xref: /linux/drivers/gpu/drm/tegra/dc.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14 
15 #include <soc/tegra/pmc.h>
16 
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24 
25 struct tegra_dc_soc_info {
26 	bool supports_border_color;
27 	bool supports_interlacing;
28 	bool supports_cursor;
29 	bool supports_block_linear;
30 	unsigned int pitch_align;
31 	bool has_powergate;
32 };
33 
34 struct tegra_plane {
35 	struct drm_plane base;
36 	unsigned int index;
37 };
38 
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 	return container_of(plane, struct tegra_plane, base);
42 }
43 
44 struct tegra_dc_state {
45 	struct drm_crtc_state base;
46 
47 	struct clk *clk;
48 	unsigned long pclk;
49 	unsigned int div;
50 
51 	u32 planes;
52 };
53 
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 	if (state)
57 		return container_of(state, struct tegra_dc_state, base);
58 
59 	return NULL;
60 }
61 
62 struct tegra_plane_state {
63 	struct drm_plane_state base;
64 
65 	struct tegra_bo_tiling tiling;
66 	u32 format;
67 	u32 swap;
68 };
69 
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 	if (state)
74 		return container_of(state, struct tegra_plane_state, base);
75 
76 	return NULL;
77 }
78 
79 /*
80  * Reads the active copy of a register. This takes the dc->lock spinlock to
81  * prevent races with the VBLANK processing which also needs access to the
82  * active copy of some registers.
83  */
84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
85 {
86 	unsigned long flags;
87 	u32 value;
88 
89 	spin_lock_irqsave(&dc->lock, flags);
90 
91 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92 	value = tegra_dc_readl(dc, offset);
93 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
94 
95 	spin_unlock_irqrestore(&dc->lock, flags);
96 	return value;
97 }
98 
99 /*
100  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102  * Latching happens mmediately if the display controller is in STOP mode or
103  * on the next frame boundary otherwise.
104  *
105  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108  * into the ACTIVE copy, either immediately if the display controller is in
109  * STOP mode, or at the next frame boundary otherwise.
110  */
111 void tegra_dc_commit(struct tegra_dc *dc)
112 {
113 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 }
116 
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118 {
119 	/* assume no swapping of fetched data */
120 	if (swap)
121 		*swap = BYTE_SWAP_NOSWAP;
122 
123 	switch (fourcc) {
124 	case DRM_FORMAT_XBGR8888:
125 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
126 		break;
127 
128 	case DRM_FORMAT_XRGB8888:
129 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
130 		break;
131 
132 	case DRM_FORMAT_RGB565:
133 		*format = WIN_COLOR_DEPTH_B5G6R5;
134 		break;
135 
136 	case DRM_FORMAT_UYVY:
137 		*format = WIN_COLOR_DEPTH_YCbCr422;
138 		break;
139 
140 	case DRM_FORMAT_YUYV:
141 		if (swap)
142 			*swap = BYTE_SWAP_SWAP2;
143 
144 		*format = WIN_COLOR_DEPTH_YCbCr422;
145 		break;
146 
147 	case DRM_FORMAT_YUV420:
148 		*format = WIN_COLOR_DEPTH_YCbCr420P;
149 		break;
150 
151 	case DRM_FORMAT_YUV422:
152 		*format = WIN_COLOR_DEPTH_YCbCr422P;
153 		break;
154 
155 	default:
156 		return -EINVAL;
157 	}
158 
159 	return 0;
160 }
161 
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163 {
164 	switch (format) {
165 	case WIN_COLOR_DEPTH_YCbCr422:
166 	case WIN_COLOR_DEPTH_YUV422:
167 		if (planar)
168 			*planar = false;
169 
170 		return true;
171 
172 	case WIN_COLOR_DEPTH_YCbCr420P:
173 	case WIN_COLOR_DEPTH_YUV420P:
174 	case WIN_COLOR_DEPTH_YCbCr422P:
175 	case WIN_COLOR_DEPTH_YUV422P:
176 	case WIN_COLOR_DEPTH_YCbCr422R:
177 	case WIN_COLOR_DEPTH_YUV422R:
178 	case WIN_COLOR_DEPTH_YCbCr422RA:
179 	case WIN_COLOR_DEPTH_YUV422RA:
180 		if (planar)
181 			*planar = true;
182 
183 		return true;
184 	}
185 
186 	if (planar)
187 		*planar = false;
188 
189 	return false;
190 }
191 
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193 				  unsigned int bpp)
194 {
195 	fixed20_12 outf = dfixed_init(out);
196 	fixed20_12 inf = dfixed_init(in);
197 	u32 dda_inc;
198 	int max;
199 
200 	if (v)
201 		max = 15;
202 	else {
203 		switch (bpp) {
204 		case 2:
205 			max = 8;
206 			break;
207 
208 		default:
209 			WARN_ON_ONCE(1);
210 			/* fallthrough */
211 		case 4:
212 			max = 4;
213 			break;
214 		}
215 	}
216 
217 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218 	inf.full -= dfixed_const(1);
219 
220 	dda_inc = dfixed_div(inf, outf);
221 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222 
223 	return dda_inc;
224 }
225 
226 static inline u32 compute_initial_dda(unsigned int in)
227 {
228 	fixed20_12 inf = dfixed_init(in);
229 	return dfixed_frac(inf);
230 }
231 
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233 				  const struct tegra_dc_window *window)
234 {
235 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236 	unsigned long value, flags;
237 	bool yuv, planar;
238 
239 	/*
240 	 * For YUV planar modes, the number of bytes per pixel takes into
241 	 * account only the luma component and therefore is 1.
242 	 */
243 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
244 	if (!yuv)
245 		bpp = window->bits_per_pixel / 8;
246 	else
247 		bpp = planar ? 1 : 2;
248 
249 	spin_lock_irqsave(&dc->lock, flags);
250 
251 	value = WINDOW_A_SELECT << index;
252 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253 
254 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256 
257 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
259 
260 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
262 
263 	h_offset = window->src.x * bpp;
264 	v_offset = window->src.y;
265 	h_size = window->src.w * bpp;
266 	v_size = window->src.h;
267 
268 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270 
271 	/*
272 	 * For DDA computations the number of bytes per pixel for YUV planar
273 	 * modes needs to take into account all Y, U and V components.
274 	 */
275 	if (yuv && planar)
276 		bpp = 2;
277 
278 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280 
281 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283 
284 	h_dda = compute_initial_dda(window->src.x);
285 	v_dda = compute_initial_dda(window->src.y);
286 
287 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289 
290 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292 
293 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294 
295 	if (yuv && planar) {
296 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298 		value = window->stride[1] << 16 | window->stride[0];
299 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300 	} else {
301 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302 	}
303 
304 	if (window->bottom_up)
305 		v_offset += window->src.h - 1;
306 
307 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309 
310 	if (dc->soc->supports_block_linear) {
311 		unsigned long height = window->tiling.value;
312 
313 		switch (window->tiling.mode) {
314 		case TEGRA_BO_TILING_MODE_PITCH:
315 			value = DC_WINBUF_SURFACE_KIND_PITCH;
316 			break;
317 
318 		case TEGRA_BO_TILING_MODE_TILED:
319 			value = DC_WINBUF_SURFACE_KIND_TILED;
320 			break;
321 
322 		case TEGRA_BO_TILING_MODE_BLOCK:
323 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324 				DC_WINBUF_SURFACE_KIND_BLOCK;
325 			break;
326 		}
327 
328 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329 	} else {
330 		switch (window->tiling.mode) {
331 		case TEGRA_BO_TILING_MODE_PITCH:
332 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334 			break;
335 
336 		case TEGRA_BO_TILING_MODE_TILED:
337 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338 				DC_WIN_BUFFER_ADDR_MODE_TILE;
339 			break;
340 
341 		case TEGRA_BO_TILING_MODE_BLOCK:
342 			/*
343 			 * No need to handle this here because ->atomic_check
344 			 * will already have filtered it out.
345 			 */
346 			break;
347 		}
348 
349 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350 	}
351 
352 	value = WIN_ENABLE;
353 
354 	if (yuv) {
355 		/* setup default colorspace conversion coefficients */
356 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364 
365 		value |= CSC_ENABLE;
366 	} else if (window->bits_per_pixel < 24) {
367 		value |= COLOR_EXPAND;
368 	}
369 
370 	if (window->bottom_up)
371 		value |= V_DIRECTION;
372 
373 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374 
375 	/*
376 	 * Disable blending and assume Window A is the bottom-most window,
377 	 * Window C is the top-most window and Window B is in the middle.
378 	 */
379 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381 
382 	switch (index) {
383 	case 0:
384 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387 		break;
388 
389 	case 1:
390 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393 		break;
394 
395 	case 2:
396 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399 		break;
400 	}
401 
402 	spin_unlock_irqrestore(&dc->lock, flags);
403 }
404 
405 static void tegra_plane_destroy(struct drm_plane *plane)
406 {
407 	struct tegra_plane *p = to_tegra_plane(plane);
408 
409 	drm_plane_cleanup(plane);
410 	kfree(p);
411 }
412 
413 static const u32 tegra_primary_plane_formats[] = {
414 	DRM_FORMAT_XBGR8888,
415 	DRM_FORMAT_XRGB8888,
416 	DRM_FORMAT_RGB565,
417 };
418 
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
420 {
421 	tegra_plane_destroy(plane);
422 }
423 
424 static void tegra_plane_reset(struct drm_plane *plane)
425 {
426 	struct tegra_plane_state *state;
427 
428 	if (plane->state && plane->state->fb)
429 		drm_framebuffer_unreference(plane->state->fb);
430 
431 	kfree(plane->state);
432 	plane->state = NULL;
433 
434 	state = kzalloc(sizeof(*state), GFP_KERNEL);
435 	if (state) {
436 		plane->state = &state->base;
437 		plane->state->plane = plane;
438 	}
439 }
440 
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442 {
443 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444 	struct tegra_plane_state *copy;
445 
446 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
447 	if (!copy)
448 		return NULL;
449 
450 	if (copy->base.fb)
451 		drm_framebuffer_reference(copy->base.fb);
452 
453 	return &copy->base;
454 }
455 
456 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
457 					     struct drm_plane_state *state)
458 {
459 	if (state->fb)
460 		drm_framebuffer_unreference(state->fb);
461 
462 	kfree(state);
463 }
464 
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466 	.update_plane = drm_atomic_helper_update_plane,
467 	.disable_plane = drm_atomic_helper_disable_plane,
468 	.destroy = tegra_primary_plane_destroy,
469 	.reset = tegra_plane_reset,
470 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
472 };
473 
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475 				  struct drm_framebuffer *fb)
476 {
477 	return 0;
478 }
479 
480 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
481 				   struct drm_framebuffer *fb)
482 {
483 }
484 
485 static int tegra_plane_state_add(struct tegra_plane *plane,
486 				 struct drm_plane_state *state)
487 {
488 	struct drm_crtc_state *crtc_state;
489 	struct tegra_dc_state *tegra;
490 
491 	/* Propagate errors from allocation or locking failures. */
492 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
493 	if (IS_ERR(crtc_state))
494 		return PTR_ERR(crtc_state);
495 
496 	tegra = to_dc_state(crtc_state);
497 
498 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
499 
500 	return 0;
501 }
502 
503 static int tegra_plane_atomic_check(struct drm_plane *plane,
504 				    struct drm_plane_state *state)
505 {
506 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
507 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
508 	struct tegra_plane *tegra = to_tegra_plane(plane);
509 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
510 	int err;
511 
512 	/* no need for further checks if the plane is being disabled */
513 	if (!state->crtc)
514 		return 0;
515 
516 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
517 			      &plane_state->swap);
518 	if (err < 0)
519 		return err;
520 
521 	err = tegra_fb_get_tiling(state->fb, tiling);
522 	if (err < 0)
523 		return err;
524 
525 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
526 	    !dc->soc->supports_block_linear) {
527 		DRM_ERROR("hardware doesn't support block linear mode\n");
528 		return -EINVAL;
529 	}
530 
531 	/*
532 	 * Tegra doesn't support different strides for U and V planes so we
533 	 * error out if the user tries to display a framebuffer with such a
534 	 * configuration.
535 	 */
536 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
537 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
538 			DRM_ERROR("unsupported UV-plane configuration\n");
539 			return -EINVAL;
540 		}
541 	}
542 
543 	err = tegra_plane_state_add(tegra, state);
544 	if (err < 0)
545 		return err;
546 
547 	return 0;
548 }
549 
550 static void tegra_plane_atomic_update(struct drm_plane *plane,
551 				      struct drm_plane_state *old_state)
552 {
553 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
554 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
555 	struct drm_framebuffer *fb = plane->state->fb;
556 	struct tegra_plane *p = to_tegra_plane(plane);
557 	struct tegra_dc_window window;
558 	unsigned int i;
559 
560 	/* rien ne va plus */
561 	if (!plane->state->crtc || !plane->state->fb)
562 		return;
563 
564 	memset(&window, 0, sizeof(window));
565 	window.src.x = plane->state->src_x >> 16;
566 	window.src.y = plane->state->src_y >> 16;
567 	window.src.w = plane->state->src_w >> 16;
568 	window.src.h = plane->state->src_h >> 16;
569 	window.dst.x = plane->state->crtc_x;
570 	window.dst.y = plane->state->crtc_y;
571 	window.dst.w = plane->state->crtc_w;
572 	window.dst.h = plane->state->crtc_h;
573 	window.bits_per_pixel = fb->bits_per_pixel;
574 	window.bottom_up = tegra_fb_is_bottom_up(fb);
575 
576 	/* copy from state */
577 	window.tiling = state->tiling;
578 	window.format = state->format;
579 	window.swap = state->swap;
580 
581 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
582 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
583 
584 		window.base[i] = bo->paddr + fb->offsets[i];
585 		window.stride[i] = fb->pitches[i];
586 	}
587 
588 	tegra_dc_setup_window(dc, p->index, &window);
589 }
590 
591 static void tegra_plane_atomic_disable(struct drm_plane *plane,
592 				       struct drm_plane_state *old_state)
593 {
594 	struct tegra_plane *p = to_tegra_plane(plane);
595 	struct tegra_dc *dc;
596 	unsigned long flags;
597 	u32 value;
598 
599 	/* rien ne va plus */
600 	if (!old_state || !old_state->crtc)
601 		return;
602 
603 	dc = to_tegra_dc(old_state->crtc);
604 
605 	spin_lock_irqsave(&dc->lock, flags);
606 
607 	value = WINDOW_A_SELECT << p->index;
608 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
609 
610 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
611 	value &= ~WIN_ENABLE;
612 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
613 
614 	spin_unlock_irqrestore(&dc->lock, flags);
615 }
616 
617 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
618 	.prepare_fb = tegra_plane_prepare_fb,
619 	.cleanup_fb = tegra_plane_cleanup_fb,
620 	.atomic_check = tegra_plane_atomic_check,
621 	.atomic_update = tegra_plane_atomic_update,
622 	.atomic_disable = tegra_plane_atomic_disable,
623 };
624 
625 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
626 						       struct tegra_dc *dc)
627 {
628 	/*
629 	 * Ideally this would use drm_crtc_mask(), but that would require the
630 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
631 	 * will only be added to that list in the drm_crtc_init_with_planes()
632 	 * (in tegra_dc_init()), which in turn requires registration of these
633 	 * planes. So we have ourselves a nice little chicken and egg problem
634 	 * here.
635 	 *
636 	 * We work around this by manually creating the mask from the number
637 	 * of CRTCs that have been registered, and should therefore always be
638 	 * the same as drm_crtc_index() after registration.
639 	 */
640 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
641 	struct tegra_plane *plane;
642 	unsigned int num_formats;
643 	const u32 *formats;
644 	int err;
645 
646 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
647 	if (!plane)
648 		return ERR_PTR(-ENOMEM);
649 
650 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
651 	formats = tegra_primary_plane_formats;
652 
653 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
654 				       &tegra_primary_plane_funcs, formats,
655 				       num_formats, DRM_PLANE_TYPE_PRIMARY);
656 	if (err < 0) {
657 		kfree(plane);
658 		return ERR_PTR(err);
659 	}
660 
661 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
662 
663 	return &plane->base;
664 }
665 
666 static const u32 tegra_cursor_plane_formats[] = {
667 	DRM_FORMAT_RGBA8888,
668 };
669 
670 static int tegra_cursor_atomic_check(struct drm_plane *plane,
671 				     struct drm_plane_state *state)
672 {
673 	struct tegra_plane *tegra = to_tegra_plane(plane);
674 	int err;
675 
676 	/* no need for further checks if the plane is being disabled */
677 	if (!state->crtc)
678 		return 0;
679 
680 	/* scaling not supported for cursor */
681 	if ((state->src_w >> 16 != state->crtc_w) ||
682 	    (state->src_h >> 16 != state->crtc_h))
683 		return -EINVAL;
684 
685 	/* only square cursors supported */
686 	if (state->src_w != state->src_h)
687 		return -EINVAL;
688 
689 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
690 	    state->crtc_w != 128 && state->crtc_w != 256)
691 		return -EINVAL;
692 
693 	err = tegra_plane_state_add(tegra, state);
694 	if (err < 0)
695 		return err;
696 
697 	return 0;
698 }
699 
700 static void tegra_cursor_atomic_update(struct drm_plane *plane,
701 				       struct drm_plane_state *old_state)
702 {
703 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
704 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
705 	struct drm_plane_state *state = plane->state;
706 	u32 value = CURSOR_CLIP_DISPLAY;
707 
708 	/* rien ne va plus */
709 	if (!plane->state->crtc || !plane->state->fb)
710 		return;
711 
712 	switch (state->crtc_w) {
713 	case 32:
714 		value |= CURSOR_SIZE_32x32;
715 		break;
716 
717 	case 64:
718 		value |= CURSOR_SIZE_64x64;
719 		break;
720 
721 	case 128:
722 		value |= CURSOR_SIZE_128x128;
723 		break;
724 
725 	case 256:
726 		value |= CURSOR_SIZE_256x256;
727 		break;
728 
729 	default:
730 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
731 		     state->crtc_h);
732 		return;
733 	}
734 
735 	value |= (bo->paddr >> 10) & 0x3fffff;
736 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
737 
738 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
739 	value = (bo->paddr >> 32) & 0x3;
740 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
741 #endif
742 
743 	/* enable cursor and set blend mode */
744 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
745 	value |= CURSOR_ENABLE;
746 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
747 
748 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
749 	value &= ~CURSOR_DST_BLEND_MASK;
750 	value &= ~CURSOR_SRC_BLEND_MASK;
751 	value |= CURSOR_MODE_NORMAL;
752 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
753 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
754 	value |= CURSOR_ALPHA;
755 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
756 
757 	/* position the cursor */
758 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
759 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
760 
761 }
762 
763 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
764 					struct drm_plane_state *old_state)
765 {
766 	struct tegra_dc *dc;
767 	u32 value;
768 
769 	/* rien ne va plus */
770 	if (!old_state || !old_state->crtc)
771 		return;
772 
773 	dc = to_tegra_dc(old_state->crtc);
774 
775 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
776 	value &= ~CURSOR_ENABLE;
777 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
778 }
779 
780 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
781 	.update_plane = drm_atomic_helper_update_plane,
782 	.disable_plane = drm_atomic_helper_disable_plane,
783 	.destroy = tegra_plane_destroy,
784 	.reset = tegra_plane_reset,
785 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
786 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
787 };
788 
789 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
790 	.prepare_fb = tegra_plane_prepare_fb,
791 	.cleanup_fb = tegra_plane_cleanup_fb,
792 	.atomic_check = tegra_cursor_atomic_check,
793 	.atomic_update = tegra_cursor_atomic_update,
794 	.atomic_disable = tegra_cursor_atomic_disable,
795 };
796 
797 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
798 						      struct tegra_dc *dc)
799 {
800 	struct tegra_plane *plane;
801 	unsigned int num_formats;
802 	const u32 *formats;
803 	int err;
804 
805 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
806 	if (!plane)
807 		return ERR_PTR(-ENOMEM);
808 
809 	/*
810 	 * We'll treat the cursor as an overlay plane with index 6 here so
811 	 * that the update and activation request bits in DC_CMD_STATE_CONTROL
812 	 * match up.
813 	 */
814 	plane->index = 6;
815 
816 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
817 	formats = tegra_cursor_plane_formats;
818 
819 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
820 				       &tegra_cursor_plane_funcs, formats,
821 				       num_formats, DRM_PLANE_TYPE_CURSOR);
822 	if (err < 0) {
823 		kfree(plane);
824 		return ERR_PTR(err);
825 	}
826 
827 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
828 
829 	return &plane->base;
830 }
831 
832 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
833 {
834 	tegra_plane_destroy(plane);
835 }
836 
837 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
838 	.update_plane = drm_atomic_helper_update_plane,
839 	.disable_plane = drm_atomic_helper_disable_plane,
840 	.destroy = tegra_overlay_plane_destroy,
841 	.reset = tegra_plane_reset,
842 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
843 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
844 };
845 
846 static const uint32_t tegra_overlay_plane_formats[] = {
847 	DRM_FORMAT_XBGR8888,
848 	DRM_FORMAT_XRGB8888,
849 	DRM_FORMAT_RGB565,
850 	DRM_FORMAT_UYVY,
851 	DRM_FORMAT_YUYV,
852 	DRM_FORMAT_YUV420,
853 	DRM_FORMAT_YUV422,
854 };
855 
856 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
857 	.prepare_fb = tegra_plane_prepare_fb,
858 	.cleanup_fb = tegra_plane_cleanup_fb,
859 	.atomic_check = tegra_plane_atomic_check,
860 	.atomic_update = tegra_plane_atomic_update,
861 	.atomic_disable = tegra_plane_atomic_disable,
862 };
863 
864 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
865 						       struct tegra_dc *dc,
866 						       unsigned int index)
867 {
868 	struct tegra_plane *plane;
869 	unsigned int num_formats;
870 	const u32 *formats;
871 	int err;
872 
873 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
874 	if (!plane)
875 		return ERR_PTR(-ENOMEM);
876 
877 	plane->index = index;
878 
879 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
880 	formats = tegra_overlay_plane_formats;
881 
882 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
883 				       &tegra_overlay_plane_funcs, formats,
884 				       num_formats, DRM_PLANE_TYPE_OVERLAY);
885 	if (err < 0) {
886 		kfree(plane);
887 		return ERR_PTR(err);
888 	}
889 
890 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
891 
892 	return &plane->base;
893 }
894 
895 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
896 {
897 	struct drm_plane *plane;
898 	unsigned int i;
899 
900 	for (i = 0; i < 2; i++) {
901 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
902 		if (IS_ERR(plane))
903 			return PTR_ERR(plane);
904 	}
905 
906 	return 0;
907 }
908 
909 void tegra_dc_enable_vblank(struct tegra_dc *dc)
910 {
911 	unsigned long value, flags;
912 
913 	spin_lock_irqsave(&dc->lock, flags);
914 
915 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
916 	value |= VBLANK_INT;
917 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
918 
919 	spin_unlock_irqrestore(&dc->lock, flags);
920 }
921 
922 void tegra_dc_disable_vblank(struct tegra_dc *dc)
923 {
924 	unsigned long value, flags;
925 
926 	spin_lock_irqsave(&dc->lock, flags);
927 
928 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
929 	value &= ~VBLANK_INT;
930 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
931 
932 	spin_unlock_irqrestore(&dc->lock, flags);
933 }
934 
935 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
936 {
937 	struct drm_device *drm = dc->base.dev;
938 	struct drm_crtc *crtc = &dc->base;
939 	unsigned long flags, base;
940 	struct tegra_bo *bo;
941 
942 	spin_lock_irqsave(&drm->event_lock, flags);
943 
944 	if (!dc->event) {
945 		spin_unlock_irqrestore(&drm->event_lock, flags);
946 		return;
947 	}
948 
949 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
950 
951 	spin_lock(&dc->lock);
952 
953 	/* check if new start address has been latched */
954 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
955 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
956 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
957 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
958 
959 	spin_unlock(&dc->lock);
960 
961 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
962 		drm_crtc_send_vblank_event(crtc, dc->event);
963 		drm_crtc_vblank_put(crtc);
964 		dc->event = NULL;
965 	}
966 
967 	spin_unlock_irqrestore(&drm->event_lock, flags);
968 }
969 
970 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
971 {
972 	struct tegra_dc *dc = to_tegra_dc(crtc);
973 	struct drm_device *drm = crtc->dev;
974 	unsigned long flags;
975 
976 	spin_lock_irqsave(&drm->event_lock, flags);
977 
978 	if (dc->event && dc->event->base.file_priv == file) {
979 		dc->event->base.destroy(&dc->event->base);
980 		drm_crtc_vblank_put(crtc);
981 		dc->event = NULL;
982 	}
983 
984 	spin_unlock_irqrestore(&drm->event_lock, flags);
985 }
986 
987 static void tegra_dc_destroy(struct drm_crtc *crtc)
988 {
989 	drm_crtc_cleanup(crtc);
990 }
991 
992 static void tegra_crtc_reset(struct drm_crtc *crtc)
993 {
994 	struct tegra_dc_state *state;
995 
996 	kfree(crtc->state);
997 	crtc->state = NULL;
998 
999 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1000 	if (state) {
1001 		crtc->state = &state->base;
1002 		crtc->state->crtc = crtc;
1003 	}
1004 }
1005 
1006 static struct drm_crtc_state *
1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1008 {
1009 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1010 	struct tegra_dc_state *copy;
1011 
1012 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1013 	if (!copy)
1014 		return NULL;
1015 
1016 	copy->base.mode_changed = false;
1017 	copy->base.active_changed = false;
1018 	copy->base.planes_changed = false;
1019 	copy->base.event = NULL;
1020 
1021 	return &copy->base;
1022 }
1023 
1024 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1025 					    struct drm_crtc_state *state)
1026 {
1027 	kfree(state);
1028 }
1029 
1030 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1031 	.page_flip = drm_atomic_helper_page_flip,
1032 	.set_config = drm_atomic_helper_set_config,
1033 	.destroy = tegra_dc_destroy,
1034 	.reset = tegra_crtc_reset,
1035 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1036 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1037 };
1038 
1039 static void tegra_dc_stop(struct tegra_dc *dc)
1040 {
1041 	u32 value;
1042 
1043 	/* stop the display controller */
1044 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1045 	value &= ~DISP_CTRL_MODE_MASK;
1046 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1047 
1048 	tegra_dc_commit(dc);
1049 }
1050 
1051 static bool tegra_dc_idle(struct tegra_dc *dc)
1052 {
1053 	u32 value;
1054 
1055 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1056 
1057 	return (value & DISP_CTRL_MODE_MASK) == 0;
1058 }
1059 
1060 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1061 {
1062 	timeout = jiffies + msecs_to_jiffies(timeout);
1063 
1064 	while (time_before(jiffies, timeout)) {
1065 		if (tegra_dc_idle(dc))
1066 			return 0;
1067 
1068 		usleep_range(1000, 2000);
1069 	}
1070 
1071 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1072 	return -ETIMEDOUT;
1073 }
1074 
1075 static void tegra_crtc_disable(struct drm_crtc *crtc)
1076 {
1077 	struct tegra_dc *dc = to_tegra_dc(crtc);
1078 	u32 value;
1079 
1080 	if (!tegra_dc_idle(dc)) {
1081 		tegra_dc_stop(dc);
1082 
1083 		/*
1084 		 * Ignore the return value, there isn't anything useful to do
1085 		 * in case this fails.
1086 		 */
1087 		tegra_dc_wait_idle(dc, 100);
1088 	}
1089 
1090 	/*
1091 	 * This should really be part of the RGB encoder driver, but clearing
1092 	 * these bits has the side-effect of stopping the display controller.
1093 	 * When that happens no VBLANK interrupts will be raised. At the same
1094 	 * time the encoder is disabled before the display controller, so the
1095 	 * above code is always going to timeout waiting for the controller
1096 	 * to go idle.
1097 	 *
1098 	 * Given the close coupling between the RGB encoder and the display
1099 	 * controller doing it here is still kind of okay. None of the other
1100 	 * encoder drivers require these bits to be cleared.
1101 	 *
1102 	 * XXX: Perhaps given that the display controller is switched off at
1103 	 * this point anyway maybe clearing these bits isn't even useful for
1104 	 * the RGB encoder?
1105 	 */
1106 	if (dc->rgb) {
1107 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1108 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1109 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1110 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1111 	}
1112 
1113 	drm_crtc_vblank_off(crtc);
1114 }
1115 
1116 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1117 				  const struct drm_display_mode *mode,
1118 				  struct drm_display_mode *adjusted)
1119 {
1120 	return true;
1121 }
1122 
1123 static int tegra_dc_set_timings(struct tegra_dc *dc,
1124 				struct drm_display_mode *mode)
1125 {
1126 	unsigned int h_ref_to_sync = 1;
1127 	unsigned int v_ref_to_sync = 1;
1128 	unsigned long value;
1129 
1130 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1131 
1132 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1133 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1134 
1135 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1136 		((mode->hsync_end - mode->hsync_start) <<  0);
1137 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1138 
1139 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1140 		((mode->htotal - mode->hsync_end) <<  0);
1141 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1142 
1143 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1144 		((mode->hsync_start - mode->hdisplay) <<  0);
1145 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1146 
1147 	value = (mode->vdisplay << 16) | mode->hdisplay;
1148 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1149 
1150 	return 0;
1151 }
1152 
1153 int tegra_dc_setup_clock(struct tegra_dc *dc, struct clk *parent,
1154 			 unsigned long pclk, unsigned int div)
1155 {
1156 	u32 value;
1157 	int err;
1158 
1159 	err = clk_set_parent(dc->clk, parent);
1160 	if (err < 0) {
1161 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1162 		return err;
1163 	}
1164 
1165 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
1166 
1167 	value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
1168 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1169 
1170 	return 0;
1171 }
1172 
1173 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1174 			       struct drm_crtc_state *crtc_state,
1175 			       struct clk *clk, unsigned long pclk,
1176 			       unsigned int div)
1177 {
1178 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1179 
1180 	state->clk = clk;
1181 	state->pclk = pclk;
1182 	state->div = div;
1183 
1184 	return 0;
1185 }
1186 
1187 static void tegra_dc_commit_state(struct tegra_dc *dc,
1188 				  struct tegra_dc_state *state)
1189 {
1190 	u32 value;
1191 	int err;
1192 
1193 	err = clk_set_parent(dc->clk, state->clk);
1194 	if (err < 0)
1195 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1196 
1197 	/*
1198 	 * Outputs may not want to change the parent clock rate. This is only
1199 	 * relevant to Tegra20 where only a single display PLL is available.
1200 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1201 	 * panel would need to be driven by some other clock such as PLL_P
1202 	 * which is shared with other peripherals. Changing the clock rate
1203 	 * should therefore be avoided.
1204 	 */
1205 	if (state->pclk > 0) {
1206 		err = clk_set_rate(state->clk, state->pclk);
1207 		if (err < 0)
1208 			dev_err(dc->dev,
1209 				"failed to set clock rate to %lu Hz\n",
1210 				state->pclk);
1211 	}
1212 
1213 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1214 		      state->div);
1215 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1216 
1217 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1218 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1219 }
1220 
1221 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1222 {
1223 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225 	struct tegra_dc *dc = to_tegra_dc(crtc);
1226 	u32 value;
1227 
1228 	tegra_dc_commit_state(dc, state);
1229 
1230 	/* program display mode */
1231 	tegra_dc_set_timings(dc, mode);
1232 
1233 	/* interlacing isn't supported yet, so disable it */
1234 	if (dc->soc->supports_interlacing) {
1235 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236 		value &= ~INTERLACE_ENABLE;
1237 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238 	}
1239 
1240 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241 	value &= ~DISP_CTRL_MODE_MASK;
1242 	value |= DISP_CTRL_MODE_C_DISPLAY;
1243 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244 
1245 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249 
1250 	tegra_dc_commit(dc);
1251 }
1252 
1253 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1254 {
1255 	drm_crtc_vblank_off(crtc);
1256 }
1257 
1258 static void tegra_crtc_commit(struct drm_crtc *crtc)
1259 {
1260 	drm_crtc_vblank_on(crtc);
1261 }
1262 
1263 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1264 				   struct drm_crtc_state *state)
1265 {
1266 	return 0;
1267 }
1268 
1269 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1270 {
1271 	struct tegra_dc *dc = to_tegra_dc(crtc);
1272 
1273 	if (crtc->state->event) {
1274 		crtc->state->event->pipe = drm_crtc_index(crtc);
1275 
1276 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1277 
1278 		dc->event = crtc->state->event;
1279 		crtc->state->event = NULL;
1280 	}
1281 }
1282 
1283 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1284 {
1285 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1286 	struct tegra_dc *dc = to_tegra_dc(crtc);
1287 
1288 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1289 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1290 }
1291 
1292 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1293 	.disable = tegra_crtc_disable,
1294 	.mode_fixup = tegra_crtc_mode_fixup,
1295 	.mode_set = drm_helper_crtc_mode_set,
1296 	.mode_set_nofb = tegra_crtc_mode_set_nofb,
1297 	.mode_set_base = drm_helper_crtc_mode_set_base,
1298 	.prepare = tegra_crtc_prepare,
1299 	.commit = tegra_crtc_commit,
1300 	.atomic_check = tegra_crtc_atomic_check,
1301 	.atomic_begin = tegra_crtc_atomic_begin,
1302 	.atomic_flush = tegra_crtc_atomic_flush,
1303 };
1304 
1305 static irqreturn_t tegra_dc_irq(int irq, void *data)
1306 {
1307 	struct tegra_dc *dc = data;
1308 	unsigned long status;
1309 
1310 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1311 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1312 
1313 	if (status & FRAME_END_INT) {
1314 		/*
1315 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1316 		*/
1317 	}
1318 
1319 	if (status & VBLANK_INT) {
1320 		/*
1321 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1322 		*/
1323 		drm_crtc_handle_vblank(&dc->base);
1324 		tegra_dc_finish_page_flip(dc);
1325 	}
1326 
1327 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1328 		/*
1329 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1330 		*/
1331 	}
1332 
1333 	return IRQ_HANDLED;
1334 }
1335 
1336 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1337 {
1338 	struct drm_info_node *node = s->private;
1339 	struct tegra_dc *dc = node->info_ent->data;
1340 
1341 #define DUMP_REG(name)						\
1342 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1343 		   tegra_dc_readl(dc, name))
1344 
1345 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1346 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1347 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1348 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1349 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1350 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1351 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1352 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1353 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1354 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1355 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1356 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1357 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1358 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1359 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1360 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1361 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1362 	DUMP_REG(DC_CMD_INT_STATUS);
1363 	DUMP_REG(DC_CMD_INT_MASK);
1364 	DUMP_REG(DC_CMD_INT_ENABLE);
1365 	DUMP_REG(DC_CMD_INT_TYPE);
1366 	DUMP_REG(DC_CMD_INT_POLARITY);
1367 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1368 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1369 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1370 	DUMP_REG(DC_CMD_STATE_ACCESS);
1371 	DUMP_REG(DC_CMD_STATE_CONTROL);
1372 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1373 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1374 	DUMP_REG(DC_COM_CRC_CONTROL);
1375 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1376 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1377 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1378 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1379 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1380 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1381 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1382 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1383 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1384 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1385 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1386 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1387 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1388 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1389 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1390 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1391 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1392 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1393 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1394 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1395 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1396 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1397 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1398 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1399 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1400 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1401 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1402 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1403 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1404 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1405 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1406 	DUMP_REG(DC_COM_SPI_CONTROL);
1407 	DUMP_REG(DC_COM_SPI_START_BYTE);
1408 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1409 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1410 	DUMP_REG(DC_COM_HSPI_CS_DC);
1411 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1412 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1413 	DUMP_REG(DC_COM_GPIO_CTRL);
1414 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1415 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1416 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1417 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1418 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1419 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1420 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1421 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1422 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1423 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1424 	DUMP_REG(DC_DISP_BACK_PORCH);
1425 	DUMP_REG(DC_DISP_ACTIVE);
1426 	DUMP_REG(DC_DISP_FRONT_PORCH);
1427 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1428 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1429 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1430 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1431 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1432 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1433 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1434 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1435 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1436 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1437 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1438 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1439 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1440 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1441 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1442 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1443 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1444 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1445 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1446 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1447 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1448 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1449 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1450 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1451 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1452 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1453 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1454 	DUMP_REG(DC_DISP_M0_CONTROL);
1455 	DUMP_REG(DC_DISP_M1_CONTROL);
1456 	DUMP_REG(DC_DISP_DI_CONTROL);
1457 	DUMP_REG(DC_DISP_PP_CONTROL);
1458 	DUMP_REG(DC_DISP_PP_SELECT_A);
1459 	DUMP_REG(DC_DISP_PP_SELECT_B);
1460 	DUMP_REG(DC_DISP_PP_SELECT_C);
1461 	DUMP_REG(DC_DISP_PP_SELECT_D);
1462 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1463 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1464 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1465 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1466 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1467 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1468 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1469 	DUMP_REG(DC_DISP_BORDER_COLOR);
1470 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1471 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1472 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1473 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1474 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1475 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1476 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1477 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1478 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1479 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1480 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1481 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1482 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1483 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1484 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1485 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1486 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1487 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1488 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1489 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1490 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1491 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1492 	DUMP_REG(DC_DISP_SD_CONTROL);
1493 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1494 	DUMP_REG(DC_DISP_SD_LUT(0));
1495 	DUMP_REG(DC_DISP_SD_LUT(1));
1496 	DUMP_REG(DC_DISP_SD_LUT(2));
1497 	DUMP_REG(DC_DISP_SD_LUT(3));
1498 	DUMP_REG(DC_DISP_SD_LUT(4));
1499 	DUMP_REG(DC_DISP_SD_LUT(5));
1500 	DUMP_REG(DC_DISP_SD_LUT(6));
1501 	DUMP_REG(DC_DISP_SD_LUT(7));
1502 	DUMP_REG(DC_DISP_SD_LUT(8));
1503 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1504 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1505 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1506 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1507 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1508 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1509 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1510 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1511 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1512 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1513 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1514 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1515 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1516 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1517 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1518 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1519 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1520 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1521 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1522 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1523 	DUMP_REG(DC_WIN_BYTE_SWAP);
1524 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1525 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1526 	DUMP_REG(DC_WIN_POSITION);
1527 	DUMP_REG(DC_WIN_SIZE);
1528 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1529 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1530 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1531 	DUMP_REG(DC_WIN_DDA_INC);
1532 	DUMP_REG(DC_WIN_LINE_STRIDE);
1533 	DUMP_REG(DC_WIN_BUF_STRIDE);
1534 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1535 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1536 	DUMP_REG(DC_WIN_DV_CONTROL);
1537 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1538 	DUMP_REG(DC_WIN_BLEND_1WIN);
1539 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1540 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1541 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1542 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1543 	DUMP_REG(DC_WINBUF_START_ADDR);
1544 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1545 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1546 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1547 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1548 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1549 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1550 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1551 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1552 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1553 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1554 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1555 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1556 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1557 
1558 #undef DUMP_REG
1559 
1560 	return 0;
1561 }
1562 
1563 static struct drm_info_list debugfs_files[] = {
1564 	{ "regs", tegra_dc_show_regs, 0, NULL },
1565 };
1566 
1567 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1568 {
1569 	unsigned int i;
1570 	char *name;
1571 	int err;
1572 
1573 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1574 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1575 	kfree(name);
1576 
1577 	if (!dc->debugfs)
1578 		return -ENOMEM;
1579 
1580 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1581 				    GFP_KERNEL);
1582 	if (!dc->debugfs_files) {
1583 		err = -ENOMEM;
1584 		goto remove;
1585 	}
1586 
1587 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1588 		dc->debugfs_files[i].data = dc;
1589 
1590 	err = drm_debugfs_create_files(dc->debugfs_files,
1591 				       ARRAY_SIZE(debugfs_files),
1592 				       dc->debugfs, minor);
1593 	if (err < 0)
1594 		goto free;
1595 
1596 	dc->minor = minor;
1597 
1598 	return 0;
1599 
1600 free:
1601 	kfree(dc->debugfs_files);
1602 	dc->debugfs_files = NULL;
1603 remove:
1604 	debugfs_remove(dc->debugfs);
1605 	dc->debugfs = NULL;
1606 
1607 	return err;
1608 }
1609 
1610 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1611 {
1612 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1613 				 dc->minor);
1614 	dc->minor = NULL;
1615 
1616 	kfree(dc->debugfs_files);
1617 	dc->debugfs_files = NULL;
1618 
1619 	debugfs_remove(dc->debugfs);
1620 	dc->debugfs = NULL;
1621 
1622 	return 0;
1623 }
1624 
1625 static int tegra_dc_init(struct host1x_client *client)
1626 {
1627 	struct drm_device *drm = dev_get_drvdata(client->parent);
1628 	struct tegra_dc *dc = host1x_client_to_dc(client);
1629 	struct tegra_drm *tegra = drm->dev_private;
1630 	struct drm_plane *primary = NULL;
1631 	struct drm_plane *cursor = NULL;
1632 	unsigned int syncpt;
1633 	u32 value;
1634 	int err;
1635 
1636 	if (tegra->domain) {
1637 		err = iommu_attach_device(tegra->domain, dc->dev);
1638 		if (err < 0) {
1639 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1640 				err);
1641 			return err;
1642 		}
1643 
1644 		dc->domain = tegra->domain;
1645 	}
1646 
1647 	primary = tegra_dc_primary_plane_create(drm, dc);
1648 	if (IS_ERR(primary)) {
1649 		err = PTR_ERR(primary);
1650 		goto cleanup;
1651 	}
1652 
1653 	if (dc->soc->supports_cursor) {
1654 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1655 		if (IS_ERR(cursor)) {
1656 			err = PTR_ERR(cursor);
1657 			goto cleanup;
1658 		}
1659 	}
1660 
1661 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1662 					&tegra_crtc_funcs);
1663 	if (err < 0)
1664 		goto cleanup;
1665 
1666 	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1667 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1668 
1669 	/*
1670 	 * Keep track of the minimum pitch alignment across all display
1671 	 * controllers.
1672 	 */
1673 	if (dc->soc->pitch_align > tegra->pitch_align)
1674 		tegra->pitch_align = dc->soc->pitch_align;
1675 
1676 	err = tegra_dc_rgb_init(drm, dc);
1677 	if (err < 0 && err != -ENODEV) {
1678 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1679 		goto cleanup;
1680 	}
1681 
1682 	err = tegra_dc_add_planes(drm, dc);
1683 	if (err < 0)
1684 		goto cleanup;
1685 
1686 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1687 		err = tegra_dc_debugfs_init(dc, drm->primary);
1688 		if (err < 0)
1689 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1690 	}
1691 
1692 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1693 			       dev_name(dc->dev), dc);
1694 	if (err < 0) {
1695 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1696 			err);
1697 		goto cleanup;
1698 	}
1699 
1700 	/* initialize display controller */
1701 	if (dc->pipe)
1702 		syncpt = SYNCPT_VBLANK1;
1703 	else
1704 		syncpt = SYNCPT_VBLANK0;
1705 
1706 	tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1707 	tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
1708 
1709 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1710 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1711 
1712 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1713 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1714 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1715 
1716 	/* initialize timer */
1717 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1718 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1719 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1720 
1721 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1722 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1723 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1724 
1725 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1726 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1727 
1728 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1729 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1730 
1731 	if (dc->soc->supports_border_color)
1732 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1733 
1734 	return 0;
1735 
1736 cleanup:
1737 	if (cursor)
1738 		drm_plane_cleanup(cursor);
1739 
1740 	if (primary)
1741 		drm_plane_cleanup(primary);
1742 
1743 	if (tegra->domain) {
1744 		iommu_detach_device(tegra->domain, dc->dev);
1745 		dc->domain = NULL;
1746 	}
1747 
1748 	return err;
1749 }
1750 
1751 static int tegra_dc_exit(struct host1x_client *client)
1752 {
1753 	struct tegra_dc *dc = host1x_client_to_dc(client);
1754 	int err;
1755 
1756 	devm_free_irq(dc->dev, dc->irq, dc);
1757 
1758 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1759 		err = tegra_dc_debugfs_exit(dc);
1760 		if (err < 0)
1761 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1762 	}
1763 
1764 	err = tegra_dc_rgb_exit(dc);
1765 	if (err) {
1766 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1767 		return err;
1768 	}
1769 
1770 	if (dc->domain) {
1771 		iommu_detach_device(dc->domain, dc->dev);
1772 		dc->domain = NULL;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static const struct host1x_client_ops dc_client_ops = {
1779 	.init = tegra_dc_init,
1780 	.exit = tegra_dc_exit,
1781 };
1782 
1783 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1784 	.supports_border_color = true,
1785 	.supports_interlacing = false,
1786 	.supports_cursor = false,
1787 	.supports_block_linear = false,
1788 	.pitch_align = 8,
1789 	.has_powergate = false,
1790 };
1791 
1792 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1793 	.supports_border_color = true,
1794 	.supports_interlacing = false,
1795 	.supports_cursor = false,
1796 	.supports_block_linear = false,
1797 	.pitch_align = 8,
1798 	.has_powergate = false,
1799 };
1800 
1801 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1802 	.supports_border_color = true,
1803 	.supports_interlacing = false,
1804 	.supports_cursor = false,
1805 	.supports_block_linear = false,
1806 	.pitch_align = 64,
1807 	.has_powergate = true,
1808 };
1809 
1810 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1811 	.supports_border_color = false,
1812 	.supports_interlacing = true,
1813 	.supports_cursor = true,
1814 	.supports_block_linear = true,
1815 	.pitch_align = 64,
1816 	.has_powergate = true,
1817 };
1818 
1819 static const struct of_device_id tegra_dc_of_match[] = {
1820 	{
1821 		.compatible = "nvidia,tegra124-dc",
1822 		.data = &tegra124_dc_soc_info,
1823 	}, {
1824 		.compatible = "nvidia,tegra114-dc",
1825 		.data = &tegra114_dc_soc_info,
1826 	}, {
1827 		.compatible = "nvidia,tegra30-dc",
1828 		.data = &tegra30_dc_soc_info,
1829 	}, {
1830 		.compatible = "nvidia,tegra20-dc",
1831 		.data = &tegra20_dc_soc_info,
1832 	}, {
1833 		/* sentinel */
1834 	}
1835 };
1836 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1837 
1838 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1839 {
1840 	struct device_node *np;
1841 	u32 value = 0;
1842 	int err;
1843 
1844 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1845 	if (err < 0) {
1846 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1847 
1848 		/*
1849 		 * If the nvidia,head property isn't present, try to find the
1850 		 * correct head number by looking up the position of this
1851 		 * display controller's node within the device tree. Assuming
1852 		 * that the nodes are ordered properly in the DTS file and
1853 		 * that the translation into a flattened device tree blob
1854 		 * preserves that ordering this will actually yield the right
1855 		 * head number.
1856 		 *
1857 		 * If those assumptions don't hold, this will still work for
1858 		 * cases where only a single display controller is used.
1859 		 */
1860 		for_each_matching_node(np, tegra_dc_of_match) {
1861 			if (np == dc->dev->of_node)
1862 				break;
1863 
1864 			value++;
1865 		}
1866 	}
1867 
1868 	dc->pipe = value;
1869 
1870 	return 0;
1871 }
1872 
1873 static int tegra_dc_probe(struct platform_device *pdev)
1874 {
1875 	const struct of_device_id *id;
1876 	struct resource *regs;
1877 	struct tegra_dc *dc;
1878 	int err;
1879 
1880 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1881 	if (!dc)
1882 		return -ENOMEM;
1883 
1884 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1885 	if (!id)
1886 		return -ENODEV;
1887 
1888 	spin_lock_init(&dc->lock);
1889 	INIT_LIST_HEAD(&dc->list);
1890 	dc->dev = &pdev->dev;
1891 	dc->soc = id->data;
1892 
1893 	err = tegra_dc_parse_dt(dc);
1894 	if (err < 0)
1895 		return err;
1896 
1897 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1898 	if (IS_ERR(dc->clk)) {
1899 		dev_err(&pdev->dev, "failed to get clock\n");
1900 		return PTR_ERR(dc->clk);
1901 	}
1902 
1903 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1904 	if (IS_ERR(dc->rst)) {
1905 		dev_err(&pdev->dev, "failed to get reset\n");
1906 		return PTR_ERR(dc->rst);
1907 	}
1908 
1909 	if (dc->soc->has_powergate) {
1910 		if (dc->pipe == 0)
1911 			dc->powergate = TEGRA_POWERGATE_DIS;
1912 		else
1913 			dc->powergate = TEGRA_POWERGATE_DISB;
1914 
1915 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1916 							dc->rst);
1917 		if (err < 0) {
1918 			dev_err(&pdev->dev, "failed to power partition: %d\n",
1919 				err);
1920 			return err;
1921 		}
1922 	} else {
1923 		err = clk_prepare_enable(dc->clk);
1924 		if (err < 0) {
1925 			dev_err(&pdev->dev, "failed to enable clock: %d\n",
1926 				err);
1927 			return err;
1928 		}
1929 
1930 		err = reset_control_deassert(dc->rst);
1931 		if (err < 0) {
1932 			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1933 				err);
1934 			return err;
1935 		}
1936 	}
1937 
1938 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1939 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1940 	if (IS_ERR(dc->regs))
1941 		return PTR_ERR(dc->regs);
1942 
1943 	dc->irq = platform_get_irq(pdev, 0);
1944 	if (dc->irq < 0) {
1945 		dev_err(&pdev->dev, "failed to get IRQ\n");
1946 		return -ENXIO;
1947 	}
1948 
1949 	INIT_LIST_HEAD(&dc->client.list);
1950 	dc->client.ops = &dc_client_ops;
1951 	dc->client.dev = &pdev->dev;
1952 
1953 	err = tegra_dc_rgb_probe(dc);
1954 	if (err < 0 && err != -ENODEV) {
1955 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1956 		return err;
1957 	}
1958 
1959 	err = host1x_client_register(&dc->client);
1960 	if (err < 0) {
1961 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1962 			err);
1963 		return err;
1964 	}
1965 
1966 	platform_set_drvdata(pdev, dc);
1967 
1968 	return 0;
1969 }
1970 
1971 static int tegra_dc_remove(struct platform_device *pdev)
1972 {
1973 	struct tegra_dc *dc = platform_get_drvdata(pdev);
1974 	int err;
1975 
1976 	err = host1x_client_unregister(&dc->client);
1977 	if (err < 0) {
1978 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1979 			err);
1980 		return err;
1981 	}
1982 
1983 	err = tegra_dc_rgb_remove(dc);
1984 	if (err < 0) {
1985 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1986 		return err;
1987 	}
1988 
1989 	reset_control_assert(dc->rst);
1990 
1991 	if (dc->soc->has_powergate)
1992 		tegra_powergate_power_off(dc->powergate);
1993 
1994 	clk_disable_unprepare(dc->clk);
1995 
1996 	return 0;
1997 }
1998 
1999 struct platform_driver tegra_dc_driver = {
2000 	.driver = {
2001 		.name = "tegra-dc",
2002 		.owner = THIS_MODULE,
2003 		.of_match_table = tegra_dc_of_match,
2004 	},
2005 	.probe = tegra_dc_probe,
2006 	.remove = tegra_dc_remove,
2007 };
2008