1 /* 2 * Copyright (C) 2015 Free Electrons 3 * Copyright (C) 2015 NextThing Co 4 * 5 * Maxime Ripard <maxime.ripard@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 */ 12 13 #include <drm/drmP.h> 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_crtc_helper.h> 18 #include <drm/drm_fb_cma_helper.h> 19 #include <drm/drm_gem_cma_helper.h> 20 #include <drm/drm_plane_helper.h> 21 22 #include <linux/component.h> 23 #include <linux/list.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/reset.h> 27 28 #include "sun4i_backend.h" 29 #include "sun4i_drv.h" 30 #include "sun4i_frontend.h" 31 #include "sun4i_layer.h" 32 #include "sunxi_engine.h" 33 34 struct sun4i_backend_quirks { 35 /* backend <-> TCON muxing selection done in backend */ 36 bool needs_output_muxing; 37 }; 38 39 static const u32 sunxi_rgb2yuv_coef[12] = { 40 0x00000107, 0x00000204, 0x00000064, 0x00000108, 41 0x00003f69, 0x00003ed6, 0x000001c1, 0x00000808, 42 0x000001c1, 0x00003e88, 0x00003fb8, 0x00000808 43 }; 44 45 /* 46 * These coefficients are taken from the A33 BSP from Allwinner. 47 * 48 * The formula is for each component, each coefficient being multiplied by 49 * 1024 and each constant being multiplied by 16: 50 * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135 51 * R = 1.164 * Y + 1.596 * V - 222 52 * B = 1.164 * Y + 2.018 * U + 276 53 * 54 * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255], 55 * following the BT601 spec. 56 */ 57 static const u32 sunxi_bt601_yuv2rgb_coef[12] = { 58 0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877, 59 0x000004a7, 0x00000000, 0x00000662, 0x00003211, 60 0x000004a7, 0x00000812, 0x00000000, 0x00002eb1, 61 }; 62 63 static inline bool sun4i_backend_format_is_planar_yuv(uint32_t format) 64 { 65 switch (format) { 66 case DRM_FORMAT_YUV411: 67 case DRM_FORMAT_YUV422: 68 case DRM_FORMAT_YUV444: 69 return true; 70 default: 71 return false; 72 } 73 } 74 75 static inline bool sun4i_backend_format_is_packed_yuv422(uint32_t format) 76 { 77 switch (format) { 78 case DRM_FORMAT_YUYV: 79 case DRM_FORMAT_YVYU: 80 case DRM_FORMAT_UYVY: 81 case DRM_FORMAT_VYUY: 82 return true; 83 84 default: 85 return false; 86 } 87 } 88 89 static void sun4i_backend_apply_color_correction(struct sunxi_engine *engine) 90 { 91 int i; 92 93 DRM_DEBUG_DRIVER("Applying RGB to YUV color correction\n"); 94 95 /* Set color correction */ 96 regmap_write(engine->regs, SUN4I_BACKEND_OCCTL_REG, 97 SUN4I_BACKEND_OCCTL_ENABLE); 98 99 for (i = 0; i < 12; i++) 100 regmap_write(engine->regs, SUN4I_BACKEND_OCRCOEF_REG(i), 101 sunxi_rgb2yuv_coef[i]); 102 } 103 104 static void sun4i_backend_disable_color_correction(struct sunxi_engine *engine) 105 { 106 DRM_DEBUG_DRIVER("Disabling color correction\n"); 107 108 /* Disable color correction */ 109 regmap_update_bits(engine->regs, SUN4I_BACKEND_OCCTL_REG, 110 SUN4I_BACKEND_OCCTL_ENABLE, 0); 111 } 112 113 static void sun4i_backend_commit(struct sunxi_engine *engine) 114 { 115 DRM_DEBUG_DRIVER("Committing changes\n"); 116 117 regmap_write(engine->regs, SUN4I_BACKEND_REGBUFFCTL_REG, 118 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS | 119 SUN4I_BACKEND_REGBUFFCTL_LOADCTL); 120 } 121 122 void sun4i_backend_layer_enable(struct sun4i_backend *backend, 123 int layer, bool enable) 124 { 125 u32 val; 126 127 DRM_DEBUG_DRIVER("%sabling layer %d\n", enable ? "En" : "Dis", 128 layer); 129 130 if (enable) 131 val = SUN4I_BACKEND_MODCTL_LAY_EN(layer); 132 else 133 val = 0; 134 135 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 136 SUN4I_BACKEND_MODCTL_LAY_EN(layer), val); 137 } 138 139 static int sun4i_backend_drm_format_to_layer(u32 format, u32 *mode) 140 { 141 switch (format) { 142 case DRM_FORMAT_ARGB8888: 143 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB8888; 144 break; 145 146 case DRM_FORMAT_ARGB4444: 147 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB4444; 148 break; 149 150 case DRM_FORMAT_ARGB1555: 151 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB1555; 152 break; 153 154 case DRM_FORMAT_RGBA5551: 155 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA5551; 156 break; 157 158 case DRM_FORMAT_RGBA4444: 159 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA4444; 160 break; 161 162 case DRM_FORMAT_XRGB8888: 163 *mode = SUN4I_BACKEND_LAY_FBFMT_XRGB8888; 164 break; 165 166 case DRM_FORMAT_RGB888: 167 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB888; 168 break; 169 170 case DRM_FORMAT_RGB565: 171 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB565; 172 break; 173 174 default: 175 return -EINVAL; 176 } 177 178 return 0; 179 } 180 181 int sun4i_backend_update_layer_coord(struct sun4i_backend *backend, 182 int layer, struct drm_plane *plane) 183 { 184 struct drm_plane_state *state = plane->state; 185 186 DRM_DEBUG_DRIVER("Updating layer %d\n", layer); 187 188 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 189 DRM_DEBUG_DRIVER("Primary layer, updating global size W: %u H: %u\n", 190 state->crtc_w, state->crtc_h); 191 regmap_write(backend->engine.regs, SUN4I_BACKEND_DISSIZE_REG, 192 SUN4I_BACKEND_DISSIZE(state->crtc_w, 193 state->crtc_h)); 194 } 195 196 /* Set height and width */ 197 DRM_DEBUG_DRIVER("Layer size W: %u H: %u\n", 198 state->crtc_w, state->crtc_h); 199 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYSIZE_REG(layer), 200 SUN4I_BACKEND_LAYSIZE(state->crtc_w, 201 state->crtc_h)); 202 203 /* Set base coordinates */ 204 DRM_DEBUG_DRIVER("Layer coordinates X: %d Y: %d\n", 205 state->crtc_x, state->crtc_y); 206 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYCOOR_REG(layer), 207 SUN4I_BACKEND_LAYCOOR(state->crtc_x, 208 state->crtc_y)); 209 210 return 0; 211 } 212 213 static int sun4i_backend_update_yuv_format(struct sun4i_backend *backend, 214 int layer, struct drm_plane *plane) 215 { 216 struct drm_plane_state *state = plane->state; 217 struct drm_framebuffer *fb = state->fb; 218 uint32_t format = fb->format->format; 219 u32 val = SUN4I_BACKEND_IYUVCTL_EN; 220 int i; 221 222 for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++) 223 regmap_write(backend->engine.regs, 224 SUN4I_BACKEND_YGCOEF_REG(i), 225 sunxi_bt601_yuv2rgb_coef[i]); 226 227 /* 228 * We should do that only for a single plane, but the 229 * framebuffer's atomic_check has our back on this. 230 */ 231 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 232 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 233 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN); 234 235 /* TODO: Add support for the multi-planar YUV formats */ 236 if (sun4i_backend_format_is_packed_yuv422(format)) 237 val |= SUN4I_BACKEND_IYUVCTL_FBFMT_PACKED_YUV422; 238 else 239 DRM_DEBUG_DRIVER("Unsupported YUV format (0x%x)\n", format); 240 241 /* 242 * Allwinner seems to list the pixel sequence from right to left, while 243 * DRM lists it from left to right. 244 */ 245 switch (format) { 246 case DRM_FORMAT_YUYV: 247 val |= SUN4I_BACKEND_IYUVCTL_FBPS_VYUY; 248 break; 249 case DRM_FORMAT_YVYU: 250 val |= SUN4I_BACKEND_IYUVCTL_FBPS_UYVY; 251 break; 252 case DRM_FORMAT_UYVY: 253 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YVYU; 254 break; 255 case DRM_FORMAT_VYUY: 256 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YUYV; 257 break; 258 default: 259 DRM_DEBUG_DRIVER("Unsupported YUV pixel sequence (0x%x)\n", 260 format); 261 } 262 263 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVCTL_REG, val); 264 265 return 0; 266 } 267 268 int sun4i_backend_update_layer_formats(struct sun4i_backend *backend, 269 int layer, struct drm_plane *plane) 270 { 271 struct drm_plane_state *state = plane->state; 272 struct drm_framebuffer *fb = state->fb; 273 bool interlaced = false; 274 u32 val; 275 int ret; 276 277 /* Clear the YUV mode */ 278 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 279 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 0); 280 281 if (plane->state->crtc) 282 interlaced = plane->state->crtc->state->adjusted_mode.flags 283 & DRM_MODE_FLAG_INTERLACE; 284 285 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 286 SUN4I_BACKEND_MODCTL_ITLMOD_EN, 287 interlaced ? SUN4I_BACKEND_MODCTL_ITLMOD_EN : 0); 288 289 DRM_DEBUG_DRIVER("Switching display backend interlaced mode %s\n", 290 interlaced ? "on" : "off"); 291 292 val = SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA(state->alpha >> 8); 293 if (state->alpha != DRM_BLEND_ALPHA_OPAQUE) 294 val |= SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN; 295 regmap_update_bits(backend->engine.regs, 296 SUN4I_BACKEND_ATTCTL_REG0(layer), 297 SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_MASK | 298 SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN, 299 val); 300 301 if (fb->format->is_yuv) 302 return sun4i_backend_update_yuv_format(backend, layer, plane); 303 304 ret = sun4i_backend_drm_format_to_layer(fb->format->format, &val); 305 if (ret) { 306 DRM_DEBUG_DRIVER("Invalid format\n"); 307 return ret; 308 } 309 310 regmap_update_bits(backend->engine.regs, 311 SUN4I_BACKEND_ATTCTL_REG1(layer), 312 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 313 314 return 0; 315 } 316 317 int sun4i_backend_update_layer_frontend(struct sun4i_backend *backend, 318 int layer, uint32_t fmt) 319 { 320 u32 val; 321 int ret; 322 323 ret = sun4i_backend_drm_format_to_layer(fmt, &val); 324 if (ret) { 325 DRM_DEBUG_DRIVER("Invalid format\n"); 326 return ret; 327 } 328 329 regmap_update_bits(backend->engine.regs, 330 SUN4I_BACKEND_ATTCTL_REG0(layer), 331 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN, 332 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN); 333 334 regmap_update_bits(backend->engine.regs, 335 SUN4I_BACKEND_ATTCTL_REG1(layer), 336 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 337 338 return 0; 339 } 340 341 static int sun4i_backend_update_yuv_buffer(struct sun4i_backend *backend, 342 struct drm_framebuffer *fb, 343 dma_addr_t paddr) 344 { 345 /* TODO: Add support for the multi-planar YUV formats */ 346 DRM_DEBUG_DRIVER("Setting packed YUV buffer address to %pad\n", &paddr); 347 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVADD_REG(0), paddr); 348 349 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 350 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVLINEWIDTH_REG(0), 351 fb->pitches[0] * 8); 352 353 return 0; 354 } 355 356 int sun4i_backend_update_layer_buffer(struct sun4i_backend *backend, 357 int layer, struct drm_plane *plane) 358 { 359 struct drm_plane_state *state = plane->state; 360 struct drm_framebuffer *fb = state->fb; 361 u32 lo_paddr, hi_paddr; 362 dma_addr_t paddr; 363 364 /* Set the line width */ 365 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 366 regmap_write(backend->engine.regs, 367 SUN4I_BACKEND_LAYLINEWIDTH_REG(layer), 368 fb->pitches[0] * 8); 369 370 /* Get the start of the displayed memory */ 371 paddr = drm_fb_cma_get_gem_addr(fb, state, 0); 372 DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr); 373 374 /* 375 * backend DMA accesses DRAM directly, bypassing the system 376 * bus. As such, the address range is different and the buffer 377 * address needs to be corrected. 378 */ 379 paddr -= PHYS_OFFSET; 380 381 if (fb->format->is_yuv) 382 return sun4i_backend_update_yuv_buffer(backend, fb, paddr); 383 384 /* Write the 32 lower bits of the address (in bits) */ 385 lo_paddr = paddr << 3; 386 DRM_DEBUG_DRIVER("Setting address lower bits to 0x%x\n", lo_paddr); 387 regmap_write(backend->engine.regs, 388 SUN4I_BACKEND_LAYFB_L32ADD_REG(layer), 389 lo_paddr); 390 391 /* And the upper bits */ 392 hi_paddr = paddr >> 29; 393 DRM_DEBUG_DRIVER("Setting address high bits to 0x%x\n", hi_paddr); 394 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_LAYFB_H4ADD_REG, 395 SUN4I_BACKEND_LAYFB_H4ADD_MSK(layer), 396 SUN4I_BACKEND_LAYFB_H4ADD(layer, hi_paddr)); 397 398 return 0; 399 } 400 401 int sun4i_backend_update_layer_zpos(struct sun4i_backend *backend, int layer, 402 struct drm_plane *plane) 403 { 404 struct drm_plane_state *state = plane->state; 405 struct sun4i_layer_state *p_state = state_to_sun4i_layer_state(state); 406 unsigned int priority = state->normalized_zpos; 407 unsigned int pipe = p_state->pipe; 408 409 DRM_DEBUG_DRIVER("Setting layer %d's priority to %d and pipe %d\n", 410 layer, priority, pipe); 411 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 412 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL_MASK | 413 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL_MASK, 414 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL(p_state->pipe) | 415 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL(priority)); 416 417 return 0; 418 } 419 420 static bool sun4i_backend_plane_uses_scaler(struct drm_plane_state *state) 421 { 422 u16 src_h = state->src_h >> 16; 423 u16 src_w = state->src_w >> 16; 424 425 DRM_DEBUG_DRIVER("Input size %dx%d, output size %dx%d\n", 426 src_w, src_h, state->crtc_w, state->crtc_h); 427 428 if ((state->crtc_h != src_h) || (state->crtc_w != src_w)) 429 return true; 430 431 return false; 432 } 433 434 static bool sun4i_backend_plane_uses_frontend(struct drm_plane_state *state) 435 { 436 struct sun4i_layer *layer = plane_to_sun4i_layer(state->plane); 437 struct sun4i_backend *backend = layer->backend; 438 439 if (IS_ERR(backend->frontend)) 440 return false; 441 442 return sun4i_backend_plane_uses_scaler(state); 443 } 444 445 static void sun4i_backend_atomic_begin(struct sunxi_engine *engine, 446 struct drm_crtc_state *old_state) 447 { 448 u32 val; 449 450 WARN_ON(regmap_read_poll_timeout(engine->regs, 451 SUN4I_BACKEND_REGBUFFCTL_REG, 452 val, !(val & SUN4I_BACKEND_REGBUFFCTL_LOADCTL), 453 100, 50000)); 454 } 455 456 static int sun4i_backend_atomic_check(struct sunxi_engine *engine, 457 struct drm_crtc_state *crtc_state) 458 { 459 struct drm_plane_state *plane_states[SUN4I_BACKEND_NUM_LAYERS] = { 0 }; 460 struct drm_atomic_state *state = crtc_state->state; 461 struct drm_device *drm = state->dev; 462 struct drm_plane *plane; 463 unsigned int num_planes = 0; 464 unsigned int num_alpha_planes = 0; 465 unsigned int num_frontend_planes = 0; 466 unsigned int num_yuv_planes = 0; 467 unsigned int current_pipe = 0; 468 unsigned int i; 469 470 DRM_DEBUG_DRIVER("Starting checking our planes\n"); 471 472 if (!crtc_state->planes_changed) 473 return 0; 474 475 drm_for_each_plane_mask(plane, drm, crtc_state->plane_mask) { 476 struct drm_plane_state *plane_state = 477 drm_atomic_get_plane_state(state, plane); 478 struct sun4i_layer_state *layer_state = 479 state_to_sun4i_layer_state(plane_state); 480 struct drm_framebuffer *fb = plane_state->fb; 481 struct drm_format_name_buf format_name; 482 483 if (sun4i_backend_plane_uses_frontend(plane_state)) { 484 DRM_DEBUG_DRIVER("Using the frontend for plane %d\n", 485 plane->index); 486 487 layer_state->uses_frontend = true; 488 num_frontend_planes++; 489 } else { 490 layer_state->uses_frontend = false; 491 } 492 493 DRM_DEBUG_DRIVER("Plane FB format is %s\n", 494 drm_get_format_name(fb->format->format, 495 &format_name)); 496 if (fb->format->has_alpha || (plane_state->alpha != DRM_BLEND_ALPHA_OPAQUE)) 497 num_alpha_planes++; 498 499 if (fb->format->is_yuv) { 500 DRM_DEBUG_DRIVER("Plane FB format is YUV\n"); 501 num_yuv_planes++; 502 } 503 504 DRM_DEBUG_DRIVER("Plane zpos is %d\n", 505 plane_state->normalized_zpos); 506 507 /* Sort our planes by Zpos */ 508 plane_states[plane_state->normalized_zpos] = plane_state; 509 510 num_planes++; 511 } 512 513 /* All our planes were disabled, bail out */ 514 if (!num_planes) 515 return 0; 516 517 /* 518 * The hardware is a bit unusual here. 519 * 520 * Even though it supports 4 layers, it does the composition 521 * in two separate steps. 522 * 523 * The first one is assigning a layer to one of its two 524 * pipes. If more that 1 layer is assigned to the same pipe, 525 * and if pixels overlaps, the pipe will take the pixel from 526 * the layer with the highest priority. 527 * 528 * The second step is the actual alpha blending, that takes 529 * the two pipes as input, and uses the eventual alpha 530 * component to do the transparency between the two. 531 * 532 * This two steps scenario makes us unable to guarantee a 533 * robust alpha blending between the 4 layers in all 534 * situations, since this means that we need to have one layer 535 * with alpha at the lowest position of our two pipes. 536 * 537 * However, we cannot even do that, since the hardware has a 538 * bug where the lowest plane of the lowest pipe (pipe 0, 539 * priority 0), if it has any alpha, will discard the pixel 540 * entirely and just display the pixels in the background 541 * color (black by default). 542 * 543 * This means that we effectively have only three valid 544 * configurations with alpha, all of them with the alpha being 545 * on pipe1 with the lowest position, which can be 1, 2 or 3 546 * depending on the number of planes and their zpos. 547 */ 548 if (num_alpha_planes > SUN4I_BACKEND_NUM_ALPHA_LAYERS) { 549 DRM_DEBUG_DRIVER("Too many planes with alpha, rejecting...\n"); 550 return -EINVAL; 551 } 552 553 /* We can't have an alpha plane at the lowest position */ 554 if (plane_states[0]->fb->format->has_alpha || 555 (plane_states[0]->alpha != DRM_BLEND_ALPHA_OPAQUE)) 556 return -EINVAL; 557 558 for (i = 1; i < num_planes; i++) { 559 struct drm_plane_state *p_state = plane_states[i]; 560 struct drm_framebuffer *fb = p_state->fb; 561 struct sun4i_layer_state *s_state = state_to_sun4i_layer_state(p_state); 562 563 /* 564 * The only alpha position is the lowest plane of the 565 * second pipe. 566 */ 567 if (fb->format->has_alpha || (p_state->alpha != DRM_BLEND_ALPHA_OPAQUE)) 568 current_pipe++; 569 570 s_state->pipe = current_pipe; 571 } 572 573 /* We can only have a single YUV plane at a time */ 574 if (num_yuv_planes > SUN4I_BACKEND_NUM_YUV_PLANES) { 575 DRM_DEBUG_DRIVER("Too many planes with YUV, rejecting...\n"); 576 return -EINVAL; 577 } 578 579 if (num_frontend_planes > SUN4I_BACKEND_NUM_FRONTEND_LAYERS) { 580 DRM_DEBUG_DRIVER("Too many planes going through the frontend, rejecting\n"); 581 return -EINVAL; 582 } 583 584 DRM_DEBUG_DRIVER("State valid with %u planes, %u alpha, %u video, %u YUV\n", 585 num_planes, num_alpha_planes, num_frontend_planes, 586 num_yuv_planes); 587 588 return 0; 589 } 590 591 static void sun4i_backend_vblank_quirk(struct sunxi_engine *engine) 592 { 593 struct sun4i_backend *backend = engine_to_sun4i_backend(engine); 594 struct sun4i_frontend *frontend = backend->frontend; 595 596 if (!frontend) 597 return; 598 599 /* 600 * In a teardown scenario with the frontend involved, we have 601 * to keep the frontend enabled until the next vblank, and 602 * only then disable it. 603 * 604 * This is due to the fact that the backend will not take into 605 * account the new configuration (with the plane that used to 606 * be fed by the frontend now disabled) until we write to the 607 * commit bit and the hardware fetches the new configuration 608 * during the next vblank. 609 * 610 * So we keep the frontend around in order to prevent any 611 * visual artifacts. 612 */ 613 spin_lock(&backend->frontend_lock); 614 if (backend->frontend_teardown) { 615 sun4i_frontend_exit(frontend); 616 backend->frontend_teardown = false; 617 } 618 spin_unlock(&backend->frontend_lock); 619 }; 620 621 static int sun4i_backend_init_sat(struct device *dev) { 622 struct sun4i_backend *backend = dev_get_drvdata(dev); 623 int ret; 624 625 backend->sat_reset = devm_reset_control_get(dev, "sat"); 626 if (IS_ERR(backend->sat_reset)) { 627 dev_err(dev, "Couldn't get the SAT reset line\n"); 628 return PTR_ERR(backend->sat_reset); 629 } 630 631 ret = reset_control_deassert(backend->sat_reset); 632 if (ret) { 633 dev_err(dev, "Couldn't deassert the SAT reset line\n"); 634 return ret; 635 } 636 637 backend->sat_clk = devm_clk_get(dev, "sat"); 638 if (IS_ERR(backend->sat_clk)) { 639 dev_err(dev, "Couldn't get our SAT clock\n"); 640 ret = PTR_ERR(backend->sat_clk); 641 goto err_assert_reset; 642 } 643 644 ret = clk_prepare_enable(backend->sat_clk); 645 if (ret) { 646 dev_err(dev, "Couldn't enable the SAT clock\n"); 647 return ret; 648 } 649 650 return 0; 651 652 err_assert_reset: 653 reset_control_assert(backend->sat_reset); 654 return ret; 655 } 656 657 static int sun4i_backend_free_sat(struct device *dev) { 658 struct sun4i_backend *backend = dev_get_drvdata(dev); 659 660 clk_disable_unprepare(backend->sat_clk); 661 reset_control_assert(backend->sat_reset); 662 663 return 0; 664 } 665 666 /* 667 * The display backend can take video output from the display frontend, or 668 * the display enhancement unit on the A80, as input for one it its layers. 669 * This relationship within the display pipeline is encoded in the device 670 * tree with of_graph, and we use it here to figure out which backend, if 671 * there are 2 or more, we are currently probing. The number would be in 672 * the "reg" property of the upstream output port endpoint. 673 */ 674 static int sun4i_backend_of_get_id(struct device_node *node) 675 { 676 struct device_node *port, *ep; 677 int ret = -EINVAL; 678 679 /* input is port 0 */ 680 port = of_graph_get_port_by_id(node, 0); 681 if (!port) 682 return -EINVAL; 683 684 /* try finding an upstream endpoint */ 685 for_each_available_child_of_node(port, ep) { 686 struct device_node *remote; 687 u32 reg; 688 689 remote = of_graph_get_remote_endpoint(ep); 690 if (!remote) 691 continue; 692 693 ret = of_property_read_u32(remote, "reg", ®); 694 if (ret) 695 continue; 696 697 ret = reg; 698 } 699 700 of_node_put(port); 701 702 return ret; 703 } 704 705 /* TODO: This needs to take multiple pipelines into account */ 706 static struct sun4i_frontend *sun4i_backend_find_frontend(struct sun4i_drv *drv, 707 struct device_node *node) 708 { 709 struct device_node *port, *ep, *remote; 710 struct sun4i_frontend *frontend; 711 712 port = of_graph_get_port_by_id(node, 0); 713 if (!port) 714 return ERR_PTR(-EINVAL); 715 716 for_each_available_child_of_node(port, ep) { 717 remote = of_graph_get_remote_port_parent(ep); 718 if (!remote) 719 continue; 720 721 /* does this node match any registered engines? */ 722 list_for_each_entry(frontend, &drv->frontend_list, list) { 723 if (remote == frontend->node) { 724 of_node_put(remote); 725 of_node_put(port); 726 return frontend; 727 } 728 } 729 } 730 731 return ERR_PTR(-EINVAL); 732 } 733 734 static const struct sunxi_engine_ops sun4i_backend_engine_ops = { 735 .atomic_begin = sun4i_backend_atomic_begin, 736 .atomic_check = sun4i_backend_atomic_check, 737 .commit = sun4i_backend_commit, 738 .layers_init = sun4i_layers_init, 739 .apply_color_correction = sun4i_backend_apply_color_correction, 740 .disable_color_correction = sun4i_backend_disable_color_correction, 741 .vblank_quirk = sun4i_backend_vblank_quirk, 742 }; 743 744 static struct regmap_config sun4i_backend_regmap_config = { 745 .reg_bits = 32, 746 .val_bits = 32, 747 .reg_stride = 4, 748 .max_register = 0x5800, 749 }; 750 751 static int sun4i_backend_bind(struct device *dev, struct device *master, 752 void *data) 753 { 754 struct platform_device *pdev = to_platform_device(dev); 755 struct drm_device *drm = data; 756 struct sun4i_drv *drv = drm->dev_private; 757 struct sun4i_backend *backend; 758 const struct sun4i_backend_quirks *quirks; 759 struct resource *res; 760 void __iomem *regs; 761 int i, ret; 762 763 backend = devm_kzalloc(dev, sizeof(*backend), GFP_KERNEL); 764 if (!backend) 765 return -ENOMEM; 766 dev_set_drvdata(dev, backend); 767 spin_lock_init(&backend->frontend_lock); 768 769 backend->engine.node = dev->of_node; 770 backend->engine.ops = &sun4i_backend_engine_ops; 771 backend->engine.id = sun4i_backend_of_get_id(dev->of_node); 772 if (backend->engine.id < 0) 773 return backend->engine.id; 774 775 backend->frontend = sun4i_backend_find_frontend(drv, dev->of_node); 776 if (IS_ERR(backend->frontend)) 777 dev_warn(dev, "Couldn't find matching frontend, frontend features disabled\n"); 778 779 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 780 regs = devm_ioremap_resource(dev, res); 781 if (IS_ERR(regs)) 782 return PTR_ERR(regs); 783 784 backend->reset = devm_reset_control_get(dev, NULL); 785 if (IS_ERR(backend->reset)) { 786 dev_err(dev, "Couldn't get our reset line\n"); 787 return PTR_ERR(backend->reset); 788 } 789 790 ret = reset_control_deassert(backend->reset); 791 if (ret) { 792 dev_err(dev, "Couldn't deassert our reset line\n"); 793 return ret; 794 } 795 796 backend->bus_clk = devm_clk_get(dev, "ahb"); 797 if (IS_ERR(backend->bus_clk)) { 798 dev_err(dev, "Couldn't get the backend bus clock\n"); 799 ret = PTR_ERR(backend->bus_clk); 800 goto err_assert_reset; 801 } 802 clk_prepare_enable(backend->bus_clk); 803 804 backend->mod_clk = devm_clk_get(dev, "mod"); 805 if (IS_ERR(backend->mod_clk)) { 806 dev_err(dev, "Couldn't get the backend module clock\n"); 807 ret = PTR_ERR(backend->mod_clk); 808 goto err_disable_bus_clk; 809 } 810 clk_prepare_enable(backend->mod_clk); 811 812 backend->ram_clk = devm_clk_get(dev, "ram"); 813 if (IS_ERR(backend->ram_clk)) { 814 dev_err(dev, "Couldn't get the backend RAM clock\n"); 815 ret = PTR_ERR(backend->ram_clk); 816 goto err_disable_mod_clk; 817 } 818 clk_prepare_enable(backend->ram_clk); 819 820 if (of_device_is_compatible(dev->of_node, 821 "allwinner,sun8i-a33-display-backend")) { 822 ret = sun4i_backend_init_sat(dev); 823 if (ret) { 824 dev_err(dev, "Couldn't init SAT resources\n"); 825 goto err_disable_ram_clk; 826 } 827 } 828 829 backend->engine.regs = devm_regmap_init_mmio(dev, regs, 830 &sun4i_backend_regmap_config); 831 if (IS_ERR(backend->engine.regs)) { 832 dev_err(dev, "Couldn't create the backend regmap\n"); 833 return PTR_ERR(backend->engine.regs); 834 } 835 836 list_add_tail(&backend->engine.list, &drv->engine_list); 837 838 /* 839 * Many of the backend's layer configuration registers have 840 * undefined default values. This poses a risk as we use 841 * regmap_update_bits in some places, and don't overwrite 842 * the whole register. 843 * 844 * Clear the registers here to have something predictable. 845 */ 846 for (i = 0x800; i < 0x1000; i += 4) 847 regmap_write(backend->engine.regs, i, 0); 848 849 /* Disable registers autoloading */ 850 regmap_write(backend->engine.regs, SUN4I_BACKEND_REGBUFFCTL_REG, 851 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS); 852 853 /* Enable the backend */ 854 regmap_write(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 855 SUN4I_BACKEND_MODCTL_DEBE_EN | 856 SUN4I_BACKEND_MODCTL_START_CTL); 857 858 /* Set output selection if needed */ 859 quirks = of_device_get_match_data(dev); 860 if (quirks->needs_output_muxing) { 861 /* 862 * We assume there is no dynamic muxing of backends 863 * and TCONs, so we select the backend with same ID. 864 * 865 * While dynamic selection might be interesting, since 866 * the CRTC is tied to the TCON, while the layers are 867 * tied to the backends, this means, we will need to 868 * switch between groups of layers. There might not be 869 * a way to represent this constraint in DRM. 870 */ 871 regmap_update_bits(backend->engine.regs, 872 SUN4I_BACKEND_MODCTL_REG, 873 SUN4I_BACKEND_MODCTL_OUT_SEL, 874 (backend->engine.id 875 ? SUN4I_BACKEND_MODCTL_OUT_LCD1 876 : SUN4I_BACKEND_MODCTL_OUT_LCD0)); 877 } 878 879 return 0; 880 881 err_disable_ram_clk: 882 clk_disable_unprepare(backend->ram_clk); 883 err_disable_mod_clk: 884 clk_disable_unprepare(backend->mod_clk); 885 err_disable_bus_clk: 886 clk_disable_unprepare(backend->bus_clk); 887 err_assert_reset: 888 reset_control_assert(backend->reset); 889 return ret; 890 } 891 892 static void sun4i_backend_unbind(struct device *dev, struct device *master, 893 void *data) 894 { 895 struct sun4i_backend *backend = dev_get_drvdata(dev); 896 897 list_del(&backend->engine.list); 898 899 if (of_device_is_compatible(dev->of_node, 900 "allwinner,sun8i-a33-display-backend")) 901 sun4i_backend_free_sat(dev); 902 903 clk_disable_unprepare(backend->ram_clk); 904 clk_disable_unprepare(backend->mod_clk); 905 clk_disable_unprepare(backend->bus_clk); 906 reset_control_assert(backend->reset); 907 } 908 909 static const struct component_ops sun4i_backend_ops = { 910 .bind = sun4i_backend_bind, 911 .unbind = sun4i_backend_unbind, 912 }; 913 914 static int sun4i_backend_probe(struct platform_device *pdev) 915 { 916 return component_add(&pdev->dev, &sun4i_backend_ops); 917 } 918 919 static int sun4i_backend_remove(struct platform_device *pdev) 920 { 921 component_del(&pdev->dev, &sun4i_backend_ops); 922 923 return 0; 924 } 925 926 static const struct sun4i_backend_quirks sun4i_backend_quirks = { 927 .needs_output_muxing = true, 928 }; 929 930 static const struct sun4i_backend_quirks sun5i_backend_quirks = { 931 }; 932 933 static const struct sun4i_backend_quirks sun6i_backend_quirks = { 934 }; 935 936 static const struct sun4i_backend_quirks sun7i_backend_quirks = { 937 .needs_output_muxing = true, 938 }; 939 940 static const struct sun4i_backend_quirks sun8i_a33_backend_quirks = { 941 }; 942 943 static const struct sun4i_backend_quirks sun9i_backend_quirks = { 944 }; 945 946 static const struct of_device_id sun4i_backend_of_table[] = { 947 { 948 .compatible = "allwinner,sun4i-a10-display-backend", 949 .data = &sun4i_backend_quirks, 950 }, 951 { 952 .compatible = "allwinner,sun5i-a13-display-backend", 953 .data = &sun5i_backend_quirks, 954 }, 955 { 956 .compatible = "allwinner,sun6i-a31-display-backend", 957 .data = &sun6i_backend_quirks, 958 }, 959 { 960 .compatible = "allwinner,sun7i-a20-display-backend", 961 .data = &sun7i_backend_quirks, 962 }, 963 { 964 .compatible = "allwinner,sun8i-a33-display-backend", 965 .data = &sun8i_a33_backend_quirks, 966 }, 967 { 968 .compatible = "allwinner,sun9i-a80-display-backend", 969 .data = &sun9i_backend_quirks, 970 }, 971 { } 972 }; 973 MODULE_DEVICE_TABLE(of, sun4i_backend_of_table); 974 975 static struct platform_driver sun4i_backend_platform_driver = { 976 .probe = sun4i_backend_probe, 977 .remove = sun4i_backend_remove, 978 .driver = { 979 .name = "sun4i-backend", 980 .of_match_table = sun4i_backend_of_table, 981 }, 982 }; 983 module_platform_driver(sun4i_backend_platform_driver); 984 985 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 986 MODULE_DESCRIPTION("Allwinner A10 Display Backend Driver"); 987 MODULE_LICENSE("GPL"); 988