xref: /linux/drivers/gpu/drm/tegra/dc.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_domain.h>
17 #include <linux/pm_opp.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/pmc.h>
23 
24 #include <drm/drm_atomic.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_blend.h>
27 #include <drm/drm_debugfs.h>
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_framebuffer.h>
30 #include <drm/drm_print.h>
31 #include <drm/drm_vblank.h>
32 
33 #include "dc.h"
34 #include "drm.h"
35 #include "gem.h"
36 #include "hub.h"
37 #include "plane.h"
38 
39 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
40 					    struct drm_crtc_state *state);
41 
42 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
43 {
44 	stats->frames = 0;
45 	stats->vblank = 0;
46 	stats->underflow = 0;
47 	stats->overflow = 0;
48 }
49 
50 /* Reads the active copy of a register. */
51 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
52 {
53 	u32 value;
54 
55 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
56 	value = tegra_dc_readl(dc, offset);
57 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
58 
59 	return value;
60 }
61 
62 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
63 					      unsigned int offset)
64 {
65 	if (offset >= 0x500 && offset <= 0x638) {
66 		offset = 0x000 + (offset - 0x500);
67 		return plane->offset + offset;
68 	}
69 
70 	if (offset >= 0x700 && offset <= 0x719) {
71 		offset = 0x180 + (offset - 0x700);
72 		return plane->offset + offset;
73 	}
74 
75 	if (offset >= 0x800 && offset <= 0x839) {
76 		offset = 0x1c0 + (offset - 0x800);
77 		return plane->offset + offset;
78 	}
79 
80 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
81 
82 	return plane->offset + offset;
83 }
84 
85 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
86 				    unsigned int offset)
87 {
88 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
89 }
90 
91 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
92 				      unsigned int offset)
93 {
94 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
95 }
96 
97 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
98 {
99 	struct device_node *np = dc->dev->of_node;
100 	struct of_phandle_iterator it;
101 	int err;
102 
103 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
104 		if (it.node == dev->of_node)
105 			return true;
106 
107 	return false;
108 }
109 
110 /*
111  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
112  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
113  * Latching happens mmediately if the display controller is in STOP mode or
114  * on the next frame boundary otherwise.
115  *
116  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
117  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
118  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
119  * into the ACTIVE copy, either immediately if the display controller is in
120  * STOP mode, or at the next frame boundary otherwise.
121  */
122 void tegra_dc_commit(struct tegra_dc *dc)
123 {
124 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
125 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
126 }
127 
128 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
129 				  unsigned int bpp)
130 {
131 	fixed20_12 outf = dfixed_init(out);
132 	fixed20_12 inf = dfixed_init(in);
133 	u32 dda_inc;
134 	int max;
135 
136 	if (v)
137 		max = 15;
138 	else {
139 		switch (bpp) {
140 		case 2:
141 			max = 8;
142 			break;
143 
144 		default:
145 			WARN_ON_ONCE(1);
146 			fallthrough;
147 		case 4:
148 			max = 4;
149 			break;
150 		}
151 	}
152 
153 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
154 	inf.full -= dfixed_const(1);
155 
156 	dda_inc = dfixed_div(inf, outf);
157 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
158 
159 	return dda_inc;
160 }
161 
162 static inline u32 compute_initial_dda(unsigned int in)
163 {
164 	fixed20_12 inf = dfixed_init(in);
165 	return dfixed_frac(inf);
166 }
167 
168 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
169 {
170 	u32 background[3] = {
171 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
174 	};
175 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
176 			 BLEND_COLOR_KEY_NONE;
177 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
178 	struct tegra_plane_state *state;
179 	u32 blending[2];
180 	unsigned int i;
181 
182 	/* disable blending for non-overlapping case */
183 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
184 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
185 
186 	state = to_tegra_plane_state(plane->base.state);
187 
188 	if (state->opaque) {
189 		/*
190 		 * Since custom fix-weight blending isn't utilized and weight
191 		 * of top window is set to max, we can enforce dependent
192 		 * blending which in this case results in transparent bottom
193 		 * window if top window is opaque and if top window enables
194 		 * alpha blending, then bottom window is getting alpha value
195 		 * of 1 minus the sum of alpha components of the overlapping
196 		 * plane.
197 		 */
198 		background[0] |= BLEND_CONTROL_DEPENDENT;
199 		background[1] |= BLEND_CONTROL_DEPENDENT;
200 
201 		/*
202 		 * The region where three windows overlap is the intersection
203 		 * of the two regions where two windows overlap. It contributes
204 		 * to the area if all of the windows on top of it have an alpha
205 		 * component.
206 		 */
207 		switch (state->base.normalized_zpos) {
208 		case 0:
209 			if (state->blending[0].alpha &&
210 			    state->blending[1].alpha)
211 				background[2] |= BLEND_CONTROL_DEPENDENT;
212 			break;
213 
214 		case 1:
215 			background[2] |= BLEND_CONTROL_DEPENDENT;
216 			break;
217 		}
218 	} else {
219 		/*
220 		 * Enable alpha blending if pixel format has an alpha
221 		 * component.
222 		 */
223 		foreground |= BLEND_CONTROL_ALPHA;
224 
225 		/*
226 		 * If any of the windows on top of this window is opaque, it
227 		 * will completely conceal this window within that area. If
228 		 * top window has an alpha component, it is blended over the
229 		 * bottom window.
230 		 */
231 		for (i = 0; i < 2; i++) {
232 			if (state->blending[i].alpha &&
233 			    state->blending[i].top)
234 				background[i] |= BLEND_CONTROL_DEPENDENT;
235 		}
236 
237 		switch (state->base.normalized_zpos) {
238 		case 0:
239 			if (state->blending[0].alpha &&
240 			    state->blending[1].alpha)
241 				background[2] |= BLEND_CONTROL_DEPENDENT;
242 			break;
243 
244 		case 1:
245 			/*
246 			 * When both middle and topmost windows have an alpha,
247 			 * these windows a mixed together and then the result
248 			 * is blended over the bottom window.
249 			 */
250 			if (state->blending[0].alpha &&
251 			    state->blending[0].top)
252 				background[2] |= BLEND_CONTROL_ALPHA;
253 
254 			if (state->blending[1].alpha &&
255 			    state->blending[1].top)
256 				background[2] |= BLEND_CONTROL_ALPHA;
257 			break;
258 		}
259 	}
260 
261 	switch (state->base.normalized_zpos) {
262 	case 0:
263 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
264 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
265 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
266 		break;
267 
268 	case 1:
269 		/*
270 		 * If window B / C is topmost, then X / Y registers are
271 		 * matching the order of blending[...] state indices,
272 		 * otherwise a swap is required.
273 		 */
274 		if (!state->blending[0].top && state->blending[1].top) {
275 			blending[0] = foreground;
276 			blending[1] = background[1];
277 		} else {
278 			blending[0] = background[0];
279 			blending[1] = foreground;
280 		}
281 
282 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
283 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
284 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
285 		break;
286 
287 	case 2:
288 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
289 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
290 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
291 		break;
292 	}
293 }
294 
295 static void tegra_plane_setup_blending(struct tegra_plane *plane,
296 				       const struct tegra_dc_window *window)
297 {
298 	u32 value;
299 
300 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
301 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
302 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
304 
305 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
306 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
307 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
308 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
309 
310 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
311 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
312 }
313 
314 static bool
315 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
316 				     const struct tegra_dc_window *window)
317 {
318 	struct tegra_dc *dc = plane->dc;
319 
320 	if (window->src.w == window->dst.w)
321 		return false;
322 
323 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
324 		return false;
325 
326 	return true;
327 }
328 
329 static bool
330 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
331 				   const struct tegra_dc_window *window)
332 {
333 	struct tegra_dc *dc = plane->dc;
334 
335 	if (window->src.h == window->dst.h)
336 		return false;
337 
338 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
339 		return false;
340 
341 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
342 		return false;
343 
344 	return true;
345 }
346 
347 static void tegra_dc_setup_window(struct tegra_plane *plane,
348 				  const struct tegra_dc_window *window)
349 {
350 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
351 	struct tegra_dc *dc = plane->dc;
352 	unsigned int planes;
353 	u32 value;
354 	bool yuv;
355 
356 	/*
357 	 * For YUV planar modes, the number of bytes per pixel takes into
358 	 * account only the luma component and therefore is 1.
359 	 */
360 	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
361 	if (!yuv)
362 		bpp = window->bits_per_pixel / 8;
363 	else
364 		bpp = (planes > 1) ? 1 : 2;
365 
366 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
367 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
368 
369 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
370 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
371 
372 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
373 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
374 
375 	h_offset = window->src.x * bpp;
376 	v_offset = window->src.y;
377 	h_size = window->src.w * bpp;
378 	v_size = window->src.h;
379 
380 	if (window->reflect_x)
381 		h_offset += (window->src.w - 1) * bpp;
382 
383 	if (window->reflect_y)
384 		v_offset += window->src.h - 1;
385 
386 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
387 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
388 
389 	/*
390 	 * For DDA computations the number of bytes per pixel for YUV planar
391 	 * modes needs to take into account all Y, U and V components.
392 	 */
393 	if (yuv && planes > 1)
394 		bpp = 2;
395 
396 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
397 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
398 
399 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
400 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
401 
402 	h_dda = compute_initial_dda(window->src.x);
403 	v_dda = compute_initial_dda(window->src.y);
404 
405 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
406 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
407 
408 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
409 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
410 
411 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
412 
413 	if (yuv && planes > 1) {
414 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
415 
416 		if (planes > 2)
417 			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
418 
419 		value = window->stride[1] << 16 | window->stride[0];
420 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
421 	} else {
422 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
423 	}
424 
425 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
426 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
427 
428 	if (dc->soc->supports_block_linear) {
429 		unsigned long height = window->tiling.value;
430 
431 		switch (window->tiling.mode) {
432 		case TEGRA_BO_TILING_MODE_PITCH:
433 			value = DC_WINBUF_SURFACE_KIND_PITCH;
434 			break;
435 
436 		case TEGRA_BO_TILING_MODE_TILED:
437 			value = DC_WINBUF_SURFACE_KIND_TILED;
438 			break;
439 
440 		case TEGRA_BO_TILING_MODE_BLOCK:
441 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
442 				DC_WINBUF_SURFACE_KIND_BLOCK;
443 			break;
444 		}
445 
446 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
447 	} else {
448 		switch (window->tiling.mode) {
449 		case TEGRA_BO_TILING_MODE_PITCH:
450 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
451 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
452 			break;
453 
454 		case TEGRA_BO_TILING_MODE_TILED:
455 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
456 				DC_WIN_BUFFER_ADDR_MODE_TILE;
457 			break;
458 
459 		case TEGRA_BO_TILING_MODE_BLOCK:
460 			/*
461 			 * No need to handle this here because ->atomic_check
462 			 * will already have filtered it out.
463 			 */
464 			break;
465 		}
466 
467 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
468 	}
469 
470 	value = WIN_ENABLE;
471 
472 	if (yuv) {
473 		/* setup default colorspace conversion coefficients */
474 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
475 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
476 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
477 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
478 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
479 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
480 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
481 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
482 
483 		value |= CSC_ENABLE;
484 	} else if (window->bits_per_pixel < 24) {
485 		value |= COLOR_EXPAND;
486 	}
487 
488 	if (window->reflect_x)
489 		value |= H_DIRECTION;
490 
491 	if (window->reflect_y)
492 		value |= V_DIRECTION;
493 
494 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
495 		/*
496 		 * Enable horizontal 6-tap filter and set filtering
497 		 * coefficients to the default values defined in TRM.
498 		 */
499 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
500 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
501 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
502 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
503 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
504 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
505 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
506 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
507 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
508 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
509 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
510 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
511 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
512 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
513 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
514 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
515 
516 		value |= H_FILTER;
517 	}
518 
519 	if (tegra_plane_use_vertical_filtering(plane, window)) {
520 		unsigned int i, k;
521 
522 		/*
523 		 * Enable vertical 2-tap filter and set filtering
524 		 * coefficients to the default values defined in TRM.
525 		 */
526 		for (i = 0, k = 128; i < 16; i++, k -= 8)
527 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
528 
529 		value |= V_FILTER;
530 	}
531 
532 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
533 
534 	if (dc->soc->has_legacy_blending)
535 		tegra_plane_setup_blending_legacy(plane);
536 	else
537 		tegra_plane_setup_blending(plane, window);
538 }
539 
540 static const u32 tegra20_primary_formats[] = {
541 	DRM_FORMAT_ARGB4444,
542 	DRM_FORMAT_ARGB1555,
543 	DRM_FORMAT_RGB565,
544 	DRM_FORMAT_RGBA5551,
545 	DRM_FORMAT_ABGR8888,
546 	DRM_FORMAT_ARGB8888,
547 	/* non-native formats */
548 	DRM_FORMAT_XRGB1555,
549 	DRM_FORMAT_RGBX5551,
550 	DRM_FORMAT_XBGR8888,
551 	DRM_FORMAT_XRGB8888,
552 };
553 
554 static const u64 tegra20_modifiers[] = {
555 	DRM_FORMAT_MOD_LINEAR,
556 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
557 	DRM_FORMAT_MOD_INVALID
558 };
559 
560 static const u32 tegra114_primary_formats[] = {
561 	DRM_FORMAT_ARGB4444,
562 	DRM_FORMAT_ARGB1555,
563 	DRM_FORMAT_RGB565,
564 	DRM_FORMAT_RGBA5551,
565 	DRM_FORMAT_ABGR8888,
566 	DRM_FORMAT_ARGB8888,
567 	/* new on Tegra114 */
568 	DRM_FORMAT_ABGR4444,
569 	DRM_FORMAT_ABGR1555,
570 	DRM_FORMAT_BGRA5551,
571 	DRM_FORMAT_XRGB1555,
572 	DRM_FORMAT_RGBX5551,
573 	DRM_FORMAT_XBGR1555,
574 	DRM_FORMAT_BGRX5551,
575 	DRM_FORMAT_BGR565,
576 	DRM_FORMAT_BGRA8888,
577 	DRM_FORMAT_RGBA8888,
578 	DRM_FORMAT_XRGB8888,
579 	DRM_FORMAT_XBGR8888,
580 };
581 
582 static const u32 tegra124_primary_formats[] = {
583 	DRM_FORMAT_ARGB4444,
584 	DRM_FORMAT_ARGB1555,
585 	DRM_FORMAT_RGB565,
586 	DRM_FORMAT_RGBA5551,
587 	DRM_FORMAT_ABGR8888,
588 	DRM_FORMAT_ARGB8888,
589 	/* new on Tegra114 */
590 	DRM_FORMAT_ABGR4444,
591 	DRM_FORMAT_ABGR1555,
592 	DRM_FORMAT_BGRA5551,
593 	DRM_FORMAT_XRGB1555,
594 	DRM_FORMAT_RGBX5551,
595 	DRM_FORMAT_XBGR1555,
596 	DRM_FORMAT_BGRX5551,
597 	DRM_FORMAT_BGR565,
598 	DRM_FORMAT_BGRA8888,
599 	DRM_FORMAT_RGBA8888,
600 	DRM_FORMAT_XRGB8888,
601 	DRM_FORMAT_XBGR8888,
602 	/* new on Tegra124 */
603 	DRM_FORMAT_RGBX8888,
604 	DRM_FORMAT_BGRX8888,
605 };
606 
607 static const u64 tegra124_modifiers[] = {
608 	DRM_FORMAT_MOD_LINEAR,
609 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
610 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
611 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
612 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
613 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
614 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
615 	DRM_FORMAT_MOD_INVALID
616 };
617 
618 static int tegra_plane_atomic_check(struct drm_plane *plane,
619 				    struct drm_atomic_state *state)
620 {
621 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
622 										 plane);
623 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
624 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
625 					  DRM_MODE_REFLECT_X |
626 					  DRM_MODE_REFLECT_Y;
627 	unsigned int rotation = new_plane_state->rotation;
628 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
629 	struct tegra_plane *tegra = to_tegra_plane(plane);
630 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
631 	int err;
632 
633 	plane_state->peak_memory_bandwidth = 0;
634 	plane_state->avg_memory_bandwidth = 0;
635 
636 	/* no need for further checks if the plane is being disabled */
637 	if (!new_plane_state->crtc) {
638 		plane_state->total_peak_memory_bandwidth = 0;
639 		return 0;
640 	}
641 
642 	err = tegra_plane_format(new_plane_state->fb->format->format,
643 				 &plane_state->format,
644 				 &plane_state->swap);
645 	if (err < 0)
646 		return err;
647 
648 	/*
649 	 * Tegra20 and Tegra30 are special cases here because they support
650 	 * only variants of specific formats with an alpha component, but not
651 	 * the corresponding opaque formats. However, the opaque formats can
652 	 * be emulated by disabling alpha blending for the plane.
653 	 */
654 	if (dc->soc->has_legacy_blending) {
655 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
656 		if (err < 0)
657 			return err;
658 	}
659 
660 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
661 	if (err < 0)
662 		return err;
663 
664 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
665 	    !dc->soc->supports_block_linear) {
666 		DRM_ERROR("hardware doesn't support block linear mode\n");
667 		return -EINVAL;
668 	}
669 
670 	/*
671 	 * Older userspace used custom BO flag in order to specify the Y
672 	 * reflection, while modern userspace uses the generic DRM rotation
673 	 * property in order to achieve the same result.  The legacy BO flag
674 	 * duplicates the DRM rotation property when both are set.
675 	 */
676 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
677 		rotation |= DRM_MODE_REFLECT_Y;
678 
679 	rotation = drm_rotation_simplify(rotation, supported_rotation);
680 
681 	if (rotation & DRM_MODE_REFLECT_X)
682 		plane_state->reflect_x = true;
683 	else
684 		plane_state->reflect_x = false;
685 
686 	if (rotation & DRM_MODE_REFLECT_Y)
687 		plane_state->reflect_y = true;
688 	else
689 		plane_state->reflect_y = false;
690 
691 	/*
692 	 * Tegra doesn't support different strides for U and V planes so we
693 	 * error out if the user tries to display a framebuffer with such a
694 	 * configuration.
695 	 */
696 	if (new_plane_state->fb->format->num_planes > 2) {
697 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
698 			DRM_ERROR("unsupported UV-plane configuration\n");
699 			return -EINVAL;
700 		}
701 	}
702 
703 	err = tegra_plane_state_add(tegra, new_plane_state);
704 	if (err < 0)
705 		return err;
706 
707 	return 0;
708 }
709 
710 static void tegra_plane_atomic_disable(struct drm_plane *plane,
711 				       struct drm_atomic_state *state)
712 {
713 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
714 									   plane);
715 	struct tegra_plane *p = to_tegra_plane(plane);
716 	u32 value;
717 
718 	/* rien ne va plus */
719 	if (!old_state || !old_state->crtc)
720 		return;
721 
722 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
723 	value &= ~WIN_ENABLE;
724 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
725 }
726 
727 static void tegra_plane_atomic_update(struct drm_plane *plane,
728 				      struct drm_atomic_state *state)
729 {
730 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
731 									   plane);
732 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
733 	struct drm_framebuffer *fb = new_state->fb;
734 	struct tegra_plane *p = to_tegra_plane(plane);
735 	struct tegra_dc_window window;
736 	unsigned int i;
737 
738 	/* rien ne va plus */
739 	if (!new_state->crtc || !new_state->fb)
740 		return;
741 
742 	if (!new_state->visible)
743 		return tegra_plane_atomic_disable(plane, state);
744 
745 	memset(&window, 0, sizeof(window));
746 	window.src.x = new_state->src.x1 >> 16;
747 	window.src.y = new_state->src.y1 >> 16;
748 	window.src.w = drm_rect_width(&new_state->src) >> 16;
749 	window.src.h = drm_rect_height(&new_state->src) >> 16;
750 	window.dst.x = new_state->dst.x1;
751 	window.dst.y = new_state->dst.y1;
752 	window.dst.w = drm_rect_width(&new_state->dst);
753 	window.dst.h = drm_rect_height(&new_state->dst);
754 	window.bits_per_pixel = fb->format->cpp[0] * 8;
755 	window.reflect_x = tegra_plane_state->reflect_x;
756 	window.reflect_y = tegra_plane_state->reflect_y;
757 
758 	/* copy from state */
759 	window.zpos = new_state->normalized_zpos;
760 	window.tiling = tegra_plane_state->tiling;
761 	window.format = tegra_plane_state->format;
762 	window.swap = tegra_plane_state->swap;
763 
764 	for (i = 0; i < fb->format->num_planes; i++) {
765 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
766 
767 		/*
768 		 * Tegra uses a shared stride for UV planes. Framebuffers are
769 		 * already checked for this in the tegra_plane_atomic_check()
770 		 * function, so it's safe to ignore the V-plane pitch here.
771 		 */
772 		if (i < 2)
773 			window.stride[i] = fb->pitches[i];
774 	}
775 
776 	tegra_dc_setup_window(p, &window);
777 }
778 
779 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
780 	.prepare_fb = tegra_plane_prepare_fb,
781 	.cleanup_fb = tegra_plane_cleanup_fb,
782 	.atomic_check = tegra_plane_atomic_check,
783 	.atomic_disable = tegra_plane_atomic_disable,
784 	.atomic_update = tegra_plane_atomic_update,
785 };
786 
787 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
788 {
789 	/*
790 	 * Ideally this would use drm_crtc_mask(), but that would require the
791 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
792 	 * will only be added to that list in the drm_crtc_init_with_planes()
793 	 * (in tegra_dc_init()), which in turn requires registration of these
794 	 * planes. So we have ourselves a nice little chicken and egg problem
795 	 * here.
796 	 *
797 	 * We work around this by manually creating the mask from the number
798 	 * of CRTCs that have been registered, and should therefore always be
799 	 * the same as drm_crtc_index() after registration.
800 	 */
801 	return 1 << drm->mode_config.num_crtc;
802 }
803 
804 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
805 						    struct tegra_dc *dc)
806 {
807 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
808 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
809 	struct tegra_plane *plane;
810 	unsigned int num_formats;
811 	const u64 *modifiers;
812 	const u32 *formats;
813 	int err;
814 
815 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
816 	if (!plane)
817 		return ERR_PTR(-ENOMEM);
818 
819 	/* Always use window A as primary window */
820 	plane->offset = 0xa00;
821 	plane->index = 0;
822 	plane->dc = dc;
823 
824 	num_formats = dc->soc->num_primary_formats;
825 	formats = dc->soc->primary_formats;
826 	modifiers = dc->soc->modifiers;
827 
828 	err = tegra_plane_interconnect_init(plane);
829 	if (err) {
830 		kfree(plane);
831 		return ERR_PTR(err);
832 	}
833 
834 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
835 				       &tegra_plane_funcs, formats,
836 				       num_formats, modifiers, type, NULL);
837 	if (err < 0) {
838 		kfree(plane);
839 		return ERR_PTR(err);
840 	}
841 
842 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
843 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
844 
845 	err = drm_plane_create_rotation_property(&plane->base,
846 						 DRM_MODE_ROTATE_0,
847 						 DRM_MODE_ROTATE_0 |
848 						 DRM_MODE_ROTATE_180 |
849 						 DRM_MODE_REFLECT_X |
850 						 DRM_MODE_REFLECT_Y);
851 	if (err < 0)
852 		dev_err(dc->dev, "failed to create rotation property: %d\n",
853 			err);
854 
855 	return &plane->base;
856 }
857 
858 static const u32 tegra_legacy_cursor_plane_formats[] = {
859 	DRM_FORMAT_RGBA8888,
860 };
861 
862 static const u32 tegra_cursor_plane_formats[] = {
863 	DRM_FORMAT_ARGB8888,
864 };
865 
866 static int tegra_cursor_atomic_check(struct drm_plane *plane,
867 				     struct drm_atomic_state *state)
868 {
869 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
870 										 plane);
871 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
872 	struct tegra_plane *tegra = to_tegra_plane(plane);
873 	int err;
874 
875 	plane_state->peak_memory_bandwidth = 0;
876 	plane_state->avg_memory_bandwidth = 0;
877 
878 	/* no need for further checks if the plane is being disabled */
879 	if (!new_plane_state->crtc) {
880 		plane_state->total_peak_memory_bandwidth = 0;
881 		return 0;
882 	}
883 
884 	/* scaling not supported for cursor */
885 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
886 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
887 		return -EINVAL;
888 
889 	/* only square cursors supported */
890 	if (new_plane_state->src_w != new_plane_state->src_h)
891 		return -EINVAL;
892 
893 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
894 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
895 		return -EINVAL;
896 
897 	err = tegra_plane_state_add(tegra, new_plane_state);
898 	if (err < 0)
899 		return err;
900 
901 	return 0;
902 }
903 
904 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
905 					 struct drm_plane_state *new_state)
906 {
907 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
908 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
909 	struct tegra_drm *tegra = plane->dev->dev_private;
910 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
911 	u64 dma_mask = *dc->dev->dma_mask;
912 #endif
913 	unsigned int x, y;
914 	u32 value = 0;
915 
916 	/* rien ne va plus */
917 	if (!new_state->crtc || !new_state->fb)
918 		return;
919 
920 	/*
921 	 * Legacy display supports hardware clipping of the cursor, but
922 	 * nvdisplay relies on software to clip the cursor to the screen.
923 	 */
924 	if (!dc->soc->has_nvdisplay)
925 		value |= CURSOR_CLIP_DISPLAY;
926 
927 	switch (new_state->crtc_w) {
928 	case 32:
929 		value |= CURSOR_SIZE_32x32;
930 		break;
931 
932 	case 64:
933 		value |= CURSOR_SIZE_64x64;
934 		break;
935 
936 	case 128:
937 		value |= CURSOR_SIZE_128x128;
938 		break;
939 
940 	case 256:
941 		value |= CURSOR_SIZE_256x256;
942 		break;
943 
944 	default:
945 		WARN(1, "cursor size %ux%u not supported\n",
946 		     new_state->crtc_w, new_state->crtc_h);
947 		return;
948 	}
949 
950 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
951 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
952 
953 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
954 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
955 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
956 #endif
957 
958 	/* enable cursor and set blend mode */
959 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
960 	value |= CURSOR_ENABLE;
961 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
962 
963 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
964 	value &= ~CURSOR_DST_BLEND_MASK;
965 	value &= ~CURSOR_SRC_BLEND_MASK;
966 
967 	if (dc->soc->has_nvdisplay)
968 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
969 	else
970 		value |= CURSOR_MODE_NORMAL;
971 
972 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
973 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
974 	value |= CURSOR_ALPHA;
975 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
976 
977 	/* nvdisplay relies on software for clipping */
978 	if (dc->soc->has_nvdisplay) {
979 		struct drm_rect src;
980 
981 		x = new_state->dst.x1;
982 		y = new_state->dst.y1;
983 
984 		drm_rect_fp_to_int(&src, &new_state->src);
985 
986 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
987 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
988 
989 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
990 			(drm_rect_width(&src) & tegra->hmask);
991 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
992 	} else {
993 		x = new_state->crtc_x;
994 		y = new_state->crtc_y;
995 	}
996 
997 	/* position the cursor */
998 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
999 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
1000 }
1001 
1002 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1003 				       struct drm_atomic_state *state)
1004 {
1005 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1006 
1007 	__tegra_cursor_atomic_update(plane, new_state);
1008 }
1009 
1010 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1011 					struct drm_atomic_state *state)
1012 {
1013 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1014 									   plane);
1015 	struct tegra_dc *dc;
1016 	u32 value;
1017 
1018 	/* rien ne va plus */
1019 	if (!old_state || !old_state->crtc)
1020 		return;
1021 
1022 	dc = to_tegra_dc(old_state->crtc);
1023 
1024 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1025 	value &= ~CURSOR_ENABLE;
1026 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1027 }
1028 
1029 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state,
1030 					   bool flip)
1031 {
1032 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1033 	struct drm_crtc_state *crtc_state;
1034 	int min_scale, max_scale;
1035 	int err;
1036 
1037 	crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc);
1038 	if (WARN_ON(!crtc_state))
1039 		return -EINVAL;
1040 
1041 	if (!crtc_state->active)
1042 		return -EINVAL;
1043 
1044 	if (plane->state->crtc != new_state->crtc ||
1045 	    plane->state->src_w != new_state->src_w ||
1046 	    plane->state->src_h != new_state->src_h ||
1047 	    plane->state->crtc_w != new_state->crtc_w ||
1048 	    plane->state->crtc_h != new_state->crtc_h ||
1049 	    plane->state->fb != new_state->fb ||
1050 	    plane->state->fb == NULL)
1051 		return -EINVAL;
1052 
1053 	min_scale = (1 << 16) / 8;
1054 	max_scale = (8 << 16) / 1;
1055 
1056 	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1057 						  true, true);
1058 	if (err < 0)
1059 		return err;
1060 
1061 	if (new_state->visible != plane->state->visible)
1062 		return -EINVAL;
1063 
1064 	return 0;
1065 }
1066 
1067 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1068 					     struct drm_atomic_state *state)
1069 {
1070 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1071 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1072 
1073 	plane->state->src_x = new_state->src_x;
1074 	plane->state->src_y = new_state->src_y;
1075 	plane->state->crtc_x = new_state->crtc_x;
1076 	plane->state->crtc_y = new_state->crtc_y;
1077 
1078 	if (new_state->visible) {
1079 		struct tegra_plane *p = to_tegra_plane(plane);
1080 		u32 value;
1081 
1082 		__tegra_cursor_atomic_update(plane, new_state);
1083 
1084 		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1085 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1086 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1087 
1088 		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1089 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1090 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1091 	}
1092 }
1093 
1094 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1095 	.prepare_fb = tegra_plane_prepare_fb,
1096 	.cleanup_fb = tegra_plane_cleanup_fb,
1097 	.atomic_check = tegra_cursor_atomic_check,
1098 	.atomic_update = tegra_cursor_atomic_update,
1099 	.atomic_disable = tegra_cursor_atomic_disable,
1100 	.atomic_async_check = tegra_cursor_atomic_async_check,
1101 	.atomic_async_update = tegra_cursor_atomic_async_update,
1102 };
1103 
1104 static const uint64_t linear_modifiers[] = {
1105 	DRM_FORMAT_MOD_LINEAR,
1106 	DRM_FORMAT_MOD_INVALID
1107 };
1108 
1109 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1110 						      struct tegra_dc *dc)
1111 {
1112 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1113 	struct tegra_plane *plane;
1114 	unsigned int num_formats;
1115 	const u32 *formats;
1116 	int err;
1117 
1118 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1119 	if (!plane)
1120 		return ERR_PTR(-ENOMEM);
1121 
1122 	/*
1123 	 * This index is kind of fake. The cursor isn't a regular plane, but
1124 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1125 	 * use the same programming. Setting this fake index here allows the
1126 	 * code in tegra_add_plane_state() to do the right thing without the
1127 	 * need to special-casing the cursor plane.
1128 	 */
1129 	plane->index = 6;
1130 	plane->dc = dc;
1131 
1132 	if (!dc->soc->has_nvdisplay) {
1133 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1134 		formats = tegra_legacy_cursor_plane_formats;
1135 
1136 		err = tegra_plane_interconnect_init(plane);
1137 		if (err) {
1138 			kfree(plane);
1139 			return ERR_PTR(err);
1140 		}
1141 	} else {
1142 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1143 		formats = tegra_cursor_plane_formats;
1144 	}
1145 
1146 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1147 				       &tegra_plane_funcs, formats,
1148 				       num_formats, linear_modifiers,
1149 				       DRM_PLANE_TYPE_CURSOR, NULL);
1150 	if (err < 0) {
1151 		kfree(plane);
1152 		return ERR_PTR(err);
1153 	}
1154 
1155 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1156 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1157 
1158 	return &plane->base;
1159 }
1160 
1161 static const u32 tegra20_overlay_formats[] = {
1162 	DRM_FORMAT_ARGB4444,
1163 	DRM_FORMAT_ARGB1555,
1164 	DRM_FORMAT_RGB565,
1165 	DRM_FORMAT_RGBA5551,
1166 	DRM_FORMAT_ABGR8888,
1167 	DRM_FORMAT_ARGB8888,
1168 	/* non-native formats */
1169 	DRM_FORMAT_XRGB1555,
1170 	DRM_FORMAT_RGBX5551,
1171 	DRM_FORMAT_XBGR8888,
1172 	DRM_FORMAT_XRGB8888,
1173 	/* planar formats */
1174 	DRM_FORMAT_UYVY,
1175 	DRM_FORMAT_YUYV,
1176 	DRM_FORMAT_YUV420,
1177 	DRM_FORMAT_YUV422,
1178 };
1179 
1180 static const u32 tegra114_overlay_formats[] = {
1181 	DRM_FORMAT_ARGB4444,
1182 	DRM_FORMAT_ARGB1555,
1183 	DRM_FORMAT_RGB565,
1184 	DRM_FORMAT_RGBA5551,
1185 	DRM_FORMAT_ABGR8888,
1186 	DRM_FORMAT_ARGB8888,
1187 	/* new on Tegra114 */
1188 	DRM_FORMAT_ABGR4444,
1189 	DRM_FORMAT_ABGR1555,
1190 	DRM_FORMAT_BGRA5551,
1191 	DRM_FORMAT_XRGB1555,
1192 	DRM_FORMAT_RGBX5551,
1193 	DRM_FORMAT_XBGR1555,
1194 	DRM_FORMAT_BGRX5551,
1195 	DRM_FORMAT_BGR565,
1196 	DRM_FORMAT_BGRA8888,
1197 	DRM_FORMAT_RGBA8888,
1198 	DRM_FORMAT_XRGB8888,
1199 	DRM_FORMAT_XBGR8888,
1200 	/* planar formats */
1201 	DRM_FORMAT_UYVY,
1202 	DRM_FORMAT_YUYV,
1203 	DRM_FORMAT_YUV420,
1204 	DRM_FORMAT_YUV422,
1205 	/* semi-planar formats */
1206 	DRM_FORMAT_NV12,
1207 	DRM_FORMAT_NV21,
1208 	DRM_FORMAT_NV16,
1209 	DRM_FORMAT_NV61,
1210 	DRM_FORMAT_NV24,
1211 	DRM_FORMAT_NV42,
1212 };
1213 
1214 static const u32 tegra124_overlay_formats[] = {
1215 	DRM_FORMAT_ARGB4444,
1216 	DRM_FORMAT_ARGB1555,
1217 	DRM_FORMAT_RGB565,
1218 	DRM_FORMAT_RGBA5551,
1219 	DRM_FORMAT_ABGR8888,
1220 	DRM_FORMAT_ARGB8888,
1221 	/* new on Tegra114 */
1222 	DRM_FORMAT_ABGR4444,
1223 	DRM_FORMAT_ABGR1555,
1224 	DRM_FORMAT_BGRA5551,
1225 	DRM_FORMAT_XRGB1555,
1226 	DRM_FORMAT_RGBX5551,
1227 	DRM_FORMAT_XBGR1555,
1228 	DRM_FORMAT_BGRX5551,
1229 	DRM_FORMAT_BGR565,
1230 	DRM_FORMAT_BGRA8888,
1231 	DRM_FORMAT_RGBA8888,
1232 	DRM_FORMAT_XRGB8888,
1233 	DRM_FORMAT_XBGR8888,
1234 	/* new on Tegra124 */
1235 	DRM_FORMAT_RGBX8888,
1236 	DRM_FORMAT_BGRX8888,
1237 	/* planar formats */
1238 	DRM_FORMAT_UYVY,
1239 	DRM_FORMAT_YUYV,
1240 	DRM_FORMAT_YVYU,
1241 	DRM_FORMAT_VYUY,
1242 	DRM_FORMAT_YUV420, /* YU12 */
1243 	DRM_FORMAT_YUV422, /* YU16 */
1244 	DRM_FORMAT_YUV444, /* YU24 */
1245 	/* semi-planar formats */
1246 	DRM_FORMAT_NV12,
1247 	DRM_FORMAT_NV21,
1248 	DRM_FORMAT_NV16,
1249 	DRM_FORMAT_NV61,
1250 	DRM_FORMAT_NV24,
1251 	DRM_FORMAT_NV42,
1252 };
1253 
1254 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1255 						       struct tegra_dc *dc,
1256 						       unsigned int index,
1257 						       bool cursor)
1258 {
1259 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1260 	struct tegra_plane *plane;
1261 	unsigned int num_formats;
1262 	enum drm_plane_type type;
1263 	const u32 *formats;
1264 	int err;
1265 
1266 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1267 	if (!plane)
1268 		return ERR_PTR(-ENOMEM);
1269 
1270 	plane->offset = 0xa00 + 0x200 * index;
1271 	plane->index = index;
1272 	plane->dc = dc;
1273 
1274 	num_formats = dc->soc->num_overlay_formats;
1275 	formats = dc->soc->overlay_formats;
1276 
1277 	err = tegra_plane_interconnect_init(plane);
1278 	if (err) {
1279 		kfree(plane);
1280 		return ERR_PTR(err);
1281 	}
1282 
1283 	if (!cursor)
1284 		type = DRM_PLANE_TYPE_OVERLAY;
1285 	else
1286 		type = DRM_PLANE_TYPE_CURSOR;
1287 
1288 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1289 				       &tegra_plane_funcs, formats,
1290 				       num_formats, linear_modifiers,
1291 				       type, NULL);
1292 	if (err < 0) {
1293 		kfree(plane);
1294 		return ERR_PTR(err);
1295 	}
1296 
1297 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1298 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1299 
1300 	err = drm_plane_create_rotation_property(&plane->base,
1301 						 DRM_MODE_ROTATE_0,
1302 						 DRM_MODE_ROTATE_0 |
1303 						 DRM_MODE_ROTATE_180 |
1304 						 DRM_MODE_REFLECT_X |
1305 						 DRM_MODE_REFLECT_Y);
1306 	if (err < 0)
1307 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1308 			err);
1309 
1310 	return &plane->base;
1311 }
1312 
1313 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1314 						    struct tegra_dc *dc)
1315 {
1316 	struct drm_plane *plane, *primary = NULL;
1317 	unsigned int i, j;
1318 
1319 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1320 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1321 
1322 		if (wgrp->dc == dc->pipe) {
1323 			for (j = 0; j < wgrp->num_windows; j++) {
1324 				unsigned int index = wgrp->windows[j];
1325 				enum drm_plane_type type;
1326 
1327 				if (primary)
1328 					type = DRM_PLANE_TYPE_OVERLAY;
1329 				else
1330 					type = DRM_PLANE_TYPE_PRIMARY;
1331 
1332 				plane = tegra_shared_plane_create(drm, dc,
1333 								  wgrp->index,
1334 								  index, type);
1335 				if (IS_ERR(plane))
1336 					return plane;
1337 
1338 				/*
1339 				 * Choose the first shared plane owned by this
1340 				 * head as the primary plane.
1341 				 */
1342 				if (!primary)
1343 					primary = plane;
1344 			}
1345 		}
1346 	}
1347 
1348 	return primary;
1349 }
1350 
1351 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1352 					     struct tegra_dc *dc)
1353 {
1354 	struct drm_plane *planes[2], *primary;
1355 	unsigned int planes_num;
1356 	unsigned int i;
1357 	int err;
1358 
1359 	primary = tegra_primary_plane_create(drm, dc);
1360 	if (IS_ERR(primary))
1361 		return primary;
1362 
1363 	if (dc->soc->supports_cursor)
1364 		planes_num = 2;
1365 	else
1366 		planes_num = 1;
1367 
1368 	for (i = 0; i < planes_num; i++) {
1369 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1370 							  false);
1371 		if (IS_ERR(planes[i])) {
1372 			err = PTR_ERR(planes[i]);
1373 
1374 			while (i--)
1375 				planes[i]->funcs->destroy(planes[i]);
1376 
1377 			primary->funcs->destroy(primary);
1378 			return ERR_PTR(err);
1379 		}
1380 	}
1381 
1382 	return primary;
1383 }
1384 
1385 static void tegra_dc_destroy(struct drm_crtc *crtc)
1386 {
1387 	drm_crtc_cleanup(crtc);
1388 }
1389 
1390 static void tegra_crtc_reset(struct drm_crtc *crtc)
1391 {
1392 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1393 
1394 	if (crtc->state)
1395 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1396 
1397 	if (state)
1398 		__drm_atomic_helper_crtc_reset(crtc, &state->base);
1399 	else
1400 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1401 }
1402 
1403 static struct drm_crtc_state *
1404 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1405 {
1406 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1407 	struct tegra_dc_state *copy;
1408 
1409 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1410 	if (!copy)
1411 		return NULL;
1412 
1413 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1414 	copy->clk = state->clk;
1415 	copy->pclk = state->pclk;
1416 	copy->div = state->div;
1417 	copy->planes = state->planes;
1418 
1419 	return &copy->base;
1420 }
1421 
1422 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1423 					    struct drm_crtc_state *state)
1424 {
1425 	__drm_atomic_helper_crtc_destroy_state(state);
1426 	kfree(state);
1427 }
1428 
1429 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1430 
1431 static const struct debugfs_reg32 tegra_dc_regs[] = {
1432 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1433 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1434 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1435 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1436 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1437 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1438 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1439 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1440 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1441 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1442 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1443 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1444 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1445 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1446 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1447 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1448 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1449 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1450 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1451 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1452 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1453 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1454 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1455 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1456 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1457 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1458 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1459 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1460 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1461 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1462 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1463 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1464 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1465 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1466 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1467 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1468 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1469 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1470 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1471 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1472 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1473 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1474 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1475 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1476 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1477 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1478 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1479 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1480 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1481 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1482 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1483 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1484 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1485 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1486 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1487 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1488 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1489 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1490 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1491 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1492 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1493 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1494 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1495 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1496 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1497 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1498 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1499 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1500 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1501 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1502 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1503 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1504 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1505 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1506 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1507 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1508 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1509 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1510 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1511 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1512 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1513 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1514 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1515 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1516 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1517 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1518 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1519 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1520 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1521 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1522 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1523 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1524 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1525 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1526 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1527 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1528 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1529 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1530 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1531 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1532 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1533 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1534 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1535 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1536 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1537 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1538 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1539 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1540 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1541 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1542 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1543 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1544 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1545 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1546 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1547 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1548 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1549 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1550 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1551 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1552 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1553 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1554 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1555 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1556 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1557 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1558 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1559 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1560 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1561 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1562 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1563 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1564 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1565 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1566 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1567 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1568 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1569 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1570 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1571 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1572 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1573 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1574 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1575 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1576 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1577 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1578 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1579 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1580 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1581 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1582 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1583 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1584 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1585 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1586 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1587 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1588 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1589 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1590 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1591 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1592 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1593 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1594 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1595 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1596 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1597 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1598 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1599 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1600 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1601 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1602 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1603 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1604 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1605 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1606 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1607 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1608 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1609 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1610 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1611 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1612 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1613 	DEBUGFS_REG32(DC_WIN_POSITION),
1614 	DEBUGFS_REG32(DC_WIN_SIZE),
1615 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1616 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1617 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1618 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1619 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1620 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1621 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1622 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1623 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1624 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1625 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1626 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1627 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1628 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1629 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1630 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1631 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1632 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1633 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1634 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1635 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1636 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1637 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1638 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1639 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1640 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1641 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1642 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1643 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1644 };
1645 
1646 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1647 {
1648 	struct drm_info_node *node = s->private;
1649 	struct tegra_dc *dc = node->info_ent->data;
1650 	unsigned int i;
1651 	int err = 0;
1652 
1653 	drm_modeset_lock(&dc->base.mutex, NULL);
1654 
1655 	if (!dc->base.state->active) {
1656 		err = -EBUSY;
1657 		goto unlock;
1658 	}
1659 
1660 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1661 		unsigned int offset = tegra_dc_regs[i].offset;
1662 
1663 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1664 			   offset, tegra_dc_readl(dc, offset));
1665 	}
1666 
1667 unlock:
1668 	drm_modeset_unlock(&dc->base.mutex);
1669 	return err;
1670 }
1671 
1672 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1673 {
1674 	struct drm_info_node *node = s->private;
1675 	struct tegra_dc *dc = node->info_ent->data;
1676 	int err = 0;
1677 	u32 value;
1678 
1679 	drm_modeset_lock(&dc->base.mutex, NULL);
1680 
1681 	if (!dc->base.state->active) {
1682 		err = -EBUSY;
1683 		goto unlock;
1684 	}
1685 
1686 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1687 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1688 	tegra_dc_commit(dc);
1689 
1690 	drm_crtc_wait_one_vblank(&dc->base);
1691 	drm_crtc_wait_one_vblank(&dc->base);
1692 
1693 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1694 	seq_printf(s, "%08x\n", value);
1695 
1696 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1697 
1698 unlock:
1699 	drm_modeset_unlock(&dc->base.mutex);
1700 	return err;
1701 }
1702 
1703 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1704 {
1705 	struct drm_info_node *node = s->private;
1706 	struct tegra_dc *dc = node->info_ent->data;
1707 
1708 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1709 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1710 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1711 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1712 
1713 	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1714 	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1715 	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1716 	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1717 
1718 	return 0;
1719 }
1720 
1721 static struct drm_info_list debugfs_files[] = {
1722 	{ "regs", tegra_dc_show_regs, 0, NULL },
1723 	{ "crc", tegra_dc_show_crc, 0, NULL },
1724 	{ "stats", tegra_dc_show_stats, 0, NULL },
1725 };
1726 
1727 static int tegra_dc_late_register(struct drm_crtc *crtc)
1728 {
1729 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1730 	struct drm_minor *minor = crtc->dev->primary;
1731 	struct dentry *root;
1732 	struct tegra_dc *dc = to_tegra_dc(crtc);
1733 
1734 #ifdef CONFIG_DEBUG_FS
1735 	root = crtc->debugfs_entry;
1736 #else
1737 	root = NULL;
1738 #endif
1739 
1740 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1741 				    GFP_KERNEL);
1742 	if (!dc->debugfs_files)
1743 		return -ENOMEM;
1744 
1745 	for (i = 0; i < count; i++)
1746 		dc->debugfs_files[i].data = dc;
1747 
1748 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1749 
1750 	return 0;
1751 }
1752 
1753 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1754 {
1755 	unsigned int count = ARRAY_SIZE(debugfs_files);
1756 	struct drm_minor *minor = crtc->dev->primary;
1757 	struct tegra_dc *dc = to_tegra_dc(crtc);
1758 	struct dentry *root;
1759 
1760 #ifdef CONFIG_DEBUG_FS
1761 	root = crtc->debugfs_entry;
1762 #else
1763 	root = NULL;
1764 #endif
1765 
1766 	drm_debugfs_remove_files(dc->debugfs_files, count, root, minor);
1767 	kfree(dc->debugfs_files);
1768 	dc->debugfs_files = NULL;
1769 }
1770 
1771 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1772 {
1773 	struct tegra_dc *dc = to_tegra_dc(crtc);
1774 
1775 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1776 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1777 		return host1x_syncpt_read(dc->syncpt);
1778 
1779 	/* fallback to software emulated VBLANK counter */
1780 	return (u32)drm_crtc_vblank_count(&dc->base);
1781 }
1782 
1783 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1784 {
1785 	struct tegra_dc *dc = to_tegra_dc(crtc);
1786 	u32 value;
1787 
1788 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1789 	value |= VBLANK_INT;
1790 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1791 
1792 	return 0;
1793 }
1794 
1795 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1796 {
1797 	struct tegra_dc *dc = to_tegra_dc(crtc);
1798 	u32 value;
1799 
1800 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1801 	value &= ~VBLANK_INT;
1802 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1803 }
1804 
1805 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1806 	.page_flip = drm_atomic_helper_page_flip,
1807 	.set_config = drm_atomic_helper_set_config,
1808 	.destroy = tegra_dc_destroy,
1809 	.reset = tegra_crtc_reset,
1810 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1811 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1812 	.late_register = tegra_dc_late_register,
1813 	.early_unregister = tegra_dc_early_unregister,
1814 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1815 	.enable_vblank = tegra_dc_enable_vblank,
1816 	.disable_vblank = tegra_dc_disable_vblank,
1817 };
1818 
1819 static int tegra_dc_set_timings(struct tegra_dc *dc,
1820 				struct drm_display_mode *mode)
1821 {
1822 	unsigned int h_ref_to_sync = 1;
1823 	unsigned int v_ref_to_sync = 1;
1824 	unsigned long value;
1825 
1826 	if (!dc->soc->has_nvdisplay) {
1827 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1828 
1829 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1830 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1831 	}
1832 
1833 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1834 		((mode->hsync_end - mode->hsync_start) <<  0);
1835 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1836 
1837 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1838 		((mode->htotal - mode->hsync_end) <<  0);
1839 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1840 
1841 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1842 		((mode->hsync_start - mode->hdisplay) <<  0);
1843 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1844 
1845 	value = (mode->vdisplay << 16) | mode->hdisplay;
1846 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1853  *     state
1854  * @dc: display controller
1855  * @crtc_state: CRTC atomic state
1856  * @clk: parent clock for display controller
1857  * @pclk: pixel clock
1858  * @div: shift clock divider
1859  *
1860  * Returns:
1861  * 0 on success or a negative error-code on failure.
1862  */
1863 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1864 			       struct drm_crtc_state *crtc_state,
1865 			       struct clk *clk, unsigned long pclk,
1866 			       unsigned int div)
1867 {
1868 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1869 
1870 	if (!clk_has_parent(dc->clk, clk))
1871 		return -EINVAL;
1872 
1873 	state->clk = clk;
1874 	state->pclk = pclk;
1875 	state->div = div;
1876 
1877 	return 0;
1878 }
1879 
1880 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1881 					  struct tegra_dc_state *state)
1882 {
1883 	unsigned long rate, pstate;
1884 	struct dev_pm_opp *opp;
1885 	int err;
1886 
1887 	if (!dc->has_opp_table)
1888 		return;
1889 
1890 	/* calculate actual pixel clock rate which depends on internal divider */
1891 	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1892 
1893 	/* find suitable OPP for the rate */
1894 	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1895 
1896 	/*
1897 	 * Very high resolution modes may results in a clock rate that is
1898 	 * above the characterized maximum. In this case it's okay to fall
1899 	 * back to the characterized maximum.
1900 	 */
1901 	if (opp == ERR_PTR(-ERANGE))
1902 		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1903 
1904 	if (IS_ERR(opp)) {
1905 		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1906 			rate, opp);
1907 		return;
1908 	}
1909 
1910 	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1911 	dev_pm_opp_put(opp);
1912 
1913 	/*
1914 	 * The minimum core voltage depends on the pixel clock rate (which
1915 	 * depends on internal clock divider of the CRTC) and not on the
1916 	 * rate of the display controller clock. This is why we're not using
1917 	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1918 	 * directly.
1919 	 */
1920 	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1921 	if (err)
1922 		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1923 			pstate, err);
1924 }
1925 
1926 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1927 				    struct tegra_dc_state *state)
1928 {
1929 	int err;
1930 
1931 	err = clk_set_parent(dc->clk, state->clk);
1932 	if (err < 0)
1933 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1934 
1935 	/*
1936 	 * Outputs may not want to change the parent clock rate. This is only
1937 	 * relevant to Tegra20 where only a single display PLL is available.
1938 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1939 	 * panel would need to be driven by some other clock such as PLL_P
1940 	 * which is shared with other peripherals. Changing the clock rate
1941 	 * should therefore be avoided.
1942 	 */
1943 	if (state->pclk > 0) {
1944 		err = clk_set_rate(state->clk, state->pclk);
1945 		if (err < 0)
1946 			dev_err(dc->dev,
1947 				"failed to set clock rate to %lu Hz\n",
1948 				state->pclk);
1949 
1950 		err = clk_set_rate(dc->clk, state->pclk);
1951 		if (err < 0)
1952 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1953 				dc->clk, state->pclk, err);
1954 	}
1955 
1956 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1957 		      state->div);
1958 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1959 
1960 	tegra_dc_update_voltage_state(dc, state);
1961 }
1962 
1963 static void tegra_dc_stop(struct tegra_dc *dc)
1964 {
1965 	u32 value;
1966 
1967 	/* stop the display controller */
1968 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1969 	value &= ~DISP_CTRL_MODE_MASK;
1970 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1971 
1972 	tegra_dc_commit(dc);
1973 }
1974 
1975 static bool tegra_dc_idle(struct tegra_dc *dc)
1976 {
1977 	u32 value;
1978 
1979 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1980 
1981 	return (value & DISP_CTRL_MODE_MASK) == 0;
1982 }
1983 
1984 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1985 {
1986 	timeout = jiffies + msecs_to_jiffies(timeout);
1987 
1988 	while (time_before(jiffies, timeout)) {
1989 		if (tegra_dc_idle(dc))
1990 			return 0;
1991 
1992 		usleep_range(1000, 2000);
1993 	}
1994 
1995 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1996 	return -ETIMEDOUT;
1997 }
1998 
1999 static void
2000 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
2001 				   struct drm_atomic_state *state,
2002 				   bool prepare_bandwidth_transition)
2003 {
2004 	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
2005 	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
2006 	const struct drm_plane_state *old_plane_state;
2007 	const struct drm_crtc_state *old_crtc_state;
2008 	struct tegra_dc_window window, old_window;
2009 	struct tegra_dc *dc = to_tegra_dc(crtc);
2010 	struct tegra_plane *tegra;
2011 	struct drm_plane *plane;
2012 
2013 	if (dc->soc->has_nvdisplay)
2014 		return;
2015 
2016 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2017 
2018 	if (!crtc->state->active) {
2019 		if (!old_crtc_state->active)
2020 			return;
2021 
2022 		/*
2023 		 * When CRTC is disabled on DPMS, the state of attached planes
2024 		 * is kept unchanged. Hence we need to enforce removal of the
2025 		 * bandwidths from the ICC paths.
2026 		 */
2027 		drm_atomic_crtc_for_each_plane(plane, crtc) {
2028 			tegra = to_tegra_plane(plane);
2029 
2030 			icc_set_bw(tegra->icc_mem, 0, 0);
2031 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2032 		}
2033 
2034 		return;
2035 	}
2036 
2037 	for_each_old_plane_in_state(old_crtc_state->state, plane,
2038 				    old_plane_state, i) {
2039 		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2040 		new_tegra_state = to_const_tegra_plane_state(plane->state);
2041 		tegra = to_tegra_plane(plane);
2042 
2043 		/*
2044 		 * We're iterating over the global atomic state and it contains
2045 		 * planes from another CRTC, hence we need to filter out the
2046 		 * planes unrelated to this CRTC.
2047 		 */
2048 		if (tegra->dc != dc)
2049 			continue;
2050 
2051 		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2052 		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2053 
2054 		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2055 		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2056 
2057 		/*
2058 		 * See the comment related to !crtc->state->active above,
2059 		 * which explains why bandwidths need to be updated when
2060 		 * CRTC is turning ON.
2061 		 */
2062 		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2063 		    old_crtc_state->active)
2064 			continue;
2065 
2066 		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2067 		window.dst.h = drm_rect_height(&plane->state->dst);
2068 
2069 		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2070 		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2071 
2072 		/*
2073 		 * During the preparation phase (atomic_begin), the memory
2074 		 * freq should go high before the DC changes are committed
2075 		 * if bandwidth requirement goes up, otherwise memory freq
2076 		 * should to stay high if BW requirement goes down.  The
2077 		 * opposite applies to the completion phase (post_commit).
2078 		 */
2079 		if (prepare_bandwidth_transition) {
2080 			new_avg_bw = max(old_avg_bw, new_avg_bw);
2081 			new_peak_bw = max(old_peak_bw, new_peak_bw);
2082 
2083 			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2084 				window = old_window;
2085 		}
2086 
2087 		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2088 
2089 		if (tegra_plane_use_vertical_filtering(tegra, &window))
2090 			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2091 		else
2092 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2093 	}
2094 }
2095 
2096 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2097 				      struct drm_atomic_state *state)
2098 {
2099 	struct tegra_dc *dc = to_tegra_dc(crtc);
2100 	u32 value;
2101 	int err;
2102 
2103 	if (!tegra_dc_idle(dc)) {
2104 		tegra_dc_stop(dc);
2105 
2106 		/*
2107 		 * Ignore the return value, there isn't anything useful to do
2108 		 * in case this fails.
2109 		 */
2110 		tegra_dc_wait_idle(dc, 100);
2111 	}
2112 
2113 	/*
2114 	 * This should really be part of the RGB encoder driver, but clearing
2115 	 * these bits has the side-effect of stopping the display controller.
2116 	 * When that happens no VBLANK interrupts will be raised. At the same
2117 	 * time the encoder is disabled before the display controller, so the
2118 	 * above code is always going to timeout waiting for the controller
2119 	 * to go idle.
2120 	 *
2121 	 * Given the close coupling between the RGB encoder and the display
2122 	 * controller doing it here is still kind of okay. None of the other
2123 	 * encoder drivers require these bits to be cleared.
2124 	 *
2125 	 * XXX: Perhaps given that the display controller is switched off at
2126 	 * this point anyway maybe clearing these bits isn't even useful for
2127 	 * the RGB encoder?
2128 	 */
2129 	if (dc->rgb) {
2130 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2131 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2132 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2133 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2134 	}
2135 
2136 	tegra_dc_stats_reset(&dc->stats);
2137 	drm_crtc_vblank_off(crtc);
2138 
2139 	spin_lock_irq(&crtc->dev->event_lock);
2140 
2141 	if (crtc->state->event) {
2142 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2143 		crtc->state->event = NULL;
2144 	}
2145 
2146 	spin_unlock_irq(&crtc->dev->event_lock);
2147 
2148 	err = host1x_client_suspend(&dc->client);
2149 	if (err < 0)
2150 		dev_err(dc->dev, "failed to suspend: %d\n", err);
2151 
2152 	if (dc->has_opp_table) {
2153 		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2154 		if (err)
2155 			dev_err(dc->dev,
2156 				"failed to clear power domain state: %d\n", err);
2157 	}
2158 }
2159 
2160 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2161 				     struct drm_atomic_state *state)
2162 {
2163 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2164 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2165 	struct tegra_dc *dc = to_tegra_dc(crtc);
2166 	u32 value;
2167 	int err;
2168 
2169 	/* apply PLL changes */
2170 	tegra_dc_set_clock_rate(dc, crtc_state);
2171 
2172 	err = host1x_client_resume(&dc->client);
2173 	if (err < 0) {
2174 		dev_err(dc->dev, "failed to resume: %d\n", err);
2175 		return;
2176 	}
2177 
2178 	/* initialize display controller */
2179 	if (dc->syncpt) {
2180 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2181 
2182 		if (dc->soc->has_nvdisplay)
2183 			enable = 1 << 31;
2184 		else
2185 			enable = 1 << 8;
2186 
2187 		value = SYNCPT_CNTRL_NO_STALL;
2188 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2189 
2190 		value = enable | syncpt;
2191 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2192 	}
2193 
2194 	if (dc->soc->has_nvdisplay) {
2195 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2196 			DSC_OBUF_UF_INT;
2197 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2198 
2199 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2200 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2201 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2202 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2203 			VBLANK_INT | FRAME_END_INT;
2204 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2205 
2206 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2207 			FRAME_END_INT;
2208 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2209 
2210 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2211 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2212 
2213 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2214 	} else {
2215 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2216 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2217 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2218 
2219 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2220 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2221 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2222 
2223 		/* initialize timer */
2224 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2225 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2226 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2227 
2228 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2229 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2230 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2231 
2232 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2233 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2234 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2235 
2236 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2237 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2238 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2239 	}
2240 
2241 	if (dc->soc->supports_background_color)
2242 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2243 	else
2244 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2245 
2246 	/* apply pixel clock changes */
2247 	if (!dc->soc->has_nvdisplay) {
2248 		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2249 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2250 	}
2251 
2252 	/* program display mode */
2253 	tegra_dc_set_timings(dc, mode);
2254 
2255 	/* interlacing isn't supported yet, so disable it */
2256 	if (dc->soc->supports_interlacing) {
2257 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2258 		value &= ~INTERLACE_ENABLE;
2259 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2260 	}
2261 
2262 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2263 	value &= ~DISP_CTRL_MODE_MASK;
2264 	value |= DISP_CTRL_MODE_C_DISPLAY;
2265 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2266 
2267 	if (!dc->soc->has_nvdisplay) {
2268 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2269 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2270 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2271 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2272 	}
2273 
2274 	/* enable underflow reporting and display red for missing pixels */
2275 	if (dc->soc->has_nvdisplay) {
2276 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2277 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2278 	}
2279 
2280 	if (dc->rgb) {
2281 		/* XXX: parameterize? */
2282 		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2283 		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2284 	}
2285 
2286 	tegra_dc_commit(dc);
2287 
2288 	drm_crtc_vblank_on(crtc);
2289 }
2290 
2291 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2292 				    struct drm_atomic_state *state)
2293 {
2294 	unsigned long flags;
2295 
2296 	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2297 
2298 	if (crtc->state->event) {
2299 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2300 
2301 		if (drm_crtc_vblank_get(crtc) != 0)
2302 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2303 		else
2304 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2305 
2306 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2307 
2308 		crtc->state->event = NULL;
2309 	}
2310 }
2311 
2312 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2313 				    struct drm_atomic_state *state)
2314 {
2315 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2316 									  crtc);
2317 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2318 	struct tegra_dc *dc = to_tegra_dc(crtc);
2319 	u32 value;
2320 
2321 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2322 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2323 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2324 
2325 	value = dc_state->planes | GENERAL_ACT_REQ;
2326 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2327 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2328 }
2329 
2330 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2331 {
2332 	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2333 	const struct drm_format_info *fmt = state->fb->format;
2334 	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2335 	unsigned int dst_w = drm_rect_width(&state->dst);
2336 
2337 	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2338 		return false;
2339 
2340 	if (soc->supports_cursor)
2341 		return true;
2342 
2343 	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2344 		return false;
2345 
2346 	return true;
2347 }
2348 
2349 static unsigned long
2350 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2351 			 const struct drm_plane_state *plane_state)
2352 {
2353 	const struct drm_plane_state *other_state;
2354 	const struct tegra_plane *tegra;
2355 	unsigned long overlap_mask = 0;
2356 	struct drm_plane *plane;
2357 	struct drm_rect rect;
2358 
2359 	if (!plane_state->visible || !plane_state->fb)
2360 		return 0;
2361 
2362 	/*
2363 	 * Data-prefetch FIFO will easily help to overcome temporal memory
2364 	 * pressure if other plane overlaps with the cursor plane.
2365 	 */
2366 	if (tegra_plane_is_cursor(plane_state))
2367 		return 0;
2368 
2369 	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2370 		rect = plane_state->dst;
2371 
2372 		tegra = to_tegra_plane(other_state->plane);
2373 
2374 		if (!other_state->visible || !other_state->fb)
2375 			continue;
2376 
2377 		/*
2378 		 * Ignore cursor plane overlaps because it's not practical to
2379 		 * assume that it contributes to the bandwidth in overlapping
2380 		 * area if window width is small.
2381 		 */
2382 		if (tegra_plane_is_cursor(other_state))
2383 			continue;
2384 
2385 		if (drm_rect_intersect(&rect, &other_state->dst))
2386 			overlap_mask |= BIT(tegra->index);
2387 	}
2388 
2389 	return overlap_mask;
2390 }
2391 
2392 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2393 						 struct drm_atomic_state *state)
2394 {
2395 	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2396 	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2397 	bool all_planes_overlap_simultaneously = true;
2398 	const struct tegra_plane_state *tegra_state;
2399 	const struct drm_plane_state *plane_state;
2400 	struct tegra_dc *dc = to_tegra_dc(crtc);
2401 	struct drm_crtc_state *new_state;
2402 	struct tegra_plane *tegra;
2403 	struct drm_plane *plane;
2404 
2405 	/*
2406 	 * The nv-display uses shared planes.  The algorithm below assumes
2407 	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2408 	 * the nv-display.  Note that T124 support has additional windows,
2409 	 * but currently they aren't supported by the driver.
2410 	 */
2411 	if (dc->soc->has_nvdisplay)
2412 		return 0;
2413 
2414 	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2415 
2416 	/*
2417 	 * For overlapping planes pixel's data is fetched for each plane at
2418 	 * the same time, hence bandwidths are accumulated in this case.
2419 	 * This needs to be taken into account for calculating total bandwidth
2420 	 * consumed by all planes.
2421 	 *
2422 	 * Here we get the overlapping state of each plane, which is a
2423 	 * bitmask of plane indices telling with what planes there is an
2424 	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2425 	 * to make further code nicer and simpler.
2426 	 */
2427 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2428 		tegra_state = to_const_tegra_plane_state(plane_state);
2429 		tegra = to_tegra_plane(plane);
2430 
2431 		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2432 			return -EINVAL;
2433 
2434 		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2435 		mask = tegra_plane_overlap_mask(new_state, plane_state);
2436 		overlap_mask[tegra->index] = mask;
2437 
2438 		if (hweight_long(mask) != 3)
2439 			all_planes_overlap_simultaneously = false;
2440 	}
2441 
2442 	/*
2443 	 * Then we calculate maximum bandwidth of each plane state.
2444 	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2445 	 * overlapping planes, where "simultaneously" means areas where DC
2446 	 * fetches from the planes simultaneously during of scan-out process.
2447 	 *
2448 	 * For example, if plane A overlaps with planes B and C, but B and C
2449 	 * don't overlap, then the peak bandwidth will be either in area where
2450 	 * A-and-B or A-and-C planes overlap.
2451 	 *
2452 	 * The plane_peak_bw[] contains peak memory bandwidth values of
2453 	 * each plane, this information is needed by interconnect provider
2454 	 * in order to set up latency allowance based on the peak BW, see
2455 	 * tegra_crtc_update_memory_bandwidth().
2456 	 */
2457 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2458 		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2459 
2460 		/*
2461 		 * Note that plane's atomic check doesn't touch the
2462 		 * total_peak_memory_bandwidth of enabled plane, hence the
2463 		 * current state contains the old bandwidth state from the
2464 		 * previous CRTC commit.
2465 		 */
2466 		tegra_state = to_const_tegra_plane_state(plane_state);
2467 		tegra = to_tegra_plane(plane);
2468 
2469 		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2470 			if (i == tegra->index)
2471 				continue;
2472 
2473 			if (all_planes_overlap_simultaneously)
2474 				overlap_bw += plane_peak_bw[i];
2475 			else
2476 				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2477 		}
2478 
2479 		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2480 		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2481 
2482 		/*
2483 		 * If plane's peak bandwidth changed (for example plane isn't
2484 		 * overlapped anymore) and plane isn't in the atomic state,
2485 		 * then add plane to the state in order to have the bandwidth
2486 		 * updated.
2487 		 */
2488 		if (old_peak_bw != new_peak_bw) {
2489 			struct tegra_plane_state *new_tegra_state;
2490 			struct drm_plane_state *new_plane_state;
2491 
2492 			new_plane_state = drm_atomic_get_plane_state(state, plane);
2493 			if (IS_ERR(new_plane_state))
2494 				return PTR_ERR(new_plane_state);
2495 
2496 			new_tegra_state = to_tegra_plane_state(new_plane_state);
2497 			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2498 		}
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2505 				   struct drm_atomic_state *state)
2506 {
2507 	int err;
2508 
2509 	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2510 	if (err)
2511 		return err;
2512 
2513 	return 0;
2514 }
2515 
2516 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2517 				   struct drm_atomic_state *state)
2518 {
2519 	/*
2520 	 * Display bandwidth is allowed to go down only once hardware state
2521 	 * is known to be armed, i.e. state was committed and VBLANK event
2522 	 * received.
2523 	 */
2524 	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2525 }
2526 
2527 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2528 	.atomic_check = tegra_crtc_atomic_check,
2529 	.atomic_begin = tegra_crtc_atomic_begin,
2530 	.atomic_flush = tegra_crtc_atomic_flush,
2531 	.atomic_enable = tegra_crtc_atomic_enable,
2532 	.atomic_disable = tegra_crtc_atomic_disable,
2533 };
2534 
2535 static irqreturn_t tegra_dc_irq(int irq, void *data)
2536 {
2537 	struct tegra_dc *dc = data;
2538 	unsigned long status;
2539 
2540 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2541 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2542 
2543 	if (status & FRAME_END_INT) {
2544 		/*
2545 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2546 		*/
2547 		dc->stats.frames_total++;
2548 		dc->stats.frames++;
2549 	}
2550 
2551 	if (status & VBLANK_INT) {
2552 		/*
2553 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2554 		*/
2555 		drm_crtc_handle_vblank(&dc->base);
2556 		dc->stats.vblank_total++;
2557 		dc->stats.vblank++;
2558 	}
2559 
2560 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2561 		/*
2562 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2563 		*/
2564 		dc->stats.underflow_total++;
2565 		dc->stats.underflow++;
2566 	}
2567 
2568 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2569 		/*
2570 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2571 		*/
2572 		dc->stats.overflow_total++;
2573 		dc->stats.overflow++;
2574 	}
2575 
2576 	if (status & HEAD_UF_INT) {
2577 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2578 		dc->stats.underflow_total++;
2579 		dc->stats.underflow++;
2580 	}
2581 
2582 	return IRQ_HANDLED;
2583 }
2584 
2585 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2586 {
2587 	unsigned int i;
2588 
2589 	if (!dc->soc->wgrps)
2590 		return true;
2591 
2592 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2593 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2594 
2595 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2596 			return true;
2597 	}
2598 
2599 	return false;
2600 }
2601 
2602 static int tegra_dc_early_init(struct host1x_client *client)
2603 {
2604 	struct drm_device *drm = dev_get_drvdata(client->host);
2605 	struct tegra_drm *tegra = drm->dev_private;
2606 
2607 	tegra->num_crtcs++;
2608 
2609 	return 0;
2610 }
2611 
2612 static int tegra_dc_init(struct host1x_client *client)
2613 {
2614 	struct drm_device *drm = dev_get_drvdata(client->host);
2615 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2616 	struct tegra_dc *dc = host1x_client_to_dc(client);
2617 	struct tegra_drm *tegra = drm->dev_private;
2618 	struct drm_plane *primary = NULL;
2619 	struct drm_plane *cursor = NULL;
2620 	int err;
2621 
2622 	/*
2623 	 * DC has been reset by now, so VBLANK syncpoint can be released
2624 	 * for general use.
2625 	 */
2626 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2627 
2628 	/*
2629 	 * XXX do not register DCs with no window groups because we cannot
2630 	 * assign a primary plane to them, which in turn will cause KMS to
2631 	 * crash.
2632 	 */
2633 	if (!tegra_dc_has_window_groups(dc))
2634 		return 0;
2635 
2636 	/*
2637 	 * Set the display hub as the host1x client parent for the display
2638 	 * controller. This is needed for the runtime reference counting that
2639 	 * ensures the display hub is always powered when any of the display
2640 	 * controllers are.
2641 	 */
2642 	if (dc->soc->has_nvdisplay)
2643 		client->parent = &tegra->hub->client;
2644 
2645 	dc->syncpt = host1x_syncpt_request(client, flags);
2646 	if (!dc->syncpt)
2647 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2648 
2649 	err = host1x_client_iommu_attach(client);
2650 	if (err < 0 && err != -ENODEV) {
2651 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2652 		return err;
2653 	}
2654 
2655 	if (dc->soc->wgrps)
2656 		primary = tegra_dc_add_shared_planes(drm, dc);
2657 	else
2658 		primary = tegra_dc_add_planes(drm, dc);
2659 
2660 	if (IS_ERR(primary)) {
2661 		err = PTR_ERR(primary);
2662 		goto cleanup;
2663 	}
2664 
2665 	if (dc->soc->supports_cursor) {
2666 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2667 		if (IS_ERR(cursor)) {
2668 			err = PTR_ERR(cursor);
2669 			goto cleanup;
2670 		}
2671 	} else {
2672 		/* dedicate one overlay to mouse cursor */
2673 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2674 		if (IS_ERR(cursor)) {
2675 			err = PTR_ERR(cursor);
2676 			goto cleanup;
2677 		}
2678 	}
2679 
2680 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2681 					&tegra_crtc_funcs, NULL);
2682 	if (err < 0)
2683 		goto cleanup;
2684 
2685 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2686 
2687 	/*
2688 	 * Keep track of the minimum pitch alignment across all display
2689 	 * controllers.
2690 	 */
2691 	if (dc->soc->pitch_align > tegra->pitch_align)
2692 		tegra->pitch_align = dc->soc->pitch_align;
2693 
2694 	/* track maximum resolution */
2695 	if (dc->soc->has_nvdisplay)
2696 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2697 	else
2698 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2699 
2700 	err = tegra_dc_rgb_init(drm, dc);
2701 	if (err < 0 && err != -ENODEV) {
2702 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2703 		goto cleanup;
2704 	}
2705 
2706 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2707 			       dev_name(dc->dev), dc);
2708 	if (err < 0) {
2709 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2710 			err);
2711 		goto cleanup;
2712 	}
2713 
2714 	/*
2715 	 * Inherit the DMA parameters (such as maximum segment size) from the
2716 	 * parent host1x device.
2717 	 */
2718 	client->dev->dma_parms = client->host->dma_parms;
2719 
2720 	return 0;
2721 
2722 cleanup:
2723 	if (!IS_ERR_OR_NULL(cursor))
2724 		drm_plane_cleanup(cursor);
2725 
2726 	if (!IS_ERR(primary))
2727 		drm_plane_cleanup(primary);
2728 
2729 	host1x_client_iommu_detach(client);
2730 	host1x_syncpt_put(dc->syncpt);
2731 
2732 	return err;
2733 }
2734 
2735 static int tegra_dc_exit(struct host1x_client *client)
2736 {
2737 	struct tegra_dc *dc = host1x_client_to_dc(client);
2738 	int err;
2739 
2740 	if (!tegra_dc_has_window_groups(dc))
2741 		return 0;
2742 
2743 	/* avoid a dangling pointer just in case this disappears */
2744 	client->dev->dma_parms = NULL;
2745 
2746 	devm_free_irq(dc->dev, dc->irq, dc);
2747 
2748 	err = tegra_dc_rgb_exit(dc);
2749 	if (err) {
2750 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2751 		return err;
2752 	}
2753 
2754 	host1x_client_iommu_detach(client);
2755 	host1x_syncpt_put(dc->syncpt);
2756 
2757 	return 0;
2758 }
2759 
2760 static int tegra_dc_late_exit(struct host1x_client *client)
2761 {
2762 	struct drm_device *drm = dev_get_drvdata(client->host);
2763 	struct tegra_drm *tegra = drm->dev_private;
2764 
2765 	tegra->num_crtcs--;
2766 
2767 	return 0;
2768 }
2769 
2770 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2771 {
2772 	struct tegra_dc *dc = host1x_client_to_dc(client);
2773 	struct device *dev = client->dev;
2774 	int err;
2775 
2776 	err = reset_control_assert(dc->rst);
2777 	if (err < 0) {
2778 		dev_err(dev, "failed to assert reset: %d\n", err);
2779 		return err;
2780 	}
2781 
2782 	if (dc->soc->has_powergate)
2783 		tegra_powergate_power_off(dc->powergate);
2784 
2785 	clk_disable_unprepare(dc->clk);
2786 	pm_runtime_put_sync(dev);
2787 
2788 	return 0;
2789 }
2790 
2791 static int tegra_dc_runtime_resume(struct host1x_client *client)
2792 {
2793 	struct tegra_dc *dc = host1x_client_to_dc(client);
2794 	struct device *dev = client->dev;
2795 	int err;
2796 
2797 	err = pm_runtime_resume_and_get(dev);
2798 	if (err < 0) {
2799 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2800 		return err;
2801 	}
2802 
2803 	if (dc->soc->has_powergate) {
2804 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2805 							dc->rst);
2806 		if (err < 0) {
2807 			dev_err(dev, "failed to power partition: %d\n", err);
2808 			goto put_rpm;
2809 		}
2810 	} else {
2811 		err = clk_prepare_enable(dc->clk);
2812 		if (err < 0) {
2813 			dev_err(dev, "failed to enable clock: %d\n", err);
2814 			goto put_rpm;
2815 		}
2816 
2817 		err = reset_control_deassert(dc->rst);
2818 		if (err < 0) {
2819 			dev_err(dev, "failed to deassert reset: %d\n", err);
2820 			goto disable_clk;
2821 		}
2822 	}
2823 
2824 	return 0;
2825 
2826 disable_clk:
2827 	clk_disable_unprepare(dc->clk);
2828 put_rpm:
2829 	pm_runtime_put_sync(dev);
2830 	return err;
2831 }
2832 
2833 static const struct host1x_client_ops dc_client_ops = {
2834 	.early_init = tegra_dc_early_init,
2835 	.init = tegra_dc_init,
2836 	.exit = tegra_dc_exit,
2837 	.late_exit = tegra_dc_late_exit,
2838 	.suspend = tegra_dc_runtime_suspend,
2839 	.resume = tegra_dc_runtime_resume,
2840 };
2841 
2842 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2843 	.supports_background_color = false,
2844 	.supports_interlacing = false,
2845 	.supports_cursor = false,
2846 	.supports_block_linear = false,
2847 	.supports_sector_layout = false,
2848 	.has_legacy_blending = true,
2849 	.pitch_align = 8,
2850 	.has_powergate = false,
2851 	.coupled_pm = true,
2852 	.has_nvdisplay = false,
2853 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2854 	.primary_formats = tegra20_primary_formats,
2855 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2856 	.overlay_formats = tegra20_overlay_formats,
2857 	.modifiers = tegra20_modifiers,
2858 	.has_win_a_without_filters = true,
2859 	.has_win_b_vfilter_mem_client = true,
2860 	.has_win_c_without_vert_filter = true,
2861 	.plane_tiled_memory_bandwidth_x2 = false,
2862 	.has_pll_d2_out0 = false,
2863 };
2864 
2865 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2866 	.supports_background_color = false,
2867 	.supports_interlacing = false,
2868 	.supports_cursor = false,
2869 	.supports_block_linear = false,
2870 	.supports_sector_layout = false,
2871 	.has_legacy_blending = true,
2872 	.pitch_align = 8,
2873 	.has_powergate = false,
2874 	.coupled_pm = false,
2875 	.has_nvdisplay = false,
2876 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2877 	.primary_formats = tegra20_primary_formats,
2878 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2879 	.overlay_formats = tegra20_overlay_formats,
2880 	.modifiers = tegra20_modifiers,
2881 	.has_win_a_without_filters = false,
2882 	.has_win_b_vfilter_mem_client = true,
2883 	.has_win_c_without_vert_filter = false,
2884 	.plane_tiled_memory_bandwidth_x2 = true,
2885 	.has_pll_d2_out0 = true,
2886 };
2887 
2888 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2889 	.supports_background_color = false,
2890 	.supports_interlacing = false,
2891 	.supports_cursor = false,
2892 	.supports_block_linear = false,
2893 	.supports_sector_layout = false,
2894 	.has_legacy_blending = true,
2895 	.pitch_align = 64,
2896 	.has_powergate = true,
2897 	.coupled_pm = false,
2898 	.has_nvdisplay = false,
2899 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2900 	.primary_formats = tegra114_primary_formats,
2901 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2902 	.overlay_formats = tegra114_overlay_formats,
2903 	.modifiers = tegra20_modifiers,
2904 	.has_win_a_without_filters = false,
2905 	.has_win_b_vfilter_mem_client = false,
2906 	.has_win_c_without_vert_filter = false,
2907 	.plane_tiled_memory_bandwidth_x2 = true,
2908 	.has_pll_d2_out0 = true,
2909 };
2910 
2911 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2912 	.supports_background_color = true,
2913 	.supports_interlacing = true,
2914 	.supports_cursor = true,
2915 	.supports_block_linear = true,
2916 	.supports_sector_layout = false,
2917 	.has_legacy_blending = false,
2918 	.pitch_align = 64,
2919 	.has_powergate = true,
2920 	.coupled_pm = false,
2921 	.has_nvdisplay = false,
2922 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2923 	.primary_formats = tegra124_primary_formats,
2924 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2925 	.overlay_formats = tegra124_overlay_formats,
2926 	.modifiers = tegra124_modifiers,
2927 	.has_win_a_without_filters = false,
2928 	.has_win_b_vfilter_mem_client = false,
2929 	.has_win_c_without_vert_filter = false,
2930 	.plane_tiled_memory_bandwidth_x2 = false,
2931 	.has_pll_d2_out0 = true,
2932 };
2933 
2934 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2935 	.supports_background_color = true,
2936 	.supports_interlacing = true,
2937 	.supports_cursor = true,
2938 	.supports_block_linear = true,
2939 	.supports_sector_layout = false,
2940 	.has_legacy_blending = false,
2941 	.pitch_align = 64,
2942 	.has_powergate = true,
2943 	.coupled_pm = false,
2944 	.has_nvdisplay = false,
2945 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2946 	.primary_formats = tegra114_primary_formats,
2947 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2948 	.overlay_formats = tegra114_overlay_formats,
2949 	.modifiers = tegra124_modifiers,
2950 	.has_win_a_without_filters = false,
2951 	.has_win_b_vfilter_mem_client = false,
2952 	.has_win_c_without_vert_filter = false,
2953 	.plane_tiled_memory_bandwidth_x2 = false,
2954 	.has_pll_d2_out0 = true,
2955 };
2956 
2957 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2958 	{
2959 		.index = 0,
2960 		.dc = 0,
2961 		.windows = (const unsigned int[]) { 0 },
2962 		.num_windows = 1,
2963 	}, {
2964 		.index = 1,
2965 		.dc = 1,
2966 		.windows = (const unsigned int[]) { 1 },
2967 		.num_windows = 1,
2968 	}, {
2969 		.index = 2,
2970 		.dc = 1,
2971 		.windows = (const unsigned int[]) { 2 },
2972 		.num_windows = 1,
2973 	}, {
2974 		.index = 3,
2975 		.dc = 2,
2976 		.windows = (const unsigned int[]) { 3 },
2977 		.num_windows = 1,
2978 	}, {
2979 		.index = 4,
2980 		.dc = 2,
2981 		.windows = (const unsigned int[]) { 4 },
2982 		.num_windows = 1,
2983 	}, {
2984 		.index = 5,
2985 		.dc = 2,
2986 		.windows = (const unsigned int[]) { 5 },
2987 		.num_windows = 1,
2988 	},
2989 };
2990 
2991 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2992 	.supports_background_color = true,
2993 	.supports_interlacing = true,
2994 	.supports_cursor = true,
2995 	.supports_block_linear = true,
2996 	.supports_sector_layout = false,
2997 	.has_legacy_blending = false,
2998 	.pitch_align = 64,
2999 	.has_powergate = false,
3000 	.coupled_pm = false,
3001 	.has_nvdisplay = true,
3002 	.wgrps = tegra186_dc_wgrps,
3003 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
3004 	.plane_tiled_memory_bandwidth_x2 = false,
3005 	.has_pll_d2_out0 = false,
3006 };
3007 
3008 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
3009 	{
3010 		.index = 0,
3011 		.dc = 0,
3012 		.windows = (const unsigned int[]) { 0 },
3013 		.num_windows = 1,
3014 	}, {
3015 		.index = 1,
3016 		.dc = 1,
3017 		.windows = (const unsigned int[]) { 1 },
3018 		.num_windows = 1,
3019 	}, {
3020 		.index = 2,
3021 		.dc = 1,
3022 		.windows = (const unsigned int[]) { 2 },
3023 		.num_windows = 1,
3024 	}, {
3025 		.index = 3,
3026 		.dc = 2,
3027 		.windows = (const unsigned int[]) { 3 },
3028 		.num_windows = 1,
3029 	}, {
3030 		.index = 4,
3031 		.dc = 2,
3032 		.windows = (const unsigned int[]) { 4 },
3033 		.num_windows = 1,
3034 	}, {
3035 		.index = 5,
3036 		.dc = 2,
3037 		.windows = (const unsigned int[]) { 5 },
3038 		.num_windows = 1,
3039 	},
3040 };
3041 
3042 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3043 	.supports_background_color = true,
3044 	.supports_interlacing = true,
3045 	.supports_cursor = true,
3046 	.supports_block_linear = true,
3047 	.supports_sector_layout = true,
3048 	.has_legacy_blending = false,
3049 	.pitch_align = 64,
3050 	.has_powergate = false,
3051 	.coupled_pm = false,
3052 	.has_nvdisplay = true,
3053 	.wgrps = tegra194_dc_wgrps,
3054 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3055 	.plane_tiled_memory_bandwidth_x2 = false,
3056 	.has_pll_d2_out0 = false,
3057 };
3058 
3059 static const struct of_device_id tegra_dc_of_match[] = {
3060 	{
3061 		.compatible = "nvidia,tegra194-dc",
3062 		.data = &tegra194_dc_soc_info,
3063 	}, {
3064 		.compatible = "nvidia,tegra186-dc",
3065 		.data = &tegra186_dc_soc_info,
3066 	}, {
3067 		.compatible = "nvidia,tegra210-dc",
3068 		.data = &tegra210_dc_soc_info,
3069 	}, {
3070 		.compatible = "nvidia,tegra124-dc",
3071 		.data = &tegra124_dc_soc_info,
3072 	}, {
3073 		.compatible = "nvidia,tegra114-dc",
3074 		.data = &tegra114_dc_soc_info,
3075 	}, {
3076 		.compatible = "nvidia,tegra30-dc",
3077 		.data = &tegra30_dc_soc_info,
3078 	}, {
3079 		.compatible = "nvidia,tegra20-dc",
3080 		.data = &tegra20_dc_soc_info,
3081 	}, {
3082 		/* sentinel */
3083 	}
3084 };
3085 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3086 
3087 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3088 {
3089 	struct device_node *np;
3090 	u32 value = 0;
3091 	int err;
3092 
3093 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3094 	if (err < 0) {
3095 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3096 
3097 		/*
3098 		 * If the nvidia,head property isn't present, try to find the
3099 		 * correct head number by looking up the position of this
3100 		 * display controller's node within the device tree. Assuming
3101 		 * that the nodes are ordered properly in the DTS file and
3102 		 * that the translation into a flattened device tree blob
3103 		 * preserves that ordering this will actually yield the right
3104 		 * head number.
3105 		 *
3106 		 * If those assumptions don't hold, this will still work for
3107 		 * cases where only a single display controller is used.
3108 		 */
3109 		for_each_matching_node(np, tegra_dc_of_match) {
3110 			if (np == dc->dev->of_node) {
3111 				of_node_put(np);
3112 				break;
3113 			}
3114 
3115 			value++;
3116 		}
3117 	}
3118 
3119 	dc->pipe = value;
3120 
3121 	return 0;
3122 }
3123 
3124 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3125 {
3126 	struct tegra_dc *dc = dev_get_drvdata(dev);
3127 	unsigned int pipe = (unsigned long)(void *)data;
3128 
3129 	return dc->pipe == pipe;
3130 }
3131 
3132 static int tegra_dc_couple(struct tegra_dc *dc)
3133 {
3134 	/*
3135 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3136 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3137 	 * POWER_CONTROL registers during CRTC enabling.
3138 	 */
3139 	if (dc->soc->coupled_pm && dc->pipe == 1) {
3140 		struct device *companion;
3141 		struct tegra_dc *parent;
3142 
3143 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3144 					       tegra_dc_match_by_pipe);
3145 		if (!companion)
3146 			return -EPROBE_DEFER;
3147 
3148 		parent = dev_get_drvdata(companion);
3149 		dc->client.parent = &parent->client;
3150 
3151 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3152 	}
3153 
3154 	return 0;
3155 }
3156 
3157 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3158 {
3159 	struct tegra_core_opp_params opp_params = {};
3160 	int err;
3161 
3162 	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3163 	if (err && err != -ENODEV)
3164 		return err;
3165 
3166 	if (err)
3167 		dc->has_opp_table = false;
3168 	else
3169 		dc->has_opp_table = true;
3170 
3171 	return 0;
3172 }
3173 
3174 static int tegra_dc_probe(struct platform_device *pdev)
3175 {
3176 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
3177 	struct tegra_dc *dc;
3178 	int err;
3179 
3180 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3181 	if (err < 0) {
3182 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3183 		return err;
3184 	}
3185 
3186 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3187 	if (!dc)
3188 		return -ENOMEM;
3189 
3190 	dc->soc = of_device_get_match_data(&pdev->dev);
3191 
3192 	INIT_LIST_HEAD(&dc->list);
3193 	dc->dev = &pdev->dev;
3194 
3195 	err = tegra_dc_parse_dt(dc);
3196 	if (err < 0)
3197 		return err;
3198 
3199 	err = tegra_dc_couple(dc);
3200 	if (err < 0)
3201 		return err;
3202 
3203 	dc->clk = devm_clk_get(&pdev->dev, NULL);
3204 	if (IS_ERR(dc->clk)) {
3205 		dev_err(&pdev->dev, "failed to get clock\n");
3206 		return PTR_ERR(dc->clk);
3207 	}
3208 
3209 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3210 	if (IS_ERR(dc->rst)) {
3211 		dev_err(&pdev->dev, "failed to get reset\n");
3212 		return PTR_ERR(dc->rst);
3213 	}
3214 
3215 	/* assert reset and disable clock */
3216 	err = clk_prepare_enable(dc->clk);
3217 	if (err < 0)
3218 		return err;
3219 
3220 	usleep_range(2000, 4000);
3221 
3222 	err = reset_control_assert(dc->rst);
3223 	if (err < 0) {
3224 		clk_disable_unprepare(dc->clk);
3225 		return err;
3226 	}
3227 
3228 	usleep_range(2000, 4000);
3229 
3230 	clk_disable_unprepare(dc->clk);
3231 
3232 	if (dc->soc->has_powergate) {
3233 		if (dc->pipe == 0)
3234 			dc->powergate = TEGRA_POWERGATE_DIS;
3235 		else
3236 			dc->powergate = TEGRA_POWERGATE_DISB;
3237 
3238 		tegra_powergate_power_off(dc->powergate);
3239 	}
3240 
3241 	err = tegra_dc_init_opp_table(dc);
3242 	if (err < 0)
3243 		return err;
3244 
3245 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3246 	if (IS_ERR(dc->regs))
3247 		return PTR_ERR(dc->regs);
3248 
3249 	dc->irq = platform_get_irq(pdev, 0);
3250 	if (dc->irq < 0)
3251 		return -ENXIO;
3252 
3253 	err = tegra_dc_rgb_probe(dc);
3254 	if (err < 0 && err != -ENODEV)
3255 		return dev_err_probe(&pdev->dev, err,
3256 				     "failed to probe RGB output\n");
3257 
3258 	platform_set_drvdata(pdev, dc);
3259 	pm_runtime_enable(&pdev->dev);
3260 
3261 	INIT_LIST_HEAD(&dc->client.list);
3262 	dc->client.ops = &dc_client_ops;
3263 	dc->client.dev = &pdev->dev;
3264 
3265 	err = host1x_client_register(&dc->client);
3266 	if (err < 0) {
3267 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3268 			err);
3269 		goto disable_pm;
3270 	}
3271 
3272 	return 0;
3273 
3274 disable_pm:
3275 	pm_runtime_disable(&pdev->dev);
3276 	tegra_dc_rgb_remove(dc);
3277 
3278 	return err;
3279 }
3280 
3281 static void tegra_dc_remove(struct platform_device *pdev)
3282 {
3283 	struct tegra_dc *dc = platform_get_drvdata(pdev);
3284 
3285 	host1x_client_unregister(&dc->client);
3286 
3287 	tegra_dc_rgb_remove(dc);
3288 
3289 	pm_runtime_disable(&pdev->dev);
3290 }
3291 
3292 struct platform_driver tegra_dc_driver = {
3293 	.driver = {
3294 		.name = "tegra-dc",
3295 		.of_match_table = tegra_dc_of_match,
3296 	},
3297 	.probe = tegra_dc_probe,
3298 	.remove = tegra_dc_remove,
3299 };
3300