partner, flags); 2526 if (!link) { 2527 dev_err(dc->dev, "failed to link controllers\n"); 2528 return -EINVAL; 2529 } 2530 2531 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner)); 2532 } 2533 2534 return 0; 2535 } 2536 2537 static int tegra_dc_probe(struct platform_device *pdev) 2538 { 2539 struct tegra_dc *dc; 2540 int err; 2541 2542 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 2543 if (!dc) 2544 return -ENOMEM; 2545 2546 dc->soc = of_device_get_match_data(&pdev->dev); 2547 2548 INIT_LIST_HEAD(&dc->list); 2549 dc->dev = &pdev->dev; 2550 2551 err = tegra_dc_parse_dt(dc); 2552 if (err < 0) 2553 return err; 2554 2555 err = tegra_dc_couple(dc); 2556 if (err < 0) 2557 return err; 2558 2559 dc->clk = devm_clk_get(&pdev->dev, NULL); 2560 if (IS_ERR(dc->clk)) { 2561 dev_err(&pdev->dev, "failed to get clock\n"); 2562 return PTR_ERR(dc->clk); 2563 } 2564 2565 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 2566 if (IS_ERR(dc->rst)) { 2567 dev_err(&pdev->dev, "failed to get reset\n"); 2568 return PTR_ERR(dc->rst); 2569 } 2570 2571 /* assert reset and disable clock */ 2572 err = clk_prepare_enable(dc->clk); 2573 if (err < 0) 2574 return err; 2575 2576 usleep_range(2000, 4000); 2577 2578 err = reset_control_assert(dc->rst); 2579 if (err < 0) 2580 return err; 2581 2582 usleep_range(2000, 4000); 2583 2584 clk_disable_unprepare(dc->clk); 2585 2586 if (dc->soc->has_powergate) { 2587 if (dc->pipe == 0) 2588 dc->powergate = TEGRA_POWERGATE_DIS; 2589 else 2590 dc->powergate = TEGRA_POWERGATE_DISB; 2591 2592 tegra_powergate_power_off(dc->powergate); 2593 } 2594 2595 dc->regs = devm_platform_ioremap_resource(pdev, 0); 2596 if (IS_ERR(dc->regs)) 2597 return PTR_ERR(dc->regs); 2598 2599 dc->irq = platform_get_irq(pdev, 0); 2600 if (dc->irq < 0) 2601 return -ENXIO; 2602 2603 err = tegra_dc_rgb_probe(dc); 2604 if (err < 0 && err != -ENODEV) { 2605 const char *level = KERN_ERR; 2606 2607 if (err == -EPROBE_DEFER) 2608 level = KERN_DEBUG; 2609 2610 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n", 2611 err); 2612 return err; 2613 } 2614 2615 platform_set_drvdata(pdev, dc); 2616 pm_runtime_enable(&pdev->dev); 2617 2618 INIT_LIST_HEAD(&dc->client.list); 2619 dc->client.ops = &dc_client_ops; 2620 dc->client.dev = &pdev->dev; 2621 2622 err = host1x_client_register(&dc->client); 2623 if (err < 0) { 2624 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2625 err); 2626 goto disable_pm; 2627 } 2628 2629 return 0; 2630 2631 disable_pm: 2632 pm_runtime_disable(&pdev->dev); 2633 tegra_dc_rgb_remove(dc); 2634 2635 return err; 2636 } 2637 2638 static int tegra_dc_remove(struct platform_device *pdev) 2639 { 2640 struct tegra_dc *dc = platform_get_drvdata(pdev); 2641 int err; 2642 2643 err = host1x_client_unregister(&dc->client); 2644 if (err < 0) { 2645 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2646 err); 2647 return err; 2648 } 2649 2650 err = tegra_dc_rgb_remove(dc); 2651 if (err < 0) { 2652 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2653 return err; 2654 } 2655 2656 pm_runtime_disable(&pdev->dev); 2657 2658 return 0; 2659 } 2660 2661 struct platform_driver tegra_dc_driver = { 2662 .driver = { 2663 .name = "tegra-dc", 2664 .of_match_table = tegra_dc_of_match, 2665 }, 2666 .probe = tegra_dc_probe, 2667 .remove = tegra_dc_remove, 2668 }; 2669