1 /* 2 * Copyright (C) 2015 Free Electrons 3 * Copyright (C) 2015 NextThing Co 4 * 5 * Maxime Ripard <maxime.ripard@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 */ 12 13 #include <drm/drmP.h> 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_atomic_helper.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_crtc_helper.h> 18 #include <drm/drm_fb_cma_helper.h> 19 #include <drm/drm_gem_cma_helper.h> 20 #include <drm/drm_plane_helper.h> 21 22 #include <linux/component.h> 23 #include <linux/list.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/reset.h> 27 28 #include "sun4i_backend.h" 29 #include "sun4i_drv.h" 30 #include "sun4i_frontend.h" 31 #include "sun4i_layer.h" 32 #include "sunxi_engine.h" 33 34 struct sun4i_backend_quirks { 35 /* backend <-> TCON muxing selection done in backend */ 36 bool needs_output_muxing; 37 }; 38 39 static const u32 sunxi_rgb2yuv_coef[12] = { 40 0x00000107, 0x00000204, 0x00000064, 0x00000108, 41 0x00003f69, 0x00003ed6, 0x000001c1, 0x00000808, 42 0x000001c1, 0x00003e88, 0x00003fb8, 0x00000808 43 }; 44 45 /* 46 * These coefficients are taken from the A33 BSP from Allwinner. 47 * 48 * The formula is for each component, each coefficient being multiplied by 49 * 1024 and each constant being multiplied by 16: 50 * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135 51 * R = 1.164 * Y + 1.596 * V - 222 52 * B = 1.164 * Y + 2.018 * U + 276 53 * 54 * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255], 55 * following the BT601 spec. 56 */ 57 static const u32 sunxi_bt601_yuv2rgb_coef[12] = { 58 0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877, 59 0x000004a7, 0x00000000, 0x00000662, 0x00003211, 60 0x000004a7, 0x00000812, 0x00000000, 0x00002eb1, 61 }; 62 63 static inline bool sun4i_backend_format_is_planar_yuv(uint32_t format) 64 { 65 switch (format) { 66 case DRM_FORMAT_YUV411: 67 case DRM_FORMAT_YUV422: 68 case DRM_FORMAT_YUV444: 69 return true; 70 default: 71 return false; 72 } 73 } 74 75 static inline bool sun4i_backend_format_is_packed_yuv422(uint32_t format) 76 { 77 switch (format) { 78 case DRM_FORMAT_YUYV: 79 case DRM_FORMAT_YVYU: 80 case DRM_FORMAT_UYVY: 81 case DRM_FORMAT_VYUY: 82 return true; 83 84 default: 85 return false; 86 } 87 } 88 89 static inline bool sun4i_backend_format_is_yuv(uint32_t format) 90 { 91 return sun4i_backend_format_is_planar_yuv(format) || 92 sun4i_backend_format_is_packed_yuv422(format); 93 } 94 95 static void sun4i_backend_apply_color_correction(struct sunxi_engine *engine) 96 { 97 int i; 98 99 DRM_DEBUG_DRIVER("Applying RGB to YUV color correction\n"); 100 101 /* Set color correction */ 102 regmap_write(engine->regs, SUN4I_BACKEND_OCCTL_REG, 103 SUN4I_BACKEND_OCCTL_ENABLE); 104 105 for (i = 0; i < 12; i++) 106 regmap_write(engine->regs, SUN4I_BACKEND_OCRCOEF_REG(i), 107 sunxi_rgb2yuv_coef[i]); 108 } 109 110 static void sun4i_backend_disable_color_correction(struct sunxi_engine *engine) 111 { 112 DRM_DEBUG_DRIVER("Disabling color correction\n"); 113 114 /* Disable color correction */ 115 regmap_update_bits(engine->regs, SUN4I_BACKEND_OCCTL_REG, 116 SUN4I_BACKEND_OCCTL_ENABLE, 0); 117 } 118 119 static void sun4i_backend_commit(struct sunxi_engine *engine) 120 { 121 DRM_DEBUG_DRIVER("Committing changes\n"); 122 123 regmap_write(engine->regs, SUN4I_BACKEND_REGBUFFCTL_REG, 124 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS | 125 SUN4I_BACKEND_REGBUFFCTL_LOADCTL); 126 } 127 128 void sun4i_backend_layer_enable(struct sun4i_backend *backend, 129 int layer, bool enable) 130 { 131 u32 val; 132 133 DRM_DEBUG_DRIVER("%sabling layer %d\n", enable ? "En" : "Dis", 134 layer); 135 136 if (enable) 137 val = SUN4I_BACKEND_MODCTL_LAY_EN(layer); 138 else 139 val = 0; 140 141 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 142 SUN4I_BACKEND_MODCTL_LAY_EN(layer), val); 143 } 144 145 static int sun4i_backend_drm_format_to_layer(u32 format, u32 *mode) 146 { 147 switch (format) { 148 case DRM_FORMAT_ARGB8888: 149 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB8888; 150 break; 151 152 case DRM_FORMAT_ARGB4444: 153 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB4444; 154 break; 155 156 case DRM_FORMAT_ARGB1555: 157 *mode = SUN4I_BACKEND_LAY_FBFMT_ARGB1555; 158 break; 159 160 case DRM_FORMAT_RGBA5551: 161 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA5551; 162 break; 163 164 case DRM_FORMAT_RGBA4444: 165 *mode = SUN4I_BACKEND_LAY_FBFMT_RGBA4444; 166 break; 167 168 case DRM_FORMAT_XRGB8888: 169 *mode = SUN4I_BACKEND_LAY_FBFMT_XRGB8888; 170 break; 171 172 case DRM_FORMAT_RGB888: 173 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB888; 174 break; 175 176 case DRM_FORMAT_RGB565: 177 *mode = SUN4I_BACKEND_LAY_FBFMT_RGB565; 178 break; 179 180 default: 181 return -EINVAL; 182 } 183 184 return 0; 185 } 186 187 int sun4i_backend_update_layer_coord(struct sun4i_backend *backend, 188 int layer, struct drm_plane *plane) 189 { 190 struct drm_plane_state *state = plane->state; 191 192 DRM_DEBUG_DRIVER("Updating layer %d\n", layer); 193 194 if (plane->type == DRM_PLANE_TYPE_PRIMARY) { 195 DRM_DEBUG_DRIVER("Primary layer, updating global size W: %u H: %u\n", 196 state->crtc_w, state->crtc_h); 197 regmap_write(backend->engine.regs, SUN4I_BACKEND_DISSIZE_REG, 198 SUN4I_BACKEND_DISSIZE(state->crtc_w, 199 state->crtc_h)); 200 } 201 202 /* Set height and width */ 203 DRM_DEBUG_DRIVER("Layer size W: %u H: %u\n", 204 state->crtc_w, state->crtc_h); 205 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYSIZE_REG(layer), 206 SUN4I_BACKEND_LAYSIZE(state->crtc_w, 207 state->crtc_h)); 208 209 /* Set base coordinates */ 210 DRM_DEBUG_DRIVER("Layer coordinates X: %d Y: %d\n", 211 state->crtc_x, state->crtc_y); 212 regmap_write(backend->engine.regs, SUN4I_BACKEND_LAYCOOR_REG(layer), 213 SUN4I_BACKEND_LAYCOOR(state->crtc_x, 214 state->crtc_y)); 215 216 return 0; 217 } 218 219 static int sun4i_backend_update_yuv_format(struct sun4i_backend *backend, 220 int layer, struct drm_plane *plane) 221 { 222 struct drm_plane_state *state = plane->state; 223 struct drm_framebuffer *fb = state->fb; 224 uint32_t format = fb->format->format; 225 u32 val = SUN4I_BACKEND_IYUVCTL_EN; 226 int i; 227 228 for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++) 229 regmap_write(backend->engine.regs, 230 SUN4I_BACKEND_YGCOEF_REG(i), 231 sunxi_bt601_yuv2rgb_coef[i]); 232 233 /* 234 * We should do that only for a single plane, but the 235 * framebuffer's atomic_check has our back on this. 236 */ 237 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 238 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 239 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN); 240 241 /* TODO: Add support for the multi-planar YUV formats */ 242 if (sun4i_backend_format_is_packed_yuv422(format)) 243 val |= SUN4I_BACKEND_IYUVCTL_FBFMT_PACKED_YUV422; 244 else 245 DRM_DEBUG_DRIVER("Unsupported YUV format (0x%x)\n", format); 246 247 /* 248 * Allwinner seems to list the pixel sequence from right to left, while 249 * DRM lists it from left to right. 250 */ 251 switch (format) { 252 case DRM_FORMAT_YUYV: 253 val |= SUN4I_BACKEND_IYUVCTL_FBPS_VYUY; 254 break; 255 case DRM_FORMAT_YVYU: 256 val |= SUN4I_BACKEND_IYUVCTL_FBPS_UYVY; 257 break; 258 case DRM_FORMAT_UYVY: 259 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YVYU; 260 break; 261 case DRM_FORMAT_VYUY: 262 val |= SUN4I_BACKEND_IYUVCTL_FBPS_YUYV; 263 break; 264 default: 265 DRM_DEBUG_DRIVER("Unsupported YUV pixel sequence (0x%x)\n", 266 format); 267 } 268 269 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVCTL_REG, val); 270 271 return 0; 272 } 273 274 int sun4i_backend_update_layer_formats(struct sun4i_backend *backend, 275 int layer, struct drm_plane *plane) 276 { 277 struct drm_plane_state *state = plane->state; 278 struct drm_framebuffer *fb = state->fb; 279 bool interlaced = false; 280 u32 val; 281 int ret; 282 283 /* Clear the YUV mode */ 284 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 285 SUN4I_BACKEND_ATTCTL_REG0_LAY_YUVEN, 0); 286 287 if (plane->state->crtc) 288 interlaced = plane->state->crtc->state->adjusted_mode.flags 289 & DRM_MODE_FLAG_INTERLACE; 290 291 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 292 SUN4I_BACKEND_MODCTL_ITLMOD_EN, 293 interlaced ? SUN4I_BACKEND_MODCTL_ITLMOD_EN : 0); 294 295 DRM_DEBUG_DRIVER("Switching display backend interlaced mode %s\n", 296 interlaced ? "on" : "off"); 297 298 val = SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA(state->alpha >> 8); 299 if (state->alpha != DRM_BLEND_ALPHA_OPAQUE) 300 val |= SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN; 301 regmap_update_bits(backend->engine.regs, 302 SUN4I_BACKEND_ATTCTL_REG0(layer), 303 SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_MASK | 304 SUN4I_BACKEND_ATTCTL_REG0_LAY_GLBALPHA_EN, 305 val); 306 307 if (sun4i_backend_format_is_yuv(fb->format->format)) 308 return sun4i_backend_update_yuv_format(backend, layer, plane); 309 310 ret = sun4i_backend_drm_format_to_layer(fb->format->format, &val); 311 if (ret) { 312 DRM_DEBUG_DRIVER("Invalid format\n"); 313 return ret; 314 } 315 316 regmap_update_bits(backend->engine.regs, 317 SUN4I_BACKEND_ATTCTL_REG1(layer), 318 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 319 320 return 0; 321 } 322 323 int sun4i_backend_update_layer_frontend(struct sun4i_backend *backend, 324 int layer, uint32_t fmt) 325 { 326 u32 val; 327 int ret; 328 329 ret = sun4i_backend_drm_format_to_layer(fmt, &val); 330 if (ret) { 331 DRM_DEBUG_DRIVER("Invalid format\n"); 332 return ret; 333 } 334 335 regmap_update_bits(backend->engine.regs, 336 SUN4I_BACKEND_ATTCTL_REG0(layer), 337 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN, 338 SUN4I_BACKEND_ATTCTL_REG0_LAY_VDOEN); 339 340 regmap_update_bits(backend->engine.regs, 341 SUN4I_BACKEND_ATTCTL_REG1(layer), 342 SUN4I_BACKEND_ATTCTL_REG1_LAY_FBFMT, val); 343 344 return 0; 345 } 346 347 static int sun4i_backend_update_yuv_buffer(struct sun4i_backend *backend, 348 struct drm_framebuffer *fb, 349 dma_addr_t paddr) 350 { 351 /* TODO: Add support for the multi-planar YUV formats */ 352 DRM_DEBUG_DRIVER("Setting packed YUV buffer address to %pad\n", &paddr); 353 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVADD_REG(0), paddr); 354 355 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 356 regmap_write(backend->engine.regs, SUN4I_BACKEND_IYUVLINEWIDTH_REG(0), 357 fb->pitches[0] * 8); 358 359 return 0; 360 } 361 362 int sun4i_backend_update_layer_buffer(struct sun4i_backend *backend, 363 int layer, struct drm_plane *plane) 364 { 365 struct drm_plane_state *state = plane->state; 366 struct drm_framebuffer *fb = state->fb; 367 u32 lo_paddr, hi_paddr; 368 dma_addr_t paddr; 369 370 /* Set the line width */ 371 DRM_DEBUG_DRIVER("Layer line width: %d bits\n", fb->pitches[0] * 8); 372 regmap_write(backend->engine.regs, 373 SUN4I_BACKEND_LAYLINEWIDTH_REG(layer), 374 fb->pitches[0] * 8); 375 376 /* Get the start of the displayed memory */ 377 paddr = drm_fb_cma_get_gem_addr(fb, state, 0); 378 DRM_DEBUG_DRIVER("Setting buffer address to %pad\n", &paddr); 379 380 /* 381 * backend DMA accesses DRAM directly, bypassing the system 382 * bus. As such, the address range is different and the buffer 383 * address needs to be corrected. 384 */ 385 paddr -= PHYS_OFFSET; 386 387 if (sun4i_backend_format_is_yuv(fb->format->format)) 388 return sun4i_backend_update_yuv_buffer(backend, fb, paddr); 389 390 /* Write the 32 lower bits of the address (in bits) */ 391 lo_paddr = paddr << 3; 392 DRM_DEBUG_DRIVER("Setting address lower bits to 0x%x\n", lo_paddr); 393 regmap_write(backend->engine.regs, 394 SUN4I_BACKEND_LAYFB_L32ADD_REG(layer), 395 lo_paddr); 396 397 /* And the upper bits */ 398 hi_paddr = paddr >> 29; 399 DRM_DEBUG_DRIVER("Setting address high bits to 0x%x\n", hi_paddr); 400 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_LAYFB_H4ADD_REG, 401 SUN4I_BACKEND_LAYFB_H4ADD_MSK(layer), 402 SUN4I_BACKEND_LAYFB_H4ADD(layer, hi_paddr)); 403 404 return 0; 405 } 406 407 int sun4i_backend_update_layer_zpos(struct sun4i_backend *backend, int layer, 408 struct drm_plane *plane) 409 { 410 struct drm_plane_state *state = plane->state; 411 struct sun4i_layer_state *p_state = state_to_sun4i_layer_state(state); 412 unsigned int priority = state->normalized_zpos; 413 unsigned int pipe = p_state->pipe; 414 415 DRM_DEBUG_DRIVER("Setting layer %d's priority to %d and pipe %d\n", 416 layer, priority, pipe); 417 regmap_update_bits(backend->engine.regs, SUN4I_BACKEND_ATTCTL_REG0(layer), 418 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL_MASK | 419 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL_MASK, 420 SUN4I_BACKEND_ATTCTL_REG0_LAY_PIPESEL(p_state->pipe) | 421 SUN4I_BACKEND_ATTCTL_REG0_LAY_PRISEL(priority)); 422 423 return 0; 424 } 425 426 static bool sun4i_backend_plane_uses_scaler(struct drm_plane_state *state) 427 { 428 u16 src_h = state->src_h >> 16; 429 u16 src_w = state->src_w >> 16; 430 431 DRM_DEBUG_DRIVER("Input size %dx%d, output size %dx%d\n", 432 src_w, src_h, state->crtc_w, state->crtc_h); 433 434 if ((state->crtc_h != src_h) || (state->crtc_w != src_w)) 435 return true; 436 437 return false; 438 } 439 440 static bool sun4i_backend_plane_uses_frontend(struct drm_plane_state *state) 441 { 442 struct sun4i_layer *layer = plane_to_sun4i_layer(state->plane); 443 struct sun4i_backend *backend = layer->backend; 444 445 if (IS_ERR(backend->frontend)) 446 return false; 447 448 return sun4i_backend_plane_uses_scaler(state); 449 } 450 451 static void sun4i_backend_atomic_begin(struct sunxi_engine *engine, 452 struct drm_crtc_state *old_state) 453 { 454 u32 val; 455 456 WARN_ON(regmap_read_poll_timeout(engine->regs, 457 SUN4I_BACKEND_REGBUFFCTL_REG, 458 val, !(val & SUN4I_BACKEND_REGBUFFCTL_LOADCTL), 459 100, 50000)); 460 } 461 462 static int sun4i_backend_atomic_check(struct sunxi_engine *engine, 463 struct drm_crtc_state *crtc_state) 464 { 465 struct drm_plane_state *plane_states[SUN4I_BACKEND_NUM_LAYERS] = { 0 }; 466 struct drm_atomic_state *state = crtc_state->state; 467 struct drm_device *drm = state->dev; 468 struct drm_plane *plane; 469 unsigned int num_planes = 0; 470 unsigned int num_alpha_planes = 0; 471 unsigned int num_frontend_planes = 0; 472 unsigned int num_yuv_planes = 0; 473 unsigned int current_pipe = 0; 474 unsigned int i; 475 476 DRM_DEBUG_DRIVER("Starting checking our planes\n"); 477 478 if (!crtc_state->planes_changed) 479 return 0; 480 481 drm_for_each_plane_mask(plane, drm, crtc_state->plane_mask) { 482 struct drm_plane_state *plane_state = 483 drm_atomic_get_plane_state(state, plane); 484 struct sun4i_layer_state *layer_state = 485 state_to_sun4i_layer_state(plane_state); 486 struct drm_framebuffer *fb = plane_state->fb; 487 struct drm_format_name_buf format_name; 488 489 if (sun4i_backend_plane_uses_frontend(plane_state)) { 490 DRM_DEBUG_DRIVER("Using the frontend for plane %d\n", 491 plane->index); 492 493 layer_state->uses_frontend = true; 494 num_frontend_planes++; 495 } else { 496 layer_state->uses_frontend = false; 497 } 498 499 DRM_DEBUG_DRIVER("Plane FB format is %s\n", 500 drm_get_format_name(fb->format->format, 501 &format_name)); 502 if (fb->format->has_alpha || (plane_state->alpha != DRM_BLEND_ALPHA_OPAQUE)) 503 num_alpha_planes++; 504 505 if (sun4i_backend_format_is_yuv(fb->format->format)) { 506 DRM_DEBUG_DRIVER("Plane FB format is YUV\n"); 507 num_yuv_planes++; 508 } 509 510 DRM_DEBUG_DRIVER("Plane zpos is %d\n", 511 plane_state->normalized_zpos); 512 513 /* Sort our planes by Zpos */ 514 plane_states[plane_state->normalized_zpos] = plane_state; 515 516 num_planes++; 517 } 518 519 /* All our planes were disabled, bail out */ 520 if (!num_planes) 521 return 0; 522 523 /* 524 * The hardware is a bit unusual here. 525 * 526 * Even though it supports 4 layers, it does the composition 527 * in two separate steps. 528 * 529 * The first one is assigning a layer to one of its two 530 * pipes. If more that 1 layer is assigned to the same pipe, 531 * and if pixels overlaps, the pipe will take the pixel from 532 * the layer with the highest priority. 533 * 534 * The second step is the actual alpha blending, that takes 535 * the two pipes as input, and uses the eventual alpha 536 * component to do the transparency between the two. 537 * 538 * This two steps scenario makes us unable to guarantee a 539 * robust alpha blending between the 4 layers in all 540 * situations, since this means that we need to have one layer 541 * with alpha at the lowest position of our two pipes. 542 * 543 * However, we cannot even do that, since the hardware has a 544 * bug where the lowest plane of the lowest pipe (pipe 0, 545 * priority 0), if it has any alpha, will discard the pixel 546 * entirely and just display the pixels in the background 547 * color (black by default). 548 * 549 * This means that we effectively have only three valid 550 * configurations with alpha, all of them with the alpha being 551 * on pipe1 with the lowest position, which can be 1, 2 or 3 552 * depending on the number of planes and their zpos. 553 */ 554 if (num_alpha_planes > SUN4I_BACKEND_NUM_ALPHA_LAYERS) { 555 DRM_DEBUG_DRIVER("Too many planes with alpha, rejecting...\n"); 556 return -EINVAL; 557 } 558 559 /* We can't have an alpha plane at the lowest position */ 560 if (plane_states[0]->fb->format->has_alpha || 561 (plane_states[0]->alpha != DRM_BLEND_ALPHA_OPAQUE)) 562 return -EINVAL; 563 564 for (i = 1; i < num_planes; i++) { 565 struct drm_plane_state *p_state = plane_states[i]; 566 struct drm_framebuffer *fb = p_state->fb; 567 struct sun4i_layer_state *s_state = state_to_sun4i_layer_state(p_state); 568 569 /* 570 * The only alpha position is the lowest plane of the 571 * second pipe. 572 */ 573 if (fb->format->has_alpha || (p_state->alpha != DRM_BLEND_ALPHA_OPAQUE)) 574 current_pipe++; 575 576 s_state->pipe = current_pipe; 577 } 578 579 /* We can only have a single YUV plane at a time */ 580 if (num_yuv_planes > SUN4I_BACKEND_NUM_YUV_PLANES) { 581 DRM_DEBUG_DRIVER("Too many planes with YUV, rejecting...\n"); 582 return -EINVAL; 583 } 584 585 if (num_frontend_planes > SUN4I_BACKEND_NUM_FRONTEND_LAYERS) { 586 DRM_DEBUG_DRIVER("Too many planes going through the frontend, rejecting\n"); 587 return -EINVAL; 588 } 589 590 DRM_DEBUG_DRIVER("State valid with %u planes, %u alpha, %u video, %u YUV\n", 591 num_planes, num_alpha_planes, num_frontend_planes, 592 num_yuv_planes); 593 594 return 0; 595 } 596 597 static void sun4i_backend_vblank_quirk(struct sunxi_engine *engine) 598 { 599 struct sun4i_backend *backend = engine_to_sun4i_backend(engine); 600 struct sun4i_frontend *frontend = backend->frontend; 601 602 if (!frontend) 603 return; 604 605 /* 606 * In a teardown scenario with the frontend involved, we have 607 * to keep the frontend enabled until the next vblank, and 608 * only then disable it. 609 * 610 * This is due to the fact that the backend will not take into 611 * account the new configuration (with the plane that used to 612 * be fed by the frontend now disabled) until we write to the 613 * commit bit and the hardware fetches the new configuration 614 * during the next vblank. 615 * 616 * So we keep the frontend around in order to prevent any 617 * visual artifacts. 618 */ 619 spin_lock(&backend->frontend_lock); 620 if (backend->frontend_teardown) { 621 sun4i_frontend_exit(frontend); 622 backend->frontend_teardown = false; 623 } 624 spin_unlock(&backend->frontend_lock); 625 }; 626 627 static int sun4i_backend_init_sat(struct device *dev) { 628 struct sun4i_backend *backend = dev_get_drvdata(dev); 629 int ret; 630 631 backend->sat_reset = devm_reset_control_get(dev, "sat"); 632 if (IS_ERR(backend->sat_reset)) { 633 dev_err(dev, "Couldn't get the SAT reset line\n"); 634 return PTR_ERR(backend->sat_reset); 635 } 636 637 ret = reset_control_deassert(backend->sat_reset); 638 if (ret) { 639 dev_err(dev, "Couldn't deassert the SAT reset line\n"); 640 return ret; 641 } 642 643 backend->sat_clk = devm_clk_get(dev, "sat"); 644 if (IS_ERR(backend->sat_clk)) { 645 dev_err(dev, "Couldn't get our SAT clock\n"); 646 ret = PTR_ERR(backend->sat_clk); 647 goto err_assert_reset; 648 } 649 650 ret = clk_prepare_enable(backend->sat_clk); 651 if (ret) { 652 dev_err(dev, "Couldn't enable the SAT clock\n"); 653 return ret; 654 } 655 656 return 0; 657 658 err_assert_reset: 659 reset_control_assert(backend->sat_reset); 660 return ret; 661 } 662 663 static int sun4i_backend_free_sat(struct device *dev) { 664 struct sun4i_backend *backend = dev_get_drvdata(dev); 665 666 clk_disable_unprepare(backend->sat_clk); 667 reset_control_assert(backend->sat_reset); 668 669 return 0; 670 } 671 672 /* 673 * The display backend can take video output from the display frontend, or 674 * the display enhancement unit on the A80, as input for one it its layers. 675 * This relationship within the display pipeline is encoded in the device 676 * tree with of_graph, and we use it here to figure out which backend, if 677 * there are 2 or more, we are currently probing. The number would be in 678 * the "reg" property of the upstream output port endpoint. 679 */ 680 static int sun4i_backend_of_get_id(struct device_node *node) 681 { 682 struct device_node *port, *ep; 683 int ret = -EINVAL; 684 685 /* input is port 0 */ 686 port = of_graph_get_port_by_id(node, 0); 687 if (!port) 688 return -EINVAL; 689 690 /* try finding an upstream endpoint */ 691 for_each_available_child_of_node(port, ep) { 692 struct device_node *remote; 693 u32 reg; 694 695 remote = of_graph_get_remote_endpoint(ep); 696 if (!remote) 697 continue; 698 699 ret = of_property_read_u32(remote, "reg", ®); 700 if (ret) 701 continue; 702 703 ret = reg; 704 } 705 706 of_node_put(port); 707 708 return ret; 709 } 710 711 /* TODO: This needs to take multiple pipelines into account */ 712 static struct sun4i_frontend *sun4i_backend_find_frontend(struct sun4i_drv *drv, 713 struct device_node *node) 714 { 715 struct device_node *port, *ep, *remote; 716 struct sun4i_frontend *frontend; 717 718 port = of_graph_get_port_by_id(node, 0); 719 if (!port) 720 return ERR_PTR(-EINVAL); 721 722 for_each_available_child_of_node(port, ep) { 723 remote = of_graph_get_remote_port_parent(ep); 724 if (!remote) 725 continue; 726 727 /* does this node match any registered engines? */ 728 list_for_each_entry(frontend, &drv->frontend_list, list) { 729 if (remote == frontend->node) { 730 of_node_put(remote); 731 of_node_put(port); 732 return frontend; 733 } 734 } 735 } 736 737 return ERR_PTR(-EINVAL); 738 } 739 740 static const struct sunxi_engine_ops sun4i_backend_engine_ops = { 741 .atomic_begin = sun4i_backend_atomic_begin, 742 .atomic_check = sun4i_backend_atomic_check, 743 .commit = sun4i_backend_commit, 744 .layers_init = sun4i_layers_init, 745 .apply_color_correction = sun4i_backend_apply_color_correction, 746 .disable_color_correction = sun4i_backend_disable_color_correction, 747 .vblank_quirk = sun4i_backend_vblank_quirk, 748 }; 749 750 static struct regmap_config sun4i_backend_regmap_config = { 751 .reg_bits = 32, 752 .val_bits = 32, 753 .reg_stride = 4, 754 .max_register = 0x5800, 755 }; 756 757 static int sun4i_backend_bind(struct device *dev, struct device *master, 758 void *data) 759 { 760 struct platform_device *pdev = to_platform_device(dev); 761 struct drm_device *drm = data; 762 struct sun4i_drv *drv = drm->dev_private; 763 struct sun4i_backend *backend; 764 const struct sun4i_backend_quirks *quirks; 765 struct resource *res; 766 void __iomem *regs; 767 int i, ret; 768 769 backend = devm_kzalloc(dev, sizeof(*backend), GFP_KERNEL); 770 if (!backend) 771 return -ENOMEM; 772 dev_set_drvdata(dev, backend); 773 spin_lock_init(&backend->frontend_lock); 774 775 backend->engine.node = dev->of_node; 776 backend->engine.ops = &sun4i_backend_engine_ops; 777 backend->engine.id = sun4i_backend_of_get_id(dev->of_node); 778 if (backend->engine.id < 0) 779 return backend->engine.id; 780 781 backend->frontend = sun4i_backend_find_frontend(drv, dev->of_node); 782 if (IS_ERR(backend->frontend)) 783 dev_warn(dev, "Couldn't find matching frontend, frontend features disabled\n"); 784 785 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 786 regs = devm_ioremap_resource(dev, res); 787 if (IS_ERR(regs)) 788 return PTR_ERR(regs); 789 790 backend->reset = devm_reset_control_get(dev, NULL); 791 if (IS_ERR(backend->reset)) { 792 dev_err(dev, "Couldn't get our reset line\n"); 793 return PTR_ERR(backend->reset); 794 } 795 796 ret = reset_control_deassert(backend->reset); 797 if (ret) { 798 dev_err(dev, "Couldn't deassert our reset line\n"); 799 return ret; 800 } 801 802 backend->bus_clk = devm_clk_get(dev, "ahb"); 803 if (IS_ERR(backend->bus_clk)) { 804 dev_err(dev, "Couldn't get the backend bus clock\n"); 805 ret = PTR_ERR(backend->bus_clk); 806 goto err_assert_reset; 807 } 808 clk_prepare_enable(backend->bus_clk); 809 810 backend->mod_clk = devm_clk_get(dev, "mod"); 811 if (IS_ERR(backend->mod_clk)) { 812 dev_err(dev, "Couldn't get the backend module clock\n"); 813 ret = PTR_ERR(backend->mod_clk); 814 goto err_disable_bus_clk; 815 } 816 clk_prepare_enable(backend->mod_clk); 817 818 backend->ram_clk = devm_clk_get(dev, "ram"); 819 if (IS_ERR(backend->ram_clk)) { 820 dev_err(dev, "Couldn't get the backend RAM clock\n"); 821 ret = PTR_ERR(backend->ram_clk); 822 goto err_disable_mod_clk; 823 } 824 clk_prepare_enable(backend->ram_clk); 825 826 if (of_device_is_compatible(dev->of_node, 827 "allwinner,sun8i-a33-display-backend")) { 828 ret = sun4i_backend_init_sat(dev); 829 if (ret) { 830 dev_err(dev, "Couldn't init SAT resources\n"); 831 goto err_disable_ram_clk; 832 } 833 } 834 835 backend->engine.regs = devm_regmap_init_mmio(dev, regs, 836 &sun4i_backend_regmap_config); 837 if (IS_ERR(backend->engine.regs)) { 838 dev_err(dev, "Couldn't create the backend regmap\n"); 839 return PTR_ERR(backend->engine.regs); 840 } 841 842 list_add_tail(&backend->engine.list, &drv->engine_list); 843 844 /* 845 * Many of the backend's layer configuration registers have 846 * undefined default values. This poses a risk as we use 847 * regmap_update_bits in some places, and don't overwrite 848 * the whole register. 849 * 850 * Clear the registers here to have something predictable. 851 */ 852 for (i = 0x800; i < 0x1000; i += 4) 853 regmap_write(backend->engine.regs, i, 0); 854 855 /* Disable registers autoloading */ 856 regmap_write(backend->engine.regs, SUN4I_BACKEND_REGBUFFCTL_REG, 857 SUN4I_BACKEND_REGBUFFCTL_AUTOLOAD_DIS); 858 859 /* Enable the backend */ 860 regmap_write(backend->engine.regs, SUN4I_BACKEND_MODCTL_REG, 861 SUN4I_BACKEND_MODCTL_DEBE_EN | 862 SUN4I_BACKEND_MODCTL_START_CTL); 863 864 /* Set output selection if needed */ 865 quirks = of_device_get_match_data(dev); 866 if (quirks->needs_output_muxing) { 867 /* 868 * We assume there is no dynamic muxing of backends 869 * and TCONs, so we select the backend with same ID. 870 * 871 * While dynamic selection might be interesting, since 872 * the CRTC is tied to the TCON, while the layers are 873 * tied to the backends, this means, we will need to 874 * switch between groups of layers. There might not be 875 * a way to represent this constraint in DRM. 876 */ 877 regmap_update_bits(backend->engine.regs, 878 SUN4I_BACKEND_MODCTL_REG, 879 SUN4I_BACKEND_MODCTL_OUT_SEL, 880 (backend->engine.id 881 ? SUN4I_BACKEND_MODCTL_OUT_LCD1 882 : SUN4I_BACKEND_MODCTL_OUT_LCD0)); 883 } 884 885 return 0; 886 887 err_disable_ram_clk: 888 clk_disable_unprepare(backend->ram_clk); 889 err_disable_mod_clk: 890 clk_disable_unprepare(backend->mod_clk); 891 err_disable_bus_clk: 892 clk_disable_unprepare(backend->bus_clk); 893 err_assert_reset: 894 reset_control_assert(backend->reset); 895 return ret; 896 } 897 898 static void sun4i_backend_unbind(struct device *dev, struct device *master, 899 void *data) 900 { 901 struct sun4i_backend *backend = dev_get_drvdata(dev); 902 903 list_del(&backend->engine.list); 904 905 if (of_device_is_compatible(dev->of_node, 906 "allwinner,sun8i-a33-display-backend")) 907 sun4i_backend_free_sat(dev); 908 909 clk_disable_unprepare(backend->ram_clk); 910 clk_disable_unprepare(backend->mod_clk); 911 clk_disable_unprepare(backend->bus_clk); 912 reset_control_assert(backend->reset); 913 } 914 915 static const struct component_ops sun4i_backend_ops = { 916 .bind = sun4i_backend_bind, 917 .unbind = sun4i_backend_unbind, 918 }; 919 920 static int sun4i_backend_probe(struct platform_device *pdev) 921 { 922 return component_add(&pdev->dev, &sun4i_backend_ops); 923 } 924 925 static int sun4i_backend_remove(struct platform_device *pdev) 926 { 927 component_del(&pdev->dev, &sun4i_backend_ops); 928 929 return 0; 930 } 931 932 static const struct sun4i_backend_quirks sun4i_backend_quirks = { 933 .needs_output_muxing = true, 934 }; 935 936 static const struct sun4i_backend_quirks sun5i_backend_quirks = { 937 }; 938 939 static const struct sun4i_backend_quirks sun6i_backend_quirks = { 940 }; 941 942 static const struct sun4i_backend_quirks sun7i_backend_quirks = { 943 .needs_output_muxing = true, 944 }; 945 946 static const struct sun4i_backend_quirks sun8i_a33_backend_quirks = { 947 }; 948 949 static const struct sun4i_backend_quirks sun9i_backend_quirks = { 950 }; 951 952 static const struct of_device_id sun4i_backend_of_table[] = { 953 { 954 .compatible = "allwinner,sun4i-a10-display-backend", 955 .data = &sun4i_backend_quirks, 956 }, 957 { 958 .compatible = "allwinner,sun5i-a13-display-backend", 959 .data = &sun5i_backend_quirks, 960 }, 961 { 962 .compatible = "allwinner,sun6i-a31-display-backend", 963 .data = &sun6i_backend_quirks, 964 }, 965 { 966 .compatible = "allwinner,sun7i-a20-display-backend", 967 .data = &sun7i_backend_quirks, 968 }, 969 { 970 .compatible = "allwinner,sun8i-a33-display-backend", 971 .data = &sun8i_a33_backend_quirks, 972 }, 973 { 974 .compatible = "allwinner,sun9i-a80-display-backend", 975 .data = &sun9i_backend_quirks, 976 }, 977 { } 978 }; 979 MODULE_DEVICE_TABLE(of, sun4i_backend_of_table); 980 981 static struct platform_driver sun4i_backend_platform_driver = { 982 .probe = sun4i_backend_probe, 983 .remove = sun4i_backend_remove, 984 .driver = { 985 .name = "sun4i-backend", 986 .of_match_table = sun4i_backend_of_table, 987 }, 988 }; 989 module_platform_driver(sun4i_backend_platform_driver); 990 991 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 992 MODULE_DESCRIPTION("Allwinner A10 Display Backend Driver"); 993 MODULE_LICENSE("GPL"); 994