xref: /linux/drivers/gpu/drm/stm/lvds.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2023, STMicroelectronics - All Rights Reserved
4  * Author(s): Raphaël GALLAIS-POU <raphael.gallais-pou@foss.st.com> for STMicroelectronics.
5  */
6 
7 #include <drm/drm_atomic_helper.h>
8 #include <drm/drm_bridge.h>
9 #include <drm/drm_device.h>
10 #include <drm/drm_of.h>
11 #include <drm/drm_panel.h>
12 #include <drm/drm_print.h>
13 #include <drm/drm_probe_helper.h>
14 
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/media-bus-format.h>
20 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/reset.h>
24 
25 /* LVDS Host registers */
26 #define LVDS_CR		0x0000  /* configuration register */
27 #define LVDS_DMLCR0	0x0004  /* data mapping lsb configuration register 0 */
28 #define LVDS_DMMCR0	0x0008  /* data mapping msb configuration register 0 */
29 #define LVDS_DMLCR1	0x000C  /* data mapping lsb configuration register 1 */
30 #define LVDS_DMMCR1	0x0010  /* data mapping msb configuration register 1 */
31 #define LVDS_DMLCR2	0x0014  /* data mapping lsb configuration register 2 */
32 #define LVDS_DMMCR2	0x0018  /* data mapping msb configuration register 2 */
33 #define LVDS_DMLCR3	0x001C  /* data mapping lsb configuration register 3 */
34 #define LVDS_DMMCR3	0x0020  /* data mapping msb configuration register 3 */
35 #define LVDS_DMLCR4	0x0024  /* data mapping lsb configuration register 4 */
36 #define LVDS_DMMCR4	0x0028  /* data mapping msb configuration register 4 */
37 #define LVDS_CDL1CR	0x002C  /* channel distrib link 1 configuration register */
38 #define LVDS_CDL2CR	0x0030  /* channel distrib link 2 configuration register */
39 
40 #define CDL1CR_DEFAULT	0x04321 /* Default value for CDL1CR */
41 #define CDL2CR_DEFAULT	0x59876 /* Default value for CDL2CR */
42 
43 #define LVDS_DMLCR(bit)	(LVDS_DMLCR0 + 0x8 * (bit))
44 #define LVDS_DMMCR(bit)	(LVDS_DMMCR0 + 0x8 * (bit))
45 
46 /* LVDS Wrapper registers */
47 #define LVDS_WCLKCR	0x11B0  /* Wrapper clock control register */
48 
49 #define LVDS_HWCFGR	0x1FF0  /* HW configuration register	*/
50 #define LVDS_VERR	0x1FF4  /* Version register	*/
51 #define LVDS_IPIDR	0x1FF8  /* Identification register	*/
52 #define LVDS_SIDR	0x1FFC  /* Size Identification register	*/
53 
54 /* Bitfield description */
55 #define CR_LVDSEN	BIT(0)  /* LVDS PHY Enable */
56 #define CR_HSPOL	BIT(1)  /* Horizontal Synchronization Polarity */
57 #define CR_VSPOL	BIT(2)  /* Vertical Synchronization Polarity */
58 #define CR_DEPOL	BIT(3)  /* Data Enable Polarity */
59 #define CR_CI		BIT(4)  /* Control Internal (software controlled bit) */
60 #define CR_LKMOD	BIT(5)  /* Link Mode, for both Links */
61 #define CR_LKPHA	BIT(6)  /* Link Phase, for both Links */
62 #define CR_LK1POL	GENMASK(20, 16)  /* Link-1 output Polarity */
63 #define CR_LK2POL	GENMASK(25, 21)  /* Link-2 output Polarity */
64 
65 #define DMMCR_MAP0	GENMASK(4, 0) /* Mapping for bit 0 of datalane x */
66 #define DMMCR_MAP1	GENMASK(9, 5) /* Mapping for bit 1 of datalane x */
67 #define DMMCR_MAP2	GENMASK(14, 10) /* Mapping for bit 2 of datalane x */
68 #define DMMCR_MAP3	GENMASK(19, 15) /* Mapping for bit 3 of datalane x */
69 #define DMLCR_MAP4	GENMASK(4, 0) /* Mapping for bit 4 of datalane x */
70 #define DMLCR_MAP5	GENMASK(9, 5) /* Mapping for bit 5 of datalane x */
71 #define DMLCR_MAP6	GENMASK(14, 10) /* Mapping for bit 6 of datalane x */
72 
73 #define CDLCR_DISTR0	GENMASK(3, 0) /* Channel distribution for lane 0 */
74 #define CDLCR_DISTR1	GENMASK(7, 4) /* Channel distribution for lane 1 */
75 #define CDLCR_DISTR2	GENMASK(11, 8) /* Channel distribution for lane 2 */
76 #define CDLCR_DISTR3	GENMASK(15, 12) /* Channel distribution for lane 3 */
77 #define CDLCR_DISTR4	GENMASK(19, 16) /* Channel distribution for lane 4 */
78 
79 #define PHY_GCR_BIT_CLK_OUT	BIT(0)  /* BIT clock enable */
80 #define PHY_GCR_LS_CLK_OUT	BIT(4)  /* LS clock enable */
81 #define PHY_GCR_DP_CLK_OUT	BIT(8)  /* DP clock enable */
82 #define PHY_GCR_RSTZ		BIT(24) /* LVDS PHY digital reset */
83 #define PHY_GCR_DIV_RSTN	BIT(25) /* Output divider reset */
84 #define PHY_SCR_TX_EN		BIT(16) /* Transmission mode enable */
85 /* Current mode driver enable */
86 #define PHY_CMCR_CM_EN_DL	(BIT(28) | BIT(20) | BIT(12) | BIT(4))
87 #define PHY_CMCR_CM_EN_DL4	BIT(4)
88 /* Bias enable */
89 #define PHY_BCR1_EN_BIAS_DL	(BIT(16) | BIT(12) | BIT(8) | BIT(4) | BIT(0))
90 #define PHY_BCR2_BIAS_EN	BIT(28)
91 /* Voltage mode driver enable */
92 #define PHY_BCR3_VM_EN_DL	(BIT(16) | BIT(12) | BIT(8) | BIT(4) | BIT(0))
93 #define PHY_DCR_POWER_OK	BIT(12)
94 #define PHY_CFGCR_EN_DIG_DL	GENMASK(4, 0) /* LVDS PHY digital lane enable */
95 #define PHY_PLLCR1_PLL_EN	BIT(0) /* LVDS PHY PLL enable */
96 #define PHY_PLLCR1_EN_SD	BIT(1) /* LVDS PHY PLL sigma-delta signal enable */
97 #define PHY_PLLCR1_EN_TWG	BIT(2) /* LVDS PHY PLL triangular wave generator enable */
98 #define PHY_PLLCR1_DIV_EN	BIT(8) /* LVDS PHY PLL dividers enable */
99 #define PHY_PLLCR2_NDIV		GENMASK(25, 16) /* NDIV mask value */
100 #define PHY_PLLCR2_BDIV		GENMASK(9, 0)   /* BDIV mask value */
101 #define PHY_PLLSR_PLL_LOCK	BIT(0) /* LVDS PHY PLL lock status */
102 #define PHY_PLLSDCR1_MDIV	GENMASK(9, 0)   /* MDIV mask value */
103 #define PHY_PLLTESTCR_TDIV	GENMASK(25, 16) /* TDIV mask value */
104 #define PHY_PLLTESTCR_CLK_EN	BIT(0) /* Test clock enable */
105 #define PHY_PLLTESTCR_EN	BIT(8) /* Test divider output enable */
106 
107 #define WCLKCR_SECND_CLKPIX_SEL	BIT(0) /* Pixel clock selection */
108 #define WCLKCR_SRCSEL		BIT(8) /* Source selection for the pixel clock */
109 
110 /* Sleep & timeout for pll lock/unlock */
111 #define SLEEP_US	1000
112 #define TIMEOUT_US	200000
113 
114 /*
115  * The link phase defines whether an ODD pixel is carried over together with
116  * the next EVEN pixel or together with the previous EVEN pixel.
117  *
118  * LVDS_DUAL_LINK_EVEN_ODD_PIXELS (LKPHA = 0)
119  *
120  * ,--------.  ,--------.  ,--------.  ,--------.  ,---------.
121  * | ODD  LK \/ PIXEL  3 \/ PIXEL  1 \/ PIXEL' 1 \/ PIXEL' 3 |
122  * | EVEN LK /\ PIXEL  2 /\ PIXEL' 0 /\ PIXEL' 2 /\ PIXEL' 4 |
123  * `--------'  `--------'  `--------'  `--------'  `---------'
124  *
125  * LVDS_DUAL_LINK_ODD_EVEN_PIXELS (LKPHA = 1)
126  *
127  * ,--------.  ,--------.  ,--------.  ,--------.  ,---------.
128  * | ODD  LK \/ PIXEL  3 \/ PIXEL  1 \/ PIXEL' 1 \/ PIXEL' 3 |
129  * | EVEN LK /\ PIXEL  4 /\ PIXEL  2 /\ PIXEL' 0 /\ PIXEL' 2 |
130  * `--------'  `--------'  `--------'  `--------'  `---------'
131  *
132  */
133 enum lvds_link_type {
134 	LVDS_SINGLE_LINK_PRIMARY = 0,
135 	LVDS_SINGLE_LINK_SECONDARY,
136 	LVDS_DUAL_LINK_EVEN_ODD_PIXELS,
137 	LVDS_DUAL_LINK_ODD_EVEN_PIXELS,
138 };
139 
140 enum lvds_pixel {
141 	PIX_R_0 = 0,
142 	PIX_R_1,
143 	PIX_R_2,
144 	PIX_R_3,
145 	PIX_R_4,
146 	PIX_R_5,
147 	PIX_R_6,
148 	PIX_R_7,
149 	PIX_G_0,
150 	PIX_G_1,
151 	PIX_G_2,
152 	PIX_G_3,
153 	PIX_G_4,
154 	PIX_G_5,
155 	PIX_G_6,
156 	PIX_G_7,
157 	PIX_B_0,
158 	PIX_B_1,
159 	PIX_B_2,
160 	PIX_B_3,
161 	PIX_B_4,
162 	PIX_B_5,
163 	PIX_B_6,
164 	PIX_B_7,
165 	PIX_H_S,
166 	PIX_V_S,
167 	PIX_D_E,
168 	PIX_C_E,
169 	PIX_C_I,
170 	PIX_TOG,
171 	PIX_ONE,
172 	PIX_ZER,
173 };
174 
175 struct phy_reg_offsets {
176 	u32 GCR;	/* Global Control Register	*/
177 	u32 CMCR1;    /* Current Mode Control Register 1 */
178 	u32 CMCR2;    /* Current Mode Control Register 2 */
179 	u32 SCR;      /* Serial Control Register	*/
180 	u32 BCR1;     /* Bias Control Register 1	*/
181 	u32 BCR2;     /* Bias Control Register 2	*/
182 	u32 BCR3;     /* Bias Control Register 3	*/
183 	u32 MPLCR;    /* Monitor PLL Lock Control Register */
184 	u32 DCR;      /* Debug Control Register	*/
185 	u32 SSR1;     /* Spare Status Register 1	*/
186 	u32 CFGCR;    /* Configuration Control Register */
187 	u32 PLLCR1;   /* PLL_MODE 1 Control Register	*/
188 	u32 PLLCR2;   /* PLL_MODE 2 Control Register	*/
189 	u32 PLLSR;    /* PLL Status Register	*/
190 	u32 PLLSDCR1; /* PLL_SD_1 Control Register	*/
191 	u32 PLLSDCR2; /* PLL_SD_2 Control Register	*/
192 	u32 PLLTWGCR1;/* PLL_TWG_1 Control Register	*/
193 	u32 PLLTWGCR2;/* PLL_TWG_2 Control Register	*/
194 	u32 PLLCPCR;  /* PLL_CP Control Register	*/
195 	u32 PLLTESTCR;/* PLL_TEST Control Register	*/
196 };
197 
198 struct lvds_phy_info {
199 	u32 base;
200 	struct phy_reg_offsets ofs;
201 };
202 
203 static struct lvds_phy_info lvds_phy_16ff_primary = {
204 	.base = 0x1000,
205 	.ofs = {
206 		.GCR = 0x0,
207 		.CMCR1 = 0xC,
208 		.CMCR2 = 0x10,
209 		.SCR = 0x20,
210 		.BCR1 = 0x2C,
211 		.BCR2 = 0x30,
212 		.BCR3 = 0x34,
213 		.MPLCR = 0x64,
214 		.DCR = 0x84,
215 		.SSR1 = 0x88,
216 		.CFGCR = 0xA0,
217 		.PLLCR1 = 0xC0,
218 		.PLLCR2 = 0xC4,
219 		.PLLSR = 0xC8,
220 		.PLLSDCR1 = 0xCC,
221 		.PLLSDCR2 = 0xD0,
222 		.PLLTWGCR1 = 0xD4,
223 		.PLLTWGCR2 = 0xD8,
224 		.PLLCPCR = 0xE0,
225 		.PLLTESTCR = 0xE8,
226 	}
227 };
228 
229 static struct lvds_phy_info lvds_phy_16ff_secondary = {
230 	.base = 0x1100,
231 	.ofs = {
232 		.GCR = 0x0,
233 		.CMCR1 = 0xC,
234 		.CMCR2 = 0x10,
235 		.SCR = 0x20,
236 		.BCR1 = 0x2C,
237 		.BCR2 = 0x30,
238 		.BCR3 = 0x34,
239 		.MPLCR = 0x64,
240 		.DCR = 0x84,
241 		.SSR1 = 0x88,
242 		.CFGCR = 0xA0,
243 		.PLLCR1 = 0xC0,
244 		.PLLCR2 = 0xC4,
245 		.PLLSR = 0xC8,
246 		.PLLSDCR1 = 0xCC,
247 		.PLLSDCR2 = 0xD0,
248 		.PLLTWGCR1 = 0xD4,
249 		.PLLTWGCR2 = 0xD8,
250 		.PLLCPCR = 0xE0,
251 		.PLLTESTCR = 0xE8,
252 	}
253 };
254 
255 struct stm_lvds {
256 	void __iomem *base;
257 	struct device *dev;
258 	struct clk *pclk;		/* APB peripheral clock */
259 	struct clk *pllref_clk;		/* Reference clock for the internal PLL */
260 	struct clk_hw lvds_ck_px;	/* Pixel clock */
261 	u32 pixel_clock_rate;		/* Pixel clock rate */
262 
263 	struct lvds_phy_info *primary;
264 	struct lvds_phy_info *secondary;
265 
266 	struct drm_bridge lvds_bridge;
267 	struct drm_bridge *next_bridge;
268 	struct drm_connector connector;
269 	struct drm_encoder *encoder;
270 	struct drm_panel *panel;
271 
272 	u32 hw_version;
273 	u32 link_type;
274 };
275 
276 #define bridge_to_stm_lvds(b) \
277 	container_of(b, struct stm_lvds, lvds_bridge)
278 
279 #define connector_to_stm_lvds(c) \
280 	container_of(c, struct stm_lvds, connector)
281 
282 #define lvds_is_dual_link(lvds) \
283 	({	\
284 	typeof(lvds) __lvds = (lvds);	\
285 	__lvds == LVDS_DUAL_LINK_EVEN_ODD_PIXELS ||	\
286 	__lvds == LVDS_DUAL_LINK_ODD_EVEN_PIXELS;	\
287 	})
288 
289 static inline void lvds_write(struct stm_lvds *lvds, u32 reg, u32 val)
290 {
291 	writel(val, lvds->base + reg);
292 }
293 
294 static inline u32 lvds_read(struct stm_lvds *lvds, u32 reg)
295 {
296 	return readl(lvds->base + reg);
297 }
298 
299 static inline void lvds_set(struct stm_lvds *lvds, u32 reg, u32 mask)
300 {
301 	lvds_write(lvds, reg, lvds_read(lvds, reg) | mask);
302 }
303 
304 static inline void lvds_clear(struct stm_lvds *lvds, u32 reg, u32 mask)
305 {
306 	lvds_write(lvds, reg, lvds_read(lvds, reg) & ~mask);
307 }
308 
309 /*
310  * Expected JEIDA-RGB888 data to be sent in LSB format
311  *	    bit6 ............................bit0
312  * CHAN0   {ONE, ONE, ZERO, ZERO, ZERO, ONE, ONE}
313  * CHAN1   {G2,  R7,  R6,   R5,   R4,   R3,  R2}
314  * CHAN2   {B3,  B2,  G7,   G6,   G5,   G4,  G3}
315  * CHAN3   {DE,  VS,  HS,   B7,   B6,   B5,  B4}
316  * CHAN4   {CE,  B1,  B0,   G1,   G0,   R1,  R0}
317  */
318 static enum lvds_pixel lvds_bitmap_jeida_rgb888[5][7] = {
319 	{ PIX_ONE, PIX_ONE, PIX_ZER, PIX_ZER, PIX_ZER, PIX_ONE, PIX_ONE },
320 	{ PIX_G_2, PIX_R_7, PIX_R_6, PIX_R_5, PIX_R_4, PIX_R_3, PIX_R_2 },
321 	{ PIX_B_3, PIX_B_2, PIX_G_7, PIX_G_6, PIX_G_5, PIX_G_4, PIX_G_3 },
322 	{ PIX_D_E, PIX_V_S, PIX_H_S, PIX_B_7, PIX_B_6, PIX_B_5, PIX_B_4 },
323 	{ PIX_C_E, PIX_B_1, PIX_B_0, PIX_G_1, PIX_G_0, PIX_R_1, PIX_R_0 }
324 };
325 
326 /*
327  * Expected VESA-RGB888 data to be sent in LSB format
328  *	    bit6 ............................bit0
329  * CHAN0   {ONE, ONE, ZERO, ZERO, ZERO, ONE, ONE}
330  * CHAN1   {G0,  R5,  R4,   R3,   R2,   R1,  R0}
331  * CHAN2   {B1,  B0,  G5,   G4,   G3,   G2,  G1}
332  * CHAN3   {DE,  VS,  HS,   B5,   B4,   B3,  B2}
333  * CHAN4   {CE,  B7,  B6,   G7,   G6,   R7,  R6}
334  */
335 static enum lvds_pixel lvds_bitmap_vesa_rgb888[5][7] = {
336 	{ PIX_ONE, PIX_ONE, PIX_ZER, PIX_ZER, PIX_ZER, PIX_ONE, PIX_ONE },
337 	{ PIX_G_0, PIX_R_5, PIX_R_4, PIX_R_3, PIX_R_2, PIX_R_1, PIX_R_0 },
338 	{ PIX_B_1, PIX_B_0, PIX_G_5, PIX_G_4, PIX_G_3, PIX_G_2, PIX_G_1 },
339 	{ PIX_D_E, PIX_V_S, PIX_H_S, PIX_B_5, PIX_B_4, PIX_B_3, PIX_B_2 },
340 	{ PIX_C_E, PIX_B_7, PIX_B_6, PIX_G_7, PIX_G_6, PIX_R_7, PIX_R_6 }
341 };
342 
343 /*
344  * Clocks and PHY related functions
345  */
346 static int lvds_pll_enable(struct stm_lvds *lvds, struct lvds_phy_info *phy)
347 {
348 	struct drm_device *drm = lvds->lvds_bridge.dev;
349 	u32 lvds_gcr;
350 	int val, ret;
351 
352 	/*
353 	 * PLL lock timing control for the monitor unmask after startup (pll_en)
354 	 * Adjusted value so that the masking window is opened at start-up
355 	 */
356 	lvds_write(lvds, phy->base + phy->ofs.MPLCR, (0x200 - 0x160) << 16);
357 
358 	/* Enable bias */
359 	lvds_write(lvds, phy->base + phy->ofs.BCR2, PHY_BCR2_BIAS_EN);
360 
361 	/* Enable DP, LS, BIT clock output */
362 	lvds_gcr = PHY_GCR_DP_CLK_OUT | PHY_GCR_LS_CLK_OUT | PHY_GCR_BIT_CLK_OUT;
363 	lvds_set(lvds, phy->base + phy->ofs.GCR, lvds_gcr);
364 
365 	/* Power up all output dividers */
366 	lvds_set(lvds, phy->base + phy->ofs.PLLTESTCR, PHY_PLLTESTCR_EN);
367 	lvds_set(lvds, phy->base + phy->ofs.PLLCR1, PHY_PLLCR1_DIV_EN);
368 
369 	/* Set PHY in serial transmission mode */
370 	lvds_set(lvds, phy->base + phy->ofs.SCR, PHY_SCR_TX_EN);
371 
372 	/* Enable the LVDS PLL & wait for its lock */
373 	lvds_set(lvds, phy->base + phy->ofs.PLLCR1, PHY_PLLCR1_PLL_EN);
374 	ret = readl_poll_timeout_atomic(lvds->base + phy->base + phy->ofs.PLLSR,
375 					val, val & PHY_PLLSR_PLL_LOCK,
376 					SLEEP_US, TIMEOUT_US);
377 	if (ret)
378 		drm_err(drm, "!TIMEOUT! waiting PLL, let's continue\n");
379 
380 	/* WCLKCR_SECND_CLKPIX_SEL is for dual link */
381 	lvds_write(lvds, LVDS_WCLKCR, WCLKCR_SECND_CLKPIX_SEL);
382 
383 	lvds_set(lvds, phy->ofs.PLLTESTCR, PHY_PLLTESTCR_CLK_EN);
384 
385 	return ret;
386 }
387 
388 static int pll_get_clkout_khz(int clkin_khz, int bdiv, int mdiv, int ndiv)
389 {
390 	int divisor = ndiv * bdiv;
391 
392 	/* Prevents from division by 0 */
393 	if (!divisor)
394 		return 0;
395 
396 	return clkin_khz * mdiv / divisor;
397 }
398 
399 #define TDIV	70
400 #define NDIV_MIN	2
401 #define NDIV_MAX	6
402 #define BDIV_MIN	2
403 #define BDIV_MAX	6
404 #define MDIV_MIN	1
405 #define MDIV_MAX	1023
406 
407 static int lvds_pll_get_params(struct stm_lvds *lvds,
408 			       unsigned int clkin_khz, unsigned int clkout_khz,
409 			       unsigned int *bdiv, unsigned int *mdiv, unsigned int *ndiv)
410 {
411 	int delta, best_delta; /* all in khz */
412 	int i, o, n;
413 
414 	/* Early checks preventing division by 0 & odd results */
415 	if (clkin_khz <= 0 || clkout_khz <= 0)
416 		return -EINVAL;
417 
418 	best_delta = 1000000; /* big started value (1000000khz) */
419 
420 	for (i = NDIV_MIN; i <= NDIV_MAX; i++) {
421 		for (o = BDIV_MIN; o <= BDIV_MAX; o++) {
422 			n = DIV_ROUND_CLOSEST(i * o * clkout_khz, clkin_khz);
423 			/* Check ndiv according to vco range */
424 			if (n < MDIV_MIN || n > MDIV_MAX)
425 				continue;
426 			/* Check if new delta is better & saves parameters */
427 			delta = pll_get_clkout_khz(clkin_khz, i, n, o) - clkout_khz;
428 			if (delta < 0)
429 				delta = -delta;
430 			if (delta < best_delta) {
431 				*ndiv = i;
432 				*mdiv = n;
433 				*bdiv = o;
434 				best_delta = delta;
435 			}
436 			/* fast return in case of "perfect result" */
437 			if (!delta)
438 				return 0;
439 		}
440 	}
441 
442 	return 0;
443 }
444 
445 static void lvds_pll_config(struct stm_lvds *lvds, struct lvds_phy_info *phy)
446 {
447 	unsigned int pll_in_khz, bdiv = 0, mdiv = 0, ndiv = 0;
448 	struct clk_hw *hwclk;
449 	int multiplier;
450 
451 	/*
452 	 * The LVDS PHY includes a low power low jitter high performance and
453 	 * highly configuration Phase Locked Loop supporting integer and
454 	 * fractional multiplication ratios and Spread Spectrum Clocking.  In
455 	 * integer mode, the only software supported feature for now, the PLL is
456 	 * made of a pre-divider NDIV, a feedback multiplier MDIV, followed by
457 	 * several post-dividers, each one with a specific application.
458 	 *
459 	 *          ,------.         ,-----.     ,-----.
460 	 * Fref --> | NDIV | -Fpdf-> | PFD | --> | VCO | --------> Fvco
461 	 *          `------'     ,-> |     |     `-----'  |
462 	 *                       |   `-----'              |
463 	 *                       |         ,------.       |
464 	 *                       `-------- | MDIV | <-----'
465 	 *                                 `------'
466 	 *
467 	 * From the output of the VCO, the clock can be optionally extracted on
468 	 * the RCC clock observer, with a divider TDIV, for testing purpose, or
469 	 * is passed through a programmable post-divider BDIV.  Finally, the
470 	 * frequency can be divided further with two fixed dividers.
471 	 *
472 	 *                            ,--------.
473 	 *                    ,-----> | DP div | ----------------> Fdp
474 	 *          ,------.  |       `--------'
475 	 * Fvco --> | BDIV | ------------------------------------> Fbit
476 	 *      |   `------'    ,------.   |
477 	 *      `-------------> | TDIV | --.---------------------> ClkObs
478 	 *                      '------'   |    ,--------.
479 	 *                                 `--> | LS div | ------> Fls
480 	 *                                      '--------'
481 	 *
482 	 * The LS and DP clock dividers operate at a fixed ratio of 7 and 3.5
483 	 * respectively with regards to fbit. LS divider converts the bit clock
484 	 * to a pixel clock per lane per clock sample (Fls).  This is useful
485 	 * when used to generate a dot clock for the display unit RGB output,
486 	 * and DP divider is.
487 	 */
488 
489 	hwclk = __clk_get_hw(lvds->pllref_clk);
490 	if (!hwclk)
491 		return;
492 
493 	pll_in_khz = clk_hw_get_rate(hwclk) / 1000;
494 
495 	if (lvds_is_dual_link(lvds->link_type))
496 		multiplier = 2;
497 	else
498 		multiplier = 1;
499 
500 	lvds_pll_get_params(lvds, pll_in_khz,
501 			    lvds->pixel_clock_rate * 7 / 1000 / multiplier,
502 			    &bdiv, &mdiv, &ndiv);
503 
504 	/* Set BDIV, MDIV and NDIV */
505 	lvds_write(lvds, phy->base + phy->ofs.PLLCR2, ndiv << 16);
506 	lvds_set(lvds, phy->base + phy->ofs.PLLCR2, bdiv);
507 	lvds_write(lvds, phy->base + phy->ofs.PLLSDCR1, mdiv);
508 
509 	/* Hardcode TDIV as dynamic values are not yet implemented */
510 	lvds_write(lvds, phy->base + phy->ofs.PLLTESTCR, TDIV << 16);
511 
512 	/*
513 	 * For now, PLL just needs to be in integer mode
514 	 * Fractional and spread spectrum clocking are not yet implemented
515 	 *
516 	 * PLL integer mode:
517 	 *	- PMRY_PLL_TWG_STEP = PMRY_PLL_SD_INT_RATIO
518 	 *	- EN_TWG = 0
519 	 *	- EN_SD = 0
520 	 *	- DOWN_SPREAD = 0
521 	 *
522 	 * PLL fractional mode:
523 	 *	- EN_TWG = 0
524 	 *	- EN_SD = 1
525 	 *	- DOWN_SPREAD = 0
526 	 *
527 	 * Spread Spectrum Clocking
528 	 *	- EN_TWG = 1
529 	 *	- EN_SD = 1
530 	 */
531 
532 	/* Disable TWG and SD */
533 	lvds_clear(lvds, phy->base + phy->ofs.PLLCR1, PHY_PLLCR1_EN_TWG | PHY_PLLCR1_EN_SD);
534 
535 	/* Power up bias and PLL dividers */
536 	lvds_set(lvds, phy->base + phy->ofs.DCR, PHY_DCR_POWER_OK);
537 	lvds_set(lvds, phy->base + phy->ofs.CMCR1, PHY_CMCR_CM_EN_DL);
538 	lvds_set(lvds, phy->base + phy->ofs.CMCR2, PHY_CMCR_CM_EN_DL4);
539 
540 	/* Set up voltage mode */
541 	lvds_set(lvds, phy->base + phy->ofs.PLLCPCR, 0x1);
542 	lvds_set(lvds, phy->base + phy->ofs.BCR3, PHY_BCR3_VM_EN_DL);
543 	lvds_set(lvds, phy->base + phy->ofs.BCR1, PHY_BCR1_EN_BIAS_DL);
544 	/* Enable digital datalanes */
545 	lvds_set(lvds, phy->base + phy->ofs.CFGCR, PHY_CFGCR_EN_DIG_DL);
546 }
547 
548 static int lvds_pixel_clk_enable(struct clk_hw *hw)
549 {
550 	struct stm_lvds *lvds = container_of(hw, struct stm_lvds, lvds_ck_px);
551 	struct drm_device *drm = lvds->lvds_bridge.dev;
552 	struct lvds_phy_info *phy;
553 	int ret;
554 
555 	ret = clk_prepare_enable(lvds->pclk);
556 	if (ret) {
557 		drm_err(drm, "Failed to enable lvds peripheral clk\n");
558 		return ret;
559 	}
560 
561 	ret = clk_prepare_enable(lvds->pllref_clk);
562 	if (ret) {
563 		drm_err(drm, "Failed to enable lvds reference clk\n");
564 		clk_disable_unprepare(lvds->pclk);
565 		return ret;
566 	}
567 
568 	/* In case we are operating in dual link the second PHY is set before the primary PHY. */
569 	if (lvds->secondary) {
570 		phy = lvds->secondary;
571 
572 		/* Release LVDS PHY from reset mode */
573 		lvds_set(lvds, phy->base + phy->ofs.GCR, PHY_GCR_DIV_RSTN | PHY_GCR_RSTZ);
574 		lvds_pll_config(lvds, phy);
575 
576 		ret = lvds_pll_enable(lvds, phy);
577 		if (ret) {
578 			drm_err(drm, "Failed to enable secondary PHY PLL: %d\n", ret);
579 			return ret;
580 		}
581 	}
582 
583 	if (lvds->primary) {
584 		phy = lvds->primary;
585 
586 		/* Release LVDS PHY from reset mode */
587 		lvds_set(lvds, phy->base + phy->ofs.GCR, PHY_GCR_DIV_RSTN | PHY_GCR_RSTZ);
588 		lvds_pll_config(lvds, phy);
589 
590 		ret = lvds_pll_enable(lvds, phy);
591 		if (ret) {
592 			drm_err(drm, "Failed to enable primary PHY PLL: %d\n", ret);
593 			return ret;
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 static void lvds_pixel_clk_disable(struct clk_hw *hw)
601 {
602 	struct stm_lvds *lvds = container_of(hw, struct stm_lvds, lvds_ck_px);
603 
604 	/*
605 	 * For each PHY:
606 	 * Disable DP, LS, BIT clock outputs
607 	 * Shutdown the PLL
608 	 * Assert LVDS PHY in reset mode
609 	 */
610 
611 	if (lvds->primary) {
612 		lvds_clear(lvds, lvds->primary->base + lvds->primary->ofs.GCR,
613 			   (PHY_GCR_DP_CLK_OUT | PHY_GCR_LS_CLK_OUT | PHY_GCR_BIT_CLK_OUT));
614 		lvds_clear(lvds, lvds->primary->base + lvds->primary->ofs.PLLCR1,
615 			   PHY_PLLCR1_PLL_EN);
616 		lvds_clear(lvds, lvds->primary->base + lvds->primary->ofs.GCR,
617 			   PHY_GCR_DIV_RSTN | PHY_GCR_RSTZ);
618 	}
619 
620 	if (lvds->secondary) {
621 		lvds_clear(lvds, lvds->secondary->base + lvds->secondary->ofs.GCR,
622 			   (PHY_GCR_DP_CLK_OUT | PHY_GCR_LS_CLK_OUT | PHY_GCR_BIT_CLK_OUT));
623 		lvds_clear(lvds, lvds->secondary->base + lvds->secondary->ofs.PLLCR1,
624 			   PHY_PLLCR1_PLL_EN);
625 		lvds_clear(lvds, lvds->secondary->base + lvds->secondary->ofs.GCR,
626 			   PHY_GCR_DIV_RSTN | PHY_GCR_RSTZ);
627 	}
628 
629 	clk_disable_unprepare(lvds->pllref_clk);
630 	clk_disable_unprepare(lvds->pclk);
631 }
632 
633 static unsigned long lvds_pixel_clk_recalc_rate(struct clk_hw *hw,
634 						unsigned long parent_rate)
635 {
636 	struct stm_lvds *lvds = container_of(hw, struct stm_lvds, lvds_ck_px);
637 	struct drm_device *drm = lvds->lvds_bridge.dev;
638 	unsigned int pll_in_khz, bdiv, mdiv, ndiv;
639 	int ret, multiplier, pll_out_khz;
640 	u32 val;
641 
642 	ret = clk_prepare_enable(lvds->pclk);
643 	if (ret) {
644 		drm_err(drm, "Failed to enable lvds peripheral clk\n");
645 		return 0;
646 	}
647 
648 	if (lvds_is_dual_link(lvds->link_type))
649 		multiplier = 2;
650 	else
651 		multiplier = 1;
652 
653 	val = lvds_read(lvds, lvds->primary->base + lvds->primary->ofs.PLLCR2);
654 
655 	ndiv = (val & PHY_PLLCR2_NDIV) >> 16;
656 	bdiv = (val & PHY_PLLCR2_BDIV) >> 0;
657 
658 	mdiv = (unsigned int)lvds_read(lvds,
659 				       lvds->primary->base + lvds->primary->ofs.PLLSDCR1);
660 
661 	pll_in_khz = (unsigned int)(parent_rate / 1000);
662 
663 	/* Compute values if not yet accessible */
664 	if (val == 0 || mdiv == 0) {
665 		lvds_pll_get_params(lvds, pll_in_khz,
666 				    lvds->pixel_clock_rate * 7 / 1000 / multiplier,
667 				    &bdiv, &mdiv, &ndiv);
668 	}
669 
670 	pll_out_khz = pll_get_clkout_khz(pll_in_khz, bdiv, mdiv, ndiv);
671 	drm_dbg(drm, "ndiv %d , bdiv %d, mdiv %d, pll_out_khz %d\n",
672 		ndiv, bdiv, mdiv, pll_out_khz);
673 
674 	/*
675 	 * 1/7 because for each pixel in 1 lane there is 7 bits
676 	 * We want pixclk, not bitclk
677 	 */
678 	lvds->pixel_clock_rate = pll_out_khz * 1000 * multiplier / 7;
679 
680 	clk_disable_unprepare(lvds->pclk);
681 
682 	return (unsigned long)lvds->pixel_clock_rate;
683 }
684 
685 static long lvds_pixel_clk_round_rate(struct clk_hw *hw, unsigned long rate,
686 				      unsigned long *parent_rate)
687 {
688 	struct stm_lvds *lvds = container_of(hw, struct stm_lvds, lvds_ck_px);
689 	unsigned int pll_in_khz, bdiv = 0, mdiv = 0, ndiv = 0;
690 	const struct drm_connector *connector;
691 	const struct drm_display_mode *mode;
692 	int multiplier;
693 
694 	connector = &lvds->connector;
695 	if (!connector)
696 		return -EINVAL;
697 
698 	if (list_empty(&connector->modes)) {
699 		drm_dbg(connector->dev, "connector: empty modes list\n");
700 		return -EINVAL;
701 	}
702 
703 	mode = list_first_entry(&connector->modes,
704 				struct drm_display_mode, head);
705 
706 	pll_in_khz = (unsigned int)(*parent_rate / 1000);
707 
708 	if (lvds_is_dual_link(lvds->link_type))
709 		multiplier = 2;
710 	else
711 		multiplier = 1;
712 
713 	lvds_pll_get_params(lvds, pll_in_khz, mode->clock * 7 / multiplier, &bdiv, &mdiv, &ndiv);
714 
715 	/*
716 	 * 1/7 because for each pixel in 1 lane there is 7 bits
717 	 * We want pixclk, not bitclk
718 	 */
719 	lvds->pixel_clock_rate = (unsigned long)pll_get_clkout_khz(pll_in_khz, bdiv, mdiv, ndiv)
720 					 * 1000 * multiplier / 7;
721 
722 	return lvds->pixel_clock_rate;
723 }
724 
725 static const struct clk_ops lvds_pixel_clk_ops = {
726 	.enable = lvds_pixel_clk_enable,
727 	.disable = lvds_pixel_clk_disable,
728 	.recalc_rate = lvds_pixel_clk_recalc_rate,
729 	.round_rate = lvds_pixel_clk_round_rate,
730 };
731 
732 static const struct clk_init_data clk_data = {
733 	.name = "clk_pix_lvds",
734 	.ops = &lvds_pixel_clk_ops,
735 	.parent_names = (const char * []) {"ck_ker_lvdsphy"},
736 	.num_parents = 1,
737 	.flags = CLK_IGNORE_UNUSED,
738 };
739 
740 static void lvds_pixel_clk_unregister(void *data)
741 {
742 	struct stm_lvds *lvds = data;
743 
744 	of_clk_del_provider(lvds->dev->of_node);
745 	clk_hw_unregister(&lvds->lvds_ck_px);
746 }
747 
748 static int lvds_pixel_clk_register(struct stm_lvds *lvds)
749 {
750 	struct device_node *node = lvds->dev->of_node;
751 	int ret;
752 
753 	lvds->lvds_ck_px.init = &clk_data;
754 
755 	/* set the rate by default at 148500000 */
756 	lvds->pixel_clock_rate = 148500000;
757 
758 	ret = clk_hw_register(lvds->dev, &lvds->lvds_ck_px);
759 	if (ret)
760 		return ret;
761 
762 	ret = of_clk_add_hw_provider(node, of_clk_hw_simple_get,
763 				     &lvds->lvds_ck_px);
764 	if (ret)
765 		clk_hw_unregister(&lvds->lvds_ck_px);
766 
767 	return ret;
768 }
769 
770 /*
771  * Host configuration related
772  */
773 static void lvds_config_data_mapping(struct stm_lvds *lvds)
774 {
775 	struct drm_device *drm = lvds->lvds_bridge.dev;
776 	const struct drm_display_info *info;
777 	enum lvds_pixel (*bitmap)[7];
778 	u32 lvds_dmlcr, lvds_dmmcr;
779 	int i;
780 
781 	info = &(&lvds->connector)->display_info;
782 	if (!info->num_bus_formats || !info->bus_formats) {
783 		drm_warn(drm, "No LVDS bus format reported\n");
784 		return;
785 	}
786 
787 	switch (info->bus_formats[0]) {
788 	case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: /* VESA-RGB666 */
789 		drm_warn(drm, "Pixel format with data mapping not yet supported.\n");
790 		return;
791 	case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: /* VESA-RGB888 */
792 		bitmap = lvds_bitmap_vesa_rgb888;
793 		break;
794 	case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: /* JEIDA-RGB888 */
795 		bitmap = lvds_bitmap_jeida_rgb888;
796 		break;
797 	default:
798 		drm_warn(drm, "Unsupported LVDS bus format 0x%04x\n", info->bus_formats[0]);
799 		return;
800 	}
801 
802 	/* Set bitmap for each lane */
803 	for (i = 0; i < 5; i++) {
804 		lvds_dmlcr = ((bitmap[i][0])
805 			      + (bitmap[i][1] << 5)
806 			      + (bitmap[i][2] << 10)
807 			      + (bitmap[i][3] << 15));
808 		lvds_dmmcr = ((bitmap[i][4])
809 			      + (bitmap[i][5] << 5)
810 			      + (bitmap[i][6] << 10));
811 
812 		lvds_write(lvds, LVDS_DMLCR(i), lvds_dmlcr);
813 		lvds_write(lvds, LVDS_DMMCR(i), lvds_dmmcr);
814 	}
815 }
816 
817 static void lvds_config_mode(struct stm_lvds *lvds)
818 {
819 	u32 bus_flags, lvds_cr = 0, lvds_cdl1cr = 0, lvds_cdl2cr = 0;
820 	const struct drm_display_mode *mode;
821 	const struct drm_connector *connector;
822 
823 	connector = &lvds->connector;
824 	if (!connector)
825 		return;
826 
827 	if (list_empty(&connector->modes)) {
828 		drm_dbg(connector->dev, "connector: empty modes list\n");
829 		return;
830 	}
831 
832 	bus_flags = connector->display_info.bus_flags;
833 	mode = list_first_entry(&connector->modes,
834 				struct drm_display_mode, head);
835 
836 	lvds_clear(lvds, LVDS_CR, CR_LKMOD);
837 	lvds_clear(lvds, LVDS_CDL1CR, CDLCR_DISTR0 | CDLCR_DISTR1 | CDLCR_DISTR2 |
838 				      CDLCR_DISTR3 | CDLCR_DISTR4);
839 	lvds_clear(lvds, LVDS_CDL2CR, CDLCR_DISTR0 | CDLCR_DISTR1 | CDLCR_DISTR2 |
840 				      CDLCR_DISTR3 | CDLCR_DISTR4);
841 
842 	/* Set channel distribution */
843 	if (lvds->primary)
844 		lvds_cdl1cr = CDL1CR_DEFAULT;
845 
846 	if (lvds->secondary) {
847 		lvds_cr |= CR_LKMOD;
848 		lvds_cdl2cr = CDL2CR_DEFAULT;
849 	}
850 
851 	/* Set signal polarity */
852 	if (bus_flags & DRM_BUS_FLAG_DE_LOW)
853 		lvds_cr |= CR_DEPOL;
854 
855 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
856 		lvds_cr |= CR_HSPOL;
857 
858 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
859 		lvds_cr |= CR_VSPOL;
860 
861 	switch (lvds->link_type) {
862 	case LVDS_DUAL_LINK_EVEN_ODD_PIXELS: /* LKPHA = 0 */
863 		lvds_cr &= ~CR_LKPHA;
864 		break;
865 	case LVDS_DUAL_LINK_ODD_EVEN_PIXELS: /* LKPHA = 1 */
866 		lvds_cr |= CR_LKPHA;
867 		break;
868 	default:
869 		drm_notice(lvds->lvds_bridge.dev, "No phase precised, setting default\n");
870 		lvds_cr &= ~CR_LKPHA;
871 		break;
872 	}
873 
874 	/* Write config to registers */
875 	lvds_set(lvds, LVDS_CR, lvds_cr);
876 	lvds_write(lvds, LVDS_CDL1CR, lvds_cdl1cr);
877 	lvds_write(lvds, LVDS_CDL2CR, lvds_cdl2cr);
878 }
879 
880 static int lvds_connector_get_modes(struct drm_connector *connector)
881 {
882 	struct stm_lvds *lvds = connector_to_stm_lvds(connector);
883 
884 	return drm_panel_get_modes(lvds->panel, connector);
885 }
886 
887 static int lvds_connector_atomic_check(struct drm_connector *connector,
888 				       struct drm_atomic_state *state)
889 {
890 	const struct drm_display_mode *panel_mode;
891 	struct drm_connector_state *conn_state;
892 	struct drm_crtc_state *crtc_state;
893 
894 	conn_state = drm_atomic_get_new_connector_state(state, connector);
895 	if (!conn_state)
896 		return -EINVAL;
897 
898 	if (list_empty(&connector->modes)) {
899 		drm_dbg(connector->dev, "connector: empty modes list\n");
900 		return -EINVAL;
901 	}
902 
903 	if (!conn_state->crtc)
904 		return -EINVAL;
905 
906 	panel_mode = list_first_entry(&connector->modes,
907 				      struct drm_display_mode, head);
908 
909 	/* We're not allowed to modify the resolution. */
910 	crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
911 	if (IS_ERR(crtc_state))
912 		return PTR_ERR(crtc_state);
913 
914 	if (crtc_state->mode.hdisplay != panel_mode->hdisplay ||
915 	    crtc_state->mode.vdisplay != panel_mode->vdisplay)
916 		return -EINVAL;
917 
918 	/* The flat panel mode is fixed, just copy it to the adjusted mode. */
919 	drm_mode_copy(&crtc_state->adjusted_mode, panel_mode);
920 
921 	return 0;
922 }
923 
924 static const struct drm_connector_helper_funcs lvds_conn_helper_funcs = {
925 	.get_modes = lvds_connector_get_modes,
926 	.atomic_check = lvds_connector_atomic_check,
927 };
928 
929 static const struct drm_connector_funcs lvds_conn_funcs = {
930 	.reset = drm_atomic_helper_connector_reset,
931 	.fill_modes = drm_helper_probe_single_connector_modes,
932 	.destroy = drm_connector_cleanup,
933 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
934 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
935 };
936 
937 static int lvds_attach(struct drm_bridge *bridge,
938 		       enum drm_bridge_attach_flags flags)
939 {
940 	struct stm_lvds *lvds = bridge_to_stm_lvds(bridge);
941 	struct drm_connector *connector = &lvds->connector;
942 	struct drm_encoder *encoder = bridge->encoder;
943 	int ret;
944 
945 	if (!bridge->encoder) {
946 		drm_err(bridge->dev, "Parent encoder object not found\n");
947 		return -ENODEV;
948 	}
949 
950 	/* Set the encoder type as caller does not know it */
951 	bridge->encoder->encoder_type = DRM_MODE_ENCODER_LVDS;
952 
953 	/* No cloning support */
954 	bridge->encoder->possible_clones = 0;
955 
956 	/* If we have a next bridge just attach it. */
957 	if (lvds->next_bridge)
958 		return drm_bridge_attach(bridge->encoder, lvds->next_bridge,
959 					 bridge, flags);
960 
961 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
962 		drm_err(bridge->dev, "Fix bridge driver to make connector optional!");
963 		return -EINVAL;
964 	}
965 
966 	/* Otherwise if we have a panel, create a connector. */
967 	if (!lvds->panel)
968 		return 0;
969 
970 	ret = drm_connector_init(bridge->dev, connector,
971 				 &lvds_conn_funcs, DRM_MODE_CONNECTOR_LVDS);
972 	if (ret < 0)
973 		return ret;
974 
975 	drm_connector_helper_add(connector, &lvds_conn_helper_funcs);
976 
977 	ret = drm_connector_attach_encoder(connector, encoder);
978 
979 	return ret;
980 }
981 
982 static void lvds_atomic_enable(struct drm_bridge *bridge,
983 			       struct drm_bridge_state *old_bridge_state)
984 {
985 	struct drm_atomic_state *state = old_bridge_state->base.state;
986 	struct stm_lvds *lvds = bridge_to_stm_lvds(bridge);
987 	struct drm_connector_state *conn_state;
988 	struct drm_connector *connector;
989 	int ret;
990 
991 	ret = clk_prepare_enable(lvds->pclk);
992 	if (ret) {
993 		drm_err(bridge->dev, "Failed to enable lvds peripheral clk\n");
994 		return;
995 	}
996 
997 	connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
998 	if (!connector)
999 		return;
1000 
1001 	conn_state = drm_atomic_get_new_connector_state(state, connector);
1002 	if (!conn_state)
1003 		return;
1004 
1005 	lvds_config_mode(lvds);
1006 
1007 	/* Set Data Mapping */
1008 	lvds_config_data_mapping(lvds);
1009 
1010 	/* Turn the output on. */
1011 	lvds_set(lvds, LVDS_CR, CR_LVDSEN);
1012 
1013 	if (lvds->panel) {
1014 		drm_panel_prepare(lvds->panel);
1015 		drm_panel_enable(lvds->panel);
1016 	}
1017 }
1018 
1019 static void lvds_atomic_disable(struct drm_bridge *bridge,
1020 				struct drm_bridge_state *old_bridge_state)
1021 {
1022 	struct stm_lvds *lvds = bridge_to_stm_lvds(bridge);
1023 
1024 	if (lvds->panel) {
1025 		drm_panel_disable(lvds->panel);
1026 		drm_panel_unprepare(lvds->panel);
1027 	}
1028 
1029 	/* Disable LVDS module */
1030 	lvds_clear(lvds, LVDS_CR, CR_LVDSEN);
1031 
1032 	clk_disable_unprepare(lvds->pclk);
1033 }
1034 
1035 static const struct drm_bridge_funcs lvds_bridge_funcs = {
1036 	.attach = lvds_attach,
1037 	.atomic_enable = lvds_atomic_enable,
1038 	.atomic_disable = lvds_atomic_disable,
1039 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1040 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1041 	.atomic_reset = drm_atomic_helper_bridge_reset,
1042 };
1043 
1044 static int lvds_probe(struct platform_device *pdev)
1045 {
1046 	struct device_node *port1, *port2, *remote;
1047 	struct device *dev = &pdev->dev;
1048 	struct reset_control *rstc;
1049 	struct stm_lvds *lvds;
1050 	int ret, dual_link;
1051 
1052 	dev_dbg(dev, "Probing LVDS driver...\n");
1053 
1054 	lvds = devm_kzalloc(dev, sizeof(*lvds), GFP_KERNEL);
1055 	if (!lvds)
1056 		return -ENOMEM;
1057 
1058 	lvds->dev = dev;
1059 
1060 	ret = drm_of_find_panel_or_bridge(dev->of_node, 1, 0,
1061 					  &lvds->panel, &lvds->next_bridge);
1062 	if (ret) {
1063 		dev_err_probe(dev, ret, "Panel not found\n");
1064 		return ret;
1065 	}
1066 
1067 	lvds->base = devm_platform_ioremap_resource(pdev, 0);
1068 	if (IS_ERR(lvds->base)) {
1069 		ret = PTR_ERR(lvds->base);
1070 		dev_err(dev, "Unable to get regs %d\n", ret);
1071 		return ret;
1072 	}
1073 
1074 	lvds->pclk = devm_clk_get(dev, "pclk");
1075 	if (IS_ERR(lvds->pclk)) {
1076 		ret = PTR_ERR(lvds->pclk);
1077 		dev_err(dev, "Unable to get peripheral clock: %d\n", ret);
1078 		return ret;
1079 	}
1080 
1081 	ret = clk_prepare_enable(lvds->pclk);
1082 	if (ret) {
1083 		dev_err(dev, "%s: Failed to enable peripheral clk\n", __func__);
1084 		return ret;
1085 	}
1086 
1087 	rstc = devm_reset_control_get_exclusive(dev, NULL);
1088 
1089 	if (IS_ERR(rstc)) {
1090 		ret = PTR_ERR(rstc);
1091 		goto err_lvds_probe;
1092 	}
1093 
1094 	reset_control_assert(rstc);
1095 	usleep_range(10, 20);
1096 	reset_control_deassert(rstc);
1097 
1098 	port1 = of_graph_get_port_by_id(dev->of_node, 1);
1099 	port2 = of_graph_get_port_by_id(dev->of_node, 2);
1100 	dual_link = drm_of_lvds_get_dual_link_pixel_order(port1, port2);
1101 
1102 	switch (dual_link) {
1103 	case DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS:
1104 		lvds->link_type = LVDS_DUAL_LINK_ODD_EVEN_PIXELS;
1105 		lvds->primary = &lvds_phy_16ff_primary;
1106 		lvds->secondary = &lvds_phy_16ff_secondary;
1107 		break;
1108 	case DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS:
1109 		lvds->link_type = LVDS_DUAL_LINK_EVEN_ODD_PIXELS;
1110 		lvds->primary = &lvds_phy_16ff_primary;
1111 		lvds->secondary = &lvds_phy_16ff_secondary;
1112 		break;
1113 	case -EINVAL:
1114 		/*
1115 		 * drm_of_lvds_get_dual_pixel_order returns 4 possible values.
1116 		 * In the case where the returned value is an error, it can be
1117 		 * either ENODEV or EINVAL. Seeing the structure of this
1118 		 * function, EINVAL means that either port1 or port2 is not
1119 		 * present in the device tree.
1120 		 * In that case, the lvds panel can be a single link panel, or
1121 		 * there is a semantical error in the device tree code.
1122 		 */
1123 		remote = of_get_next_available_child(port1, NULL);
1124 		if (remote) {
1125 			if (of_graph_get_remote_endpoint(remote)) {
1126 				lvds->link_type = LVDS_SINGLE_LINK_PRIMARY;
1127 				lvds->primary = &lvds_phy_16ff_primary;
1128 				lvds->secondary = NULL;
1129 			} else {
1130 				ret = -EINVAL;
1131 			}
1132 
1133 			of_node_put(remote);
1134 		}
1135 
1136 		remote = of_get_next_available_child(port2, NULL);
1137 		if (remote) {
1138 			if (of_graph_get_remote_endpoint(remote)) {
1139 				lvds->link_type = LVDS_SINGLE_LINK_SECONDARY;
1140 				lvds->primary = NULL;
1141 				lvds->secondary = &lvds_phy_16ff_secondary;
1142 			} else {
1143 				ret = (ret == -EINVAL) ? -EINVAL : 0;
1144 			}
1145 
1146 			of_node_put(remote);
1147 		}
1148 		break;
1149 	default:
1150 		ret = -EINVAL;
1151 		goto err_lvds_probe;
1152 	}
1153 	of_node_put(port1);
1154 	of_node_put(port2);
1155 
1156 	lvds->pllref_clk = devm_clk_get(dev, "ref");
1157 	if (IS_ERR(lvds->pllref_clk)) {
1158 		ret = PTR_ERR(lvds->pllref_clk);
1159 		dev_err(dev, "Unable to get reference clock: %d\n", ret);
1160 		goto err_lvds_probe;
1161 	}
1162 
1163 	ret = lvds_pixel_clk_register(lvds);
1164 	if (ret) {
1165 		dev_err(dev, "Failed to register LVDS pixel clock: %d\n", ret);
1166 		goto err_lvds_probe;
1167 	}
1168 
1169 	lvds->lvds_bridge.funcs = &lvds_bridge_funcs;
1170 	lvds->lvds_bridge.of_node = dev->of_node;
1171 	lvds->hw_version = lvds_read(lvds, LVDS_VERR);
1172 
1173 	dev_info(dev, "version 0x%02x initialized\n", lvds->hw_version);
1174 
1175 	drm_bridge_add(&lvds->lvds_bridge);
1176 
1177 	platform_set_drvdata(pdev, lvds);
1178 
1179 	clk_disable_unprepare(lvds->pclk);
1180 
1181 	return 0;
1182 
1183 err_lvds_probe:
1184 	clk_disable_unprepare(lvds->pclk);
1185 
1186 	return ret;
1187 }
1188 
1189 static void lvds_remove(struct platform_device *pdev)
1190 {
1191 	struct stm_lvds *lvds = platform_get_drvdata(pdev);
1192 
1193 	lvds_pixel_clk_unregister(lvds);
1194 
1195 	drm_bridge_remove(&lvds->lvds_bridge);
1196 }
1197 
1198 static const struct of_device_id lvds_dt_ids[] = {
1199 	{
1200 		.compatible = "st,stm32mp25-lvds",
1201 		.data = NULL
1202 	},
1203 	{ /* sentinel */ }
1204 };
1205 
1206 MODULE_DEVICE_TABLE(of, lvds_dt_ids);
1207 
1208 static struct platform_driver lvds_platform_driver = {
1209 	.probe = lvds_probe,
1210 	.remove = lvds_remove,
1211 	.driver = {
1212 		.name = "stm32-display-lvds",
1213 		.of_match_table = lvds_dt_ids,
1214 	},
1215 };
1216 
1217 module_platform_driver(lvds_platform_driver);
1218 
1219 MODULE_AUTHOR("Raphaël Gallais-Pou <raphael.gallais-pou@foss.st.com>");
1220 MODULE_AUTHOR("Philippe Cornu <philippe.cornu@foss.st.com>");
1221 MODULE_AUTHOR("Yannick Fertre <yannick.fertre@foss.st.com>");
1222 MODULE_DESCRIPTION("STMicroelectronics LVDS Display Interface Transmitter DRM driver");
1223 MODULE_LICENSE("GPL");
1224