1 /* 2 * Copyright (C) 2012 Avionic Design GmbH 3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/debugfs.h> 12 #include <linux/iommu.h> 13 #include <linux/reset.h> 14 15 #include <soc/tegra/pmc.h> 16 17 #include "dc.h" 18 #include "drm.h" 19 #include "gem.h" 20 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_helper.h> 23 #include <drm/drm_plane_helper.h> 24 25 struct tegra_dc_soc_info { 26 bool supports_border_color; 27 bool supports_interlacing; 28 bool supports_cursor; 29 bool supports_block_linear; 30 unsigned int pitch_align; 31 bool has_powergate; 32 }; 33 34 struct tegra_plane { 35 struct drm_plane base; 36 unsigned int index; 37 }; 38 39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane) 40 { 41 return container_of(plane, struct tegra_plane, base); 42 } 43 44 struct tegra_dc_state { 45 struct drm_crtc_state base; 46 47 struct clk *clk; 48 unsigned long pclk; 49 unsigned int div; 50 51 u32 planes; 52 }; 53 54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state) 55 { 56 if (state) 57 return container_of(state, struct tegra_dc_state, base); 58 59 return NULL; 60 } 61 62 struct tegra_plane_state { 63 struct drm_plane_state base; 64 65 struct tegra_bo_tiling tiling; 66 u32 format; 67 u32 swap; 68 }; 69 70 static inline struct tegra_plane_state * 71 to_tegra_plane_state(struct drm_plane_state *state) 72 { 73 if (state) 74 return container_of(state, struct tegra_plane_state, base); 75 76 return NULL; 77 } 78 79 /* 80 * Reads the active copy of a register. This takes the dc->lock spinlock to 81 * prevent races with the VBLANK processing which also needs access to the 82 * active copy of some registers. 83 */ 84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 85 { 86 unsigned long flags; 87 u32 value; 88 89 spin_lock_irqsave(&dc->lock, flags); 90 91 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 92 value = tegra_dc_readl(dc, offset); 93 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 94 95 spin_unlock_irqrestore(&dc->lock, flags); 96 return value; 97 } 98 99 /* 100 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 101 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 102 * Latching happens mmediately if the display controller is in STOP mode or 103 * on the next frame boundary otherwise. 104 * 105 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 106 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 107 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 108 * into the ACTIVE copy, either immediately if the display controller is in 109 * STOP mode, or at the next frame boundary otherwise. 110 */ 111 void tegra_dc_commit(struct tegra_dc *dc) 112 { 113 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 114 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 115 } 116 117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap) 118 { 119 /* assume no swapping of fetched data */ 120 if (swap) 121 *swap = BYTE_SWAP_NOSWAP; 122 123 switch (fourcc) { 124 case DRM_FORMAT_XBGR8888: 125 *format = WIN_COLOR_DEPTH_R8G8B8A8; 126 break; 127 128 case DRM_FORMAT_XRGB8888: 129 *format = WIN_COLOR_DEPTH_B8G8R8A8; 130 break; 131 132 case DRM_FORMAT_RGB565: 133 *format = WIN_COLOR_DEPTH_B5G6R5; 134 break; 135 136 case DRM_FORMAT_UYVY: 137 *format = WIN_COLOR_DEPTH_YCbCr422; 138 break; 139 140 case DRM_FORMAT_YUYV: 141 if (swap) 142 *swap = BYTE_SWAP_SWAP2; 143 144 *format = WIN_COLOR_DEPTH_YCbCr422; 145 break; 146 147 case DRM_FORMAT_YUV420: 148 *format = WIN_COLOR_DEPTH_YCbCr420P; 149 break; 150 151 case DRM_FORMAT_YUV422: 152 *format = WIN_COLOR_DEPTH_YCbCr422P; 153 break; 154 155 default: 156 return -EINVAL; 157 } 158 159 return 0; 160 } 161 162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar) 163 { 164 switch (format) { 165 case WIN_COLOR_DEPTH_YCbCr422: 166 case WIN_COLOR_DEPTH_YUV422: 167 if (planar) 168 *planar = false; 169 170 return true; 171 172 case WIN_COLOR_DEPTH_YCbCr420P: 173 case WIN_COLOR_DEPTH_YUV420P: 174 case WIN_COLOR_DEPTH_YCbCr422P: 175 case WIN_COLOR_DEPTH_YUV422P: 176 case WIN_COLOR_DEPTH_YCbCr422R: 177 case WIN_COLOR_DEPTH_YUV422R: 178 case WIN_COLOR_DEPTH_YCbCr422RA: 179 case WIN_COLOR_DEPTH_YUV422RA: 180 if (planar) 181 *planar = true; 182 183 return true; 184 } 185 186 if (planar) 187 *planar = false; 188 189 return false; 190 } 191 192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 193 unsigned int bpp) 194 { 195 fixed20_12 outf = dfixed_init(out); 196 fixed20_12 inf = dfixed_init(in); 197 u32 dda_inc; 198 int max; 199 200 if (v) 201 max = 15; 202 else { 203 switch (bpp) { 204 case 2: 205 max = 8; 206 break; 207 208 default: 209 WARN_ON_ONCE(1); 210 /* fallthrough */ 211 case 4: 212 max = 4; 213 break; 214 } 215 } 216 217 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 218 inf.full -= dfixed_const(1); 219 220 dda_inc = dfixed_div(inf, outf); 221 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 222 223 return dda_inc; 224 } 225 226 static inline u32 compute_initial_dda(unsigned int in) 227 { 228 fixed20_12 inf = dfixed_init(in); 229 return dfixed_frac(inf); 230 } 231 232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index, 233 const struct tegra_dc_window *window) 234 { 235 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 236 unsigned long value, flags; 237 bool yuv, planar; 238 239 /* 240 * For YUV planar modes, the number of bytes per pixel takes into 241 * account only the luma component and therefore is 1. 242 */ 243 yuv = tegra_dc_format_is_yuv(window->format, &planar); 244 if (!yuv) 245 bpp = window->bits_per_pixel / 8; 246 else 247 bpp = planar ? 1 : 2; 248 249 spin_lock_irqsave(&dc->lock, flags); 250 251 value = WINDOW_A_SELECT << index; 252 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 253 254 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH); 255 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP); 256 257 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 258 tegra_dc_writel(dc, value, DC_WIN_POSITION); 259 260 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 261 tegra_dc_writel(dc, value, DC_WIN_SIZE); 262 263 h_offset = window->src.x * bpp; 264 v_offset = window->src.y; 265 h_size = window->src.w * bpp; 266 v_size = window->src.h; 267 268 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 269 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE); 270 271 /* 272 * For DDA computations the number of bytes per pixel for YUV planar 273 * modes needs to take into account all Y, U and V components. 274 */ 275 if (yuv && planar) 276 bpp = 2; 277 278 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 279 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 280 281 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 282 tegra_dc_writel(dc, value, DC_WIN_DDA_INC); 283 284 h_dda = compute_initial_dda(window->src.x); 285 v_dda = compute_initial_dda(window->src.y); 286 287 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA); 288 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA); 289 290 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE); 291 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE); 292 293 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR); 294 295 if (yuv && planar) { 296 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U); 297 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V); 298 value = window->stride[1] << 16 | window->stride[0]; 299 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE); 300 } else { 301 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE); 302 } 303 304 if (window->bottom_up) 305 v_offset += window->src.h - 1; 306 307 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET); 308 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET); 309 310 if (dc->soc->supports_block_linear) { 311 unsigned long height = window->tiling.value; 312 313 switch (window->tiling.mode) { 314 case TEGRA_BO_TILING_MODE_PITCH: 315 value = DC_WINBUF_SURFACE_KIND_PITCH; 316 break; 317 318 case TEGRA_BO_TILING_MODE_TILED: 319 value = DC_WINBUF_SURFACE_KIND_TILED; 320 break; 321 322 case TEGRA_BO_TILING_MODE_BLOCK: 323 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 324 DC_WINBUF_SURFACE_KIND_BLOCK; 325 break; 326 } 327 328 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND); 329 } else { 330 switch (window->tiling.mode) { 331 case TEGRA_BO_TILING_MODE_PITCH: 332 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 333 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 334 break; 335 336 case TEGRA_BO_TILING_MODE_TILED: 337 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 338 DC_WIN_BUFFER_ADDR_MODE_TILE; 339 break; 340 341 case TEGRA_BO_TILING_MODE_BLOCK: 342 /* 343 * No need to handle this here because ->atomic_check 344 * will already have filtered it out. 345 */ 346 break; 347 } 348 349 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE); 350 } 351 352 value = WIN_ENABLE; 353 354 if (yuv) { 355 /* setup default colorspace conversion coefficients */ 356 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF); 357 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB); 358 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR); 359 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR); 360 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG); 361 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG); 362 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB); 363 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB); 364 365 value |= CSC_ENABLE; 366 } else if (window->bits_per_pixel < 24) { 367 value |= COLOR_EXPAND; 368 } 369 370 if (window->bottom_up) 371 value |= V_DIRECTION; 372 373 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 374 375 /* 376 * Disable blending and assume Window A is the bottom-most window, 377 * Window C is the top-most window and Window B is in the middle. 378 */ 379 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY); 380 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN); 381 382 switch (index) { 383 case 0: 384 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X); 385 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 386 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 387 break; 388 389 case 1: 390 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 391 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 393 break; 394 395 case 2: 396 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 397 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y); 398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY); 399 break; 400 } 401 402 spin_unlock_irqrestore(&dc->lock, flags); 403 } 404 405 static void tegra_plane_destroy(struct drm_plane *plane) 406 { 407 struct tegra_plane *p = to_tegra_plane(plane); 408 409 drm_plane_cleanup(plane); 410 kfree(p); 411 } 412 413 static const u32 tegra_primary_plane_formats[] = { 414 DRM_FORMAT_XBGR8888, 415 DRM_FORMAT_XRGB8888, 416 DRM_FORMAT_RGB565, 417 }; 418 419 static void tegra_primary_plane_destroy(struct drm_plane *plane) 420 { 421 tegra_plane_destroy(plane); 422 } 423 424 static void tegra_plane_reset(struct drm_plane *plane) 425 { 426 struct tegra_plane_state *state; 427 428 if (plane->state && plane->state->fb) 429 drm_framebuffer_unreference(plane->state->fb); 430 431 kfree(plane->state); 432 plane->state = NULL; 433 434 state = kzalloc(sizeof(*state), GFP_KERNEL); 435 if (state) { 436 plane->state = &state->base; 437 plane->state->plane = plane; 438 } 439 } 440 441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane) 442 { 443 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 444 struct tegra_plane_state *copy; 445 446 copy = kmemdup(state, sizeof(*state), GFP_KERNEL); 447 if (!copy) 448 return NULL; 449 450 if (copy->base.fb) 451 drm_framebuffer_reference(copy->base.fb); 452 453 return ©->base; 454 } 455 456 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane, 457 struct drm_plane_state *state) 458 { 459 if (state->fb) 460 drm_framebuffer_unreference(state->fb); 461 462 kfree(state); 463 } 464 465 static const struct drm_plane_funcs tegra_primary_plane_funcs = { 466 .update_plane = drm_atomic_helper_update_plane, 467 .disable_plane = drm_atomic_helper_disable_plane, 468 .destroy = tegra_primary_plane_destroy, 469 .reset = tegra_plane_reset, 470 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 471 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 472 }; 473 474 static int tegra_plane_prepare_fb(struct drm_plane *plane, 475 struct drm_framebuffer *fb) 476 { 477 return 0; 478 } 479 480 static void tegra_plane_cleanup_fb(struct drm_plane *plane, 481 struct drm_framebuffer *fb) 482 { 483 } 484 485 static int tegra_plane_state_add(struct tegra_plane *plane, 486 struct drm_plane_state *state) 487 { 488 struct drm_crtc_state *crtc_state; 489 struct tegra_dc_state *tegra; 490 491 /* Propagate errors from allocation or locking failures. */ 492 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc); 493 if (IS_ERR(crtc_state)) 494 return PTR_ERR(crtc_state); 495 496 tegra = to_dc_state(crtc_state); 497 498 tegra->planes |= WIN_A_ACT_REQ << plane->index; 499 500 return 0; 501 } 502 503 static int tegra_plane_atomic_check(struct drm_plane *plane, 504 struct drm_plane_state *state) 505 { 506 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 507 struct tegra_bo_tiling *tiling = &plane_state->tiling; 508 struct tegra_plane *tegra = to_tegra_plane(plane); 509 struct tegra_dc *dc = to_tegra_dc(state->crtc); 510 int err; 511 512 /* no need for further checks if the plane is being disabled */ 513 if (!state->crtc) 514 return 0; 515 516 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format, 517 &plane_state->swap); 518 if (err < 0) 519 return err; 520 521 err = tegra_fb_get_tiling(state->fb, tiling); 522 if (err < 0) 523 return err; 524 525 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 526 !dc->soc->supports_block_linear) { 527 DRM_ERROR("hardware doesn't support block linear mode\n"); 528 return -EINVAL; 529 } 530 531 /* 532 * Tegra doesn't support different strides for U and V planes so we 533 * error out if the user tries to display a framebuffer with such a 534 * configuration. 535 */ 536 if (drm_format_num_planes(state->fb->pixel_format) > 2) { 537 if (state->fb->pitches[2] != state->fb->pitches[1]) { 538 DRM_ERROR("unsupported UV-plane configuration\n"); 539 return -EINVAL; 540 } 541 } 542 543 err = tegra_plane_state_add(tegra, state); 544 if (err < 0) 545 return err; 546 547 return 0; 548 } 549 550 static void tegra_plane_atomic_update(struct drm_plane *plane, 551 struct drm_plane_state *old_state) 552 { 553 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 554 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 555 struct drm_framebuffer *fb = plane->state->fb; 556 struct tegra_plane *p = to_tegra_plane(plane); 557 struct tegra_dc_window window; 558 unsigned int i; 559 560 /* rien ne va plus */ 561 if (!plane->state->crtc || !plane->state->fb) 562 return; 563 564 memset(&window, 0, sizeof(window)); 565 window.src.x = plane->state->src_x >> 16; 566 window.src.y = plane->state->src_y >> 16; 567 window.src.w = plane->state->src_w >> 16; 568 window.src.h = plane->state->src_h >> 16; 569 window.dst.x = plane->state->crtc_x; 570 window.dst.y = plane->state->crtc_y; 571 window.dst.w = plane->state->crtc_w; 572 window.dst.h = plane->state->crtc_h; 573 window.bits_per_pixel = fb->bits_per_pixel; 574 window.bottom_up = tegra_fb_is_bottom_up(fb); 575 576 /* copy from state */ 577 window.tiling = state->tiling; 578 window.format = state->format; 579 window.swap = state->swap; 580 581 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) { 582 struct tegra_bo *bo = tegra_fb_get_plane(fb, i); 583 584 window.base[i] = bo->paddr + fb->offsets[i]; 585 window.stride[i] = fb->pitches[i]; 586 } 587 588 tegra_dc_setup_window(dc, p->index, &window); 589 } 590 591 static void tegra_plane_atomic_disable(struct drm_plane *plane, 592 struct drm_plane_state *old_state) 593 { 594 struct tegra_plane *p = to_tegra_plane(plane); 595 struct tegra_dc *dc; 596 unsigned long flags; 597 u32 value; 598 599 /* rien ne va plus */ 600 if (!old_state || !old_state->crtc) 601 return; 602 603 dc = to_tegra_dc(old_state->crtc); 604 605 spin_lock_irqsave(&dc->lock, flags); 606 607 value = WINDOW_A_SELECT << p->index; 608 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 609 610 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS); 611 value &= ~WIN_ENABLE; 612 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 613 614 spin_unlock_irqrestore(&dc->lock, flags); 615 } 616 617 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = { 618 .prepare_fb = tegra_plane_prepare_fb, 619 .cleanup_fb = tegra_plane_cleanup_fb, 620 .atomic_check = tegra_plane_atomic_check, 621 .atomic_update = tegra_plane_atomic_update, 622 .atomic_disable = tegra_plane_atomic_disable, 623 }; 624 625 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm, 626 struct tegra_dc *dc) 627 { 628 /* 629 * Ideally this would use drm_crtc_mask(), but that would require the 630 * CRTC to already be in the mode_config's list of CRTCs. However, it 631 * will only be added to that list in the drm_crtc_init_with_planes() 632 * (in tegra_dc_init()), which in turn requires registration of these 633 * planes. So we have ourselves a nice little chicken and egg problem 634 * here. 635 * 636 * We work around this by manually creating the mask from the number 637 * of CRTCs that have been registered, and should therefore always be 638 * the same as drm_crtc_index() after registration. 639 */ 640 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc; 641 struct tegra_plane *plane; 642 unsigned int num_formats; 643 const u32 *formats; 644 int err; 645 646 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 647 if (!plane) 648 return ERR_PTR(-ENOMEM); 649 650 num_formats = ARRAY_SIZE(tegra_primary_plane_formats); 651 formats = tegra_primary_plane_formats; 652 653 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 654 &tegra_primary_plane_funcs, formats, 655 num_formats, DRM_PLANE_TYPE_PRIMARY); 656 if (err < 0) { 657 kfree(plane); 658 return ERR_PTR(err); 659 } 660 661 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs); 662 663 return &plane->base; 664 } 665 666 static const u32 tegra_cursor_plane_formats[] = { 667 DRM_FORMAT_RGBA8888, 668 }; 669 670 static int tegra_cursor_atomic_check(struct drm_plane *plane, 671 struct drm_plane_state *state) 672 { 673 struct tegra_plane *tegra = to_tegra_plane(plane); 674 int err; 675 676 /* no need for further checks if the plane is being disabled */ 677 if (!state->crtc) 678 return 0; 679 680 /* scaling not supported for cursor */ 681 if ((state->src_w >> 16 != state->crtc_w) || 682 (state->src_h >> 16 != state->crtc_h)) 683 return -EINVAL; 684 685 /* only square cursors supported */ 686 if (state->src_w != state->src_h) 687 return -EINVAL; 688 689 if (state->crtc_w != 32 && state->crtc_w != 64 && 690 state->crtc_w != 128 && state->crtc_w != 256) 691 return -EINVAL; 692 693 err = tegra_plane_state_add(tegra, state); 694 if (err < 0) 695 return err; 696 697 return 0; 698 } 699 700 static void tegra_cursor_atomic_update(struct drm_plane *plane, 701 struct drm_plane_state *old_state) 702 { 703 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0); 704 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 705 struct drm_plane_state *state = plane->state; 706 u32 value = CURSOR_CLIP_DISPLAY; 707 708 /* rien ne va plus */ 709 if (!plane->state->crtc || !plane->state->fb) 710 return; 711 712 switch (state->crtc_w) { 713 case 32: 714 value |= CURSOR_SIZE_32x32; 715 break; 716 717 case 64: 718 value |= CURSOR_SIZE_64x64; 719 break; 720 721 case 128: 722 value |= CURSOR_SIZE_128x128; 723 break; 724 725 case 256: 726 value |= CURSOR_SIZE_256x256; 727 break; 728 729 default: 730 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w, 731 state->crtc_h); 732 return; 733 } 734 735 value |= (bo->paddr >> 10) & 0x3fffff; 736 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 737 738 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 739 value = (bo->paddr >> 32) & 0x3; 740 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 741 #endif 742 743 /* enable cursor and set blend mode */ 744 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 745 value |= CURSOR_ENABLE; 746 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 747 748 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 749 value &= ~CURSOR_DST_BLEND_MASK; 750 value &= ~CURSOR_SRC_BLEND_MASK; 751 value |= CURSOR_MODE_NORMAL; 752 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 753 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 754 value |= CURSOR_ALPHA; 755 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 756 757 /* position the cursor */ 758 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff); 759 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 760 761 } 762 763 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 764 struct drm_plane_state *old_state) 765 { 766 struct tegra_dc *dc; 767 u32 value; 768 769 /* rien ne va plus */ 770 if (!old_state || !old_state->crtc) 771 return; 772 773 dc = to_tegra_dc(old_state->crtc); 774 775 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 776 value &= ~CURSOR_ENABLE; 777 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 778 } 779 780 static const struct drm_plane_funcs tegra_cursor_plane_funcs = { 781 .update_plane = drm_atomic_helper_update_plane, 782 .disable_plane = drm_atomic_helper_disable_plane, 783 .destroy = tegra_plane_destroy, 784 .reset = tegra_plane_reset, 785 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 786 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 787 }; 788 789 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 790 .prepare_fb = tegra_plane_prepare_fb, 791 .cleanup_fb = tegra_plane_cleanup_fb, 792 .atomic_check = tegra_cursor_atomic_check, 793 .atomic_update = tegra_cursor_atomic_update, 794 .atomic_disable = tegra_cursor_atomic_disable, 795 }; 796 797 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 798 struct tegra_dc *dc) 799 { 800 struct tegra_plane *plane; 801 unsigned int num_formats; 802 const u32 *formats; 803 int err; 804 805 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 806 if (!plane) 807 return ERR_PTR(-ENOMEM); 808 809 /* 810 * We'll treat the cursor as an overlay plane with index 6 here so 811 * that the update and activation request bits in DC_CMD_STATE_CONTROL 812 * match up. 813 */ 814 plane->index = 6; 815 816 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 817 formats = tegra_cursor_plane_formats; 818 819 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 820 &tegra_cursor_plane_funcs, formats, 821 num_formats, DRM_PLANE_TYPE_CURSOR); 822 if (err < 0) { 823 kfree(plane); 824 return ERR_PTR(err); 825 } 826 827 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 828 829 return &plane->base; 830 } 831 832 static void tegra_overlay_plane_destroy(struct drm_plane *plane) 833 { 834 tegra_plane_destroy(plane); 835 } 836 837 static const struct drm_plane_funcs tegra_overlay_plane_funcs = { 838 .update_plane = drm_atomic_helper_update_plane, 839 .disable_plane = drm_atomic_helper_disable_plane, 840 .destroy = tegra_overlay_plane_destroy, 841 .reset = tegra_plane_reset, 842 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 843 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 844 }; 845 846 static const uint32_t tegra_overlay_plane_formats[] = { 847 DRM_FORMAT_XBGR8888, 848 DRM_FORMAT_XRGB8888, 849 DRM_FORMAT_RGB565, 850 DRM_FORMAT_UYVY, 851 DRM_FORMAT_YUYV, 852 DRM_FORMAT_YUV420, 853 DRM_FORMAT_YUV422, 854 }; 855 856 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = { 857 .prepare_fb = tegra_plane_prepare_fb, 858 .cleanup_fb = tegra_plane_cleanup_fb, 859 .atomic_check = tegra_plane_atomic_check, 860 .atomic_update = tegra_plane_atomic_update, 861 .atomic_disable = tegra_plane_atomic_disable, 862 }; 863 864 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 865 struct tegra_dc *dc, 866 unsigned int index) 867 { 868 struct tegra_plane *plane; 869 unsigned int num_formats; 870 const u32 *formats; 871 int err; 872 873 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 874 if (!plane) 875 return ERR_PTR(-ENOMEM); 876 877 plane->index = index; 878 879 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats); 880 formats = tegra_overlay_plane_formats; 881 882 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 883 &tegra_overlay_plane_funcs, formats, 884 num_formats, DRM_PLANE_TYPE_OVERLAY); 885 if (err < 0) { 886 kfree(plane); 887 return ERR_PTR(err); 888 } 889 890 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs); 891 892 return &plane->base; 893 } 894 895 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc) 896 { 897 struct drm_plane *plane; 898 unsigned int i; 899 900 for (i = 0; i < 2; i++) { 901 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i); 902 if (IS_ERR(plane)) 903 return PTR_ERR(plane); 904 } 905 906 return 0; 907 } 908 909 void tegra_dc_enable_vblank(struct tegra_dc *dc) 910 { 911 unsigned long value, flags; 912 913 spin_lock_irqsave(&dc->lock, flags); 914 915 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 916 value |= VBLANK_INT; 917 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 918 919 spin_unlock_irqrestore(&dc->lock, flags); 920 } 921 922 void tegra_dc_disable_vblank(struct tegra_dc *dc) 923 { 924 unsigned long value, flags; 925 926 spin_lock_irqsave(&dc->lock, flags); 927 928 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 929 value &= ~VBLANK_INT; 930 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 931 932 spin_unlock_irqrestore(&dc->lock, flags); 933 } 934 935 static void tegra_dc_finish_page_flip(struct tegra_dc *dc) 936 { 937 struct drm_device *drm = dc->base.dev; 938 struct drm_crtc *crtc = &dc->base; 939 unsigned long flags, base; 940 struct tegra_bo *bo; 941 942 spin_lock_irqsave(&drm->event_lock, flags); 943 944 if (!dc->event) { 945 spin_unlock_irqrestore(&drm->event_lock, flags); 946 return; 947 } 948 949 bo = tegra_fb_get_plane(crtc->primary->fb, 0); 950 951 spin_lock(&dc->lock); 952 953 /* check if new start address has been latched */ 954 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER); 955 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 956 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR); 957 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 958 959 spin_unlock(&dc->lock); 960 961 if (base == bo->paddr + crtc->primary->fb->offsets[0]) { 962 drm_crtc_send_vblank_event(crtc, dc->event); 963 drm_crtc_vblank_put(crtc); 964 dc->event = NULL; 965 } 966 967 spin_unlock_irqrestore(&drm->event_lock, flags); 968 } 969 970 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) 971 { 972 struct tegra_dc *dc = to_tegra_dc(crtc); 973 struct drm_device *drm = crtc->dev; 974 unsigned long flags; 975 976 spin_lock_irqsave(&drm->event_lock, flags); 977 978 if (dc->event && dc->event->base.file_priv == file) { 979 dc->event->base.destroy(&dc->event->base); 980 drm_crtc_vblank_put(crtc); 981 dc->event = NULL; 982 } 983 984 spin_unlock_irqrestore(&drm->event_lock, flags); 985 } 986 987 static void tegra_dc_destroy(struct drm_crtc *crtc) 988 { 989 drm_crtc_cleanup(crtc); 990 } 991 992 static void tegra_crtc_reset(struct drm_crtc *crtc) 993 { 994 struct tegra_dc_state *state; 995 996 kfree(crtc->state); 997 crtc->state = NULL; 998 999 state = kzalloc(sizeof(*state), GFP_KERNEL); 1000 if (state) { 1001 crtc->state = &state->base; 1002 crtc->state->crtc = crtc; 1003 } 1004 } 1005 1006 static struct drm_crtc_state * 1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1008 { 1009 struct tegra_dc_state *state = to_dc_state(crtc->state); 1010 struct tegra_dc_state *copy; 1011 1012 copy = kmemdup(state, sizeof(*state), GFP_KERNEL); 1013 if (!copy) 1014 return NULL; 1015 1016 copy->base.mode_changed = false; 1017 copy->base.active_changed = false; 1018 copy->base.planes_changed = false; 1019 copy->base.event = NULL; 1020 1021 return ©->base; 1022 } 1023 1024 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1025 struct drm_crtc_state *state) 1026 { 1027 kfree(state); 1028 } 1029 1030 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1031 .page_flip = drm_atomic_helper_page_flip, 1032 .set_config = drm_atomic_helper_set_config, 1033 .destroy = tegra_dc_destroy, 1034 .reset = tegra_crtc_reset, 1035 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1036 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1037 }; 1038 1039 static void tegra_dc_stop(struct tegra_dc *dc) 1040 { 1041 u32 value; 1042 1043 /* stop the display controller */ 1044 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1045 value &= ~DISP_CTRL_MODE_MASK; 1046 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1047 1048 tegra_dc_commit(dc); 1049 } 1050 1051 static bool tegra_dc_idle(struct tegra_dc *dc) 1052 { 1053 u32 value; 1054 1055 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1056 1057 return (value & DISP_CTRL_MODE_MASK) == 0; 1058 } 1059 1060 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1061 { 1062 timeout = jiffies + msecs_to_jiffies(timeout); 1063 1064 while (time_before(jiffies, timeout)) { 1065 if (tegra_dc_idle(dc)) 1066 return 0; 1067 1068 usleep_range(1000, 2000); 1069 } 1070 1071 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1072 return -ETIMEDOUT; 1073 } 1074 1075 static void tegra_crtc_disable(struct drm_crtc *crtc) 1076 { 1077 struct tegra_dc *dc = to_tegra_dc(crtc); 1078 u32 value; 1079 1080 if (!tegra_dc_idle(dc)) { 1081 tegra_dc_stop(dc); 1082 1083 /* 1084 * Ignore the return value, there isn't anything useful to do 1085 * in case this fails. 1086 */ 1087 tegra_dc_wait_idle(dc, 100); 1088 } 1089 1090 /* 1091 * This should really be part of the RGB encoder driver, but clearing 1092 * these bits has the side-effect of stopping the display controller. 1093 * When that happens no VBLANK interrupts will be raised. At the same 1094 * time the encoder is disabled before the display controller, so the 1095 * above code is always going to timeout waiting for the controller 1096 * to go idle. 1097 * 1098 * Given the close coupling between the RGB encoder and the display 1099 * controller doing it here is still kind of okay. None of the other 1100 * encoder drivers require these bits to be cleared. 1101 * 1102 * XXX: Perhaps given that the display controller is switched off at 1103 * this point anyway maybe clearing these bits isn't even useful for 1104 * the RGB encoder? 1105 */ 1106 if (dc->rgb) { 1107 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1108 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1109 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1110 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1111 } 1112 1113 drm_crtc_vblank_off(crtc); 1114 } 1115 1116 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc, 1117 const struct drm_display_mode *mode, 1118 struct drm_display_mode *adjusted) 1119 { 1120 return true; 1121 } 1122 1123 static int tegra_dc_set_timings(struct tegra_dc *dc, 1124 struct drm_display_mode *mode) 1125 { 1126 unsigned int h_ref_to_sync = 1; 1127 unsigned int v_ref_to_sync = 1; 1128 unsigned long value; 1129 1130 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1131 1132 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1133 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1134 1135 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1136 ((mode->hsync_end - mode->hsync_start) << 0); 1137 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1138 1139 value = ((mode->vtotal - mode->vsync_end) << 16) | 1140 ((mode->htotal - mode->hsync_end) << 0); 1141 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1142 1143 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1144 ((mode->hsync_start - mode->hdisplay) << 0); 1145 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1146 1147 value = (mode->vdisplay << 16) | mode->hdisplay; 1148 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1149 1150 return 0; 1151 } 1152 1153 int tegra_dc_setup_clock(struct tegra_dc *dc, struct clk *parent, 1154 unsigned long pclk, unsigned int div) 1155 { 1156 u32 value; 1157 int err; 1158 1159 err = clk_set_parent(dc->clk, parent); 1160 if (err < 0) { 1161 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1162 return err; 1163 } 1164 1165 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div); 1166 1167 value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1; 1168 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1169 1170 return 0; 1171 } 1172 1173 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1174 struct drm_crtc_state *crtc_state, 1175 struct clk *clk, unsigned long pclk, 1176 unsigned int div) 1177 { 1178 struct tegra_dc_state *state = to_dc_state(crtc_state); 1179 1180 state->clk = clk; 1181 state->pclk = pclk; 1182 state->div = div; 1183 1184 return 0; 1185 } 1186 1187 static void tegra_dc_commit_state(struct tegra_dc *dc, 1188 struct tegra_dc_state *state) 1189 { 1190 u32 value; 1191 int err; 1192 1193 err = clk_set_parent(dc->clk, state->clk); 1194 if (err < 0) 1195 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1196 1197 /* 1198 * Outputs may not want to change the parent clock rate. This is only 1199 * relevant to Tegra20 where only a single display PLL is available. 1200 * Since that PLL would typically be used for HDMI, an internal LVDS 1201 * panel would need to be driven by some other clock such as PLL_P 1202 * which is shared with other peripherals. Changing the clock rate 1203 * should therefore be avoided. 1204 */ 1205 if (state->pclk > 0) { 1206 err = clk_set_rate(state->clk, state->pclk); 1207 if (err < 0) 1208 dev_err(dc->dev, 1209 "failed to set clock rate to %lu Hz\n", 1210 state->pclk); 1211 } 1212 1213 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1214 state->div); 1215 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1216 1217 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1218 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1219 } 1220 1221 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc) 1222 { 1223 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1224 struct tegra_dc_state *state = to_dc_state(crtc->state); 1225 struct tegra_dc *dc = to_tegra_dc(crtc); 1226 u32 value; 1227 1228 tegra_dc_commit_state(dc, state); 1229 1230 /* program display mode */ 1231 tegra_dc_set_timings(dc, mode); 1232 1233 /* interlacing isn't supported yet, so disable it */ 1234 if (dc->soc->supports_interlacing) { 1235 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1236 value &= ~INTERLACE_ENABLE; 1237 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1238 } 1239 1240 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1241 value &= ~DISP_CTRL_MODE_MASK; 1242 value |= DISP_CTRL_MODE_C_DISPLAY; 1243 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1244 1245 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1246 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1247 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1248 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1249 1250 tegra_dc_commit(dc); 1251 } 1252 1253 static void tegra_crtc_prepare(struct drm_crtc *crtc) 1254 { 1255 drm_crtc_vblank_off(crtc); 1256 } 1257 1258 static void tegra_crtc_commit(struct drm_crtc *crtc) 1259 { 1260 drm_crtc_vblank_on(crtc); 1261 } 1262 1263 static int tegra_crtc_atomic_check(struct drm_crtc *crtc, 1264 struct drm_crtc_state *state) 1265 { 1266 return 0; 1267 } 1268 1269 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc) 1270 { 1271 struct tegra_dc *dc = to_tegra_dc(crtc); 1272 1273 if (crtc->state->event) { 1274 crtc->state->event->pipe = drm_crtc_index(crtc); 1275 1276 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1277 1278 dc->event = crtc->state->event; 1279 crtc->state->event = NULL; 1280 } 1281 } 1282 1283 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc) 1284 { 1285 struct tegra_dc_state *state = to_dc_state(crtc->state); 1286 struct tegra_dc *dc = to_tegra_dc(crtc); 1287 1288 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL); 1289 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL); 1290 } 1291 1292 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1293 .disable = tegra_crtc_disable, 1294 .mode_fixup = tegra_crtc_mode_fixup, 1295 .mode_set = drm_helper_crtc_mode_set, 1296 .mode_set_nofb = tegra_crtc_mode_set_nofb, 1297 .mode_set_base = drm_helper_crtc_mode_set_base, 1298 .prepare = tegra_crtc_prepare, 1299 .commit = tegra_crtc_commit, 1300 .atomic_check = tegra_crtc_atomic_check, 1301 .atomic_begin = tegra_crtc_atomic_begin, 1302 .atomic_flush = tegra_crtc_atomic_flush, 1303 }; 1304 1305 static irqreturn_t tegra_dc_irq(int irq, void *data) 1306 { 1307 struct tegra_dc *dc = data; 1308 unsigned long status; 1309 1310 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1311 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1312 1313 if (status & FRAME_END_INT) { 1314 /* 1315 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1316 */ 1317 } 1318 1319 if (status & VBLANK_INT) { 1320 /* 1321 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1322 */ 1323 drm_crtc_handle_vblank(&dc->base); 1324 tegra_dc_finish_page_flip(dc); 1325 } 1326 1327 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1328 /* 1329 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1330 */ 1331 } 1332 1333 return IRQ_HANDLED; 1334 } 1335 1336 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1337 { 1338 struct drm_info_node *node = s->private; 1339 struct tegra_dc *dc = node->info_ent->data; 1340 1341 #define DUMP_REG(name) \ 1342 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \ 1343 tegra_dc_readl(dc, name)) 1344 1345 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT); 1346 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1347 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR); 1348 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT); 1349 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL); 1350 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR); 1351 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT); 1352 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL); 1353 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR); 1354 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT); 1355 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL); 1356 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR); 1357 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC); 1358 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0); 1359 DUMP_REG(DC_CMD_DISPLAY_COMMAND); 1360 DUMP_REG(DC_CMD_SIGNAL_RAISE); 1361 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL); 1362 DUMP_REG(DC_CMD_INT_STATUS); 1363 DUMP_REG(DC_CMD_INT_MASK); 1364 DUMP_REG(DC_CMD_INT_ENABLE); 1365 DUMP_REG(DC_CMD_INT_TYPE); 1366 DUMP_REG(DC_CMD_INT_POLARITY); 1367 DUMP_REG(DC_CMD_SIGNAL_RAISE1); 1368 DUMP_REG(DC_CMD_SIGNAL_RAISE2); 1369 DUMP_REG(DC_CMD_SIGNAL_RAISE3); 1370 DUMP_REG(DC_CMD_STATE_ACCESS); 1371 DUMP_REG(DC_CMD_STATE_CONTROL); 1372 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER); 1373 DUMP_REG(DC_CMD_REG_ACT_CONTROL); 1374 DUMP_REG(DC_COM_CRC_CONTROL); 1375 DUMP_REG(DC_COM_CRC_CHECKSUM); 1376 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0)); 1377 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1)); 1378 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2)); 1379 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3)); 1380 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0)); 1381 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1)); 1382 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2)); 1383 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3)); 1384 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0)); 1385 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1)); 1386 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2)); 1387 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3)); 1388 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0)); 1389 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1)); 1390 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2)); 1391 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3)); 1392 DUMP_REG(DC_COM_PIN_INPUT_DATA(0)); 1393 DUMP_REG(DC_COM_PIN_INPUT_DATA(1)); 1394 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0)); 1395 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1)); 1396 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2)); 1397 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3)); 1398 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4)); 1399 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5)); 1400 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6)); 1401 DUMP_REG(DC_COM_PIN_MISC_CONTROL); 1402 DUMP_REG(DC_COM_PIN_PM0_CONTROL); 1403 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE); 1404 DUMP_REG(DC_COM_PIN_PM1_CONTROL); 1405 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE); 1406 DUMP_REG(DC_COM_SPI_CONTROL); 1407 DUMP_REG(DC_COM_SPI_START_BYTE); 1408 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB); 1409 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD); 1410 DUMP_REG(DC_COM_HSPI_CS_DC); 1411 DUMP_REG(DC_COM_SCRATCH_REGISTER_A); 1412 DUMP_REG(DC_COM_SCRATCH_REGISTER_B); 1413 DUMP_REG(DC_COM_GPIO_CTRL); 1414 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER); 1415 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED); 1416 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0); 1417 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1); 1418 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS); 1419 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY); 1420 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1421 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS); 1422 DUMP_REG(DC_DISP_REF_TO_SYNC); 1423 DUMP_REG(DC_DISP_SYNC_WIDTH); 1424 DUMP_REG(DC_DISP_BACK_PORCH); 1425 DUMP_REG(DC_DISP_ACTIVE); 1426 DUMP_REG(DC_DISP_FRONT_PORCH); 1427 DUMP_REG(DC_DISP_H_PULSE0_CONTROL); 1428 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A); 1429 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B); 1430 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C); 1431 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D); 1432 DUMP_REG(DC_DISP_H_PULSE1_CONTROL); 1433 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A); 1434 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B); 1435 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C); 1436 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D); 1437 DUMP_REG(DC_DISP_H_PULSE2_CONTROL); 1438 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A); 1439 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B); 1440 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C); 1441 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D); 1442 DUMP_REG(DC_DISP_V_PULSE0_CONTROL); 1443 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A); 1444 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B); 1445 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C); 1446 DUMP_REG(DC_DISP_V_PULSE1_CONTROL); 1447 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A); 1448 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B); 1449 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C); 1450 DUMP_REG(DC_DISP_V_PULSE2_CONTROL); 1451 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A); 1452 DUMP_REG(DC_DISP_V_PULSE3_CONTROL); 1453 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A); 1454 DUMP_REG(DC_DISP_M0_CONTROL); 1455 DUMP_REG(DC_DISP_M1_CONTROL); 1456 DUMP_REG(DC_DISP_DI_CONTROL); 1457 DUMP_REG(DC_DISP_PP_CONTROL); 1458 DUMP_REG(DC_DISP_PP_SELECT_A); 1459 DUMP_REG(DC_DISP_PP_SELECT_B); 1460 DUMP_REG(DC_DISP_PP_SELECT_C); 1461 DUMP_REG(DC_DISP_PP_SELECT_D); 1462 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL); 1463 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL); 1464 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL); 1465 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS); 1466 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS); 1467 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS); 1468 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS); 1469 DUMP_REG(DC_DISP_BORDER_COLOR); 1470 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER); 1471 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER); 1472 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER); 1473 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER); 1474 DUMP_REG(DC_DISP_CURSOR_FOREGROUND); 1475 DUMP_REG(DC_DISP_CURSOR_BACKGROUND); 1476 DUMP_REG(DC_DISP_CURSOR_START_ADDR); 1477 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS); 1478 DUMP_REG(DC_DISP_CURSOR_POSITION); 1479 DUMP_REG(DC_DISP_CURSOR_POSITION_NS); 1480 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL); 1481 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A); 1482 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B); 1483 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C); 1484 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D); 1485 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL); 1486 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST); 1487 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST); 1488 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST); 1489 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST); 1490 DUMP_REG(DC_DISP_DAC_CRT_CTRL); 1491 DUMP_REG(DC_DISP_DISP_MISC_CONTROL); 1492 DUMP_REG(DC_DISP_SD_CONTROL); 1493 DUMP_REG(DC_DISP_SD_CSC_COEFF); 1494 DUMP_REG(DC_DISP_SD_LUT(0)); 1495 DUMP_REG(DC_DISP_SD_LUT(1)); 1496 DUMP_REG(DC_DISP_SD_LUT(2)); 1497 DUMP_REG(DC_DISP_SD_LUT(3)); 1498 DUMP_REG(DC_DISP_SD_LUT(4)); 1499 DUMP_REG(DC_DISP_SD_LUT(5)); 1500 DUMP_REG(DC_DISP_SD_LUT(6)); 1501 DUMP_REG(DC_DISP_SD_LUT(7)); 1502 DUMP_REG(DC_DISP_SD_LUT(8)); 1503 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL); 1504 DUMP_REG(DC_DISP_DC_PIXEL_COUNT); 1505 DUMP_REG(DC_DISP_SD_HISTOGRAM(0)); 1506 DUMP_REG(DC_DISP_SD_HISTOGRAM(1)); 1507 DUMP_REG(DC_DISP_SD_HISTOGRAM(2)); 1508 DUMP_REG(DC_DISP_SD_HISTOGRAM(3)); 1509 DUMP_REG(DC_DISP_SD_HISTOGRAM(4)); 1510 DUMP_REG(DC_DISP_SD_HISTOGRAM(5)); 1511 DUMP_REG(DC_DISP_SD_HISTOGRAM(6)); 1512 DUMP_REG(DC_DISP_SD_HISTOGRAM(7)); 1513 DUMP_REG(DC_DISP_SD_BL_TF(0)); 1514 DUMP_REG(DC_DISP_SD_BL_TF(1)); 1515 DUMP_REG(DC_DISP_SD_BL_TF(2)); 1516 DUMP_REG(DC_DISP_SD_BL_TF(3)); 1517 DUMP_REG(DC_DISP_SD_BL_CONTROL); 1518 DUMP_REG(DC_DISP_SD_HW_K_VALUES); 1519 DUMP_REG(DC_DISP_SD_MAN_K_VALUES); 1520 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI); 1521 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL); 1522 DUMP_REG(DC_WIN_WIN_OPTIONS); 1523 DUMP_REG(DC_WIN_BYTE_SWAP); 1524 DUMP_REG(DC_WIN_BUFFER_CONTROL); 1525 DUMP_REG(DC_WIN_COLOR_DEPTH); 1526 DUMP_REG(DC_WIN_POSITION); 1527 DUMP_REG(DC_WIN_SIZE); 1528 DUMP_REG(DC_WIN_PRESCALED_SIZE); 1529 DUMP_REG(DC_WIN_H_INITIAL_DDA); 1530 DUMP_REG(DC_WIN_V_INITIAL_DDA); 1531 DUMP_REG(DC_WIN_DDA_INC); 1532 DUMP_REG(DC_WIN_LINE_STRIDE); 1533 DUMP_REG(DC_WIN_BUF_STRIDE); 1534 DUMP_REG(DC_WIN_UV_BUF_STRIDE); 1535 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE); 1536 DUMP_REG(DC_WIN_DV_CONTROL); 1537 DUMP_REG(DC_WIN_BLEND_NOKEY); 1538 DUMP_REG(DC_WIN_BLEND_1WIN); 1539 DUMP_REG(DC_WIN_BLEND_2WIN_X); 1540 DUMP_REG(DC_WIN_BLEND_2WIN_Y); 1541 DUMP_REG(DC_WIN_BLEND_3WIN_XY); 1542 DUMP_REG(DC_WIN_HP_FETCH_CONTROL); 1543 DUMP_REG(DC_WINBUF_START_ADDR); 1544 DUMP_REG(DC_WINBUF_START_ADDR_NS); 1545 DUMP_REG(DC_WINBUF_START_ADDR_U); 1546 DUMP_REG(DC_WINBUF_START_ADDR_U_NS); 1547 DUMP_REG(DC_WINBUF_START_ADDR_V); 1548 DUMP_REG(DC_WINBUF_START_ADDR_V_NS); 1549 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET); 1550 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS); 1551 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET); 1552 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS); 1553 DUMP_REG(DC_WINBUF_UFLOW_STATUS); 1554 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS); 1555 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS); 1556 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS); 1557 1558 #undef DUMP_REG 1559 1560 return 0; 1561 } 1562 1563 static struct drm_info_list debugfs_files[] = { 1564 { "regs", tegra_dc_show_regs, 0, NULL }, 1565 }; 1566 1567 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor) 1568 { 1569 unsigned int i; 1570 char *name; 1571 int err; 1572 1573 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe); 1574 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root); 1575 kfree(name); 1576 1577 if (!dc->debugfs) 1578 return -ENOMEM; 1579 1580 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1581 GFP_KERNEL); 1582 if (!dc->debugfs_files) { 1583 err = -ENOMEM; 1584 goto remove; 1585 } 1586 1587 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 1588 dc->debugfs_files[i].data = dc; 1589 1590 err = drm_debugfs_create_files(dc->debugfs_files, 1591 ARRAY_SIZE(debugfs_files), 1592 dc->debugfs, minor); 1593 if (err < 0) 1594 goto free; 1595 1596 dc->minor = minor; 1597 1598 return 0; 1599 1600 free: 1601 kfree(dc->debugfs_files); 1602 dc->debugfs_files = NULL; 1603 remove: 1604 debugfs_remove(dc->debugfs); 1605 dc->debugfs = NULL; 1606 1607 return err; 1608 } 1609 1610 static int tegra_dc_debugfs_exit(struct tegra_dc *dc) 1611 { 1612 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files), 1613 dc->minor); 1614 dc->minor = NULL; 1615 1616 kfree(dc->debugfs_files); 1617 dc->debugfs_files = NULL; 1618 1619 debugfs_remove(dc->debugfs); 1620 dc->debugfs = NULL; 1621 1622 return 0; 1623 } 1624 1625 static int tegra_dc_init(struct host1x_client *client) 1626 { 1627 struct drm_device *drm = dev_get_drvdata(client->parent); 1628 struct tegra_dc *dc = host1x_client_to_dc(client); 1629 struct tegra_drm *tegra = drm->dev_private; 1630 struct drm_plane *primary = NULL; 1631 struct drm_plane *cursor = NULL; 1632 unsigned int syncpt; 1633 u32 value; 1634 int err; 1635 1636 if (tegra->domain) { 1637 err = iommu_attach_device(tegra->domain, dc->dev); 1638 if (err < 0) { 1639 dev_err(dc->dev, "failed to attach to domain: %d\n", 1640 err); 1641 return err; 1642 } 1643 1644 dc->domain = tegra->domain; 1645 } 1646 1647 primary = tegra_dc_primary_plane_create(drm, dc); 1648 if (IS_ERR(primary)) { 1649 err = PTR_ERR(primary); 1650 goto cleanup; 1651 } 1652 1653 if (dc->soc->supports_cursor) { 1654 cursor = tegra_dc_cursor_plane_create(drm, dc); 1655 if (IS_ERR(cursor)) { 1656 err = PTR_ERR(cursor); 1657 goto cleanup; 1658 } 1659 } 1660 1661 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 1662 &tegra_crtc_funcs); 1663 if (err < 0) 1664 goto cleanup; 1665 1666 drm_mode_crtc_set_gamma_size(&dc->base, 256); 1667 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 1668 1669 /* 1670 * Keep track of the minimum pitch alignment across all display 1671 * controllers. 1672 */ 1673 if (dc->soc->pitch_align > tegra->pitch_align) 1674 tegra->pitch_align = dc->soc->pitch_align; 1675 1676 err = tegra_dc_rgb_init(drm, dc); 1677 if (err < 0 && err != -ENODEV) { 1678 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 1679 goto cleanup; 1680 } 1681 1682 err = tegra_dc_add_planes(drm, dc); 1683 if (err < 0) 1684 goto cleanup; 1685 1686 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1687 err = tegra_dc_debugfs_init(dc, drm->primary); 1688 if (err < 0) 1689 dev_err(dc->dev, "debugfs setup failed: %d\n", err); 1690 } 1691 1692 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 1693 dev_name(dc->dev), dc); 1694 if (err < 0) { 1695 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 1696 err); 1697 goto cleanup; 1698 } 1699 1700 /* initialize display controller */ 1701 if (dc->pipe) 1702 syncpt = SYNCPT_VBLANK1; 1703 else 1704 syncpt = SYNCPT_VBLANK0; 1705 1706 tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1707 tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC); 1708 1709 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT; 1710 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1711 1712 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1713 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1714 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1715 1716 /* initialize timer */ 1717 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1718 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1719 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1720 1721 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1722 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1723 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1724 1725 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT; 1726 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1727 1728 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT; 1729 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1730 1731 if (dc->soc->supports_border_color) 1732 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1733 1734 return 0; 1735 1736 cleanup: 1737 if (cursor) 1738 drm_plane_cleanup(cursor); 1739 1740 if (primary) 1741 drm_plane_cleanup(primary); 1742 1743 if (tegra->domain) { 1744 iommu_detach_device(tegra->domain, dc->dev); 1745 dc->domain = NULL; 1746 } 1747 1748 return err; 1749 } 1750 1751 static int tegra_dc_exit(struct host1x_client *client) 1752 { 1753 struct tegra_dc *dc = host1x_client_to_dc(client); 1754 int err; 1755 1756 devm_free_irq(dc->dev, dc->irq, dc); 1757 1758 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1759 err = tegra_dc_debugfs_exit(dc); 1760 if (err < 0) 1761 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err); 1762 } 1763 1764 err = tegra_dc_rgb_exit(dc); 1765 if (err) { 1766 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 1767 return err; 1768 } 1769 1770 if (dc->domain) { 1771 iommu_detach_device(dc->domain, dc->dev); 1772 dc->domain = NULL; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static const struct host1x_client_ops dc_client_ops = { 1779 .init = tegra_dc_init, 1780 .exit = tegra_dc_exit, 1781 }; 1782 1783 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 1784 .supports_border_color = true, 1785 .supports_interlacing = false, 1786 .supports_cursor = false, 1787 .supports_block_linear = false, 1788 .pitch_align = 8, 1789 .has_powergate = false, 1790 }; 1791 1792 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 1793 .supports_border_color = true, 1794 .supports_interlacing = false, 1795 .supports_cursor = false, 1796 .supports_block_linear = false, 1797 .pitch_align = 8, 1798 .has_powergate = false, 1799 }; 1800 1801 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 1802 .supports_border_color = true, 1803 .supports_interlacing = false, 1804 .supports_cursor = false, 1805 .supports_block_linear = false, 1806 .pitch_align = 64, 1807 .has_powergate = true, 1808 }; 1809 1810 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 1811 .supports_border_color = false, 1812 .supports_interlacing = true, 1813 .supports_cursor = true, 1814 .supports_block_linear = true, 1815 .pitch_align = 64, 1816 .has_powergate = true, 1817 }; 1818 1819 static const struct of_device_id tegra_dc_of_match[] = { 1820 { 1821 .compatible = "nvidia,tegra124-dc", 1822 .data = &tegra124_dc_soc_info, 1823 }, { 1824 .compatible = "nvidia,tegra114-dc", 1825 .data = &tegra114_dc_soc_info, 1826 }, { 1827 .compatible = "nvidia,tegra30-dc", 1828 .data = &tegra30_dc_soc_info, 1829 }, { 1830 .compatible = "nvidia,tegra20-dc", 1831 .data = &tegra20_dc_soc_info, 1832 }, { 1833 /* sentinel */ 1834 } 1835 }; 1836 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 1837 1838 static int tegra_dc_parse_dt(struct tegra_dc *dc) 1839 { 1840 struct device_node *np; 1841 u32 value = 0; 1842 int err; 1843 1844 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 1845 if (err < 0) { 1846 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 1847 1848 /* 1849 * If the nvidia,head property isn't present, try to find the 1850 * correct head number by looking up the position of this 1851 * display controller's node within the device tree. Assuming 1852 * that the nodes are ordered properly in the DTS file and 1853 * that the translation into a flattened device tree blob 1854 * preserves that ordering this will actually yield the right 1855 * head number. 1856 * 1857 * If those assumptions don't hold, this will still work for 1858 * cases where only a single display controller is used. 1859 */ 1860 for_each_matching_node(np, tegra_dc_of_match) { 1861 if (np == dc->dev->of_node) 1862 break; 1863 1864 value++; 1865 } 1866 } 1867 1868 dc->pipe = value; 1869 1870 return 0; 1871 } 1872 1873 static int tegra_dc_probe(struct platform_device *pdev) 1874 { 1875 const struct of_device_id *id; 1876 struct resource *regs; 1877 struct tegra_dc *dc; 1878 int err; 1879 1880 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 1881 if (!dc) 1882 return -ENOMEM; 1883 1884 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node); 1885 if (!id) 1886 return -ENODEV; 1887 1888 spin_lock_init(&dc->lock); 1889 INIT_LIST_HEAD(&dc->list); 1890 dc->dev = &pdev->dev; 1891 dc->soc = id->data; 1892 1893 err = tegra_dc_parse_dt(dc); 1894 if (err < 0) 1895 return err; 1896 1897 dc->clk = devm_clk_get(&pdev->dev, NULL); 1898 if (IS_ERR(dc->clk)) { 1899 dev_err(&pdev->dev, "failed to get clock\n"); 1900 return PTR_ERR(dc->clk); 1901 } 1902 1903 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 1904 if (IS_ERR(dc->rst)) { 1905 dev_err(&pdev->dev, "failed to get reset\n"); 1906 return PTR_ERR(dc->rst); 1907 } 1908 1909 if (dc->soc->has_powergate) { 1910 if (dc->pipe == 0) 1911 dc->powergate = TEGRA_POWERGATE_DIS; 1912 else 1913 dc->powergate = TEGRA_POWERGATE_DISB; 1914 1915 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 1916 dc->rst); 1917 if (err < 0) { 1918 dev_err(&pdev->dev, "failed to power partition: %d\n", 1919 err); 1920 return err; 1921 } 1922 } else { 1923 err = clk_prepare_enable(dc->clk); 1924 if (err < 0) { 1925 dev_err(&pdev->dev, "failed to enable clock: %d\n", 1926 err); 1927 return err; 1928 } 1929 1930 err = reset_control_deassert(dc->rst); 1931 if (err < 0) { 1932 dev_err(&pdev->dev, "failed to deassert reset: %d\n", 1933 err); 1934 return err; 1935 } 1936 } 1937 1938 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1939 dc->regs = devm_ioremap_resource(&pdev->dev, regs); 1940 if (IS_ERR(dc->regs)) 1941 return PTR_ERR(dc->regs); 1942 1943 dc->irq = platform_get_irq(pdev, 0); 1944 if (dc->irq < 0) { 1945 dev_err(&pdev->dev, "failed to get IRQ\n"); 1946 return -ENXIO; 1947 } 1948 1949 INIT_LIST_HEAD(&dc->client.list); 1950 dc->client.ops = &dc_client_ops; 1951 dc->client.dev = &pdev->dev; 1952 1953 err = tegra_dc_rgb_probe(dc); 1954 if (err < 0 && err != -ENODEV) { 1955 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err); 1956 return err; 1957 } 1958 1959 err = host1x_client_register(&dc->client); 1960 if (err < 0) { 1961 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 1962 err); 1963 return err; 1964 } 1965 1966 platform_set_drvdata(pdev, dc); 1967 1968 return 0; 1969 } 1970 1971 static int tegra_dc_remove(struct platform_device *pdev) 1972 { 1973 struct tegra_dc *dc = platform_get_drvdata(pdev); 1974 int err; 1975 1976 err = host1x_client_unregister(&dc->client); 1977 if (err < 0) { 1978 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 1979 err); 1980 return err; 1981 } 1982 1983 err = tegra_dc_rgb_remove(dc); 1984 if (err < 0) { 1985 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 1986 return err; 1987 } 1988 1989 reset_control_assert(dc->rst); 1990 1991 if (dc->soc->has_powergate) 1992 tegra_powergate_power_off(dc->powergate); 1993 1994 clk_disable_unprepare(dc->clk); 1995 1996 return 0; 1997 } 1998 1999 struct platform_driver tegra_dc_driver = { 2000 .driver = { 2001 .name = "tegra-dc", 2002 .owner = THIS_MODULE, 2003 .of_match_table = tegra_dc_of_match, 2004 }, 2005 .probe = tegra_dc_probe, 2006 .remove = tegra_dc_remove, 2007 }; 2008