xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Rockchip Electronics Co., Ltd.
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_probe_helper.h>
31 #include <drm/drm_self_refresh_helper.h>
32 #include <drm/drm_vblank.h>
33 
34 #ifdef CONFIG_DRM_ANALOGIX_DP
35 #include <drm/bridge/analogix_dp.h>
36 #endif
37 
38 #include "rockchip_drm_drv.h"
39 #include "rockchip_drm_gem.h"
40 #include "rockchip_drm_fb.h"
41 #include "rockchip_drm_vop.h"
42 #include "rockchip_rgb.h"
43 
44 #define VOP_WIN_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48 #define VOP_SCL_SET_EXT(vop, win, name, v) \
49 		vop_reg_set(vop, &win->phy->scl->ext->name, \
50 			    win->base, ~0, v, #name)
51 
52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53 	do { \
54 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56 	} while (0)
57 
58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59 	do { \
60 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62 	} while (0)
63 
64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
65 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66 
67 #define VOP_REG_SET(vop, group, name, v) \
68 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69 
70 #define VOP_HAS_REG(vop, group, name) \
71 		(!!(vop->data->group->name.mask))
72 
73 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
74 	do { \
75 		int i, reg = 0, mask = 0; \
76 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
77 			if (vop->data->intr->intrs[i] & type) { \
78 				reg |= (v) << i; \
79 				mask |= 1 << i; \
80 			} \
81 		} \
82 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
83 	} while (0)
84 #define VOP_INTR_GET_TYPE(vop, name, type) \
85 		vop_get_intr_type(vop, &vop->data->intr->name, type)
86 
87 #define VOP_WIN_GET(vop, win, name) \
88 		vop_read_reg(vop, win->base, &win->phy->name)
89 
90 #define VOP_WIN_HAS_REG(win, name) \
91 	(!!(win->phy->name.mask))
92 
93 #define VOP_WIN_GET_YRGBADDR(vop, win) \
94 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
95 
96 #define VOP_WIN_TO_INDEX(vop_win) \
97 	((vop_win) - (vop_win)->vop->win)
98 
99 #define VOP_AFBC_SET(vop, name, v) \
100 	do { \
101 		if ((vop)->data->afbc) \
102 			vop_reg_set((vop), &(vop)->data->afbc->name, \
103 				    0, ~0, v, #name); \
104 	} while (0)
105 
106 #define to_vop(x) container_of(x, struct vop, crtc)
107 #define to_vop_win(x) container_of(x, struct vop_win, base)
108 
109 #define AFBC_FMT_RGB565		0x0
110 #define AFBC_FMT_U8U8U8U8	0x5
111 #define AFBC_FMT_U8U8U8		0x4
112 
113 #define AFBC_TILE_16x16		BIT(4)
114 
115 /*
116  * The coefficients of the following matrix are all fixed points.
117  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
118  * They are all represented in two's complement.
119  */
120 static const uint32_t bt601_yuv2rgb[] = {
121 	0x4A8, 0x0,    0x662,
122 	0x4A8, 0x1E6F, 0x1CBF,
123 	0x4A8, 0x812,  0x0,
124 	0x321168, 0x0877CF, 0x2EB127
125 };
126 
127 enum vop_pending {
128 	VOP_PENDING_FB_UNREF,
129 };
130 
131 struct vop_win {
132 	struct drm_plane base;
133 	const struct vop_win_data *data;
134 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
135 	struct vop *vop;
136 };
137 
138 struct rockchip_rgb;
139 struct vop {
140 	struct drm_crtc crtc;
141 	struct device *dev;
142 	struct drm_device *drm_dev;
143 	bool is_enabled;
144 
145 	struct completion dsp_hold_completion;
146 	unsigned int win_enabled;
147 
148 	/* protected by dev->event_lock */
149 	struct drm_pending_vblank_event *event;
150 
151 	struct drm_flip_work fb_unref_work;
152 	unsigned long pending;
153 
154 	struct completion line_flag_completion;
155 
156 	const struct vop_data *data;
157 
158 	uint32_t *regsbak;
159 	void __iomem *regs;
160 	void __iomem *lut_regs;
161 
162 	/* physical map length of vop register */
163 	uint32_t len;
164 
165 	/* one time only one process allowed to config the register */
166 	spinlock_t reg_lock;
167 	/* lock vop irq reg */
168 	spinlock_t irq_lock;
169 	/* protects crtc enable/disable */
170 	struct mutex vop_lock;
171 
172 	unsigned int irq;
173 
174 	/* vop AHP clk */
175 	struct clk *hclk;
176 	/* vop dclk */
177 	struct clk *dclk;
178 	/* vop share memory frequency */
179 	struct clk *aclk;
180 
181 	/* vop dclk reset */
182 	struct reset_control *dclk_rst;
183 
184 	/* optional internal rgb encoder */
185 	struct rockchip_rgb *rgb;
186 
187 	struct vop_win win[];
188 };
189 
190 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
191 {
192 	return readl(vop->regs + offset);
193 }
194 
195 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
196 				    const struct vop_reg *reg)
197 {
198 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
199 }
200 
201 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
202 			uint32_t _offset, uint32_t _mask, uint32_t v,
203 			const char *reg_name)
204 {
205 	int offset, mask, shift;
206 
207 	if (!reg || !reg->mask) {
208 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
209 		return;
210 	}
211 
212 	offset = reg->offset + _offset;
213 	mask = reg->mask & _mask;
214 	shift = reg->shift;
215 
216 	if (reg->write_mask) {
217 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
218 	} else {
219 		uint32_t cached_val = vop->regsbak[offset >> 2];
220 
221 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
222 		vop->regsbak[offset >> 2] = v;
223 	}
224 
225 	if (reg->relaxed)
226 		writel_relaxed(v, vop->regs + offset);
227 	else
228 		writel(v, vop->regs + offset);
229 }
230 
231 static inline uint32_t vop_get_intr_type(struct vop *vop,
232 					 const struct vop_reg *reg, int type)
233 {
234 	uint32_t i, ret = 0;
235 	uint32_t regs = vop_read_reg(vop, 0, reg);
236 
237 	for (i = 0; i < vop->data->intr->nintrs; i++) {
238 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
239 			ret |= vop->data->intr->intrs[i];
240 	}
241 
242 	return ret;
243 }
244 
245 static inline void vop_cfg_done(struct vop *vop)
246 {
247 	VOP_REG_SET(vop, common, cfg_done, 1);
248 }
249 
250 static bool has_rb_swapped(uint32_t version, uint32_t format)
251 {
252 	switch (format) {
253 	case DRM_FORMAT_XBGR8888:
254 	case DRM_FORMAT_ABGR8888:
255 	case DRM_FORMAT_BGR565:
256 		return true;
257 	/*
258 	 * full framework (IP version 3.x) only need rb swapped for RGB888 and
259 	 * little framework (IP version 2.x) only need rb swapped for BGR888,
260 	 * check for 3.x to also only rb swap BGR888 for unknown vop version
261 	 */
262 	case DRM_FORMAT_RGB888:
263 		return VOP_MAJOR(version) == 3;
264 	case DRM_FORMAT_BGR888:
265 		return VOP_MAJOR(version) != 3;
266 	default:
267 		return false;
268 	}
269 }
270 
271 static bool has_uv_swapped(uint32_t format)
272 {
273 	switch (format) {
274 	case DRM_FORMAT_NV21:
275 	case DRM_FORMAT_NV61:
276 	case DRM_FORMAT_NV42:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 static bool is_fmt_10(uint32_t format)
284 {
285 	switch (format) {
286 	case DRM_FORMAT_NV15:
287 	case DRM_FORMAT_NV20:
288 	case DRM_FORMAT_NV30:
289 		return true;
290 	default:
291 		return false;
292 	}
293 }
294 
295 static enum vop_data_format vop_convert_format(uint32_t format)
296 {
297 	switch (format) {
298 	case DRM_FORMAT_XRGB8888:
299 	case DRM_FORMAT_ARGB8888:
300 	case DRM_FORMAT_XBGR8888:
301 	case DRM_FORMAT_ABGR8888:
302 		return VOP_FMT_ARGB8888;
303 	case DRM_FORMAT_RGB888:
304 	case DRM_FORMAT_BGR888:
305 		return VOP_FMT_RGB888;
306 	case DRM_FORMAT_RGB565:
307 	case DRM_FORMAT_BGR565:
308 		return VOP_FMT_RGB565;
309 	case DRM_FORMAT_NV12:
310 	case DRM_FORMAT_NV15:
311 	case DRM_FORMAT_NV21:
312 		return VOP_FMT_YUV420SP;
313 	case DRM_FORMAT_NV16:
314 	case DRM_FORMAT_NV20:
315 	case DRM_FORMAT_NV61:
316 		return VOP_FMT_YUV422SP;
317 	case DRM_FORMAT_NV24:
318 	case DRM_FORMAT_NV30:
319 	case DRM_FORMAT_NV42:
320 		return VOP_FMT_YUV444SP;
321 	default:
322 		DRM_ERROR("unsupported format[%08x]\n", format);
323 		return -EINVAL;
324 	}
325 }
326 
327 static int vop_convert_afbc_format(uint32_t format)
328 {
329 	switch (format) {
330 	case DRM_FORMAT_XRGB8888:
331 	case DRM_FORMAT_ARGB8888:
332 	case DRM_FORMAT_XBGR8888:
333 	case DRM_FORMAT_ABGR8888:
334 		return AFBC_FMT_U8U8U8U8;
335 	case DRM_FORMAT_RGB888:
336 	case DRM_FORMAT_BGR888:
337 		return AFBC_FMT_U8U8U8;
338 	case DRM_FORMAT_RGB565:
339 	case DRM_FORMAT_BGR565:
340 		return AFBC_FMT_RGB565;
341 	default:
342 		DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format);
343 		return -EINVAL;
344 	}
345 }
346 
347 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
348 				  uint32_t dst, bool is_horizontal,
349 				  int vsu_mode, int *vskiplines)
350 {
351 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
352 
353 	if (vskiplines)
354 		*vskiplines = 0;
355 
356 	if (is_horizontal) {
357 		if (mode == SCALE_UP)
358 			val = GET_SCL_FT_BIC(src, dst);
359 		else if (mode == SCALE_DOWN)
360 			val = GET_SCL_FT_BILI_DN(src, dst);
361 	} else {
362 		if (mode == SCALE_UP) {
363 			if (vsu_mode == SCALE_UP_BIL)
364 				val = GET_SCL_FT_BILI_UP(src, dst);
365 			else
366 				val = GET_SCL_FT_BIC(src, dst);
367 		} else if (mode == SCALE_DOWN) {
368 			if (vskiplines) {
369 				*vskiplines = scl_get_vskiplines(src, dst);
370 				val = scl_get_bili_dn_vskip(src, dst,
371 							    *vskiplines);
372 			} else {
373 				val = GET_SCL_FT_BILI_DN(src, dst);
374 			}
375 		}
376 	}
377 
378 	return val;
379 }
380 
381 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
382 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
383 			     uint32_t dst_h, const struct drm_format_info *info)
384 {
385 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
386 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
387 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
388 	bool is_yuv = false;
389 	uint16_t cbcr_src_w = src_w / info->hsub;
390 	uint16_t cbcr_src_h = src_h / info->vsub;
391 	uint16_t vsu_mode;
392 	uint16_t lb_mode;
393 	uint32_t val;
394 	int vskiplines;
395 
396 	if (info->is_yuv)
397 		is_yuv = true;
398 
399 	if (dst_w > 4096) {
400 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (4096) exceeded\n");
401 		return;
402 	}
403 
404 	if (!win->phy->scl->ext) {
405 		VOP_SCL_SET(vop, win, scale_yrgb_x,
406 			    scl_cal_scale2(src_w, dst_w));
407 		VOP_SCL_SET(vop, win, scale_yrgb_y,
408 			    scl_cal_scale2(src_h, dst_h));
409 		if (is_yuv) {
410 			VOP_SCL_SET(vop, win, scale_cbcr_x,
411 				    scl_cal_scale2(cbcr_src_w, dst_w));
412 			VOP_SCL_SET(vop, win, scale_cbcr_y,
413 				    scl_cal_scale2(cbcr_src_h, dst_h));
414 		}
415 		return;
416 	}
417 
418 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
419 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
420 
421 	if (is_yuv) {
422 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
423 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
424 		if (cbcr_hor_scl_mode == SCALE_DOWN)
425 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
426 		else
427 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
428 	} else {
429 		if (yrgb_hor_scl_mode == SCALE_DOWN)
430 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
431 		else
432 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
433 	}
434 
435 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
436 	if (lb_mode == LB_RGB_3840X2) {
437 		if (yrgb_ver_scl_mode != SCALE_NONE) {
438 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
439 			return;
440 		}
441 		if (cbcr_ver_scl_mode != SCALE_NONE) {
442 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
443 			return;
444 		}
445 		vsu_mode = SCALE_UP_BIL;
446 	} else if (lb_mode == LB_RGB_2560X4) {
447 		vsu_mode = SCALE_UP_BIL;
448 	} else {
449 		vsu_mode = SCALE_UP_BIC;
450 	}
451 
452 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
453 				true, 0, NULL);
454 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
455 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
456 				false, vsu_mode, &vskiplines);
457 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
458 
459 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
460 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
461 
462 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
463 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
464 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
465 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
466 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
467 	if (is_yuv) {
468 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
469 					dst_w, true, 0, NULL);
470 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
471 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
472 					dst_h, false, vsu_mode, &vskiplines);
473 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
474 
475 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
476 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
477 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
478 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
479 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
480 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
481 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
482 	}
483 }
484 
485 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
486 {
487 	unsigned long flags;
488 
489 	if (WARN_ON(!vop->is_enabled))
490 		return;
491 
492 	spin_lock_irqsave(&vop->irq_lock, flags);
493 
494 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
495 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
496 
497 	spin_unlock_irqrestore(&vop->irq_lock, flags);
498 }
499 
500 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
501 {
502 	unsigned long flags;
503 
504 	if (WARN_ON(!vop->is_enabled))
505 		return;
506 
507 	spin_lock_irqsave(&vop->irq_lock, flags);
508 
509 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
510 
511 	spin_unlock_irqrestore(&vop->irq_lock, flags);
512 }
513 
514 /*
515  * (1) each frame starts at the start of the Vsync pulse which is signaled by
516  *     the "FRAME_SYNC" interrupt.
517  * (2) the active data region of each frame ends at dsp_vact_end
518  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
519  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
520  *
521  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
522  * Interrupts
523  * LINE_FLAG -------------------------------+
524  * FRAME_SYNC ----+                         |
525  *                |                         |
526  *                v                         v
527  *                | Vsync | Vbp |  Vactive  | Vfp |
528  *                        ^     ^           ^     ^
529  *                        |     |           |     |
530  *                        |     |           |     |
531  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
532  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
533  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
534  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
535  */
536 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
537 {
538 	uint32_t line_flag_irq;
539 	unsigned long flags;
540 
541 	spin_lock_irqsave(&vop->irq_lock, flags);
542 
543 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
544 
545 	spin_unlock_irqrestore(&vop->irq_lock, flags);
546 
547 	return !!line_flag_irq;
548 }
549 
550 static void vop_line_flag_irq_enable(struct vop *vop)
551 {
552 	unsigned long flags;
553 
554 	if (WARN_ON(!vop->is_enabled))
555 		return;
556 
557 	spin_lock_irqsave(&vop->irq_lock, flags);
558 
559 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
560 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
561 
562 	spin_unlock_irqrestore(&vop->irq_lock, flags);
563 }
564 
565 static void vop_line_flag_irq_disable(struct vop *vop)
566 {
567 	unsigned long flags;
568 
569 	if (WARN_ON(!vop->is_enabled))
570 		return;
571 
572 	spin_lock_irqsave(&vop->irq_lock, flags);
573 
574 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
575 
576 	spin_unlock_irqrestore(&vop->irq_lock, flags);
577 }
578 
579 static int vop_core_clks_enable(struct vop *vop)
580 {
581 	int ret;
582 
583 	ret = clk_enable(vop->hclk);
584 	if (ret < 0)
585 		return ret;
586 
587 	ret = clk_enable(vop->aclk);
588 	if (ret < 0)
589 		goto err_disable_hclk;
590 
591 	return 0;
592 
593 err_disable_hclk:
594 	clk_disable(vop->hclk);
595 	return ret;
596 }
597 
598 static void vop_core_clks_disable(struct vop *vop)
599 {
600 	clk_disable(vop->aclk);
601 	clk_disable(vop->hclk);
602 }
603 
604 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
605 {
606 	const struct vop_win_data *win = vop_win->data;
607 
608 	if (win->phy->scl && win->phy->scl->ext) {
609 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
610 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
611 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
612 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
613 	}
614 
615 	VOP_WIN_SET(vop, win, enable, 0);
616 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
617 }
618 
619 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
620 {
621 	struct vop *vop = to_vop(crtc);
622 	int ret, i;
623 
624 	ret = pm_runtime_resume_and_get(vop->dev);
625 	if (ret < 0) {
626 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
627 		return ret;
628 	}
629 
630 	ret = vop_core_clks_enable(vop);
631 	if (WARN_ON(ret < 0))
632 		goto err_put_pm_runtime;
633 
634 	ret = clk_enable(vop->dclk);
635 	if (WARN_ON(ret < 0))
636 		goto err_disable_core;
637 
638 	/*
639 	 * Slave iommu shares power, irq and clock with vop.  It was associated
640 	 * automatically with this master device via common driver code.
641 	 * Now that we have enabled the clock we attach it to the shared drm
642 	 * mapping.
643 	 */
644 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
645 	if (ret) {
646 		DRM_DEV_ERROR(vop->dev,
647 			      "failed to attach dma mapping, %d\n", ret);
648 		goto err_disable_dclk;
649 	}
650 
651 	spin_lock(&vop->reg_lock);
652 	for (i = 0; i < vop->len; i += 4)
653 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
654 
655 	/*
656 	 * We need to make sure that all windows are disabled before we
657 	 * enable the crtc. Otherwise we might try to scan from a destroyed
658 	 * buffer later.
659 	 *
660 	 * In the case of enable-after-PSR, we don't need to worry about this
661 	 * case since the buffer is guaranteed to be valid and disabling the
662 	 * window will result in screen glitches on PSR exit.
663 	 */
664 	if (!old_state || !old_state->self_refresh_active) {
665 		for (i = 0; i < vop->data->win_size; i++) {
666 			struct vop_win *vop_win = &vop->win[i];
667 
668 			vop_win_disable(vop, vop_win);
669 		}
670 	}
671 
672 	if (vop->data->afbc) {
673 		struct rockchip_crtc_state *s;
674 		/*
675 		 * Disable AFBC and forget there was a vop window with AFBC
676 		 */
677 		VOP_AFBC_SET(vop, enable, 0);
678 		s = to_rockchip_crtc_state(crtc->state);
679 		s->enable_afbc = false;
680 	}
681 
682 	vop_cfg_done(vop);
683 
684 	spin_unlock(&vop->reg_lock);
685 
686 	/*
687 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
688 	 */
689 	vop->is_enabled = true;
690 
691 	spin_lock(&vop->reg_lock);
692 
693 	VOP_REG_SET(vop, common, standby, 1);
694 
695 	spin_unlock(&vop->reg_lock);
696 
697 	drm_crtc_vblank_on(crtc);
698 
699 	return 0;
700 
701 err_disable_dclk:
702 	clk_disable(vop->dclk);
703 err_disable_core:
704 	vop_core_clks_disable(vop);
705 err_put_pm_runtime:
706 	pm_runtime_put_sync(vop->dev);
707 	return ret;
708 }
709 
710 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
711 {
712         struct vop *vop = to_vop(crtc);
713         int i;
714 
715         spin_lock(&vop->reg_lock);
716 
717         for (i = 0; i < vop->data->win_size; i++) {
718                 struct vop_win *vop_win = &vop->win[i];
719                 const struct vop_win_data *win = vop_win->data;
720 
721                 VOP_WIN_SET(vop, win, enable,
722                             enabled && (vop->win_enabled & BIT(i)));
723         }
724         vop_cfg_done(vop);
725 
726         spin_unlock(&vop->reg_lock);
727 }
728 
729 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
730 				    struct drm_atomic_state *state)
731 {
732 	struct vop *vop = to_vop(crtc);
733 
734 	WARN_ON(vop->event);
735 
736 	if (crtc->state->self_refresh_active) {
737 		rockchip_drm_set_win_enabled(crtc, false);
738 		goto out;
739 	}
740 
741 	mutex_lock(&vop->vop_lock);
742 
743 	drm_crtc_vblank_off(crtc);
744 
745 	/*
746 	 * Vop standby will take effect at end of current frame,
747 	 * if dsp hold valid irq happen, it means standby complete.
748 	 *
749 	 * we must wait standby complete when we want to disable aclk,
750 	 * if not, memory bus maybe dead.
751 	 */
752 	reinit_completion(&vop->dsp_hold_completion);
753 	vop_dsp_hold_valid_irq_enable(vop);
754 
755 	spin_lock(&vop->reg_lock);
756 
757 	VOP_REG_SET(vop, common, standby, 1);
758 
759 	spin_unlock(&vop->reg_lock);
760 
761 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
762 					 msecs_to_jiffies(200)))
763 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
764 
765 	vop_dsp_hold_valid_irq_disable(vop);
766 
767 	vop->is_enabled = false;
768 
769 	/*
770 	 * vop standby complete, so iommu detach is safe.
771 	 */
772 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
773 
774 	clk_disable(vop->dclk);
775 	vop_core_clks_disable(vop);
776 	pm_runtime_put(vop->dev);
777 
778 	mutex_unlock(&vop->vop_lock);
779 
780 out:
781 	if (crtc->state->event && !crtc->state->active) {
782 		spin_lock_irq(&crtc->dev->event_lock);
783 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
784 		spin_unlock_irq(&crtc->dev->event_lock);
785 
786 		crtc->state->event = NULL;
787 	}
788 }
789 
790 static inline bool rockchip_afbc(u64 modifier)
791 {
792 	return modifier == ROCKCHIP_AFBC_MOD;
793 }
794 
795 static bool rockchip_mod_supported(struct drm_plane *plane,
796 				   u32 format, u64 modifier)
797 {
798 	if (modifier == DRM_FORMAT_MOD_LINEAR)
799 		return true;
800 
801 	if (!rockchip_afbc(modifier)) {
802 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
803 
804 		return false;
805 	}
806 
807 	return vop_convert_afbc_format(format) >= 0;
808 }
809 
810 static int vop_plane_atomic_check(struct drm_plane *plane,
811 			   struct drm_atomic_state *state)
812 {
813 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
814 										 plane);
815 	struct drm_crtc *crtc = new_plane_state->crtc;
816 	struct drm_crtc_state *crtc_state;
817 	struct drm_framebuffer *fb = new_plane_state->fb;
818 	struct vop_win *vop_win = to_vop_win(plane);
819 	const struct vop_win_data *win = vop_win->data;
820 	int ret;
821 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
822 					DRM_PLANE_NO_SCALING;
823 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
824 					DRM_PLANE_NO_SCALING;
825 
826 	if (!crtc || WARN_ON(!fb))
827 		return 0;
828 
829 	crtc_state = drm_atomic_get_existing_crtc_state(state,
830 							crtc);
831 	if (WARN_ON(!crtc_state))
832 		return -EINVAL;
833 
834 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
835 						  min_scale, max_scale,
836 						  true, true);
837 	if (ret)
838 		return ret;
839 
840 	if (!new_plane_state->visible)
841 		return 0;
842 
843 	ret = vop_convert_format(fb->format->format);
844 	if (ret < 0)
845 		return ret;
846 
847 	/*
848 	 * Src.x1 can be odd when do clip, but yuv plane start point
849 	 * need align with 2 pixel.
850 	 */
851 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
852 		DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n");
853 		return -EINVAL;
854 	}
855 
856 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
857 		DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n");
858 		return -EINVAL;
859 	}
860 
861 	if (rockchip_afbc(fb->modifier)) {
862 		struct vop *vop = to_vop(crtc);
863 
864 		if (!vop->data->afbc) {
865 			DRM_DEBUG_KMS("vop does not support AFBC\n");
866 			return -EINVAL;
867 		}
868 
869 		ret = vop_convert_afbc_format(fb->format->format);
870 		if (ret < 0)
871 			return ret;
872 
873 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
874 			DRM_DEBUG_KMS("AFBC does not support offset display, " \
875 				      "xpos=%d, ypos=%d, offset=%d\n",
876 				      new_plane_state->src.x1, new_plane_state->src.y1,
877 				      fb->offsets[0]);
878 			return -EINVAL;
879 		}
880 
881 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
882 			DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n",
883 				      new_plane_state->rotation);
884 			return -EINVAL;
885 		}
886 	}
887 
888 	return 0;
889 }
890 
891 static void vop_plane_atomic_disable(struct drm_plane *plane,
892 				     struct drm_atomic_state *state)
893 {
894 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
895 									   plane);
896 	struct vop_win *vop_win = to_vop_win(plane);
897 	struct vop *vop = to_vop(old_state->crtc);
898 
899 	if (!old_state->crtc)
900 		return;
901 
902 	spin_lock(&vop->reg_lock);
903 
904 	vop_win_disable(vop, vop_win);
905 
906 	spin_unlock(&vop->reg_lock);
907 }
908 
909 static void vop_plane_atomic_update(struct drm_plane *plane,
910 		struct drm_atomic_state *state)
911 {
912 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
913 									   plane);
914 	struct drm_crtc *crtc = new_state->crtc;
915 	struct vop_win *vop_win = to_vop_win(plane);
916 	const struct vop_win_data *win = vop_win->data;
917 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
918 	struct vop *vop = to_vop(new_state->crtc);
919 	struct drm_framebuffer *fb = new_state->fb;
920 	unsigned int actual_w, actual_h;
921 	unsigned int dsp_stx, dsp_sty;
922 	uint32_t act_info, dsp_info, dsp_st;
923 	struct drm_rect *src = &new_state->src;
924 	struct drm_rect *dest = &new_state->dst;
925 	struct drm_gem_object *obj, *uv_obj;
926 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
927 	unsigned long offset;
928 	dma_addr_t dma_addr;
929 	uint32_t val;
930 	bool rb_swap, uv_swap;
931 	int win_index = VOP_WIN_TO_INDEX(vop_win);
932 	int format;
933 	int is_yuv = fb->format->is_yuv;
934 	int i;
935 
936 	/*
937 	 * can't update plane when vop is disabled.
938 	 */
939 	if (WARN_ON(!crtc))
940 		return;
941 
942 	if (WARN_ON(!vop->is_enabled))
943 		return;
944 
945 	if (!new_state->visible) {
946 		vop_plane_atomic_disable(plane, state);
947 		return;
948 	}
949 
950 	obj = fb->obj[0];
951 	rk_obj = to_rockchip_obj(obj);
952 
953 	actual_w = drm_rect_width(src) >> 16;
954 	actual_h = drm_rect_height(src) >> 16;
955 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
956 
957 	dsp_info = (drm_rect_height(dest) - 1) << 16;
958 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
959 
960 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
961 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
962 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
963 
964 	if (fb->format->char_per_block[0])
965 		offset = drm_format_info_min_pitch(fb->format, 0,
966 						   src->x1 >> 16);
967 	else
968 		offset = (src->x1 >> 16) * fb->format->cpp[0];
969 
970 	offset += (src->y1 >> 16) * fb->pitches[0];
971 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
972 
973 	/*
974 	 * For y-mirroring we need to move address
975 	 * to the beginning of the last line.
976 	 */
977 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
978 		dma_addr += (actual_h - 1) * fb->pitches[0];
979 
980 	format = vop_convert_format(fb->format->format);
981 
982 	spin_lock(&vop->reg_lock);
983 
984 	if (rockchip_afbc(fb->modifier)) {
985 		int afbc_format = vop_convert_afbc_format(fb->format->format);
986 
987 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
988 		VOP_AFBC_SET(vop, hreg_block_split, 0);
989 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
990 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
991 		VOP_AFBC_SET(vop, pic_size, act_info);
992 	}
993 
994 	VOP_WIN_SET(vop, win, format, format);
995 	VOP_WIN_SET(vop, win, fmt_10, is_fmt_10(fb->format->format));
996 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
997 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
998 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
999 	VOP_WIN_SET(vop, win, y_mir_en,
1000 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
1001 	VOP_WIN_SET(vop, win, x_mir_en,
1002 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
1003 
1004 	if (is_yuv) {
1005 		uv_obj = fb->obj[1];
1006 		rk_uv_obj = to_rockchip_obj(uv_obj);
1007 
1008 		if (fb->format->char_per_block[1])
1009 			offset = drm_format_info_min_pitch(fb->format, 1,
1010 							   src->x1 >> 16);
1011 		else
1012 			offset = (src->x1 >> 16) * fb->format->cpp[1];
1013 		offset /= fb->format->hsub;
1014 		offset += (src->y1 >> 16) * fb->pitches[1] / fb->format->vsub;
1015 
1016 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
1017 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
1018 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1019 
1020 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1021 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1022 							win_yuv2yuv,
1023 							y2r_coefficients[i],
1024 							bt601_yuv2rgb[i]);
1025 		}
1026 
1027 		uv_swap = has_uv_swapped(fb->format->format);
1028 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1029 	}
1030 
1031 	if (win->phy->scl)
1032 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1033 				    drm_rect_width(dest), drm_rect_height(dest),
1034 				    fb->format);
1035 
1036 	VOP_WIN_SET(vop, win, act_info, act_info);
1037 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1038 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1039 
1040 	rb_swap = has_rb_swapped(vop->data->version, fb->format->format);
1041 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1042 
1043 	/*
1044 	 * Blending win0 with the background color doesn't seem to work
1045 	 * correctly. We only get the background color, no matter the contents
1046 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1047 	 * with the default opaque black default background color is a no-op,
1048 	 * so we can just disable blending to get the correct result.
1049 	 */
1050 	if (fb->format->has_alpha && win_index > 0) {
1051 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1052 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1053 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1054 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1055 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1056 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1057 			SRC_FACTOR_M0(ALPHA_ONE);
1058 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1059 
1060 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1061 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1062 		VOP_WIN_SET(vop, win, alpha_en, 1);
1063 	} else {
1064 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1065 		VOP_WIN_SET(vop, win, alpha_en, 0);
1066 	}
1067 
1068 	VOP_WIN_SET(vop, win, enable, 1);
1069 	vop->win_enabled |= BIT(win_index);
1070 	spin_unlock(&vop->reg_lock);
1071 }
1072 
1073 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1074 					struct drm_atomic_state *state, bool flip)
1075 {
1076 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1077 										 plane);
1078 	struct vop_win *vop_win = to_vop_win(plane);
1079 	const struct vop_win_data *win = vop_win->data;
1080 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1081 					DRM_PLANE_NO_SCALING;
1082 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1083 					DRM_PLANE_NO_SCALING;
1084 	struct drm_crtc_state *crtc_state;
1085 
1086 	if (plane != new_plane_state->crtc->cursor)
1087 		return -EINVAL;
1088 
1089 	if (!plane->state)
1090 		return -EINVAL;
1091 
1092 	if (!plane->state->fb)
1093 		return -EINVAL;
1094 
1095 	crtc_state = drm_atomic_get_existing_crtc_state(state, new_plane_state->crtc);
1096 
1097 	/* Special case for asynchronous cursor updates. */
1098 	if (!crtc_state)
1099 		crtc_state = plane->crtc->state;
1100 
1101 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1102 						   min_scale, max_scale,
1103 						   true, true);
1104 }
1105 
1106 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1107 					  struct drm_atomic_state *state)
1108 {
1109 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1110 									   plane);
1111 	struct vop *vop = to_vop(plane->state->crtc);
1112 	struct drm_framebuffer *old_fb = plane->state->fb;
1113 
1114 	plane->state->crtc_x = new_state->crtc_x;
1115 	plane->state->crtc_y = new_state->crtc_y;
1116 	plane->state->crtc_h = new_state->crtc_h;
1117 	plane->state->crtc_w = new_state->crtc_w;
1118 	plane->state->src_x = new_state->src_x;
1119 	plane->state->src_y = new_state->src_y;
1120 	plane->state->src_h = new_state->src_h;
1121 	plane->state->src_w = new_state->src_w;
1122 	swap(plane->state->fb, new_state->fb);
1123 
1124 	if (vop->is_enabled) {
1125 		vop_plane_atomic_update(plane, state);
1126 		spin_lock(&vop->reg_lock);
1127 		vop_cfg_done(vop);
1128 		spin_unlock(&vop->reg_lock);
1129 
1130 		/*
1131 		 * A scanout can still be occurring, so we can't drop the
1132 		 * reference to the old framebuffer. To solve this we get a
1133 		 * reference to old_fb and set a worker to release it later.
1134 		 * FIXME: if we perform 500 async_update calls before the
1135 		 * vblank, then we can have 500 different framebuffers waiting
1136 		 * to be released.
1137 		 */
1138 		if (old_fb && plane->state->fb != old_fb) {
1139 			drm_framebuffer_get(old_fb);
1140 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1141 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1142 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1143 		}
1144 	}
1145 }
1146 
1147 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1148 	.atomic_check = vop_plane_atomic_check,
1149 	.atomic_update = vop_plane_atomic_update,
1150 	.atomic_disable = vop_plane_atomic_disable,
1151 	.atomic_async_check = vop_plane_atomic_async_check,
1152 	.atomic_async_update = vop_plane_atomic_async_update,
1153 };
1154 
1155 static const struct drm_plane_funcs vop_plane_funcs = {
1156 	.update_plane	= drm_atomic_helper_update_plane,
1157 	.disable_plane	= drm_atomic_helper_disable_plane,
1158 	.destroy = drm_plane_cleanup,
1159 	.reset = drm_atomic_helper_plane_reset,
1160 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1161 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1162 	.format_mod_supported = rockchip_mod_supported,
1163 };
1164 
1165 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1166 {
1167 	struct vop *vop = to_vop(crtc);
1168 	unsigned long flags;
1169 
1170 	if (WARN_ON(!vop->is_enabled))
1171 		return -EPERM;
1172 
1173 	spin_lock_irqsave(&vop->irq_lock, flags);
1174 
1175 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1176 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1177 
1178 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1179 
1180 	return 0;
1181 }
1182 
1183 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1184 {
1185 	struct vop *vop = to_vop(crtc);
1186 	unsigned long flags;
1187 
1188 	if (WARN_ON(!vop->is_enabled))
1189 		return;
1190 
1191 	spin_lock_irqsave(&vop->irq_lock, flags);
1192 
1193 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1194 
1195 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1196 }
1197 
1198 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc,
1199 						const struct drm_display_mode *mode)
1200 {
1201 	struct vop *vop = to_vop(crtc);
1202 
1203 	if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width)
1204 		return MODE_BAD_HVALUE;
1205 
1206 	return MODE_OK;
1207 }
1208 
1209 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1210 				const struct drm_display_mode *mode,
1211 				struct drm_display_mode *adjusted_mode)
1212 {
1213 	struct vop *vop = to_vop(crtc);
1214 	unsigned long rate;
1215 
1216 	/*
1217 	 * Clock craziness.
1218 	 *
1219 	 * Key points:
1220 	 *
1221 	 * - DRM works in kHz.
1222 	 * - Clock framework works in Hz.
1223 	 * - Rockchip's clock driver picks the clock rate that is the
1224 	 *   same _OR LOWER_ than the one requested.
1225 	 *
1226 	 * Action plan:
1227 	 *
1228 	 * 1. Try to set the exact rate first, and confirm the clock framework
1229 	 *    can provide it.
1230 	 *
1231 	 * 2. If the clock framework cannot provide the exact rate, we should
1232 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1233 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1234 	 *    the clock framework will actually give us the right clock.
1235 	 *
1236 	 * 3. Get the clock framework to round the rate for us to tell us
1237 	 *    what it will actually make.
1238 	 *
1239 	 * 4. Store the rounded up rate so that we don't need to worry about
1240 	 *    this in the actual clk_set_rate().
1241 	 */
1242 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1243 	if (rate / 1000 != adjusted_mode->clock)
1244 		rate = clk_round_rate(vop->dclk,
1245 				      adjusted_mode->clock * 1000 + 999);
1246 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1247 
1248 	return true;
1249 }
1250 
1251 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1252 {
1253 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1254 }
1255 
1256 static u32 vop_lut_buffer_index(struct vop *vop)
1257 {
1258 	return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1259 }
1260 
1261 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1262 {
1263 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1264 	unsigned int i, bpc = ilog2(vop->data->lut_size);
1265 
1266 	for (i = 0; i < crtc->gamma_size; i++) {
1267 		u32 word;
1268 
1269 		word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1270 		       (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1271 			drm_color_lut_extract(lut[i].blue, bpc);
1272 		writel(word, vop->lut_regs + i * 4);
1273 	}
1274 }
1275 
1276 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1277 			       struct drm_crtc_state *old_state)
1278 {
1279 	struct drm_crtc_state *state = crtc->state;
1280 	unsigned int idle;
1281 	u32 lut_idx, old_idx;
1282 	int ret;
1283 
1284 	if (!vop->lut_regs)
1285 		return;
1286 
1287 	if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1288 		/*
1289 		 * To disable gamma (gamma_lut is null) or to write
1290 		 * an update to the LUT, clear dsp_lut_en.
1291 		 */
1292 		spin_lock(&vop->reg_lock);
1293 		VOP_REG_SET(vop, common, dsp_lut_en, 0);
1294 		vop_cfg_done(vop);
1295 		spin_unlock(&vop->reg_lock);
1296 
1297 		/*
1298 		 * In order to write the LUT to the internal memory,
1299 		 * we need to first make sure the dsp_lut_en bit is cleared.
1300 		 */
1301 		ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1302 					 idle, !idle, 5, 30 * 1000);
1303 		if (ret) {
1304 			DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1305 			return;
1306 		}
1307 
1308 		if (!state->gamma_lut)
1309 			return;
1310 	} else {
1311 		/*
1312 		 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1313 		 * by setting update_gamma_lut then waiting for lut_buffer_index change
1314 		 */
1315 		old_idx = vop_lut_buffer_index(vop);
1316 	}
1317 
1318 	spin_lock(&vop->reg_lock);
1319 	vop_crtc_write_gamma_lut(vop, crtc);
1320 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1321 	VOP_REG_SET(vop, common, update_gamma_lut, 1);
1322 	vop_cfg_done(vop);
1323 	spin_unlock(&vop->reg_lock);
1324 
1325 	if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1326 		ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1327 					 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1328 		if (ret) {
1329 			DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1330 			return;
1331 		}
1332 
1333 		/*
1334 		 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1335 		 * in our backup of the regs.
1336 		 */
1337 		spin_lock(&vop->reg_lock);
1338 		VOP_REG_SET(vop, common, update_gamma_lut, 0);
1339 		spin_unlock(&vop->reg_lock);
1340 	}
1341 }
1342 
1343 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1344 				  struct drm_atomic_state *state)
1345 {
1346 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1347 									  crtc);
1348 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1349 									      crtc);
1350 	struct vop *vop = to_vop(crtc);
1351 
1352 	/*
1353 	 * Only update GAMMA if the 'active' flag is not changed,
1354 	 * otherwise it's updated by .atomic_enable.
1355 	 */
1356 	if (crtc_state->color_mgmt_changed &&
1357 	    !crtc_state->active_changed)
1358 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1359 }
1360 
1361 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1362 				   struct drm_atomic_state *state)
1363 {
1364 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1365 									 crtc);
1366 	struct vop *vop = to_vop(crtc);
1367 	const struct vop_data *vop_data = vop->data;
1368 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1369 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1370 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1371 	u16 hdisplay = adjusted_mode->hdisplay;
1372 	u16 htotal = adjusted_mode->htotal;
1373 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1374 	u16 hact_end = hact_st + hdisplay;
1375 	u16 vdisplay = adjusted_mode->vdisplay;
1376 	u16 vtotal = adjusted_mode->vtotal;
1377 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1378 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1379 	u16 vact_end = vact_st + vdisplay;
1380 	uint32_t pin_pol, val;
1381 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1382 	int ret;
1383 
1384 	if (old_state && old_state->self_refresh_active) {
1385 		drm_crtc_vblank_on(crtc);
1386 		rockchip_drm_set_win_enabled(crtc, true);
1387 		return;
1388 	}
1389 
1390 	mutex_lock(&vop->vop_lock);
1391 
1392 	WARN_ON(vop->event);
1393 
1394 	ret = vop_enable(crtc, old_state);
1395 	if (ret) {
1396 		mutex_unlock(&vop->vop_lock);
1397 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1398 		return;
1399 	}
1400 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1401 		   BIT(HSYNC_POSITIVE) : 0;
1402 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1403 		   BIT(VSYNC_POSITIVE) : 0;
1404 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1405 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1406 
1407 	switch (s->output_type) {
1408 	case DRM_MODE_CONNECTOR_LVDS:
1409 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1410 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1411 		VOP_REG_SET(vop, output, rgb_en, 1);
1412 		break;
1413 	case DRM_MODE_CONNECTOR_eDP:
1414 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1415 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1416 		VOP_REG_SET(vop, output, edp_en, 1);
1417 		break;
1418 	case DRM_MODE_CONNECTOR_HDMIA:
1419 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1420 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1421 		VOP_REG_SET(vop, output, hdmi_en, 1);
1422 		break;
1423 	case DRM_MODE_CONNECTOR_DSI:
1424 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1425 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1426 		VOP_REG_SET(vop, output, mipi_en, 1);
1427 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1428 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1429 		break;
1430 	case DRM_MODE_CONNECTOR_DisplayPort:
1431 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1432 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1433 		VOP_REG_SET(vop, output, dp_en, 1);
1434 		break;
1435 	default:
1436 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1437 			      s->output_type);
1438 	}
1439 
1440 	/*
1441 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1442 	 */
1443 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1444 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1445 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1446 
1447 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1448 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1449 	else
1450 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1451 
1452 	if (dither_bpc == 6) {
1453 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1454 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1455 		VOP_REG_SET(vop, common, dither_down_en, 1);
1456 	} else {
1457 		VOP_REG_SET(vop, common, dither_down_en, 0);
1458 	}
1459 
1460 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1461 
1462 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1463 	val = hact_st << 16;
1464 	val |= hact_end;
1465 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1466 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1467 
1468 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1469 	val = vact_st << 16;
1470 	val |= vact_end;
1471 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1472 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1473 
1474 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1475 
1476 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1477 
1478 	VOP_REG_SET(vop, common, standby, 0);
1479 	mutex_unlock(&vop->vop_lock);
1480 
1481 	/*
1482 	 * If we have a GAMMA LUT in the state, then let's make sure
1483 	 * it's updated. We might be coming out of suspend,
1484 	 * which means the LUT internal memory needs to be re-written.
1485 	 */
1486 	if (crtc->state->gamma_lut)
1487 		vop_crtc_gamma_set(vop, crtc, old_state);
1488 }
1489 
1490 static bool vop_fs_irq_is_pending(struct vop *vop)
1491 {
1492 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1493 }
1494 
1495 static void vop_wait_for_irq_handler(struct vop *vop)
1496 {
1497 	bool pending;
1498 	int ret;
1499 
1500 	/*
1501 	 * Spin until frame start interrupt status bit goes low, which means
1502 	 * that interrupt handler was invoked and cleared it. The timeout of
1503 	 * 10 msecs is really too long, but it is just a safety measure if
1504 	 * something goes really wrong. The wait will only happen in the very
1505 	 * unlikely case of a vblank happening exactly at the same time and
1506 	 * shouldn't exceed microseconds range.
1507 	 */
1508 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1509 					!pending, 0, 10 * 1000);
1510 	if (ret)
1511 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1512 
1513 	synchronize_irq(vop->irq);
1514 }
1515 
1516 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1517 				 struct drm_atomic_state *state)
1518 {
1519 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1520 									  crtc);
1521 	struct vop *vop = to_vop(crtc);
1522 	struct drm_plane *plane;
1523 	struct drm_plane_state *plane_state;
1524 	struct rockchip_crtc_state *s;
1525 	int afbc_planes = 0;
1526 
1527 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1528 	    crtc_state->gamma_lut) {
1529 		unsigned int len;
1530 
1531 		len = drm_color_lut_size(crtc_state->gamma_lut);
1532 		if (len != crtc->gamma_size) {
1533 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1534 				      len, crtc->gamma_size);
1535 			return -EINVAL;
1536 		}
1537 	}
1538 
1539 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1540 		plane_state =
1541 			drm_atomic_get_plane_state(crtc_state->state, plane);
1542 		if (IS_ERR(plane_state)) {
1543 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1544 				      plane->name);
1545 			return PTR_ERR(plane_state);
1546 		}
1547 
1548 		if (drm_is_afbc(plane_state->fb->modifier))
1549 			++afbc_planes;
1550 	}
1551 
1552 	if (afbc_planes > 1) {
1553 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1554 		return -EINVAL;
1555 	}
1556 
1557 	s = to_rockchip_crtc_state(crtc_state);
1558 	s->enable_afbc = afbc_planes > 0;
1559 
1560 	return 0;
1561 }
1562 
1563 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1564 				  struct drm_atomic_state *state)
1565 {
1566 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1567 									      crtc);
1568 	struct drm_atomic_state *old_state = old_crtc_state->state;
1569 	struct drm_plane_state *old_plane_state, *new_plane_state;
1570 	struct vop *vop = to_vop(crtc);
1571 	struct drm_plane *plane;
1572 	struct rockchip_crtc_state *s;
1573 	int i;
1574 
1575 	if (WARN_ON(!vop->is_enabled))
1576 		return;
1577 
1578 	spin_lock(&vop->reg_lock);
1579 
1580 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1581 	s = to_rockchip_crtc_state(crtc->state);
1582 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1583 	vop_cfg_done(vop);
1584 
1585 	/* Ack the DMA transfer of the previous frame (RK3066). */
1586 	if (VOP_HAS_REG(vop, common, dma_stop))
1587 		VOP_REG_SET(vop, common, dma_stop, 0);
1588 
1589 	spin_unlock(&vop->reg_lock);
1590 
1591 	/*
1592 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1593 	 * fired before we set the cfg_done bit. To avoid spuriously
1594 	 * signalling flip completion we need to wait for it to finish.
1595 	 */
1596 	vop_wait_for_irq_handler(vop);
1597 
1598 	spin_lock_irq(&crtc->dev->event_lock);
1599 	if (crtc->state->event) {
1600 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1601 		WARN_ON(vop->event);
1602 
1603 		vop->event = crtc->state->event;
1604 		crtc->state->event = NULL;
1605 	}
1606 	spin_unlock_irq(&crtc->dev->event_lock);
1607 
1608 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1609 				       new_plane_state, i) {
1610 		if (!old_plane_state->fb)
1611 			continue;
1612 
1613 		if (old_plane_state->fb == new_plane_state->fb)
1614 			continue;
1615 
1616 		drm_framebuffer_get(old_plane_state->fb);
1617 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1618 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1619 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1620 	}
1621 }
1622 
1623 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1624 	.mode_valid = vop_crtc_mode_valid,
1625 	.mode_fixup = vop_crtc_mode_fixup,
1626 	.atomic_check = vop_crtc_atomic_check,
1627 	.atomic_begin = vop_crtc_atomic_begin,
1628 	.atomic_flush = vop_crtc_atomic_flush,
1629 	.atomic_enable = vop_crtc_atomic_enable,
1630 	.atomic_disable = vop_crtc_atomic_disable,
1631 };
1632 
1633 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1634 {
1635 	struct rockchip_crtc_state *rockchip_state;
1636 
1637 	if (WARN_ON(!crtc->state))
1638 		return NULL;
1639 
1640 	rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state),
1641 				 sizeof(*rockchip_state), GFP_KERNEL);
1642 	if (!rockchip_state)
1643 		return NULL;
1644 
1645 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1646 	return &rockchip_state->base;
1647 }
1648 
1649 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1650 				   struct drm_crtc_state *state)
1651 {
1652 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1653 
1654 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1655 	kfree(s);
1656 }
1657 
1658 static void vop_crtc_reset(struct drm_crtc *crtc)
1659 {
1660 	struct rockchip_crtc_state *crtc_state =
1661 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1662 
1663 	if (crtc->state)
1664 		vop_crtc_destroy_state(crtc, crtc->state);
1665 
1666 	if (crtc_state)
1667 		__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1668 	else
1669 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1670 }
1671 
1672 #ifdef CONFIG_DRM_ANALOGIX_DP
1673 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1674 {
1675 	struct drm_connector *connector;
1676 	struct drm_connector_list_iter conn_iter;
1677 
1678 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1679 	drm_for_each_connector_iter(connector, &conn_iter) {
1680 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1681 			drm_connector_list_iter_end(&conn_iter);
1682 			return connector;
1683 		}
1684 	}
1685 	drm_connector_list_iter_end(&conn_iter);
1686 
1687 	return NULL;
1688 }
1689 
1690 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1691 				   const char *source_name)
1692 {
1693 	struct vop *vop = to_vop(crtc);
1694 	struct drm_connector *connector;
1695 	int ret;
1696 
1697 	connector = vop_get_edp_connector(vop);
1698 	if (!connector)
1699 		return -EINVAL;
1700 
1701 	if (source_name && strcmp(source_name, "auto") == 0)
1702 		ret = analogix_dp_start_crc(connector);
1703 	else if (!source_name)
1704 		ret = analogix_dp_stop_crc(connector);
1705 	else
1706 		ret = -EINVAL;
1707 
1708 	return ret;
1709 }
1710 
1711 static int
1712 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1713 			   size_t *values_cnt)
1714 {
1715 	if (source_name && strcmp(source_name, "auto") != 0)
1716 		return -EINVAL;
1717 
1718 	*values_cnt = 3;
1719 	return 0;
1720 }
1721 
1722 #else
1723 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1724 				   const char *source_name)
1725 {
1726 	return -ENODEV;
1727 }
1728 
1729 static int
1730 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1731 			   size_t *values_cnt)
1732 {
1733 	return -ENODEV;
1734 }
1735 #endif
1736 
1737 static const struct drm_crtc_funcs vop_crtc_funcs = {
1738 	.set_config = drm_atomic_helper_set_config,
1739 	.page_flip = drm_atomic_helper_page_flip,
1740 	.destroy = drm_crtc_cleanup,
1741 	.reset = vop_crtc_reset,
1742 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1743 	.atomic_destroy_state = vop_crtc_destroy_state,
1744 	.enable_vblank = vop_crtc_enable_vblank,
1745 	.disable_vblank = vop_crtc_disable_vblank,
1746 	.set_crc_source = vop_crtc_set_crc_source,
1747 	.verify_crc_source = vop_crtc_verify_crc_source,
1748 };
1749 
1750 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1751 {
1752 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1753 	struct drm_framebuffer *fb = val;
1754 
1755 	drm_crtc_vblank_put(&vop->crtc);
1756 	drm_framebuffer_put(fb);
1757 }
1758 
1759 static void vop_handle_vblank(struct vop *vop)
1760 {
1761 	struct drm_device *drm = vop->drm_dev;
1762 	struct drm_crtc *crtc = &vop->crtc;
1763 
1764 	spin_lock(&drm->event_lock);
1765 	if (vop->event) {
1766 		drm_crtc_send_vblank_event(crtc, vop->event);
1767 		drm_crtc_vblank_put(crtc);
1768 		vop->event = NULL;
1769 	}
1770 	spin_unlock(&drm->event_lock);
1771 
1772 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1773 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1774 }
1775 
1776 static irqreturn_t vop_isr(int irq, void *data)
1777 {
1778 	struct vop *vop = data;
1779 	struct drm_crtc *crtc = &vop->crtc;
1780 	uint32_t active_irqs;
1781 	int ret = IRQ_NONE;
1782 
1783 	/*
1784 	 * The irq is shared with the iommu. If the runtime-pm state of the
1785 	 * vop-device is disabled the irq has to be targeted at the iommu.
1786 	 */
1787 	if (!pm_runtime_get_if_in_use(vop->dev))
1788 		return IRQ_NONE;
1789 
1790 	if (vop_core_clks_enable(vop)) {
1791 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1792 		goto out;
1793 	}
1794 
1795 	/*
1796 	 * interrupt register has interrupt status, enable and clear bits, we
1797 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1798 	*/
1799 	spin_lock(&vop->irq_lock);
1800 
1801 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1802 	/* Clear all active interrupt sources */
1803 	if (active_irqs)
1804 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1805 
1806 	spin_unlock(&vop->irq_lock);
1807 
1808 	/* This is expected for vop iommu irqs, since the irq is shared */
1809 	if (!active_irqs)
1810 		goto out_disable;
1811 
1812 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1813 		complete(&vop->dsp_hold_completion);
1814 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1815 		ret = IRQ_HANDLED;
1816 	}
1817 
1818 	if (active_irqs & LINE_FLAG_INTR) {
1819 		complete(&vop->line_flag_completion);
1820 		active_irqs &= ~LINE_FLAG_INTR;
1821 		ret = IRQ_HANDLED;
1822 	}
1823 
1824 	if (active_irqs & FS_INTR) {
1825 		drm_crtc_handle_vblank(crtc);
1826 		vop_handle_vblank(vop);
1827 		active_irqs &= ~FS_INTR;
1828 		ret = IRQ_HANDLED;
1829 	}
1830 
1831 	/* Unhandled irqs are spurious. */
1832 	if (active_irqs)
1833 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1834 			      active_irqs);
1835 
1836 out_disable:
1837 	vop_core_clks_disable(vop);
1838 out:
1839 	pm_runtime_put(vop->dev);
1840 	return ret;
1841 }
1842 
1843 static void vop_plane_add_properties(struct drm_plane *plane,
1844 				     const struct vop_win_data *win_data)
1845 {
1846 	unsigned int flags = 0;
1847 
1848 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1849 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1850 	if (flags)
1851 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1852 						   DRM_MODE_ROTATE_0 | flags);
1853 }
1854 
1855 static int vop_create_crtc(struct vop *vop)
1856 {
1857 	const struct vop_data *vop_data = vop->data;
1858 	struct device *dev = vop->dev;
1859 	struct drm_device *drm_dev = vop->drm_dev;
1860 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1861 	struct drm_crtc *crtc = &vop->crtc;
1862 	struct device_node *port;
1863 	int ret;
1864 	int i;
1865 
1866 	/*
1867 	 * Create drm_plane for primary and cursor planes first, since we need
1868 	 * to pass them to drm_crtc_init_with_planes, which sets the
1869 	 * "possible_crtcs" to the newly initialized crtc.
1870 	 */
1871 	for (i = 0; i < vop_data->win_size; i++) {
1872 		struct vop_win *vop_win = &vop->win[i];
1873 		const struct vop_win_data *win_data = vop_win->data;
1874 
1875 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1876 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1877 			continue;
1878 
1879 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1880 					       0, &vop_plane_funcs,
1881 					       win_data->phy->data_formats,
1882 					       win_data->phy->nformats,
1883 					       win_data->phy->format_modifiers,
1884 					       win_data->type, NULL);
1885 		if (ret) {
1886 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1887 				      ret);
1888 			goto err_cleanup_planes;
1889 		}
1890 
1891 		plane = &vop_win->base;
1892 		drm_plane_helper_add(plane, &plane_helper_funcs);
1893 		vop_plane_add_properties(plane, win_data);
1894 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1895 			primary = plane;
1896 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1897 			cursor = plane;
1898 	}
1899 
1900 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1901 					&vop_crtc_funcs, NULL);
1902 	if (ret)
1903 		goto err_cleanup_planes;
1904 
1905 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1906 	if (vop->lut_regs) {
1907 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1908 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1909 	}
1910 
1911 	/*
1912 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1913 	 * to the newly created crtc.
1914 	 */
1915 	for (i = 0; i < vop_data->win_size; i++) {
1916 		struct vop_win *vop_win = &vop->win[i];
1917 		const struct vop_win_data *win_data = vop_win->data;
1918 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1919 
1920 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1921 			continue;
1922 
1923 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1924 					       possible_crtcs,
1925 					       &vop_plane_funcs,
1926 					       win_data->phy->data_formats,
1927 					       win_data->phy->nformats,
1928 					       win_data->phy->format_modifiers,
1929 					       win_data->type, NULL);
1930 		if (ret) {
1931 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1932 				      ret);
1933 			goto err_cleanup_crtc;
1934 		}
1935 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1936 		vop_plane_add_properties(&vop_win->base, win_data);
1937 	}
1938 
1939 	port = of_get_child_by_name(dev->of_node, "port");
1940 	if (!port) {
1941 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1942 			      dev->of_node);
1943 		ret = -ENOENT;
1944 		goto err_cleanup_crtc;
1945 	}
1946 
1947 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1948 			   vop_fb_unref_worker);
1949 
1950 	init_completion(&vop->dsp_hold_completion);
1951 	init_completion(&vop->line_flag_completion);
1952 	crtc->port = port;
1953 
1954 	ret = drm_self_refresh_helper_init(crtc);
1955 	if (ret)
1956 		DRM_DEV_DEBUG_KMS(vop->dev,
1957 			"Failed to init %s with SR helpers %d, ignoring\n",
1958 			crtc->name, ret);
1959 
1960 	return 0;
1961 
1962 err_cleanup_crtc:
1963 	drm_crtc_cleanup(crtc);
1964 err_cleanup_planes:
1965 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1966 				 head)
1967 		drm_plane_cleanup(plane);
1968 	return ret;
1969 }
1970 
1971 static void vop_destroy_crtc(struct vop *vop)
1972 {
1973 	struct drm_crtc *crtc = &vop->crtc;
1974 	struct drm_device *drm_dev = vop->drm_dev;
1975 	struct drm_plane *plane, *tmp;
1976 
1977 	drm_self_refresh_helper_cleanup(crtc);
1978 
1979 	of_node_put(crtc->port);
1980 
1981 	/*
1982 	 * We need to cleanup the planes now.  Why?
1983 	 *
1984 	 * The planes are "&vop->win[i].base".  That means the memory is
1985 	 * all part of the big "struct vop" chunk of memory.  That memory
1986 	 * was devm allocated and associated with this component.  We need to
1987 	 * free it ourselves before vop_unbind() finishes.
1988 	 */
1989 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1990 				 head)
1991 		drm_plane_cleanup(plane);
1992 
1993 	/*
1994 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1995 	 * references the CRTC.
1996 	 */
1997 	drm_crtc_cleanup(crtc);
1998 	drm_flip_work_cleanup(&vop->fb_unref_work);
1999 }
2000 
2001 static int vop_initial(struct vop *vop)
2002 {
2003 	struct reset_control *ahb_rst;
2004 	int i, ret;
2005 
2006 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
2007 	if (IS_ERR(vop->hclk)) {
2008 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
2009 		return PTR_ERR(vop->hclk);
2010 	}
2011 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
2012 	if (IS_ERR(vop->aclk)) {
2013 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
2014 		return PTR_ERR(vop->aclk);
2015 	}
2016 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
2017 	if (IS_ERR(vop->dclk)) {
2018 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
2019 		return PTR_ERR(vop->dclk);
2020 	}
2021 
2022 	ret = pm_runtime_resume_and_get(vop->dev);
2023 	if (ret < 0) {
2024 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
2025 		return ret;
2026 	}
2027 
2028 	ret = clk_prepare(vop->dclk);
2029 	if (ret < 0) {
2030 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
2031 		goto err_put_pm_runtime;
2032 	}
2033 
2034 	/* Enable both the hclk and aclk to setup the vop */
2035 	ret = clk_prepare_enable(vop->hclk);
2036 	if (ret < 0) {
2037 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2038 		goto err_unprepare_dclk;
2039 	}
2040 
2041 	ret = clk_prepare_enable(vop->aclk);
2042 	if (ret < 0) {
2043 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2044 		goto err_disable_hclk;
2045 	}
2046 
2047 	/*
2048 	 * do hclk_reset, reset all vop registers.
2049 	 */
2050 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2051 	if (IS_ERR(ahb_rst)) {
2052 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2053 		ret = PTR_ERR(ahb_rst);
2054 		goto err_disable_aclk;
2055 	}
2056 	reset_control_assert(ahb_rst);
2057 	usleep_range(10, 20);
2058 	reset_control_deassert(ahb_rst);
2059 
2060 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2061 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2062 
2063 	for (i = 0; i < vop->len; i += sizeof(u32))
2064 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2065 
2066 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2067 	VOP_REG_SET(vop, common, dsp_blank, 0);
2068 
2069 	for (i = 0; i < vop->data->win_size; i++) {
2070 		struct vop_win *vop_win = &vop->win[i];
2071 		const struct vop_win_data *win = vop_win->data;
2072 		int channel = i * 2 + 1;
2073 
2074 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2075 		vop_win_disable(vop, vop_win);
2076 		VOP_WIN_SET(vop, win, gate, 1);
2077 	}
2078 
2079 	vop_cfg_done(vop);
2080 
2081 	/*
2082 	 * do dclk_reset, let all config take affect.
2083 	 */
2084 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2085 	if (IS_ERR(vop->dclk_rst)) {
2086 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2087 		ret = PTR_ERR(vop->dclk_rst);
2088 		goto err_disable_aclk;
2089 	}
2090 	reset_control_assert(vop->dclk_rst);
2091 	usleep_range(10, 20);
2092 	reset_control_deassert(vop->dclk_rst);
2093 
2094 	clk_disable(vop->hclk);
2095 	clk_disable(vop->aclk);
2096 
2097 	vop->is_enabled = false;
2098 
2099 	pm_runtime_put_sync(vop->dev);
2100 
2101 	return 0;
2102 
2103 err_disable_aclk:
2104 	clk_disable_unprepare(vop->aclk);
2105 err_disable_hclk:
2106 	clk_disable_unprepare(vop->hclk);
2107 err_unprepare_dclk:
2108 	clk_unprepare(vop->dclk);
2109 err_put_pm_runtime:
2110 	pm_runtime_put_sync(vop->dev);
2111 	return ret;
2112 }
2113 
2114 /*
2115  * Initialize the vop->win array elements.
2116  */
2117 static void vop_win_init(struct vop *vop)
2118 {
2119 	const struct vop_data *vop_data = vop->data;
2120 	unsigned int i;
2121 
2122 	for (i = 0; i < vop_data->win_size; i++) {
2123 		struct vop_win *vop_win = &vop->win[i];
2124 		const struct vop_win_data *win_data = &vop_data->win[i];
2125 
2126 		vop_win->data = win_data;
2127 		vop_win->vop = vop;
2128 
2129 		if (vop_data->win_yuv2yuv)
2130 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2131 	}
2132 }
2133 
2134 /**
2135  * rockchip_drm_wait_vact_end
2136  * @crtc: CRTC to enable line flag
2137  * @mstimeout: millisecond for timeout
2138  *
2139  * Wait for vact_end line flag irq or timeout.
2140  *
2141  * Returns:
2142  * Zero on success, negative errno on failure.
2143  */
2144 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2145 {
2146 	struct vop *vop = to_vop(crtc);
2147 	unsigned long jiffies_left;
2148 	int ret = 0;
2149 
2150 	if (!crtc || !vop->is_enabled)
2151 		return -ENODEV;
2152 
2153 	mutex_lock(&vop->vop_lock);
2154 	if (mstimeout <= 0) {
2155 		ret = -EINVAL;
2156 		goto out;
2157 	}
2158 
2159 	if (vop_line_flag_irq_is_enabled(vop)) {
2160 		ret = -EBUSY;
2161 		goto out;
2162 	}
2163 
2164 	reinit_completion(&vop->line_flag_completion);
2165 	vop_line_flag_irq_enable(vop);
2166 
2167 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2168 						   msecs_to_jiffies(mstimeout));
2169 	vop_line_flag_irq_disable(vop);
2170 
2171 	if (jiffies_left == 0) {
2172 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2173 		ret = -ETIMEDOUT;
2174 		goto out;
2175 	}
2176 
2177 out:
2178 	mutex_unlock(&vop->vop_lock);
2179 	return ret;
2180 }
2181 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2182 
2183 static int vop_bind(struct device *dev, struct device *master, void *data)
2184 {
2185 	struct platform_device *pdev = to_platform_device(dev);
2186 	const struct vop_data *vop_data;
2187 	struct drm_device *drm_dev = data;
2188 	struct vop *vop;
2189 	struct resource *res;
2190 	int ret, irq;
2191 
2192 	vop_data = of_device_get_match_data(dev);
2193 	if (!vop_data)
2194 		return -ENODEV;
2195 
2196 	/* Allocate vop struct and its vop_win array */
2197 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2198 			   GFP_KERNEL);
2199 	if (!vop)
2200 		return -ENOMEM;
2201 
2202 	vop->dev = dev;
2203 	vop->data = vop_data;
2204 	vop->drm_dev = drm_dev;
2205 	dev_set_drvdata(dev, vop);
2206 
2207 	vop_win_init(vop);
2208 
2209 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2210 	vop->regs = devm_ioremap_resource(dev, res);
2211 	if (IS_ERR(vop->regs))
2212 		return PTR_ERR(vop->regs);
2213 	vop->len = resource_size(res);
2214 
2215 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2216 	if (res) {
2217 		if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2218 			DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2219 			return -EINVAL;
2220 		}
2221 		vop->lut_regs = devm_ioremap_resource(dev, res);
2222 		if (IS_ERR(vop->lut_regs))
2223 			return PTR_ERR(vop->lut_regs);
2224 	}
2225 
2226 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2227 	if (!vop->regsbak)
2228 		return -ENOMEM;
2229 
2230 	irq = platform_get_irq(pdev, 0);
2231 	if (irq < 0) {
2232 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2233 		return irq;
2234 	}
2235 	vop->irq = (unsigned int)irq;
2236 
2237 	spin_lock_init(&vop->reg_lock);
2238 	spin_lock_init(&vop->irq_lock);
2239 	mutex_init(&vop->vop_lock);
2240 
2241 	ret = vop_create_crtc(vop);
2242 	if (ret)
2243 		return ret;
2244 
2245 	pm_runtime_enable(&pdev->dev);
2246 
2247 	ret = vop_initial(vop);
2248 	if (ret < 0) {
2249 		DRM_DEV_ERROR(&pdev->dev,
2250 			      "cannot initial vop dev - err %d\n", ret);
2251 		goto err_disable_pm_runtime;
2252 	}
2253 
2254 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2255 			       IRQF_SHARED, dev_name(dev), vop);
2256 	if (ret)
2257 		goto err_disable_pm_runtime;
2258 
2259 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2260 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0);
2261 		if (IS_ERR(vop->rgb)) {
2262 			ret = PTR_ERR(vop->rgb);
2263 			goto err_disable_pm_runtime;
2264 		}
2265 	}
2266 
2267 	rockchip_drm_dma_init_device(drm_dev, dev);
2268 
2269 	return 0;
2270 
2271 err_disable_pm_runtime:
2272 	pm_runtime_disable(&pdev->dev);
2273 	vop_destroy_crtc(vop);
2274 	return ret;
2275 }
2276 
2277 static void vop_unbind(struct device *dev, struct device *master, void *data)
2278 {
2279 	struct vop *vop = dev_get_drvdata(dev);
2280 
2281 	if (vop->rgb)
2282 		rockchip_rgb_fini(vop->rgb);
2283 
2284 	pm_runtime_disable(dev);
2285 	vop_destroy_crtc(vop);
2286 
2287 	clk_unprepare(vop->aclk);
2288 	clk_unprepare(vop->hclk);
2289 	clk_unprepare(vop->dclk);
2290 }
2291 
2292 const struct component_ops vop_component_ops = {
2293 	.bind = vop_bind,
2294 	.unbind = vop_unbind,
2295 };
2296 EXPORT_SYMBOL_GPL(vop_component_ops);
2297