1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 /** 25 * DOC: Overview 26 * 27 * The GPU scheduler provides entities which allow userspace to push jobs 28 * into software queues which are then scheduled on a hardware run queue. 29 * The software queues have a priority among them. The scheduler selects the entities 30 * from the run queue using a FIFO. The scheduler provides dependency handling 31 * features among jobs. The driver is supposed to provide callback functions for 32 * backend operations to the scheduler like submitting a job to hardware run queue, 33 * returning the dependencies of a job etc. 34 * 35 * The organisation of the scheduler is the following: 36 * 37 * 1. Each hw run queue has one scheduler 38 * 2. Each scheduler has multiple run queues with different priorities 39 * (e.g., HIGH_HW,HIGH_SW, KERNEL, NORMAL) 40 * 3. Each scheduler run queue has a queue of entities to schedule 41 * 4. Entities themselves maintain a queue of jobs that will be scheduled on 42 * the hardware. 43 * 44 * The jobs in a entity are always scheduled in the order that they were pushed. 45 * 46 * Note that once a job was taken from the entities queue and pushed to the 47 * hardware, i.e. the pending queue, the entity must not be referenced anymore 48 * through the jobs entity pointer. 49 */ 50 51 /** 52 * DOC: Flow Control 53 * 54 * The DRM GPU scheduler provides a flow control mechanism to regulate the rate 55 * in which the jobs fetched from scheduler entities are executed. 56 * 57 * In this context the &drm_gpu_scheduler keeps track of a driver specified 58 * credit limit representing the capacity of this scheduler and a credit count; 59 * every &drm_sched_job carries a driver specified number of credits. 60 * 61 * Once a job is executed (but not yet finished), the job's credits contribute 62 * to the scheduler's credit count until the job is finished. If by executing 63 * one more job the scheduler's credit count would exceed the scheduler's 64 * credit limit, the job won't be executed. Instead, the scheduler will wait 65 * until the credit count has decreased enough to not overflow its credit limit. 66 * This implies waiting for previously executed jobs. 67 * 68 * Optionally, drivers may register a callback (update_job_credits) provided by 69 * struct drm_sched_backend_ops to update the job's credits dynamically. The 70 * scheduler executes this callback every time the scheduler considers a job for 71 * execution and subsequently checks whether the job fits the scheduler's credit 72 * limit. 73 */ 74 75 #include <linux/wait.h> 76 #include <linux/sched.h> 77 #include <linux/completion.h> 78 #include <linux/dma-resv.h> 79 #include <uapi/linux/sched/types.h> 80 81 #include <drm/drm_print.h> 82 #include <drm/drm_gem.h> 83 #include <drm/drm_syncobj.h> 84 #include <drm/gpu_scheduler.h> 85 #include <drm/spsc_queue.h> 86 87 #define CREATE_TRACE_POINTS 88 #include "gpu_scheduler_trace.h" 89 90 #ifdef CONFIG_LOCKDEP 91 static struct lockdep_map drm_sched_lockdep_map = { 92 .name = "drm_sched_lockdep_map" 93 }; 94 #endif 95 96 #define to_drm_sched_job(sched_job) \ 97 container_of((sched_job), struct drm_sched_job, queue_node) 98 99 int drm_sched_policy = DRM_SCHED_POLICY_FIFO; 100 101 /** 102 * DOC: sched_policy (int) 103 * Used to override default entities scheduling policy in a run queue. 104 */ 105 MODULE_PARM_DESC(sched_policy, "Specify the scheduling policy for entities on a run-queue, " __stringify(DRM_SCHED_POLICY_RR) " = Round Robin, " __stringify(DRM_SCHED_POLICY_FIFO) " = FIFO (default)."); 106 module_param_named(sched_policy, drm_sched_policy, int, 0444); 107 108 static u32 drm_sched_available_credits(struct drm_gpu_scheduler *sched) 109 { 110 u32 credits; 111 112 drm_WARN_ON(sched, check_sub_overflow(sched->credit_limit, 113 atomic_read(&sched->credit_count), 114 &credits)); 115 116 return credits; 117 } 118 119 /** 120 * drm_sched_can_queue -- Can we queue more to the hardware? 121 * @sched: scheduler instance 122 * @entity: the scheduler entity 123 * 124 * Return true if we can push at least one more job from @entity, false 125 * otherwise. 126 */ 127 static bool drm_sched_can_queue(struct drm_gpu_scheduler *sched, 128 struct drm_sched_entity *entity) 129 { 130 struct drm_sched_job *s_job; 131 132 s_job = to_drm_sched_job(spsc_queue_peek(&entity->job_queue)); 133 if (!s_job) 134 return false; 135 136 if (sched->ops->update_job_credits) { 137 s_job->credits = sched->ops->update_job_credits(s_job); 138 139 drm_WARN(sched, !s_job->credits, 140 "Jobs with zero credits bypass job-flow control.\n"); 141 } 142 143 /* If a job exceeds the credit limit, truncate it to the credit limit 144 * itself to guarantee forward progress. 145 */ 146 if (drm_WARN(sched, s_job->credits > sched->credit_limit, 147 "Jobs may not exceed the credit limit, truncate.\n")) 148 s_job->credits = sched->credit_limit; 149 150 return drm_sched_available_credits(sched) >= s_job->credits; 151 } 152 153 static __always_inline bool drm_sched_entity_compare_before(struct rb_node *a, 154 const struct rb_node *b) 155 { 156 struct drm_sched_entity *ent_a = rb_entry((a), struct drm_sched_entity, rb_tree_node); 157 struct drm_sched_entity *ent_b = rb_entry((b), struct drm_sched_entity, rb_tree_node); 158 159 return ktime_before(ent_a->oldest_job_waiting, ent_b->oldest_job_waiting); 160 } 161 162 static inline void drm_sched_rq_remove_fifo_locked(struct drm_sched_entity *entity) 163 { 164 struct drm_sched_rq *rq = entity->rq; 165 166 if (!RB_EMPTY_NODE(&entity->rb_tree_node)) { 167 rb_erase_cached(&entity->rb_tree_node, &rq->rb_tree_root); 168 RB_CLEAR_NODE(&entity->rb_tree_node); 169 } 170 } 171 172 void drm_sched_rq_update_fifo(struct drm_sched_entity *entity, ktime_t ts) 173 { 174 /* 175 * Both locks need to be grabbed, one to protect from entity->rq change 176 * for entity from within concurrent drm_sched_entity_select_rq and the 177 * other to update the rb tree structure. 178 */ 179 spin_lock(&entity->rq_lock); 180 spin_lock(&entity->rq->lock); 181 182 drm_sched_rq_remove_fifo_locked(entity); 183 184 entity->oldest_job_waiting = ts; 185 186 rb_add_cached(&entity->rb_tree_node, &entity->rq->rb_tree_root, 187 drm_sched_entity_compare_before); 188 189 spin_unlock(&entity->rq->lock); 190 spin_unlock(&entity->rq_lock); 191 } 192 193 /** 194 * drm_sched_rq_init - initialize a given run queue struct 195 * 196 * @sched: scheduler instance to associate with this run queue 197 * @rq: scheduler run queue 198 * 199 * Initializes a scheduler runqueue. 200 */ 201 static void drm_sched_rq_init(struct drm_gpu_scheduler *sched, 202 struct drm_sched_rq *rq) 203 { 204 spin_lock_init(&rq->lock); 205 INIT_LIST_HEAD(&rq->entities); 206 rq->rb_tree_root = RB_ROOT_CACHED; 207 rq->current_entity = NULL; 208 rq->sched = sched; 209 } 210 211 /** 212 * drm_sched_rq_add_entity - add an entity 213 * 214 * @rq: scheduler run queue 215 * @entity: scheduler entity 216 * 217 * Adds a scheduler entity to the run queue. 218 */ 219 void drm_sched_rq_add_entity(struct drm_sched_rq *rq, 220 struct drm_sched_entity *entity) 221 { 222 if (!list_empty(&entity->list)) 223 return; 224 225 spin_lock(&rq->lock); 226 227 atomic_inc(rq->sched->score); 228 list_add_tail(&entity->list, &rq->entities); 229 230 spin_unlock(&rq->lock); 231 } 232 233 /** 234 * drm_sched_rq_remove_entity - remove an entity 235 * 236 * @rq: scheduler run queue 237 * @entity: scheduler entity 238 * 239 * Removes a scheduler entity from the run queue. 240 */ 241 void drm_sched_rq_remove_entity(struct drm_sched_rq *rq, 242 struct drm_sched_entity *entity) 243 { 244 if (list_empty(&entity->list)) 245 return; 246 247 spin_lock(&rq->lock); 248 249 atomic_dec(rq->sched->score); 250 list_del_init(&entity->list); 251 252 if (rq->current_entity == entity) 253 rq->current_entity = NULL; 254 255 if (drm_sched_policy == DRM_SCHED_POLICY_FIFO) 256 drm_sched_rq_remove_fifo_locked(entity); 257 258 spin_unlock(&rq->lock); 259 } 260 261 /** 262 * drm_sched_rq_select_entity_rr - Select an entity which could provide a job to run 263 * 264 * @sched: the gpu scheduler 265 * @rq: scheduler run queue to check. 266 * 267 * Try to find the next ready entity. 268 * 269 * Return an entity if one is found; return an error-pointer (!NULL) if an 270 * entity was ready, but the scheduler had insufficient credits to accommodate 271 * its job; return NULL, if no ready entity was found. 272 */ 273 static struct drm_sched_entity * 274 drm_sched_rq_select_entity_rr(struct drm_gpu_scheduler *sched, 275 struct drm_sched_rq *rq) 276 { 277 struct drm_sched_entity *entity; 278 279 spin_lock(&rq->lock); 280 281 entity = rq->current_entity; 282 if (entity) { 283 list_for_each_entry_continue(entity, &rq->entities, list) { 284 if (drm_sched_entity_is_ready(entity)) { 285 /* If we can't queue yet, preserve the current 286 * entity in terms of fairness. 287 */ 288 if (!drm_sched_can_queue(sched, entity)) { 289 spin_unlock(&rq->lock); 290 return ERR_PTR(-ENOSPC); 291 } 292 293 rq->current_entity = entity; 294 reinit_completion(&entity->entity_idle); 295 spin_unlock(&rq->lock); 296 return entity; 297 } 298 } 299 } 300 301 list_for_each_entry(entity, &rq->entities, list) { 302 if (drm_sched_entity_is_ready(entity)) { 303 /* If we can't queue yet, preserve the current entity in 304 * terms of fairness. 305 */ 306 if (!drm_sched_can_queue(sched, entity)) { 307 spin_unlock(&rq->lock); 308 return ERR_PTR(-ENOSPC); 309 } 310 311 rq->current_entity = entity; 312 reinit_completion(&entity->entity_idle); 313 spin_unlock(&rq->lock); 314 return entity; 315 } 316 317 if (entity == rq->current_entity) 318 break; 319 } 320 321 spin_unlock(&rq->lock); 322 323 return NULL; 324 } 325 326 /** 327 * drm_sched_rq_select_entity_fifo - Select an entity which provides a job to run 328 * 329 * @sched: the gpu scheduler 330 * @rq: scheduler run queue to check. 331 * 332 * Find oldest waiting ready entity. 333 * 334 * Return an entity if one is found; return an error-pointer (!NULL) if an 335 * entity was ready, but the scheduler had insufficient credits to accommodate 336 * its job; return NULL, if no ready entity was found. 337 */ 338 static struct drm_sched_entity * 339 drm_sched_rq_select_entity_fifo(struct drm_gpu_scheduler *sched, 340 struct drm_sched_rq *rq) 341 { 342 struct rb_node *rb; 343 344 spin_lock(&rq->lock); 345 for (rb = rb_first_cached(&rq->rb_tree_root); rb; rb = rb_next(rb)) { 346 struct drm_sched_entity *entity; 347 348 entity = rb_entry(rb, struct drm_sched_entity, rb_tree_node); 349 if (drm_sched_entity_is_ready(entity)) { 350 /* If we can't queue yet, preserve the current entity in 351 * terms of fairness. 352 */ 353 if (!drm_sched_can_queue(sched, entity)) { 354 spin_unlock(&rq->lock); 355 return ERR_PTR(-ENOSPC); 356 } 357 358 rq->current_entity = entity; 359 reinit_completion(&entity->entity_idle); 360 break; 361 } 362 } 363 spin_unlock(&rq->lock); 364 365 return rb ? rb_entry(rb, struct drm_sched_entity, rb_tree_node) : NULL; 366 } 367 368 /** 369 * drm_sched_run_job_queue - enqueue run-job work 370 * @sched: scheduler instance 371 */ 372 static void drm_sched_run_job_queue(struct drm_gpu_scheduler *sched) 373 { 374 if (!READ_ONCE(sched->pause_submit)) 375 queue_work(sched->submit_wq, &sched->work_run_job); 376 } 377 378 /** 379 * __drm_sched_run_free_queue - enqueue free-job work 380 * @sched: scheduler instance 381 */ 382 static void __drm_sched_run_free_queue(struct drm_gpu_scheduler *sched) 383 { 384 if (!READ_ONCE(sched->pause_submit)) 385 queue_work(sched->submit_wq, &sched->work_free_job); 386 } 387 388 /** 389 * drm_sched_run_free_queue - enqueue free-job work if ready 390 * @sched: scheduler instance 391 */ 392 static void drm_sched_run_free_queue(struct drm_gpu_scheduler *sched) 393 { 394 struct drm_sched_job *job; 395 396 spin_lock(&sched->job_list_lock); 397 job = list_first_entry_or_null(&sched->pending_list, 398 struct drm_sched_job, list); 399 if (job && dma_fence_is_signaled(&job->s_fence->finished)) 400 __drm_sched_run_free_queue(sched); 401 spin_unlock(&sched->job_list_lock); 402 } 403 404 /** 405 * drm_sched_job_done - complete a job 406 * @s_job: pointer to the job which is done 407 * 408 * Finish the job's fence and wake up the worker thread. 409 */ 410 static void drm_sched_job_done(struct drm_sched_job *s_job, int result) 411 { 412 struct drm_sched_fence *s_fence = s_job->s_fence; 413 struct drm_gpu_scheduler *sched = s_fence->sched; 414 415 atomic_sub(s_job->credits, &sched->credit_count); 416 atomic_dec(sched->score); 417 418 trace_drm_sched_process_job(s_fence); 419 420 dma_fence_get(&s_fence->finished); 421 drm_sched_fence_finished(s_fence, result); 422 dma_fence_put(&s_fence->finished); 423 __drm_sched_run_free_queue(sched); 424 } 425 426 /** 427 * drm_sched_job_done_cb - the callback for a done job 428 * @f: fence 429 * @cb: fence callbacks 430 */ 431 static void drm_sched_job_done_cb(struct dma_fence *f, struct dma_fence_cb *cb) 432 { 433 struct drm_sched_job *s_job = container_of(cb, struct drm_sched_job, cb); 434 435 drm_sched_job_done(s_job, f->error); 436 } 437 438 /** 439 * drm_sched_start_timeout - start timeout for reset worker 440 * 441 * @sched: scheduler instance to start the worker for 442 * 443 * Start the timeout for the given scheduler. 444 */ 445 static void drm_sched_start_timeout(struct drm_gpu_scheduler *sched) 446 { 447 lockdep_assert_held(&sched->job_list_lock); 448 449 if (sched->timeout != MAX_SCHEDULE_TIMEOUT && 450 !list_empty(&sched->pending_list)) 451 mod_delayed_work(sched->timeout_wq, &sched->work_tdr, sched->timeout); 452 } 453 454 static void drm_sched_start_timeout_unlocked(struct drm_gpu_scheduler *sched) 455 { 456 spin_lock(&sched->job_list_lock); 457 drm_sched_start_timeout(sched); 458 spin_unlock(&sched->job_list_lock); 459 } 460 461 /** 462 * drm_sched_tdr_queue_imm: - immediately start job timeout handler 463 * 464 * @sched: scheduler for which the timeout handling should be started. 465 * 466 * Start timeout handling immediately for the named scheduler. 467 */ 468 void drm_sched_tdr_queue_imm(struct drm_gpu_scheduler *sched) 469 { 470 spin_lock(&sched->job_list_lock); 471 sched->timeout = 0; 472 drm_sched_start_timeout(sched); 473 spin_unlock(&sched->job_list_lock); 474 } 475 EXPORT_SYMBOL(drm_sched_tdr_queue_imm); 476 477 /** 478 * drm_sched_fault - immediately start timeout handler 479 * 480 * @sched: scheduler where the timeout handling should be started. 481 * 482 * Start timeout handling immediately when the driver detects a hardware fault. 483 */ 484 void drm_sched_fault(struct drm_gpu_scheduler *sched) 485 { 486 if (sched->timeout_wq) 487 mod_delayed_work(sched->timeout_wq, &sched->work_tdr, 0); 488 } 489 EXPORT_SYMBOL(drm_sched_fault); 490 491 /** 492 * drm_sched_suspend_timeout - Suspend scheduler job timeout 493 * 494 * @sched: scheduler instance for which to suspend the timeout 495 * 496 * Suspend the delayed work timeout for the scheduler. This is done by 497 * modifying the delayed work timeout to an arbitrary large value, 498 * MAX_SCHEDULE_TIMEOUT in this case. 499 * 500 * Returns the timeout remaining 501 * 502 */ 503 unsigned long drm_sched_suspend_timeout(struct drm_gpu_scheduler *sched) 504 { 505 unsigned long sched_timeout, now = jiffies; 506 507 sched_timeout = sched->work_tdr.timer.expires; 508 509 /* 510 * Modify the timeout to an arbitrarily large value. This also prevents 511 * the timeout to be restarted when new submissions arrive 512 */ 513 if (mod_delayed_work(sched->timeout_wq, &sched->work_tdr, MAX_SCHEDULE_TIMEOUT) 514 && time_after(sched_timeout, now)) 515 return sched_timeout - now; 516 else 517 return sched->timeout; 518 } 519 EXPORT_SYMBOL(drm_sched_suspend_timeout); 520 521 /** 522 * drm_sched_resume_timeout - Resume scheduler job timeout 523 * 524 * @sched: scheduler instance for which to resume the timeout 525 * @remaining: remaining timeout 526 * 527 * Resume the delayed work timeout for the scheduler. 528 */ 529 void drm_sched_resume_timeout(struct drm_gpu_scheduler *sched, 530 unsigned long remaining) 531 { 532 spin_lock(&sched->job_list_lock); 533 534 if (list_empty(&sched->pending_list)) 535 cancel_delayed_work(&sched->work_tdr); 536 else 537 mod_delayed_work(sched->timeout_wq, &sched->work_tdr, remaining); 538 539 spin_unlock(&sched->job_list_lock); 540 } 541 EXPORT_SYMBOL(drm_sched_resume_timeout); 542 543 static void drm_sched_job_begin(struct drm_sched_job *s_job) 544 { 545 struct drm_gpu_scheduler *sched = s_job->sched; 546 547 spin_lock(&sched->job_list_lock); 548 list_add_tail(&s_job->list, &sched->pending_list); 549 drm_sched_start_timeout(sched); 550 spin_unlock(&sched->job_list_lock); 551 } 552 553 static void drm_sched_job_timedout(struct work_struct *work) 554 { 555 struct drm_gpu_scheduler *sched; 556 struct drm_sched_job *job; 557 enum drm_gpu_sched_stat status = DRM_GPU_SCHED_STAT_NOMINAL; 558 559 sched = container_of(work, struct drm_gpu_scheduler, work_tdr.work); 560 561 /* Protects against concurrent deletion in drm_sched_get_finished_job */ 562 spin_lock(&sched->job_list_lock); 563 job = list_first_entry_or_null(&sched->pending_list, 564 struct drm_sched_job, list); 565 566 if (job) { 567 /* 568 * Remove the bad job so it cannot be freed by concurrent 569 * drm_sched_cleanup_jobs. It will be reinserted back after sched->thread 570 * is parked at which point it's safe. 571 */ 572 list_del_init(&job->list); 573 spin_unlock(&sched->job_list_lock); 574 575 status = job->sched->ops->timedout_job(job); 576 577 /* 578 * Guilty job did complete and hence needs to be manually removed 579 * See drm_sched_stop doc. 580 */ 581 if (sched->free_guilty) { 582 job->sched->ops->free_job(job); 583 sched->free_guilty = false; 584 } 585 } else { 586 spin_unlock(&sched->job_list_lock); 587 } 588 589 if (status != DRM_GPU_SCHED_STAT_ENODEV) 590 drm_sched_start_timeout_unlocked(sched); 591 } 592 593 /** 594 * drm_sched_stop - stop the scheduler 595 * 596 * @sched: scheduler instance 597 * @bad: job which caused the time out 598 * 599 * Stop the scheduler and also removes and frees all completed jobs. 600 * Note: bad job will not be freed as it might be used later and so it's 601 * callers responsibility to release it manually if it's not part of the 602 * pending list any more. 603 * 604 */ 605 void drm_sched_stop(struct drm_gpu_scheduler *sched, struct drm_sched_job *bad) 606 { 607 struct drm_sched_job *s_job, *tmp; 608 609 drm_sched_wqueue_stop(sched); 610 611 /* 612 * Reinsert back the bad job here - now it's safe as 613 * drm_sched_get_finished_job cannot race against us and release the 614 * bad job at this point - we parked (waited for) any in progress 615 * (earlier) cleanups and drm_sched_get_finished_job will not be called 616 * now until the scheduler thread is unparked. 617 */ 618 if (bad && bad->sched == sched) 619 /* 620 * Add at the head of the queue to reflect it was the earliest 621 * job extracted. 622 */ 623 list_add(&bad->list, &sched->pending_list); 624 625 /* 626 * Iterate the job list from later to earlier one and either deactive 627 * their HW callbacks or remove them from pending list if they already 628 * signaled. 629 * This iteration is thread safe as sched thread is stopped. 630 */ 631 list_for_each_entry_safe_reverse(s_job, tmp, &sched->pending_list, 632 list) { 633 if (s_job->s_fence->parent && 634 dma_fence_remove_callback(s_job->s_fence->parent, 635 &s_job->cb)) { 636 dma_fence_put(s_job->s_fence->parent); 637 s_job->s_fence->parent = NULL; 638 atomic_sub(s_job->credits, &sched->credit_count); 639 } else { 640 /* 641 * remove job from pending_list. 642 * Locking here is for concurrent resume timeout 643 */ 644 spin_lock(&sched->job_list_lock); 645 list_del_init(&s_job->list); 646 spin_unlock(&sched->job_list_lock); 647 648 /* 649 * Wait for job's HW fence callback to finish using s_job 650 * before releasing it. 651 * 652 * Job is still alive so fence refcount at least 1 653 */ 654 dma_fence_wait(&s_job->s_fence->finished, false); 655 656 /* 657 * We must keep bad job alive for later use during 658 * recovery by some of the drivers but leave a hint 659 * that the guilty job must be released. 660 */ 661 if (bad != s_job) 662 sched->ops->free_job(s_job); 663 else 664 sched->free_guilty = true; 665 } 666 } 667 668 /* 669 * Stop pending timer in flight as we rearm it in drm_sched_start. This 670 * avoids the pending timeout work in progress to fire right away after 671 * this TDR finished and before the newly restarted jobs had a 672 * chance to complete. 673 */ 674 cancel_delayed_work(&sched->work_tdr); 675 } 676 677 EXPORT_SYMBOL(drm_sched_stop); 678 679 /** 680 * drm_sched_start - recover jobs after a reset 681 * 682 * @sched: scheduler instance 683 * 684 */ 685 void drm_sched_start(struct drm_gpu_scheduler *sched) 686 { 687 struct drm_sched_job *s_job, *tmp; 688 689 /* 690 * Locking the list is not required here as the sched thread is parked 691 * so no new jobs are being inserted or removed. Also concurrent 692 * GPU recovers can't run in parallel. 693 */ 694 list_for_each_entry_safe(s_job, tmp, &sched->pending_list, list) { 695 struct dma_fence *fence = s_job->s_fence->parent; 696 697 atomic_add(s_job->credits, &sched->credit_count); 698 699 if (!fence) { 700 drm_sched_job_done(s_job, -ECANCELED); 701 continue; 702 } 703 704 if (dma_fence_add_callback(fence, &s_job->cb, 705 drm_sched_job_done_cb)) 706 drm_sched_job_done(s_job, fence->error); 707 } 708 709 drm_sched_start_timeout_unlocked(sched); 710 drm_sched_wqueue_start(sched); 711 } 712 EXPORT_SYMBOL(drm_sched_start); 713 714 /** 715 * drm_sched_resubmit_jobs - Deprecated, don't use in new code! 716 * 717 * @sched: scheduler instance 718 * 719 * Re-submitting jobs was a concept AMD came up as cheap way to implement 720 * recovery after a job timeout. 721 * 722 * This turned out to be not working very well. First of all there are many 723 * problem with the dma_fence implementation and requirements. Either the 724 * implementation is risking deadlocks with core memory management or violating 725 * documented implementation details of the dma_fence object. 726 * 727 * Drivers can still save and restore their state for recovery operations, but 728 * we shouldn't make this a general scheduler feature around the dma_fence 729 * interface. 730 */ 731 void drm_sched_resubmit_jobs(struct drm_gpu_scheduler *sched) 732 { 733 struct drm_sched_job *s_job, *tmp; 734 uint64_t guilty_context; 735 bool found_guilty = false; 736 struct dma_fence *fence; 737 738 list_for_each_entry_safe(s_job, tmp, &sched->pending_list, list) { 739 struct drm_sched_fence *s_fence = s_job->s_fence; 740 741 if (!found_guilty && atomic_read(&s_job->karma) > sched->hang_limit) { 742 found_guilty = true; 743 guilty_context = s_job->s_fence->scheduled.context; 744 } 745 746 if (found_guilty && s_job->s_fence->scheduled.context == guilty_context) 747 dma_fence_set_error(&s_fence->finished, -ECANCELED); 748 749 fence = sched->ops->run_job(s_job); 750 751 if (IS_ERR_OR_NULL(fence)) { 752 if (IS_ERR(fence)) 753 dma_fence_set_error(&s_fence->finished, PTR_ERR(fence)); 754 755 s_job->s_fence->parent = NULL; 756 } else { 757 758 s_job->s_fence->parent = dma_fence_get(fence); 759 760 /* Drop for orignal kref_init */ 761 dma_fence_put(fence); 762 } 763 } 764 } 765 EXPORT_SYMBOL(drm_sched_resubmit_jobs); 766 767 /** 768 * drm_sched_job_init - init a scheduler job 769 * @job: scheduler job to init 770 * @entity: scheduler entity to use 771 * @credits: the number of credits this job contributes to the schedulers 772 * credit limit 773 * @owner: job owner for debugging 774 * 775 * Refer to drm_sched_entity_push_job() documentation 776 * for locking considerations. 777 * 778 * Drivers must make sure drm_sched_job_cleanup() if this function returns 779 * successfully, even when @job is aborted before drm_sched_job_arm() is called. 780 * 781 * WARNING: amdgpu abuses &drm_sched.ready to signal when the hardware 782 * has died, which can mean that there's no valid runqueue for a @entity. 783 * This function returns -ENOENT in this case (which probably should be -EIO as 784 * a more meanigful return value). 785 * 786 * Returns 0 for success, negative error code otherwise. 787 */ 788 int drm_sched_job_init(struct drm_sched_job *job, 789 struct drm_sched_entity *entity, 790 u32 credits, void *owner) 791 { 792 if (!entity->rq) { 793 /* This will most likely be followed by missing frames 794 * or worse--a blank screen--leave a trail in the 795 * logs, so this can be debugged easier. 796 */ 797 drm_err(job->sched, "%s: entity has no rq!\n", __func__); 798 return -ENOENT; 799 } 800 801 if (unlikely(!credits)) { 802 pr_err("*ERROR* %s: credits cannot be 0!\n", __func__); 803 return -EINVAL; 804 } 805 806 job->entity = entity; 807 job->credits = credits; 808 job->s_fence = drm_sched_fence_alloc(entity, owner); 809 if (!job->s_fence) 810 return -ENOMEM; 811 812 INIT_LIST_HEAD(&job->list); 813 814 xa_init_flags(&job->dependencies, XA_FLAGS_ALLOC); 815 816 return 0; 817 } 818 EXPORT_SYMBOL(drm_sched_job_init); 819 820 /** 821 * drm_sched_job_arm - arm a scheduler job for execution 822 * @job: scheduler job to arm 823 * 824 * This arms a scheduler job for execution. Specifically it initializes the 825 * &drm_sched_job.s_fence of @job, so that it can be attached to struct dma_resv 826 * or other places that need to track the completion of this job. 827 * 828 * Refer to drm_sched_entity_push_job() documentation for locking 829 * considerations. 830 * 831 * This can only be called if drm_sched_job_init() succeeded. 832 */ 833 void drm_sched_job_arm(struct drm_sched_job *job) 834 { 835 struct drm_gpu_scheduler *sched; 836 struct drm_sched_entity *entity = job->entity; 837 838 BUG_ON(!entity); 839 drm_sched_entity_select_rq(entity); 840 sched = entity->rq->sched; 841 842 job->sched = sched; 843 job->s_priority = entity->priority; 844 job->id = atomic64_inc_return(&sched->job_id_count); 845 846 drm_sched_fence_init(job->s_fence, job->entity); 847 } 848 EXPORT_SYMBOL(drm_sched_job_arm); 849 850 /** 851 * drm_sched_job_add_dependency - adds the fence as a job dependency 852 * @job: scheduler job to add the dependencies to 853 * @fence: the dma_fence to add to the list of dependencies. 854 * 855 * Note that @fence is consumed in both the success and error cases. 856 * 857 * Returns: 858 * 0 on success, or an error on failing to expand the array. 859 */ 860 int drm_sched_job_add_dependency(struct drm_sched_job *job, 861 struct dma_fence *fence) 862 { 863 struct dma_fence *entry; 864 unsigned long index; 865 u32 id = 0; 866 int ret; 867 868 if (!fence) 869 return 0; 870 871 /* Deduplicate if we already depend on a fence from the same context. 872 * This lets the size of the array of deps scale with the number of 873 * engines involved, rather than the number of BOs. 874 */ 875 xa_for_each(&job->dependencies, index, entry) { 876 if (entry->context != fence->context) 877 continue; 878 879 if (dma_fence_is_later(fence, entry)) { 880 dma_fence_put(entry); 881 xa_store(&job->dependencies, index, fence, GFP_KERNEL); 882 } else { 883 dma_fence_put(fence); 884 } 885 return 0; 886 } 887 888 ret = xa_alloc(&job->dependencies, &id, fence, xa_limit_32b, GFP_KERNEL); 889 if (ret != 0) 890 dma_fence_put(fence); 891 892 return ret; 893 } 894 EXPORT_SYMBOL(drm_sched_job_add_dependency); 895 896 /** 897 * drm_sched_job_add_syncobj_dependency - adds a syncobj's fence as a job dependency 898 * @job: scheduler job to add the dependencies to 899 * @file: drm file private pointer 900 * @handle: syncobj handle to lookup 901 * @point: timeline point 902 * 903 * This adds the fence matching the given syncobj to @job. 904 * 905 * Returns: 906 * 0 on success, or an error on failing to expand the array. 907 */ 908 int drm_sched_job_add_syncobj_dependency(struct drm_sched_job *job, 909 struct drm_file *file, 910 u32 handle, 911 u32 point) 912 { 913 struct dma_fence *fence; 914 int ret; 915 916 ret = drm_syncobj_find_fence(file, handle, point, 0, &fence); 917 if (ret) 918 return ret; 919 920 return drm_sched_job_add_dependency(job, fence); 921 } 922 EXPORT_SYMBOL(drm_sched_job_add_syncobj_dependency); 923 924 /** 925 * drm_sched_job_add_resv_dependencies - add all fences from the resv to the job 926 * @job: scheduler job to add the dependencies to 927 * @resv: the dma_resv object to get the fences from 928 * @usage: the dma_resv_usage to use to filter the fences 929 * 930 * This adds all fences matching the given usage from @resv to @job. 931 * Must be called with the @resv lock held. 932 * 933 * Returns: 934 * 0 on success, or an error on failing to expand the array. 935 */ 936 int drm_sched_job_add_resv_dependencies(struct drm_sched_job *job, 937 struct dma_resv *resv, 938 enum dma_resv_usage usage) 939 { 940 struct dma_resv_iter cursor; 941 struct dma_fence *fence; 942 int ret; 943 944 dma_resv_assert_held(resv); 945 946 dma_resv_for_each_fence(&cursor, resv, usage, fence) { 947 /* Make sure to grab an additional ref on the added fence */ 948 dma_fence_get(fence); 949 ret = drm_sched_job_add_dependency(job, fence); 950 if (ret) { 951 dma_fence_put(fence); 952 return ret; 953 } 954 } 955 return 0; 956 } 957 EXPORT_SYMBOL(drm_sched_job_add_resv_dependencies); 958 959 /** 960 * drm_sched_job_add_implicit_dependencies - adds implicit dependencies as job 961 * dependencies 962 * @job: scheduler job to add the dependencies to 963 * @obj: the gem object to add new dependencies from. 964 * @write: whether the job might write the object (so we need to depend on 965 * shared fences in the reservation object). 966 * 967 * This should be called after drm_gem_lock_reservations() on your array of 968 * GEM objects used in the job but before updating the reservations with your 969 * own fences. 970 * 971 * Returns: 972 * 0 on success, or an error on failing to expand the array. 973 */ 974 int drm_sched_job_add_implicit_dependencies(struct drm_sched_job *job, 975 struct drm_gem_object *obj, 976 bool write) 977 { 978 return drm_sched_job_add_resv_dependencies(job, obj->resv, 979 dma_resv_usage_rw(write)); 980 } 981 EXPORT_SYMBOL(drm_sched_job_add_implicit_dependencies); 982 983 /** 984 * drm_sched_job_cleanup - clean up scheduler job resources 985 * @job: scheduler job to clean up 986 * 987 * Cleans up the resources allocated with drm_sched_job_init(). 988 * 989 * Drivers should call this from their error unwind code if @job is aborted 990 * before drm_sched_job_arm() is called. 991 * 992 * After that point of no return @job is committed to be executed by the 993 * scheduler, and this function should be called from the 994 * &drm_sched_backend_ops.free_job callback. 995 */ 996 void drm_sched_job_cleanup(struct drm_sched_job *job) 997 { 998 struct dma_fence *fence; 999 unsigned long index; 1000 1001 if (kref_read(&job->s_fence->finished.refcount)) { 1002 /* drm_sched_job_arm() has been called */ 1003 dma_fence_put(&job->s_fence->finished); 1004 } else { 1005 /* aborted job before committing to run it */ 1006 drm_sched_fence_free(job->s_fence); 1007 } 1008 1009 job->s_fence = NULL; 1010 1011 xa_for_each(&job->dependencies, index, fence) { 1012 dma_fence_put(fence); 1013 } 1014 xa_destroy(&job->dependencies); 1015 1016 } 1017 EXPORT_SYMBOL(drm_sched_job_cleanup); 1018 1019 /** 1020 * drm_sched_wakeup - Wake up the scheduler if it is ready to queue 1021 * @sched: scheduler instance 1022 * 1023 * Wake up the scheduler if we can queue jobs. 1024 */ 1025 void drm_sched_wakeup(struct drm_gpu_scheduler *sched) 1026 { 1027 drm_sched_run_job_queue(sched); 1028 } 1029 1030 /** 1031 * drm_sched_select_entity - Select next entity to process 1032 * 1033 * @sched: scheduler instance 1034 * 1035 * Return an entity to process or NULL if none are found. 1036 * 1037 * Note, that we break out of the for-loop when "entity" is non-null, which can 1038 * also be an error-pointer--this assures we don't process lower priority 1039 * run-queues. See comments in the respectively called functions. 1040 */ 1041 static struct drm_sched_entity * 1042 drm_sched_select_entity(struct drm_gpu_scheduler *sched) 1043 { 1044 struct drm_sched_entity *entity; 1045 int i; 1046 1047 /* Start with the highest priority. 1048 */ 1049 for (i = DRM_SCHED_PRIORITY_KERNEL; i < sched->num_rqs; i++) { 1050 entity = drm_sched_policy == DRM_SCHED_POLICY_FIFO ? 1051 drm_sched_rq_select_entity_fifo(sched, sched->sched_rq[i]) : 1052 drm_sched_rq_select_entity_rr(sched, sched->sched_rq[i]); 1053 if (entity) 1054 break; 1055 } 1056 1057 return IS_ERR(entity) ? NULL : entity; 1058 } 1059 1060 /** 1061 * drm_sched_get_finished_job - fetch the next finished job to be destroyed 1062 * 1063 * @sched: scheduler instance 1064 * 1065 * Returns the next finished job from the pending list (if there is one) 1066 * ready for it to be destroyed. 1067 */ 1068 static struct drm_sched_job * 1069 drm_sched_get_finished_job(struct drm_gpu_scheduler *sched) 1070 { 1071 struct drm_sched_job *job, *next; 1072 1073 spin_lock(&sched->job_list_lock); 1074 1075 job = list_first_entry_or_null(&sched->pending_list, 1076 struct drm_sched_job, list); 1077 1078 if (job && dma_fence_is_signaled(&job->s_fence->finished)) { 1079 /* remove job from pending_list */ 1080 list_del_init(&job->list); 1081 1082 /* cancel this job's TO timer */ 1083 cancel_delayed_work(&sched->work_tdr); 1084 /* make the scheduled timestamp more accurate */ 1085 next = list_first_entry_or_null(&sched->pending_list, 1086 typeof(*next), list); 1087 1088 if (next) { 1089 if (test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, 1090 &next->s_fence->scheduled.flags)) 1091 next->s_fence->scheduled.timestamp = 1092 dma_fence_timestamp(&job->s_fence->finished); 1093 /* start TO timer for next job */ 1094 drm_sched_start_timeout(sched); 1095 } 1096 } else { 1097 job = NULL; 1098 } 1099 1100 spin_unlock(&sched->job_list_lock); 1101 1102 return job; 1103 } 1104 1105 /** 1106 * drm_sched_pick_best - Get a drm sched from a sched_list with the least load 1107 * @sched_list: list of drm_gpu_schedulers 1108 * @num_sched_list: number of drm_gpu_schedulers in the sched_list 1109 * 1110 * Returns pointer of the sched with the least load or NULL if none of the 1111 * drm_gpu_schedulers are ready 1112 */ 1113 struct drm_gpu_scheduler * 1114 drm_sched_pick_best(struct drm_gpu_scheduler **sched_list, 1115 unsigned int num_sched_list) 1116 { 1117 struct drm_gpu_scheduler *sched, *picked_sched = NULL; 1118 int i; 1119 unsigned int min_score = UINT_MAX, num_score; 1120 1121 for (i = 0; i < num_sched_list; ++i) { 1122 sched = sched_list[i]; 1123 1124 if (!sched->ready) { 1125 DRM_WARN("scheduler %s is not ready, skipping", 1126 sched->name); 1127 continue; 1128 } 1129 1130 num_score = atomic_read(sched->score); 1131 if (num_score < min_score) { 1132 min_score = num_score; 1133 picked_sched = sched; 1134 } 1135 } 1136 1137 return picked_sched; 1138 } 1139 EXPORT_SYMBOL(drm_sched_pick_best); 1140 1141 /** 1142 * drm_sched_free_job_work - worker to call free_job 1143 * 1144 * @w: free job work 1145 */ 1146 static void drm_sched_free_job_work(struct work_struct *w) 1147 { 1148 struct drm_gpu_scheduler *sched = 1149 container_of(w, struct drm_gpu_scheduler, work_free_job); 1150 struct drm_sched_job *job; 1151 1152 if (READ_ONCE(sched->pause_submit)) 1153 return; 1154 1155 job = drm_sched_get_finished_job(sched); 1156 if (job) 1157 sched->ops->free_job(job); 1158 1159 drm_sched_run_free_queue(sched); 1160 drm_sched_run_job_queue(sched); 1161 } 1162 1163 /** 1164 * drm_sched_run_job_work - worker to call run_job 1165 * 1166 * @w: run job work 1167 */ 1168 static void drm_sched_run_job_work(struct work_struct *w) 1169 { 1170 struct drm_gpu_scheduler *sched = 1171 container_of(w, struct drm_gpu_scheduler, work_run_job); 1172 struct drm_sched_entity *entity; 1173 struct dma_fence *fence; 1174 struct drm_sched_fence *s_fence; 1175 struct drm_sched_job *sched_job; 1176 int r; 1177 1178 if (READ_ONCE(sched->pause_submit)) 1179 return; 1180 1181 /* Find entity with a ready job */ 1182 entity = drm_sched_select_entity(sched); 1183 if (!entity) 1184 return; /* No more work */ 1185 1186 sched_job = drm_sched_entity_pop_job(entity); 1187 if (!sched_job) { 1188 complete_all(&entity->entity_idle); 1189 drm_sched_run_job_queue(sched); 1190 return; 1191 } 1192 1193 s_fence = sched_job->s_fence; 1194 1195 atomic_add(sched_job->credits, &sched->credit_count); 1196 drm_sched_job_begin(sched_job); 1197 1198 trace_drm_run_job(sched_job, entity); 1199 fence = sched->ops->run_job(sched_job); 1200 complete_all(&entity->entity_idle); 1201 drm_sched_fence_scheduled(s_fence, fence); 1202 1203 if (!IS_ERR_OR_NULL(fence)) { 1204 /* Drop for original kref_init of the fence */ 1205 dma_fence_put(fence); 1206 1207 r = dma_fence_add_callback(fence, &sched_job->cb, 1208 drm_sched_job_done_cb); 1209 if (r == -ENOENT) 1210 drm_sched_job_done(sched_job, fence->error); 1211 else if (r) 1212 DRM_DEV_ERROR(sched->dev, "fence add callback failed (%d)\n", r); 1213 } else { 1214 drm_sched_job_done(sched_job, IS_ERR(fence) ? 1215 PTR_ERR(fence) : 0); 1216 } 1217 1218 wake_up(&sched->job_scheduled); 1219 drm_sched_run_job_queue(sched); 1220 } 1221 1222 /** 1223 * drm_sched_init - Init a gpu scheduler instance 1224 * 1225 * @sched: scheduler instance 1226 * @ops: backend operations for this scheduler 1227 * @submit_wq: workqueue to use for submission. If NULL, an ordered wq is 1228 * allocated and used 1229 * @num_rqs: number of runqueues, one for each priority, up to DRM_SCHED_PRIORITY_COUNT 1230 * @credit_limit: the number of credits this scheduler can hold from all jobs 1231 * @hang_limit: number of times to allow a job to hang before dropping it 1232 * @timeout: timeout value in jiffies for the scheduler 1233 * @timeout_wq: workqueue to use for timeout work. If NULL, the system_wq is 1234 * used 1235 * @score: optional score atomic shared with other schedulers 1236 * @name: name used for debugging 1237 * @dev: target &struct device 1238 * 1239 * Return 0 on success, otherwise error code. 1240 */ 1241 int drm_sched_init(struct drm_gpu_scheduler *sched, 1242 const struct drm_sched_backend_ops *ops, 1243 struct workqueue_struct *submit_wq, 1244 u32 num_rqs, u32 credit_limit, unsigned int hang_limit, 1245 long timeout, struct workqueue_struct *timeout_wq, 1246 atomic_t *score, const char *name, struct device *dev) 1247 { 1248 int i; 1249 1250 sched->ops = ops; 1251 sched->credit_limit = credit_limit; 1252 sched->name = name; 1253 sched->timeout = timeout; 1254 sched->timeout_wq = timeout_wq ? : system_wq; 1255 sched->hang_limit = hang_limit; 1256 sched->score = score ? score : &sched->_score; 1257 sched->dev = dev; 1258 1259 if (num_rqs > DRM_SCHED_PRIORITY_COUNT) { 1260 /* This is a gross violation--tell drivers what the problem is. 1261 */ 1262 drm_err(sched, "%s: num_rqs cannot be greater than DRM_SCHED_PRIORITY_COUNT\n", 1263 __func__); 1264 return -EINVAL; 1265 } else if (sched->sched_rq) { 1266 /* Not an error, but warn anyway so drivers can 1267 * fine-tune their DRM calling order, and return all 1268 * is good. 1269 */ 1270 drm_warn(sched, "%s: scheduler already initialized!\n", __func__); 1271 return 0; 1272 } 1273 1274 if (submit_wq) { 1275 sched->submit_wq = submit_wq; 1276 sched->own_submit_wq = false; 1277 } else { 1278 #ifdef CONFIG_LOCKDEP 1279 sched->submit_wq = alloc_ordered_workqueue_lockdep_map(name, 0, 1280 &drm_sched_lockdep_map); 1281 #else 1282 sched->submit_wq = alloc_ordered_workqueue(name, 0); 1283 #endif 1284 if (!sched->submit_wq) 1285 return -ENOMEM; 1286 1287 sched->own_submit_wq = true; 1288 } 1289 1290 sched->sched_rq = kmalloc_array(num_rqs, sizeof(*sched->sched_rq), 1291 GFP_KERNEL | __GFP_ZERO); 1292 if (!sched->sched_rq) 1293 goto Out_check_own; 1294 sched->num_rqs = num_rqs; 1295 for (i = DRM_SCHED_PRIORITY_KERNEL; i < sched->num_rqs; i++) { 1296 sched->sched_rq[i] = kzalloc(sizeof(*sched->sched_rq[i]), GFP_KERNEL); 1297 if (!sched->sched_rq[i]) 1298 goto Out_unroll; 1299 drm_sched_rq_init(sched, sched->sched_rq[i]); 1300 } 1301 1302 init_waitqueue_head(&sched->job_scheduled); 1303 INIT_LIST_HEAD(&sched->pending_list); 1304 spin_lock_init(&sched->job_list_lock); 1305 atomic_set(&sched->credit_count, 0); 1306 INIT_DELAYED_WORK(&sched->work_tdr, drm_sched_job_timedout); 1307 INIT_WORK(&sched->work_run_job, drm_sched_run_job_work); 1308 INIT_WORK(&sched->work_free_job, drm_sched_free_job_work); 1309 atomic_set(&sched->_score, 0); 1310 atomic64_set(&sched->job_id_count, 0); 1311 sched->pause_submit = false; 1312 1313 sched->ready = true; 1314 return 0; 1315 Out_unroll: 1316 for (--i ; i >= DRM_SCHED_PRIORITY_KERNEL; i--) 1317 kfree(sched->sched_rq[i]); 1318 1319 kfree(sched->sched_rq); 1320 sched->sched_rq = NULL; 1321 Out_check_own: 1322 if (sched->own_submit_wq) 1323 destroy_workqueue(sched->submit_wq); 1324 drm_err(sched, "%s: Failed to setup GPU scheduler--out of memory\n", __func__); 1325 return -ENOMEM; 1326 } 1327 EXPORT_SYMBOL(drm_sched_init); 1328 1329 /** 1330 * drm_sched_fini - Destroy a gpu scheduler 1331 * 1332 * @sched: scheduler instance 1333 * 1334 * Tears down and cleans up the scheduler. 1335 */ 1336 void drm_sched_fini(struct drm_gpu_scheduler *sched) 1337 { 1338 struct drm_sched_entity *s_entity; 1339 int i; 1340 1341 drm_sched_wqueue_stop(sched); 1342 1343 for (i = DRM_SCHED_PRIORITY_KERNEL; i < sched->num_rqs; i++) { 1344 struct drm_sched_rq *rq = sched->sched_rq[i]; 1345 1346 spin_lock(&rq->lock); 1347 list_for_each_entry(s_entity, &rq->entities, list) 1348 /* 1349 * Prevents reinsertion and marks job_queue as idle, 1350 * it will removed from rq in drm_sched_entity_fini 1351 * eventually 1352 */ 1353 s_entity->stopped = true; 1354 spin_unlock(&rq->lock); 1355 kfree(sched->sched_rq[i]); 1356 } 1357 1358 /* Wakeup everyone stuck in drm_sched_entity_flush for this scheduler */ 1359 wake_up_all(&sched->job_scheduled); 1360 1361 /* Confirm no work left behind accessing device structures */ 1362 cancel_delayed_work_sync(&sched->work_tdr); 1363 1364 if (sched->own_submit_wq) 1365 destroy_workqueue(sched->submit_wq); 1366 sched->ready = false; 1367 kfree(sched->sched_rq); 1368 sched->sched_rq = NULL; 1369 } 1370 EXPORT_SYMBOL(drm_sched_fini); 1371 1372 /** 1373 * drm_sched_increase_karma - Update sched_entity guilty flag 1374 * 1375 * @bad: The job guilty of time out 1376 * 1377 * Increment on every hang caused by the 'bad' job. If this exceeds the hang 1378 * limit of the scheduler then the respective sched entity is marked guilty and 1379 * jobs from it will not be scheduled further 1380 */ 1381 void drm_sched_increase_karma(struct drm_sched_job *bad) 1382 { 1383 int i; 1384 struct drm_sched_entity *tmp; 1385 struct drm_sched_entity *entity; 1386 struct drm_gpu_scheduler *sched = bad->sched; 1387 1388 /* don't change @bad's karma if it's from KERNEL RQ, 1389 * because sometimes GPU hang would cause kernel jobs (like VM updating jobs) 1390 * corrupt but keep in mind that kernel jobs always considered good. 1391 */ 1392 if (bad->s_priority != DRM_SCHED_PRIORITY_KERNEL) { 1393 atomic_inc(&bad->karma); 1394 1395 for (i = DRM_SCHED_PRIORITY_HIGH; i < sched->num_rqs; i++) { 1396 struct drm_sched_rq *rq = sched->sched_rq[i]; 1397 1398 spin_lock(&rq->lock); 1399 list_for_each_entry_safe(entity, tmp, &rq->entities, list) { 1400 if (bad->s_fence->scheduled.context == 1401 entity->fence_context) { 1402 if (entity->guilty) 1403 atomic_set(entity->guilty, 1); 1404 break; 1405 } 1406 } 1407 spin_unlock(&rq->lock); 1408 if (&entity->list != &rq->entities) 1409 break; 1410 } 1411 } 1412 } 1413 EXPORT_SYMBOL(drm_sched_increase_karma); 1414 1415 /** 1416 * drm_sched_wqueue_ready - Is the scheduler ready for submission 1417 * 1418 * @sched: scheduler instance 1419 * 1420 * Returns true if submission is ready 1421 */ 1422 bool drm_sched_wqueue_ready(struct drm_gpu_scheduler *sched) 1423 { 1424 return sched->ready; 1425 } 1426 EXPORT_SYMBOL(drm_sched_wqueue_ready); 1427 1428 /** 1429 * drm_sched_wqueue_stop - stop scheduler submission 1430 * 1431 * @sched: scheduler instance 1432 */ 1433 void drm_sched_wqueue_stop(struct drm_gpu_scheduler *sched) 1434 { 1435 WRITE_ONCE(sched->pause_submit, true); 1436 cancel_work_sync(&sched->work_run_job); 1437 cancel_work_sync(&sched->work_free_job); 1438 } 1439 EXPORT_SYMBOL(drm_sched_wqueue_stop); 1440 1441 /** 1442 * drm_sched_wqueue_start - start scheduler submission 1443 * 1444 * @sched: scheduler instance 1445 */ 1446 void drm_sched_wqueue_start(struct drm_gpu_scheduler *sched) 1447 { 1448 WRITE_ONCE(sched->pause_submit, false); 1449 queue_work(sched->submit_wq, &sched->work_run_job); 1450 queue_work(sched->submit_wq, &sched->work_free_job); 1451 } 1452 EXPORT_SYMBOL(drm_sched_wqueue_start); 1453