1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd 4 * Author:Mark Yao <mark.yao@rock-chips.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/component.h> 9 #include <linux/delay.h> 10 #include <linux/iopoll.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/overflow.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 20 #include <drm/drm.h> 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_uapi.h> 23 #include <drm/drm_blend.h> 24 #include <drm/drm_crtc.h> 25 #include <drm/drm_flip_work.h> 26 #include <drm/drm_fourcc.h> 27 #include <drm/drm_framebuffer.h> 28 #include <drm/drm_gem_atomic_helper.h> 29 #include <drm/drm_gem_framebuffer_helper.h> 30 #include <drm/drm_probe_helper.h> 31 #include <drm/drm_self_refresh_helper.h> 32 #include <drm/drm_vblank.h> 33 34 #ifdef CONFIG_DRM_ANALOGIX_DP 35 #include <drm/bridge/analogix_dp.h> 36 #endif 37 38 #include "rockchip_drm_drv.h" 39 #include "rockchip_drm_gem.h" 40 #include "rockchip_drm_fb.h" 41 #include "rockchip_drm_vop.h" 42 #include "rockchip_rgb.h" 43 44 #define VOP_WIN_SET(vop, win, name, v) \ 45 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) 46 #define VOP_SCL_SET(vop, win, name, v) \ 47 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) 48 #define VOP_SCL_SET_EXT(vop, win, name, v) \ 49 vop_reg_set(vop, &win->phy->scl->ext->name, \ 50 win->base, ~0, v, #name) 51 52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ 53 do { \ 54 if (win_yuv2yuv && win_yuv2yuv->name.mask) \ 55 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ 56 } while (0) 57 58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ 59 do { \ 60 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ 61 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ 62 } while (0) 63 64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \ 65 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) 66 67 #define VOP_REG_SET(vop, group, name, v) \ 68 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) 69 70 #define VOP_HAS_REG(vop, group, name) \ 71 (!!(vop->data->group->name.mask)) 72 73 #define VOP_INTR_SET_TYPE(vop, name, type, v) \ 74 do { \ 75 int i, reg = 0, mask = 0; \ 76 for (i = 0; i < vop->data->intr->nintrs; i++) { \ 77 if (vop->data->intr->intrs[i] & type) { \ 78 reg |= (v) << i; \ 79 mask |= 1 << i; \ 80 } \ 81 } \ 82 VOP_INTR_SET_MASK(vop, name, mask, reg); \ 83 } while (0) 84 #define VOP_INTR_GET_TYPE(vop, name, type) \ 85 vop_get_intr_type(vop, &vop->data->intr->name, type) 86 87 #define VOP_WIN_GET(vop, win, name) \ 88 vop_read_reg(vop, win->base, &win->phy->name) 89 90 #define VOP_WIN_HAS_REG(win, name) \ 91 (!!(win->phy->name.mask)) 92 93 #define VOP_WIN_GET_YRGBADDR(vop, win) \ 94 vop_readl(vop, win->base + win->phy->yrgb_mst.offset) 95 96 #define VOP_WIN_TO_INDEX(vop_win) \ 97 ((vop_win) - (vop_win)->vop->win) 98 99 #define VOP_AFBC_SET(vop, name, v) \ 100 do { \ 101 if ((vop)->data->afbc) \ 102 vop_reg_set((vop), &(vop)->data->afbc->name, \ 103 0, ~0, v, #name); \ 104 } while (0) 105 106 #define to_vop(x) container_of(x, struct vop, crtc) 107 #define to_vop_win(x) container_of(x, struct vop_win, base) 108 109 #define AFBC_FMT_RGB565 0x0 110 #define AFBC_FMT_U8U8U8U8 0x5 111 #define AFBC_FMT_U8U8U8 0x4 112 113 #define AFBC_TILE_16x16 BIT(4) 114 115 /* 116 * The coefficients of the following matrix are all fixed points. 117 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. 118 * They are all represented in two's complement. 119 */ 120 static const uint32_t bt601_yuv2rgb[] = { 121 0x4A8, 0x0, 0x662, 122 0x4A8, 0x1E6F, 0x1CBF, 123 0x4A8, 0x812, 0x0, 124 0x321168, 0x0877CF, 0x2EB127 125 }; 126 127 enum vop_pending { 128 VOP_PENDING_FB_UNREF, 129 }; 130 131 struct vop_win { 132 struct drm_plane base; 133 const struct vop_win_data *data; 134 const struct vop_win_yuv2yuv_data *yuv2yuv_data; 135 struct vop *vop; 136 }; 137 138 struct rockchip_rgb; 139 struct vop { 140 struct drm_crtc crtc; 141 struct device *dev; 142 struct drm_device *drm_dev; 143 bool is_enabled; 144 145 struct completion dsp_hold_completion; 146 unsigned int win_enabled; 147 148 /* protected by dev->event_lock */ 149 struct drm_pending_vblank_event *event; 150 151 struct drm_flip_work fb_unref_work; 152 unsigned long pending; 153 154 struct completion line_flag_completion; 155 156 const struct vop_data *data; 157 158 uint32_t *regsbak; 159 void __iomem *regs; 160 void __iomem *lut_regs; 161 162 /* physical map length of vop register */ 163 uint32_t len; 164 165 /* one time only one process allowed to config the register */ 166 spinlock_t reg_lock; 167 /* lock vop irq reg */ 168 spinlock_t irq_lock; 169 /* protects crtc enable/disable */ 170 struct mutex vop_lock; 171 172 unsigned int irq; 173 174 /* vop AHP clk */ 175 struct clk *hclk; 176 /* vop dclk */ 177 struct clk *dclk; 178 /* vop share memory frequency */ 179 struct clk *aclk; 180 181 /* vop dclk reset */ 182 struct reset_control *dclk_rst; 183 184 /* optional internal rgb encoder */ 185 struct rockchip_rgb *rgb; 186 187 struct vop_win win[]; 188 }; 189 190 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) 191 { 192 return readl(vop->regs + offset); 193 } 194 195 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, 196 const struct vop_reg *reg) 197 { 198 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; 199 } 200 201 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, 202 uint32_t _offset, uint32_t _mask, uint32_t v, 203 const char *reg_name) 204 { 205 int offset, mask, shift; 206 207 if (!reg || !reg->mask) { 208 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); 209 return; 210 } 211 212 offset = reg->offset + _offset; 213 mask = reg->mask & _mask; 214 shift = reg->shift; 215 216 if (reg->write_mask) { 217 v = ((v << shift) & 0xffff) | (mask << (shift + 16)); 218 } else { 219 uint32_t cached_val = vop->regsbak[offset >> 2]; 220 221 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); 222 vop->regsbak[offset >> 2] = v; 223 } 224 225 if (reg->relaxed) 226 writel_relaxed(v, vop->regs + offset); 227 else 228 writel(v, vop->regs + offset); 229 } 230 231 static inline uint32_t vop_get_intr_type(struct vop *vop, 232 const struct vop_reg *reg, int type) 233 { 234 uint32_t i, ret = 0; 235 uint32_t regs = vop_read_reg(vop, 0, reg); 236 237 for (i = 0; i < vop->data->intr->nintrs; i++) { 238 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) 239 ret |= vop->data->intr->intrs[i]; 240 } 241 242 return ret; 243 } 244 245 static inline void vop_cfg_done(struct vop *vop) 246 { 247 VOP_REG_SET(vop, common, cfg_done, 1); 248 } 249 250 static bool has_rb_swapped(uint32_t version, uint32_t format) 251 { 252 switch (format) { 253 case DRM_FORMAT_XBGR8888: 254 case DRM_FORMAT_ABGR8888: 255 case DRM_FORMAT_BGR565: 256 return true; 257 /* 258 * full framework (IP version 3.x) only need rb swapped for RGB888 and 259 * little framework (IP version 2.x) only need rb swapped for BGR888, 260 * check for 3.x to also only rb swap BGR888 for unknown vop version 261 */ 262 case DRM_FORMAT_RGB888: 263 return VOP_MAJOR(version) == 3; 264 case DRM_FORMAT_BGR888: 265 return VOP_MAJOR(version) != 3; 266 default: 267 return false; 268 } 269 } 270 271 static bool has_uv_swapped(uint32_t format) 272 { 273 switch (format) { 274 case DRM_FORMAT_NV21: 275 case DRM_FORMAT_NV61: 276 case DRM_FORMAT_NV42: 277 return true; 278 default: 279 return false; 280 } 281 } 282 283 static bool is_fmt_10(uint32_t format) 284 { 285 switch (format) { 286 case DRM_FORMAT_NV15: 287 case DRM_FORMAT_NV20: 288 case DRM_FORMAT_NV30: 289 return true; 290 default: 291 return false; 292 } 293 } 294 295 static enum vop_data_format vop_convert_format(uint32_t format) 296 { 297 switch (format) { 298 case DRM_FORMAT_XRGB8888: 299 case DRM_FORMAT_ARGB8888: 300 case DRM_FORMAT_XBGR8888: 301 case DRM_FORMAT_ABGR8888: 302 return VOP_FMT_ARGB8888; 303 case DRM_FORMAT_RGB888: 304 case DRM_FORMAT_BGR888: 305 return VOP_FMT_RGB888; 306 case DRM_FORMAT_RGB565: 307 case DRM_FORMAT_BGR565: 308 return VOP_FMT_RGB565; 309 case DRM_FORMAT_NV12: 310 case DRM_FORMAT_NV15: 311 case DRM_FORMAT_NV21: 312 return VOP_FMT_YUV420SP; 313 case DRM_FORMAT_NV16: 314 case DRM_FORMAT_NV20: 315 case DRM_FORMAT_NV61: 316 return VOP_FMT_YUV422SP; 317 case DRM_FORMAT_NV24: 318 case DRM_FORMAT_NV30: 319 case DRM_FORMAT_NV42: 320 return VOP_FMT_YUV444SP; 321 default: 322 DRM_ERROR("unsupported format[%08x]\n", format); 323 return -EINVAL; 324 } 325 } 326 327 static int vop_convert_afbc_format(uint32_t format) 328 { 329 switch (format) { 330 case DRM_FORMAT_XRGB8888: 331 case DRM_FORMAT_ARGB8888: 332 case DRM_FORMAT_XBGR8888: 333 case DRM_FORMAT_ABGR8888: 334 return AFBC_FMT_U8U8U8U8; 335 case DRM_FORMAT_RGB888: 336 case DRM_FORMAT_BGR888: 337 return AFBC_FMT_U8U8U8; 338 case DRM_FORMAT_RGB565: 339 case DRM_FORMAT_BGR565: 340 return AFBC_FMT_RGB565; 341 default: 342 DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format); 343 return -EINVAL; 344 } 345 } 346 347 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, 348 uint32_t dst, bool is_horizontal, 349 int vsu_mode, int *vskiplines) 350 { 351 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; 352 353 if (vskiplines) 354 *vskiplines = 0; 355 356 if (is_horizontal) { 357 if (mode == SCALE_UP) 358 val = GET_SCL_FT_BIC(src, dst); 359 else if (mode == SCALE_DOWN) 360 val = GET_SCL_FT_BILI_DN(src, dst); 361 } else { 362 if (mode == SCALE_UP) { 363 if (vsu_mode == SCALE_UP_BIL) 364 val = GET_SCL_FT_BILI_UP(src, dst); 365 else 366 val = GET_SCL_FT_BIC(src, dst); 367 } else if (mode == SCALE_DOWN) { 368 if (vskiplines) { 369 *vskiplines = scl_get_vskiplines(src, dst); 370 val = scl_get_bili_dn_vskip(src, dst, 371 *vskiplines); 372 } else { 373 val = GET_SCL_FT_BILI_DN(src, dst); 374 } 375 } 376 } 377 378 return val; 379 } 380 381 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, 382 uint32_t src_w, uint32_t src_h, uint32_t dst_w, 383 uint32_t dst_h, const struct drm_format_info *info) 384 { 385 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; 386 uint16_t cbcr_hor_scl_mode = SCALE_NONE; 387 uint16_t cbcr_ver_scl_mode = SCALE_NONE; 388 bool is_yuv = false; 389 uint16_t cbcr_src_w = src_w / info->hsub; 390 uint16_t cbcr_src_h = src_h / info->vsub; 391 uint16_t vsu_mode; 392 uint16_t lb_mode; 393 uint32_t val; 394 int vskiplines; 395 396 if (info->is_yuv) 397 is_yuv = true; 398 399 if (dst_w > 4096) { 400 DRM_DEV_ERROR(vop->dev, "Maximum dst width (4096) exceeded\n"); 401 return; 402 } 403 404 if (!win->phy->scl->ext) { 405 VOP_SCL_SET(vop, win, scale_yrgb_x, 406 scl_cal_scale2(src_w, dst_w)); 407 VOP_SCL_SET(vop, win, scale_yrgb_y, 408 scl_cal_scale2(src_h, dst_h)); 409 if (is_yuv) { 410 VOP_SCL_SET(vop, win, scale_cbcr_x, 411 scl_cal_scale2(cbcr_src_w, dst_w)); 412 VOP_SCL_SET(vop, win, scale_cbcr_y, 413 scl_cal_scale2(cbcr_src_h, dst_h)); 414 } 415 return; 416 } 417 418 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); 419 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); 420 421 if (is_yuv) { 422 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); 423 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); 424 if (cbcr_hor_scl_mode == SCALE_DOWN) 425 lb_mode = scl_vop_cal_lb_mode(dst_w, true); 426 else 427 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); 428 } else { 429 if (yrgb_hor_scl_mode == SCALE_DOWN) 430 lb_mode = scl_vop_cal_lb_mode(dst_w, false); 431 else 432 lb_mode = scl_vop_cal_lb_mode(src_w, false); 433 } 434 435 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); 436 if (lb_mode == LB_RGB_3840X2) { 437 if (yrgb_ver_scl_mode != SCALE_NONE) { 438 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); 439 return; 440 } 441 if (cbcr_ver_scl_mode != SCALE_NONE) { 442 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); 443 return; 444 } 445 vsu_mode = SCALE_UP_BIL; 446 } else if (lb_mode == LB_RGB_2560X4) { 447 vsu_mode = SCALE_UP_BIL; 448 } else { 449 vsu_mode = SCALE_UP_BIC; 450 } 451 452 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, 453 true, 0, NULL); 454 VOP_SCL_SET(vop, win, scale_yrgb_x, val); 455 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, 456 false, vsu_mode, &vskiplines); 457 VOP_SCL_SET(vop, win, scale_yrgb_y, val); 458 459 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); 460 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); 461 462 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); 463 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); 464 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); 465 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); 466 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); 467 if (is_yuv) { 468 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, 469 dst_w, true, 0, NULL); 470 VOP_SCL_SET(vop, win, scale_cbcr_x, val); 471 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, 472 dst_h, false, vsu_mode, &vskiplines); 473 VOP_SCL_SET(vop, win, scale_cbcr_y, val); 474 475 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); 476 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); 477 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); 478 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); 479 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); 480 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); 481 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); 482 } 483 } 484 485 static void vop_dsp_hold_valid_irq_enable(struct vop *vop) 486 { 487 unsigned long flags; 488 489 if (WARN_ON(!vop->is_enabled)) 490 return; 491 492 spin_lock_irqsave(&vop->irq_lock, flags); 493 494 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); 495 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); 496 497 spin_unlock_irqrestore(&vop->irq_lock, flags); 498 } 499 500 static void vop_dsp_hold_valid_irq_disable(struct vop *vop) 501 { 502 unsigned long flags; 503 504 if (WARN_ON(!vop->is_enabled)) 505 return; 506 507 spin_lock_irqsave(&vop->irq_lock, flags); 508 509 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); 510 511 spin_unlock_irqrestore(&vop->irq_lock, flags); 512 } 513 514 /* 515 * (1) each frame starts at the start of the Vsync pulse which is signaled by 516 * the "FRAME_SYNC" interrupt. 517 * (2) the active data region of each frame ends at dsp_vact_end 518 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, 519 * to get "LINE_FLAG" interrupt at the end of the active on screen data. 520 * 521 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end 522 * Interrupts 523 * LINE_FLAG -------------------------------+ 524 * FRAME_SYNC ----+ | 525 * | | 526 * v v 527 * | Vsync | Vbp | Vactive | Vfp | 528 * ^ ^ ^ ^ 529 * | | | | 530 * | | | | 531 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END 532 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END 533 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END 534 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END 535 */ 536 static bool vop_line_flag_irq_is_enabled(struct vop *vop) 537 { 538 uint32_t line_flag_irq; 539 unsigned long flags; 540 541 spin_lock_irqsave(&vop->irq_lock, flags); 542 543 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); 544 545 spin_unlock_irqrestore(&vop->irq_lock, flags); 546 547 return !!line_flag_irq; 548 } 549 550 static void vop_line_flag_irq_enable(struct vop *vop) 551 { 552 unsigned long flags; 553 554 if (WARN_ON(!vop->is_enabled)) 555 return; 556 557 spin_lock_irqsave(&vop->irq_lock, flags); 558 559 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); 560 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); 561 562 spin_unlock_irqrestore(&vop->irq_lock, flags); 563 } 564 565 static void vop_line_flag_irq_disable(struct vop *vop) 566 { 567 unsigned long flags; 568 569 if (WARN_ON(!vop->is_enabled)) 570 return; 571 572 spin_lock_irqsave(&vop->irq_lock, flags); 573 574 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); 575 576 spin_unlock_irqrestore(&vop->irq_lock, flags); 577 } 578 579 static int vop_core_clks_enable(struct vop *vop) 580 { 581 int ret; 582 583 ret = clk_enable(vop->hclk); 584 if (ret < 0) 585 return ret; 586 587 ret = clk_enable(vop->aclk); 588 if (ret < 0) 589 goto err_disable_hclk; 590 591 return 0; 592 593 err_disable_hclk: 594 clk_disable(vop->hclk); 595 return ret; 596 } 597 598 static void vop_core_clks_disable(struct vop *vop) 599 { 600 clk_disable(vop->aclk); 601 clk_disable(vop->hclk); 602 } 603 604 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win) 605 { 606 const struct vop_win_data *win = vop_win->data; 607 608 if (win->phy->scl && win->phy->scl->ext) { 609 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); 610 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); 611 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); 612 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); 613 } 614 615 VOP_WIN_SET(vop, win, enable, 0); 616 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win)); 617 } 618 619 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) 620 { 621 struct vop *vop = to_vop(crtc); 622 int ret, i; 623 624 ret = pm_runtime_resume_and_get(vop->dev); 625 if (ret < 0) { 626 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 627 return ret; 628 } 629 630 ret = vop_core_clks_enable(vop); 631 if (WARN_ON(ret < 0)) 632 goto err_put_pm_runtime; 633 634 ret = clk_enable(vop->dclk); 635 if (WARN_ON(ret < 0)) 636 goto err_disable_core; 637 638 /* 639 * Slave iommu shares power, irq and clock with vop. It was associated 640 * automatically with this master device via common driver code. 641 * Now that we have enabled the clock we attach it to the shared drm 642 * mapping. 643 */ 644 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); 645 if (ret) { 646 DRM_DEV_ERROR(vop->dev, 647 "failed to attach dma mapping, %d\n", ret); 648 goto err_disable_dclk; 649 } 650 651 spin_lock(&vop->reg_lock); 652 for (i = 0; i < vop->len; i += 4) 653 writel_relaxed(vop->regsbak[i / 4], vop->regs + i); 654 655 /* 656 * We need to make sure that all windows are disabled before we 657 * enable the crtc. Otherwise we might try to scan from a destroyed 658 * buffer later. 659 * 660 * In the case of enable-after-PSR, we don't need to worry about this 661 * case since the buffer is guaranteed to be valid and disabling the 662 * window will result in screen glitches on PSR exit. 663 */ 664 if (!old_state || !old_state->self_refresh_active) { 665 for (i = 0; i < vop->data->win_size; i++) { 666 struct vop_win *vop_win = &vop->win[i]; 667 668 vop_win_disable(vop, vop_win); 669 } 670 } 671 672 if (vop->data->afbc) { 673 struct rockchip_crtc_state *s; 674 /* 675 * Disable AFBC and forget there was a vop window with AFBC 676 */ 677 VOP_AFBC_SET(vop, enable, 0); 678 s = to_rockchip_crtc_state(crtc->state); 679 s->enable_afbc = false; 680 } 681 682 vop_cfg_done(vop); 683 684 spin_unlock(&vop->reg_lock); 685 686 /* 687 * At here, vop clock & iommu is enable, R/W vop regs would be safe. 688 */ 689 vop->is_enabled = true; 690 691 spin_lock(&vop->reg_lock); 692 693 VOP_REG_SET(vop, common, standby, 1); 694 695 spin_unlock(&vop->reg_lock); 696 697 drm_crtc_vblank_on(crtc); 698 699 return 0; 700 701 err_disable_dclk: 702 clk_disable(vop->dclk); 703 err_disable_core: 704 vop_core_clks_disable(vop); 705 err_put_pm_runtime: 706 pm_runtime_put_sync(vop->dev); 707 return ret; 708 } 709 710 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled) 711 { 712 struct vop *vop = to_vop(crtc); 713 int i; 714 715 spin_lock(&vop->reg_lock); 716 717 for (i = 0; i < vop->data->win_size; i++) { 718 struct vop_win *vop_win = &vop->win[i]; 719 const struct vop_win_data *win = vop_win->data; 720 721 VOP_WIN_SET(vop, win, enable, 722 enabled && (vop->win_enabled & BIT(i))); 723 } 724 vop_cfg_done(vop); 725 726 spin_unlock(&vop->reg_lock); 727 } 728 729 static void vop_crtc_atomic_disable(struct drm_crtc *crtc, 730 struct drm_atomic_state *state) 731 { 732 struct vop *vop = to_vop(crtc); 733 734 WARN_ON(vop->event); 735 736 if (crtc->state->self_refresh_active) 737 rockchip_drm_set_win_enabled(crtc, false); 738 739 if (crtc->state->self_refresh_active) 740 goto out; 741 742 mutex_lock(&vop->vop_lock); 743 744 drm_crtc_vblank_off(crtc); 745 746 /* 747 * Vop standby will take effect at end of current frame, 748 * if dsp hold valid irq happen, it means standby complete. 749 * 750 * we must wait standby complete when we want to disable aclk, 751 * if not, memory bus maybe dead. 752 */ 753 reinit_completion(&vop->dsp_hold_completion); 754 vop_dsp_hold_valid_irq_enable(vop); 755 756 spin_lock(&vop->reg_lock); 757 758 VOP_REG_SET(vop, common, standby, 1); 759 760 spin_unlock(&vop->reg_lock); 761 762 if (!wait_for_completion_timeout(&vop->dsp_hold_completion, 763 msecs_to_jiffies(200))) 764 WARN(1, "%s: timed out waiting for DSP hold", crtc->name); 765 766 vop_dsp_hold_valid_irq_disable(vop); 767 768 vop->is_enabled = false; 769 770 /* 771 * vop standby complete, so iommu detach is safe. 772 */ 773 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); 774 775 clk_disable(vop->dclk); 776 vop_core_clks_disable(vop); 777 pm_runtime_put(vop->dev); 778 779 mutex_unlock(&vop->vop_lock); 780 781 out: 782 if (crtc->state->event && !crtc->state->active) { 783 spin_lock_irq(&crtc->dev->event_lock); 784 drm_crtc_send_vblank_event(crtc, crtc->state->event); 785 spin_unlock_irq(&crtc->dev->event_lock); 786 787 crtc->state->event = NULL; 788 } 789 } 790 791 static inline bool rockchip_afbc(u64 modifier) 792 { 793 return modifier == ROCKCHIP_AFBC_MOD; 794 } 795 796 static bool rockchip_mod_supported(struct drm_plane *plane, 797 u32 format, u64 modifier) 798 { 799 if (modifier == DRM_FORMAT_MOD_LINEAR) 800 return true; 801 802 if (!rockchip_afbc(modifier)) { 803 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier); 804 805 return false; 806 } 807 808 return vop_convert_afbc_format(format) >= 0; 809 } 810 811 static int vop_plane_atomic_check(struct drm_plane *plane, 812 struct drm_atomic_state *state) 813 { 814 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 815 plane); 816 struct drm_crtc *crtc = new_plane_state->crtc; 817 struct drm_crtc_state *crtc_state; 818 struct drm_framebuffer *fb = new_plane_state->fb; 819 struct vop_win *vop_win = to_vop_win(plane); 820 const struct vop_win_data *win = vop_win->data; 821 int ret; 822 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 823 DRM_PLANE_NO_SCALING; 824 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 825 DRM_PLANE_NO_SCALING; 826 827 if (!crtc || WARN_ON(!fb)) 828 return 0; 829 830 crtc_state = drm_atomic_get_existing_crtc_state(state, 831 crtc); 832 if (WARN_ON(!crtc_state)) 833 return -EINVAL; 834 835 ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, 836 min_scale, max_scale, 837 true, true); 838 if (ret) 839 return ret; 840 841 if (!new_plane_state->visible) 842 return 0; 843 844 ret = vop_convert_format(fb->format->format); 845 if (ret < 0) 846 return ret; 847 848 /* 849 * Src.x1 can be odd when do clip, but yuv plane start point 850 * need align with 2 pixel. 851 */ 852 if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) { 853 DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n"); 854 return -EINVAL; 855 } 856 857 if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) { 858 DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n"); 859 return -EINVAL; 860 } 861 862 if (rockchip_afbc(fb->modifier)) { 863 struct vop *vop = to_vop(crtc); 864 865 if (!vop->data->afbc) { 866 DRM_DEBUG_KMS("vop does not support AFBC\n"); 867 return -EINVAL; 868 } 869 870 ret = vop_convert_afbc_format(fb->format->format); 871 if (ret < 0) 872 return ret; 873 874 if (new_plane_state->src.x1 || new_plane_state->src.y1) { 875 DRM_DEBUG_KMS("AFBC does not support offset display, " \ 876 "xpos=%d, ypos=%d, offset=%d\n", 877 new_plane_state->src.x1, new_plane_state->src.y1, 878 fb->offsets[0]); 879 return -EINVAL; 880 } 881 882 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) { 883 DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n", 884 new_plane_state->rotation); 885 return -EINVAL; 886 } 887 } 888 889 return 0; 890 } 891 892 static void vop_plane_atomic_disable(struct drm_plane *plane, 893 struct drm_atomic_state *state) 894 { 895 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 896 plane); 897 struct vop_win *vop_win = to_vop_win(plane); 898 struct vop *vop = to_vop(old_state->crtc); 899 900 if (!old_state->crtc) 901 return; 902 903 spin_lock(&vop->reg_lock); 904 905 vop_win_disable(vop, vop_win); 906 907 spin_unlock(&vop->reg_lock); 908 } 909 910 static void vop_plane_atomic_update(struct drm_plane *plane, 911 struct drm_atomic_state *state) 912 { 913 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 914 plane); 915 struct drm_crtc *crtc = new_state->crtc; 916 struct vop_win *vop_win = to_vop_win(plane); 917 const struct vop_win_data *win = vop_win->data; 918 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; 919 struct vop *vop = to_vop(new_state->crtc); 920 struct drm_framebuffer *fb = new_state->fb; 921 unsigned int actual_w, actual_h; 922 unsigned int dsp_stx, dsp_sty; 923 uint32_t act_info, dsp_info, dsp_st; 924 struct drm_rect *src = &new_state->src; 925 struct drm_rect *dest = &new_state->dst; 926 struct drm_gem_object *obj, *uv_obj; 927 struct rockchip_gem_object *rk_obj, *rk_uv_obj; 928 unsigned long offset; 929 dma_addr_t dma_addr; 930 uint32_t val; 931 bool rb_swap, uv_swap; 932 int win_index = VOP_WIN_TO_INDEX(vop_win); 933 int format; 934 int is_yuv = fb->format->is_yuv; 935 int i; 936 937 /* 938 * can't update plane when vop is disabled. 939 */ 940 if (WARN_ON(!crtc)) 941 return; 942 943 if (WARN_ON(!vop->is_enabled)) 944 return; 945 946 if (!new_state->visible) { 947 vop_plane_atomic_disable(plane, state); 948 return; 949 } 950 951 obj = fb->obj[0]; 952 rk_obj = to_rockchip_obj(obj); 953 954 actual_w = drm_rect_width(src) >> 16; 955 actual_h = drm_rect_height(src) >> 16; 956 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); 957 958 dsp_info = (drm_rect_height(dest) - 1) << 16; 959 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; 960 961 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; 962 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; 963 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); 964 965 if (fb->format->char_per_block[0]) 966 offset = drm_format_info_min_pitch(fb->format, 0, 967 src->x1 >> 16); 968 else 969 offset = (src->x1 >> 16) * fb->format->cpp[0]; 970 971 offset += (src->y1 >> 16) * fb->pitches[0]; 972 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; 973 974 /* 975 * For y-mirroring we need to move address 976 * to the beginning of the last line. 977 */ 978 if (new_state->rotation & DRM_MODE_REFLECT_Y) 979 dma_addr += (actual_h - 1) * fb->pitches[0]; 980 981 format = vop_convert_format(fb->format->format); 982 983 spin_lock(&vop->reg_lock); 984 985 if (rockchip_afbc(fb->modifier)) { 986 int afbc_format = vop_convert_afbc_format(fb->format->format); 987 988 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16); 989 VOP_AFBC_SET(vop, hreg_block_split, 0); 990 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win)); 991 VOP_AFBC_SET(vop, hdr_ptr, dma_addr); 992 VOP_AFBC_SET(vop, pic_size, act_info); 993 } 994 995 VOP_WIN_SET(vop, win, format, format); 996 VOP_WIN_SET(vop, win, fmt_10, is_fmt_10(fb->format->format)); 997 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); 998 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); 999 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); 1000 VOP_WIN_SET(vop, win, y_mir_en, 1001 (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); 1002 VOP_WIN_SET(vop, win, x_mir_en, 1003 (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); 1004 1005 if (is_yuv) { 1006 uv_obj = fb->obj[1]; 1007 rk_uv_obj = to_rockchip_obj(uv_obj); 1008 1009 if (fb->format->char_per_block[1]) 1010 offset = drm_format_info_min_pitch(fb->format, 1, 1011 src->x1 >> 16); 1012 else 1013 offset = (src->x1 >> 16) * fb->format->cpp[1]; 1014 offset /= fb->format->hsub; 1015 offset += (src->y1 >> 16) * fb->pitches[1] / fb->format->vsub; 1016 1017 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; 1018 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); 1019 VOP_WIN_SET(vop, win, uv_mst, dma_addr); 1020 1021 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { 1022 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, 1023 win_yuv2yuv, 1024 y2r_coefficients[i], 1025 bt601_yuv2rgb[i]); 1026 } 1027 1028 uv_swap = has_uv_swapped(fb->format->format); 1029 VOP_WIN_SET(vop, win, uv_swap, uv_swap); 1030 } 1031 1032 if (win->phy->scl) 1033 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, 1034 drm_rect_width(dest), drm_rect_height(dest), 1035 fb->format); 1036 1037 VOP_WIN_SET(vop, win, act_info, act_info); 1038 VOP_WIN_SET(vop, win, dsp_info, dsp_info); 1039 VOP_WIN_SET(vop, win, dsp_st, dsp_st); 1040 1041 rb_swap = has_rb_swapped(vop->data->version, fb->format->format); 1042 VOP_WIN_SET(vop, win, rb_swap, rb_swap); 1043 1044 /* 1045 * Blending win0 with the background color doesn't seem to work 1046 * correctly. We only get the background color, no matter the contents 1047 * of the win0 framebuffer. However, blending pre-multiplied color 1048 * with the default opaque black default background color is a no-op, 1049 * so we can just disable blending to get the correct result. 1050 */ 1051 if (fb->format->has_alpha && win_index > 0) { 1052 VOP_WIN_SET(vop, win, dst_alpha_ctl, 1053 DST_FACTOR_M0(ALPHA_SRC_INVERSE)); 1054 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | 1055 SRC_ALPHA_M0(ALPHA_STRAIGHT) | 1056 SRC_BLEND_M0(ALPHA_PER_PIX) | 1057 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | 1058 SRC_FACTOR_M0(ALPHA_ONE); 1059 VOP_WIN_SET(vop, win, src_alpha_ctl, val); 1060 1061 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL); 1062 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX); 1063 VOP_WIN_SET(vop, win, alpha_en, 1); 1064 } else { 1065 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); 1066 VOP_WIN_SET(vop, win, alpha_en, 0); 1067 } 1068 1069 VOP_WIN_SET(vop, win, enable, 1); 1070 vop->win_enabled |= BIT(win_index); 1071 spin_unlock(&vop->reg_lock); 1072 } 1073 1074 static int vop_plane_atomic_async_check(struct drm_plane *plane, 1075 struct drm_atomic_state *state) 1076 { 1077 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 1078 plane); 1079 struct vop_win *vop_win = to_vop_win(plane); 1080 const struct vop_win_data *win = vop_win->data; 1081 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : 1082 DRM_PLANE_NO_SCALING; 1083 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : 1084 DRM_PLANE_NO_SCALING; 1085 struct drm_crtc_state *crtc_state; 1086 1087 if (plane != new_plane_state->crtc->cursor) 1088 return -EINVAL; 1089 1090 if (!plane->state) 1091 return -EINVAL; 1092 1093 if (!plane->state->fb) 1094 return -EINVAL; 1095 1096 crtc_state = drm_atomic_get_existing_crtc_state(state, new_plane_state->crtc); 1097 1098 /* Special case for asynchronous cursor updates. */ 1099 if (!crtc_state) 1100 crtc_state = plane->crtc->state; 1101 1102 return drm_atomic_helper_check_plane_state(plane->state, crtc_state, 1103 min_scale, max_scale, 1104 true, true); 1105 } 1106 1107 static void vop_plane_atomic_async_update(struct drm_plane *plane, 1108 struct drm_atomic_state *state) 1109 { 1110 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 1111 plane); 1112 struct vop *vop = to_vop(plane->state->crtc); 1113 struct drm_framebuffer *old_fb = plane->state->fb; 1114 1115 plane->state->crtc_x = new_state->crtc_x; 1116 plane->state->crtc_y = new_state->crtc_y; 1117 plane->state->crtc_h = new_state->crtc_h; 1118 plane->state->crtc_w = new_state->crtc_w; 1119 plane->state->src_x = new_state->src_x; 1120 plane->state->src_y = new_state->src_y; 1121 plane->state->src_h = new_state->src_h; 1122 plane->state->src_w = new_state->src_w; 1123 swap(plane->state->fb, new_state->fb); 1124 1125 if (vop->is_enabled) { 1126 vop_plane_atomic_update(plane, state); 1127 spin_lock(&vop->reg_lock); 1128 vop_cfg_done(vop); 1129 spin_unlock(&vop->reg_lock); 1130 1131 /* 1132 * A scanout can still be occurring, so we can't drop the 1133 * reference to the old framebuffer. To solve this we get a 1134 * reference to old_fb and set a worker to release it later. 1135 * FIXME: if we perform 500 async_update calls before the 1136 * vblank, then we can have 500 different framebuffers waiting 1137 * to be released. 1138 */ 1139 if (old_fb && plane->state->fb != old_fb) { 1140 drm_framebuffer_get(old_fb); 1141 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); 1142 drm_flip_work_queue(&vop->fb_unref_work, old_fb); 1143 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1144 } 1145 } 1146 } 1147 1148 static const struct drm_plane_helper_funcs plane_helper_funcs = { 1149 .atomic_check = vop_plane_atomic_check, 1150 .atomic_update = vop_plane_atomic_update, 1151 .atomic_disable = vop_plane_atomic_disable, 1152 .atomic_async_check = vop_plane_atomic_async_check, 1153 .atomic_async_update = vop_plane_atomic_async_update, 1154 }; 1155 1156 static const struct drm_plane_funcs vop_plane_funcs = { 1157 .update_plane = drm_atomic_helper_update_plane, 1158 .disable_plane = drm_atomic_helper_disable_plane, 1159 .destroy = drm_plane_cleanup, 1160 .reset = drm_atomic_helper_plane_reset, 1161 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, 1162 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, 1163 .format_mod_supported = rockchip_mod_supported, 1164 }; 1165 1166 static int vop_crtc_enable_vblank(struct drm_crtc *crtc) 1167 { 1168 struct vop *vop = to_vop(crtc); 1169 unsigned long flags; 1170 1171 if (WARN_ON(!vop->is_enabled)) 1172 return -EPERM; 1173 1174 spin_lock_irqsave(&vop->irq_lock, flags); 1175 1176 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); 1177 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); 1178 1179 spin_unlock_irqrestore(&vop->irq_lock, flags); 1180 1181 return 0; 1182 } 1183 1184 static void vop_crtc_disable_vblank(struct drm_crtc *crtc) 1185 { 1186 struct vop *vop = to_vop(crtc); 1187 unsigned long flags; 1188 1189 if (WARN_ON(!vop->is_enabled)) 1190 return; 1191 1192 spin_lock_irqsave(&vop->irq_lock, flags); 1193 1194 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); 1195 1196 spin_unlock_irqrestore(&vop->irq_lock, flags); 1197 } 1198 1199 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc, 1200 const struct drm_display_mode *mode) 1201 { 1202 struct vop *vop = to_vop(crtc); 1203 1204 if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width) 1205 return MODE_BAD_HVALUE; 1206 1207 return MODE_OK; 1208 } 1209 1210 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, 1211 const struct drm_display_mode *mode, 1212 struct drm_display_mode *adjusted_mode) 1213 { 1214 struct vop *vop = to_vop(crtc); 1215 unsigned long rate; 1216 1217 /* 1218 * Clock craziness. 1219 * 1220 * Key points: 1221 * 1222 * - DRM works in kHz. 1223 * - Clock framework works in Hz. 1224 * - Rockchip's clock driver picks the clock rate that is the 1225 * same _OR LOWER_ than the one requested. 1226 * 1227 * Action plan: 1228 * 1229 * 1. Try to set the exact rate first, and confirm the clock framework 1230 * can provide it. 1231 * 1232 * 2. If the clock framework cannot provide the exact rate, we should 1233 * add 999 Hz to the requested rate. That way if the clock we need 1234 * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then 1235 * the clock framework will actually give us the right clock. 1236 * 1237 * 3. Get the clock framework to round the rate for us to tell us 1238 * what it will actually make. 1239 * 1240 * 4. Store the rounded up rate so that we don't need to worry about 1241 * this in the actual clk_set_rate(). 1242 */ 1243 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000); 1244 if (rate / 1000 != adjusted_mode->clock) 1245 rate = clk_round_rate(vop->dclk, 1246 adjusted_mode->clock * 1000 + 999); 1247 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000); 1248 1249 return true; 1250 } 1251 1252 static bool vop_dsp_lut_is_enabled(struct vop *vop) 1253 { 1254 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en); 1255 } 1256 1257 static u32 vop_lut_buffer_index(struct vop *vop) 1258 { 1259 return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index); 1260 } 1261 1262 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc) 1263 { 1264 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 1265 unsigned int i, bpc = ilog2(vop->data->lut_size); 1266 1267 for (i = 0; i < crtc->gamma_size; i++) { 1268 u32 word; 1269 1270 word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) | 1271 (drm_color_lut_extract(lut[i].green, bpc) << bpc) | 1272 drm_color_lut_extract(lut[i].blue, bpc); 1273 writel(word, vop->lut_regs + i * 4); 1274 } 1275 } 1276 1277 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, 1278 struct drm_crtc_state *old_state) 1279 { 1280 struct drm_crtc_state *state = crtc->state; 1281 unsigned int idle; 1282 u32 lut_idx, old_idx; 1283 int ret; 1284 1285 if (!vop->lut_regs) 1286 return; 1287 1288 if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) { 1289 /* 1290 * To disable gamma (gamma_lut is null) or to write 1291 * an update to the LUT, clear dsp_lut_en. 1292 */ 1293 spin_lock(&vop->reg_lock); 1294 VOP_REG_SET(vop, common, dsp_lut_en, 0); 1295 vop_cfg_done(vop); 1296 spin_unlock(&vop->reg_lock); 1297 1298 /* 1299 * In order to write the LUT to the internal memory, 1300 * we need to first make sure the dsp_lut_en bit is cleared. 1301 */ 1302 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop, 1303 idle, !idle, 5, 30 * 1000); 1304 if (ret) { 1305 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n"); 1306 return; 1307 } 1308 1309 if (!state->gamma_lut) 1310 return; 1311 } else { 1312 /* 1313 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en, 1314 * by setting update_gamma_lut then waiting for lut_buffer_index change 1315 */ 1316 old_idx = vop_lut_buffer_index(vop); 1317 } 1318 1319 spin_lock(&vop->reg_lock); 1320 vop_crtc_write_gamma_lut(vop, crtc); 1321 VOP_REG_SET(vop, common, dsp_lut_en, 1); 1322 VOP_REG_SET(vop, common, update_gamma_lut, 1); 1323 vop_cfg_done(vop); 1324 spin_unlock(&vop->reg_lock); 1325 1326 if (VOP_HAS_REG(vop, common, update_gamma_lut)) { 1327 ret = readx_poll_timeout(vop_lut_buffer_index, vop, 1328 lut_idx, lut_idx != old_idx, 5, 30 * 1000); 1329 if (ret) { 1330 DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n"); 1331 return; 1332 } 1333 1334 /* 1335 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit 1336 * in our backup of the regs. 1337 */ 1338 spin_lock(&vop->reg_lock); 1339 VOP_REG_SET(vop, common, update_gamma_lut, 0); 1340 spin_unlock(&vop->reg_lock); 1341 } 1342 } 1343 1344 static void vop_crtc_atomic_begin(struct drm_crtc *crtc, 1345 struct drm_atomic_state *state) 1346 { 1347 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1348 crtc); 1349 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1350 crtc); 1351 struct vop *vop = to_vop(crtc); 1352 1353 /* 1354 * Only update GAMMA if the 'active' flag is not changed, 1355 * otherwise it's updated by .atomic_enable. 1356 */ 1357 if (crtc_state->color_mgmt_changed && 1358 !crtc_state->active_changed) 1359 vop_crtc_gamma_set(vop, crtc, old_crtc_state); 1360 } 1361 1362 static void vop_crtc_atomic_enable(struct drm_crtc *crtc, 1363 struct drm_atomic_state *state) 1364 { 1365 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 1366 crtc); 1367 struct vop *vop = to_vop(crtc); 1368 const struct vop_data *vop_data = vop->data; 1369 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); 1370 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; 1371 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; 1372 u16 hdisplay = adjusted_mode->hdisplay; 1373 u16 htotal = adjusted_mode->htotal; 1374 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; 1375 u16 hact_end = hact_st + hdisplay; 1376 u16 vdisplay = adjusted_mode->vdisplay; 1377 u16 vtotal = adjusted_mode->vtotal; 1378 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; 1379 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; 1380 u16 vact_end = vact_st + vdisplay; 1381 uint32_t pin_pol, val; 1382 int dither_bpc = s->output_bpc ? s->output_bpc : 10; 1383 int ret; 1384 1385 if (old_state && old_state->self_refresh_active) { 1386 drm_crtc_vblank_on(crtc); 1387 rockchip_drm_set_win_enabled(crtc, true); 1388 return; 1389 } 1390 1391 mutex_lock(&vop->vop_lock); 1392 1393 WARN_ON(vop->event); 1394 1395 ret = vop_enable(crtc, old_state); 1396 if (ret) { 1397 mutex_unlock(&vop->vop_lock); 1398 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); 1399 return; 1400 } 1401 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? 1402 BIT(HSYNC_POSITIVE) : 0; 1403 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? 1404 BIT(VSYNC_POSITIVE) : 0; 1405 VOP_REG_SET(vop, output, pin_pol, pin_pol); 1406 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); 1407 1408 switch (s->output_type) { 1409 case DRM_MODE_CONNECTOR_LVDS: 1410 VOP_REG_SET(vop, output, rgb_dclk_pol, 1); 1411 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); 1412 VOP_REG_SET(vop, output, rgb_en, 1); 1413 break; 1414 case DRM_MODE_CONNECTOR_eDP: 1415 VOP_REG_SET(vop, output, edp_dclk_pol, 1); 1416 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); 1417 VOP_REG_SET(vop, output, edp_en, 1); 1418 break; 1419 case DRM_MODE_CONNECTOR_HDMIA: 1420 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1); 1421 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); 1422 VOP_REG_SET(vop, output, hdmi_en, 1); 1423 break; 1424 case DRM_MODE_CONNECTOR_DSI: 1425 VOP_REG_SET(vop, output, mipi_dclk_pol, 1); 1426 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); 1427 VOP_REG_SET(vop, output, mipi_en, 1); 1428 VOP_REG_SET(vop, output, mipi_dual_channel_en, 1429 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); 1430 break; 1431 case DRM_MODE_CONNECTOR_DisplayPort: 1432 VOP_REG_SET(vop, output, dp_dclk_pol, 0); 1433 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); 1434 VOP_REG_SET(vop, output, dp_en, 1); 1435 break; 1436 default: 1437 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", 1438 s->output_type); 1439 } 1440 1441 /* 1442 * if vop is not support RGB10 output, need force RGB10 to RGB888. 1443 */ 1444 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && 1445 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) 1446 s->output_mode = ROCKCHIP_OUT_MODE_P888; 1447 1448 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) 1449 VOP_REG_SET(vop, common, pre_dither_down, 1); 1450 else 1451 VOP_REG_SET(vop, common, pre_dither_down, 0); 1452 1453 if (dither_bpc == 6) { 1454 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); 1455 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); 1456 VOP_REG_SET(vop, common, dither_down_en, 1); 1457 } else { 1458 VOP_REG_SET(vop, common, dither_down_en, 0); 1459 } 1460 1461 VOP_REG_SET(vop, common, out_mode, s->output_mode); 1462 1463 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); 1464 val = hact_st << 16; 1465 val |= hact_end; 1466 VOP_REG_SET(vop, modeset, hact_st_end, val); 1467 VOP_REG_SET(vop, modeset, hpost_st_end, val); 1468 1469 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); 1470 val = vact_st << 16; 1471 val |= vact_end; 1472 VOP_REG_SET(vop, modeset, vact_st_end, val); 1473 VOP_REG_SET(vop, modeset, vpost_st_end, val); 1474 1475 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); 1476 1477 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); 1478 1479 VOP_REG_SET(vop, common, standby, 0); 1480 mutex_unlock(&vop->vop_lock); 1481 1482 /* 1483 * If we have a GAMMA LUT in the state, then let's make sure 1484 * it's updated. We might be coming out of suspend, 1485 * which means the LUT internal memory needs to be re-written. 1486 */ 1487 if (crtc->state->gamma_lut) 1488 vop_crtc_gamma_set(vop, crtc, old_state); 1489 } 1490 1491 static bool vop_fs_irq_is_pending(struct vop *vop) 1492 { 1493 return VOP_INTR_GET_TYPE(vop, status, FS_INTR); 1494 } 1495 1496 static void vop_wait_for_irq_handler(struct vop *vop) 1497 { 1498 bool pending; 1499 int ret; 1500 1501 /* 1502 * Spin until frame start interrupt status bit goes low, which means 1503 * that interrupt handler was invoked and cleared it. The timeout of 1504 * 10 msecs is really too long, but it is just a safety measure if 1505 * something goes really wrong. The wait will only happen in the very 1506 * unlikely case of a vblank happening exactly at the same time and 1507 * shouldn't exceed microseconds range. 1508 */ 1509 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, 1510 !pending, 0, 10 * 1000); 1511 if (ret) 1512 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); 1513 1514 synchronize_irq(vop->irq); 1515 } 1516 1517 static int vop_crtc_atomic_check(struct drm_crtc *crtc, 1518 struct drm_atomic_state *state) 1519 { 1520 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1521 crtc); 1522 struct vop *vop = to_vop(crtc); 1523 struct drm_plane *plane; 1524 struct drm_plane_state *plane_state; 1525 struct rockchip_crtc_state *s; 1526 int afbc_planes = 0; 1527 1528 if (vop->lut_regs && crtc_state->color_mgmt_changed && 1529 crtc_state->gamma_lut) { 1530 unsigned int len; 1531 1532 len = drm_color_lut_size(crtc_state->gamma_lut); 1533 if (len != crtc->gamma_size) { 1534 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", 1535 len, crtc->gamma_size); 1536 return -EINVAL; 1537 } 1538 } 1539 1540 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) { 1541 plane_state = 1542 drm_atomic_get_plane_state(crtc_state->state, plane); 1543 if (IS_ERR(plane_state)) { 1544 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n", 1545 plane->name); 1546 return PTR_ERR(plane_state); 1547 } 1548 1549 if (drm_is_afbc(plane_state->fb->modifier)) 1550 ++afbc_planes; 1551 } 1552 1553 if (afbc_planes > 1) { 1554 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes); 1555 return -EINVAL; 1556 } 1557 1558 s = to_rockchip_crtc_state(crtc_state); 1559 s->enable_afbc = afbc_planes > 0; 1560 1561 return 0; 1562 } 1563 1564 static void vop_crtc_atomic_flush(struct drm_crtc *crtc, 1565 struct drm_atomic_state *state) 1566 { 1567 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1568 crtc); 1569 struct drm_atomic_state *old_state = old_crtc_state->state; 1570 struct drm_plane_state *old_plane_state, *new_plane_state; 1571 struct vop *vop = to_vop(crtc); 1572 struct drm_plane *plane; 1573 struct rockchip_crtc_state *s; 1574 int i; 1575 1576 if (WARN_ON(!vop->is_enabled)) 1577 return; 1578 1579 spin_lock(&vop->reg_lock); 1580 1581 /* Enable AFBC if there is some AFBC window, disable otherwise. */ 1582 s = to_rockchip_crtc_state(crtc->state); 1583 VOP_AFBC_SET(vop, enable, s->enable_afbc); 1584 vop_cfg_done(vop); 1585 1586 /* Ack the DMA transfer of the previous frame (RK3066). */ 1587 if (VOP_HAS_REG(vop, common, dma_stop)) 1588 VOP_REG_SET(vop, common, dma_stop, 0); 1589 1590 spin_unlock(&vop->reg_lock); 1591 1592 /* 1593 * There is a (rather unlikely) possiblity that a vblank interrupt 1594 * fired before we set the cfg_done bit. To avoid spuriously 1595 * signalling flip completion we need to wait for it to finish. 1596 */ 1597 vop_wait_for_irq_handler(vop); 1598 1599 spin_lock_irq(&crtc->dev->event_lock); 1600 if (crtc->state->event) { 1601 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1602 WARN_ON(vop->event); 1603 1604 vop->event = crtc->state->event; 1605 crtc->state->event = NULL; 1606 } 1607 spin_unlock_irq(&crtc->dev->event_lock); 1608 1609 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, 1610 new_plane_state, i) { 1611 if (!old_plane_state->fb) 1612 continue; 1613 1614 if (old_plane_state->fb == new_plane_state->fb) 1615 continue; 1616 1617 drm_framebuffer_get(old_plane_state->fb); 1618 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1619 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); 1620 set_bit(VOP_PENDING_FB_UNREF, &vop->pending); 1621 } 1622 } 1623 1624 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { 1625 .mode_valid = vop_crtc_mode_valid, 1626 .mode_fixup = vop_crtc_mode_fixup, 1627 .atomic_check = vop_crtc_atomic_check, 1628 .atomic_begin = vop_crtc_atomic_begin, 1629 .atomic_flush = vop_crtc_atomic_flush, 1630 .atomic_enable = vop_crtc_atomic_enable, 1631 .atomic_disable = vop_crtc_atomic_disable, 1632 }; 1633 1634 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) 1635 { 1636 struct rockchip_crtc_state *rockchip_state; 1637 1638 if (WARN_ON(!crtc->state)) 1639 return NULL; 1640 1641 rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state), 1642 sizeof(*rockchip_state), GFP_KERNEL); 1643 if (!rockchip_state) 1644 return NULL; 1645 1646 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); 1647 return &rockchip_state->base; 1648 } 1649 1650 static void vop_crtc_destroy_state(struct drm_crtc *crtc, 1651 struct drm_crtc_state *state) 1652 { 1653 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); 1654 1655 __drm_atomic_helper_crtc_destroy_state(&s->base); 1656 kfree(s); 1657 } 1658 1659 static void vop_crtc_reset(struct drm_crtc *crtc) 1660 { 1661 struct rockchip_crtc_state *crtc_state = 1662 kzalloc(sizeof(*crtc_state), GFP_KERNEL); 1663 1664 if (crtc->state) 1665 vop_crtc_destroy_state(crtc, crtc->state); 1666 1667 if (crtc_state) 1668 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base); 1669 else 1670 __drm_atomic_helper_crtc_reset(crtc, NULL); 1671 } 1672 1673 #ifdef CONFIG_DRM_ANALOGIX_DP 1674 static struct drm_connector *vop_get_edp_connector(struct vop *vop) 1675 { 1676 struct drm_connector *connector; 1677 struct drm_connector_list_iter conn_iter; 1678 1679 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); 1680 drm_for_each_connector_iter(connector, &conn_iter) { 1681 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { 1682 drm_connector_list_iter_end(&conn_iter); 1683 return connector; 1684 } 1685 } 1686 drm_connector_list_iter_end(&conn_iter); 1687 1688 return NULL; 1689 } 1690 1691 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1692 const char *source_name) 1693 { 1694 struct vop *vop = to_vop(crtc); 1695 struct drm_connector *connector; 1696 int ret; 1697 1698 connector = vop_get_edp_connector(vop); 1699 if (!connector) 1700 return -EINVAL; 1701 1702 if (source_name && strcmp(source_name, "auto") == 0) 1703 ret = analogix_dp_start_crc(connector); 1704 else if (!source_name) 1705 ret = analogix_dp_stop_crc(connector); 1706 else 1707 ret = -EINVAL; 1708 1709 return ret; 1710 } 1711 1712 static int 1713 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1714 size_t *values_cnt) 1715 { 1716 if (source_name && strcmp(source_name, "auto") != 0) 1717 return -EINVAL; 1718 1719 *values_cnt = 3; 1720 return 0; 1721 } 1722 1723 #else 1724 static int vop_crtc_set_crc_source(struct drm_crtc *crtc, 1725 const char *source_name) 1726 { 1727 return -ENODEV; 1728 } 1729 1730 static int 1731 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, 1732 size_t *values_cnt) 1733 { 1734 return -ENODEV; 1735 } 1736 #endif 1737 1738 static const struct drm_crtc_funcs vop_crtc_funcs = { 1739 .set_config = drm_atomic_helper_set_config, 1740 .page_flip = drm_atomic_helper_page_flip, 1741 .destroy = drm_crtc_cleanup, 1742 .reset = vop_crtc_reset, 1743 .atomic_duplicate_state = vop_crtc_duplicate_state, 1744 .atomic_destroy_state = vop_crtc_destroy_state, 1745 .enable_vblank = vop_crtc_enable_vblank, 1746 .disable_vblank = vop_crtc_disable_vblank, 1747 .set_crc_source = vop_crtc_set_crc_source, 1748 .verify_crc_source = vop_crtc_verify_crc_source, 1749 }; 1750 1751 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) 1752 { 1753 struct vop *vop = container_of(work, struct vop, fb_unref_work); 1754 struct drm_framebuffer *fb = val; 1755 1756 drm_crtc_vblank_put(&vop->crtc); 1757 drm_framebuffer_put(fb); 1758 } 1759 1760 static void vop_handle_vblank(struct vop *vop) 1761 { 1762 struct drm_device *drm = vop->drm_dev; 1763 struct drm_crtc *crtc = &vop->crtc; 1764 1765 spin_lock(&drm->event_lock); 1766 if (vop->event) { 1767 drm_crtc_send_vblank_event(crtc, vop->event); 1768 drm_crtc_vblank_put(crtc); 1769 vop->event = NULL; 1770 } 1771 spin_unlock(&drm->event_lock); 1772 1773 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) 1774 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); 1775 } 1776 1777 static irqreturn_t vop_isr(int irq, void *data) 1778 { 1779 struct vop *vop = data; 1780 struct drm_crtc *crtc = &vop->crtc; 1781 uint32_t active_irqs; 1782 int ret = IRQ_NONE; 1783 1784 /* 1785 * The irq is shared with the iommu. If the runtime-pm state of the 1786 * vop-device is disabled the irq has to be targeted at the iommu. 1787 */ 1788 if (!pm_runtime_get_if_in_use(vop->dev)) 1789 return IRQ_NONE; 1790 1791 if (vop_core_clks_enable(vop)) { 1792 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); 1793 goto out; 1794 } 1795 1796 /* 1797 * interrupt register has interrupt status, enable and clear bits, we 1798 * must hold irq_lock to avoid a race with enable/disable_vblank(). 1799 */ 1800 spin_lock(&vop->irq_lock); 1801 1802 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); 1803 /* Clear all active interrupt sources */ 1804 if (active_irqs) 1805 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); 1806 1807 spin_unlock(&vop->irq_lock); 1808 1809 /* This is expected for vop iommu irqs, since the irq is shared */ 1810 if (!active_irqs) 1811 goto out_disable; 1812 1813 if (active_irqs & DSP_HOLD_VALID_INTR) { 1814 complete(&vop->dsp_hold_completion); 1815 active_irqs &= ~DSP_HOLD_VALID_INTR; 1816 ret = IRQ_HANDLED; 1817 } 1818 1819 if (active_irqs & LINE_FLAG_INTR) { 1820 complete(&vop->line_flag_completion); 1821 active_irqs &= ~LINE_FLAG_INTR; 1822 ret = IRQ_HANDLED; 1823 } 1824 1825 if (active_irqs & FS_INTR) { 1826 drm_crtc_handle_vblank(crtc); 1827 vop_handle_vblank(vop); 1828 active_irqs &= ~FS_INTR; 1829 ret = IRQ_HANDLED; 1830 } 1831 1832 /* Unhandled irqs are spurious. */ 1833 if (active_irqs) 1834 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", 1835 active_irqs); 1836 1837 out_disable: 1838 vop_core_clks_disable(vop); 1839 out: 1840 pm_runtime_put(vop->dev); 1841 return ret; 1842 } 1843 1844 static void vop_plane_add_properties(struct drm_plane *plane, 1845 const struct vop_win_data *win_data) 1846 { 1847 unsigned int flags = 0; 1848 1849 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; 1850 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; 1851 if (flags) 1852 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, 1853 DRM_MODE_ROTATE_0 | flags); 1854 } 1855 1856 static int vop_create_crtc(struct vop *vop) 1857 { 1858 const struct vop_data *vop_data = vop->data; 1859 struct device *dev = vop->dev; 1860 struct drm_device *drm_dev = vop->drm_dev; 1861 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; 1862 struct drm_crtc *crtc = &vop->crtc; 1863 struct device_node *port; 1864 int ret; 1865 int i; 1866 1867 /* 1868 * Create drm_plane for primary and cursor planes first, since we need 1869 * to pass them to drm_crtc_init_with_planes, which sets the 1870 * "possible_crtcs" to the newly initialized crtc. 1871 */ 1872 for (i = 0; i < vop_data->win_size; i++) { 1873 struct vop_win *vop_win = &vop->win[i]; 1874 const struct vop_win_data *win_data = vop_win->data; 1875 1876 if (win_data->type != DRM_PLANE_TYPE_PRIMARY && 1877 win_data->type != DRM_PLANE_TYPE_CURSOR) 1878 continue; 1879 1880 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1881 0, &vop_plane_funcs, 1882 win_data->phy->data_formats, 1883 win_data->phy->nformats, 1884 win_data->phy->format_modifiers, 1885 win_data->type, NULL); 1886 if (ret) { 1887 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", 1888 ret); 1889 goto err_cleanup_planes; 1890 } 1891 1892 plane = &vop_win->base; 1893 drm_plane_helper_add(plane, &plane_helper_funcs); 1894 vop_plane_add_properties(plane, win_data); 1895 if (plane->type == DRM_PLANE_TYPE_PRIMARY) 1896 primary = plane; 1897 else if (plane->type == DRM_PLANE_TYPE_CURSOR) 1898 cursor = plane; 1899 } 1900 1901 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, 1902 &vop_crtc_funcs, NULL); 1903 if (ret) 1904 goto err_cleanup_planes; 1905 1906 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); 1907 if (vop->lut_regs) { 1908 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size); 1909 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size); 1910 } 1911 1912 /* 1913 * Create drm_planes for overlay windows with possible_crtcs restricted 1914 * to the newly created crtc. 1915 */ 1916 for (i = 0; i < vop_data->win_size; i++) { 1917 struct vop_win *vop_win = &vop->win[i]; 1918 const struct vop_win_data *win_data = vop_win->data; 1919 unsigned long possible_crtcs = drm_crtc_mask(crtc); 1920 1921 if (win_data->type != DRM_PLANE_TYPE_OVERLAY) 1922 continue; 1923 1924 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 1925 possible_crtcs, 1926 &vop_plane_funcs, 1927 win_data->phy->data_formats, 1928 win_data->phy->nformats, 1929 win_data->phy->format_modifiers, 1930 win_data->type, NULL); 1931 if (ret) { 1932 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", 1933 ret); 1934 goto err_cleanup_crtc; 1935 } 1936 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); 1937 vop_plane_add_properties(&vop_win->base, win_data); 1938 } 1939 1940 port = of_get_child_by_name(dev->of_node, "port"); 1941 if (!port) { 1942 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", 1943 dev->of_node); 1944 ret = -ENOENT; 1945 goto err_cleanup_crtc; 1946 } 1947 1948 drm_flip_work_init(&vop->fb_unref_work, "fb_unref", 1949 vop_fb_unref_worker); 1950 1951 init_completion(&vop->dsp_hold_completion); 1952 init_completion(&vop->line_flag_completion); 1953 crtc->port = port; 1954 1955 ret = drm_self_refresh_helper_init(crtc); 1956 if (ret) 1957 DRM_DEV_DEBUG_KMS(vop->dev, 1958 "Failed to init %s with SR helpers %d, ignoring\n", 1959 crtc->name, ret); 1960 1961 return 0; 1962 1963 err_cleanup_crtc: 1964 drm_crtc_cleanup(crtc); 1965 err_cleanup_planes: 1966 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1967 head) 1968 drm_plane_cleanup(plane); 1969 return ret; 1970 } 1971 1972 static void vop_destroy_crtc(struct vop *vop) 1973 { 1974 struct drm_crtc *crtc = &vop->crtc; 1975 struct drm_device *drm_dev = vop->drm_dev; 1976 struct drm_plane *plane, *tmp; 1977 1978 drm_self_refresh_helper_cleanup(crtc); 1979 1980 of_node_put(crtc->port); 1981 1982 /* 1983 * We need to cleanup the planes now. Why? 1984 * 1985 * The planes are "&vop->win[i].base". That means the memory is 1986 * all part of the big "struct vop" chunk of memory. That memory 1987 * was devm allocated and associated with this component. We need to 1988 * free it ourselves before vop_unbind() finishes. 1989 */ 1990 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, 1991 head) 1992 drm_plane_cleanup(plane); 1993 1994 /* 1995 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() 1996 * references the CRTC. 1997 */ 1998 drm_crtc_cleanup(crtc); 1999 drm_flip_work_cleanup(&vop->fb_unref_work); 2000 } 2001 2002 static int vop_initial(struct vop *vop) 2003 { 2004 struct reset_control *ahb_rst; 2005 int i, ret; 2006 2007 vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); 2008 if (IS_ERR(vop->hclk)) { 2009 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); 2010 return PTR_ERR(vop->hclk); 2011 } 2012 vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); 2013 if (IS_ERR(vop->aclk)) { 2014 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); 2015 return PTR_ERR(vop->aclk); 2016 } 2017 vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); 2018 if (IS_ERR(vop->dclk)) { 2019 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); 2020 return PTR_ERR(vop->dclk); 2021 } 2022 2023 ret = pm_runtime_resume_and_get(vop->dev); 2024 if (ret < 0) { 2025 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); 2026 return ret; 2027 } 2028 2029 ret = clk_prepare(vop->dclk); 2030 if (ret < 0) { 2031 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); 2032 goto err_put_pm_runtime; 2033 } 2034 2035 /* Enable both the hclk and aclk to setup the vop */ 2036 ret = clk_prepare_enable(vop->hclk); 2037 if (ret < 0) { 2038 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); 2039 goto err_unprepare_dclk; 2040 } 2041 2042 ret = clk_prepare_enable(vop->aclk); 2043 if (ret < 0) { 2044 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); 2045 goto err_disable_hclk; 2046 } 2047 2048 /* 2049 * do hclk_reset, reset all vop registers. 2050 */ 2051 ahb_rst = devm_reset_control_get(vop->dev, "ahb"); 2052 if (IS_ERR(ahb_rst)) { 2053 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); 2054 ret = PTR_ERR(ahb_rst); 2055 goto err_disable_aclk; 2056 } 2057 reset_control_assert(ahb_rst); 2058 usleep_range(10, 20); 2059 reset_control_deassert(ahb_rst); 2060 2061 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); 2062 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); 2063 2064 for (i = 0; i < vop->len; i += sizeof(u32)) 2065 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); 2066 2067 VOP_REG_SET(vop, misc, global_regdone_en, 1); 2068 VOP_REG_SET(vop, common, dsp_blank, 0); 2069 2070 for (i = 0; i < vop->data->win_size; i++) { 2071 struct vop_win *vop_win = &vop->win[i]; 2072 const struct vop_win_data *win = vop_win->data; 2073 int channel = i * 2 + 1; 2074 2075 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); 2076 vop_win_disable(vop, vop_win); 2077 VOP_WIN_SET(vop, win, gate, 1); 2078 } 2079 2080 vop_cfg_done(vop); 2081 2082 /* 2083 * do dclk_reset, let all config take affect. 2084 */ 2085 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); 2086 if (IS_ERR(vop->dclk_rst)) { 2087 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); 2088 ret = PTR_ERR(vop->dclk_rst); 2089 goto err_disable_aclk; 2090 } 2091 reset_control_assert(vop->dclk_rst); 2092 usleep_range(10, 20); 2093 reset_control_deassert(vop->dclk_rst); 2094 2095 clk_disable(vop->hclk); 2096 clk_disable(vop->aclk); 2097 2098 vop->is_enabled = false; 2099 2100 pm_runtime_put_sync(vop->dev); 2101 2102 return 0; 2103 2104 err_disable_aclk: 2105 clk_disable_unprepare(vop->aclk); 2106 err_disable_hclk: 2107 clk_disable_unprepare(vop->hclk); 2108 err_unprepare_dclk: 2109 clk_unprepare(vop->dclk); 2110 err_put_pm_runtime: 2111 pm_runtime_put_sync(vop->dev); 2112 return ret; 2113 } 2114 2115 /* 2116 * Initialize the vop->win array elements. 2117 */ 2118 static void vop_win_init(struct vop *vop) 2119 { 2120 const struct vop_data *vop_data = vop->data; 2121 unsigned int i; 2122 2123 for (i = 0; i < vop_data->win_size; i++) { 2124 struct vop_win *vop_win = &vop->win[i]; 2125 const struct vop_win_data *win_data = &vop_data->win[i]; 2126 2127 vop_win->data = win_data; 2128 vop_win->vop = vop; 2129 2130 if (vop_data->win_yuv2yuv) 2131 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; 2132 } 2133 } 2134 2135 /** 2136 * rockchip_drm_wait_vact_end 2137 * @crtc: CRTC to enable line flag 2138 * @mstimeout: millisecond for timeout 2139 * 2140 * Wait for vact_end line flag irq or timeout. 2141 * 2142 * Returns: 2143 * Zero on success, negative errno on failure. 2144 */ 2145 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) 2146 { 2147 struct vop *vop = to_vop(crtc); 2148 unsigned long jiffies_left; 2149 int ret = 0; 2150 2151 if (!crtc || !vop->is_enabled) 2152 return -ENODEV; 2153 2154 mutex_lock(&vop->vop_lock); 2155 if (mstimeout <= 0) { 2156 ret = -EINVAL; 2157 goto out; 2158 } 2159 2160 if (vop_line_flag_irq_is_enabled(vop)) { 2161 ret = -EBUSY; 2162 goto out; 2163 } 2164 2165 reinit_completion(&vop->line_flag_completion); 2166 vop_line_flag_irq_enable(vop); 2167 2168 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, 2169 msecs_to_jiffies(mstimeout)); 2170 vop_line_flag_irq_disable(vop); 2171 2172 if (jiffies_left == 0) { 2173 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); 2174 ret = -ETIMEDOUT; 2175 goto out; 2176 } 2177 2178 out: 2179 mutex_unlock(&vop->vop_lock); 2180 return ret; 2181 } 2182 EXPORT_SYMBOL(rockchip_drm_wait_vact_end); 2183 2184 static int vop_bind(struct device *dev, struct device *master, void *data) 2185 { 2186 struct platform_device *pdev = to_platform_device(dev); 2187 const struct vop_data *vop_data; 2188 struct drm_device *drm_dev = data; 2189 struct vop *vop; 2190 struct resource *res; 2191 int ret, irq; 2192 2193 vop_data = of_device_get_match_data(dev); 2194 if (!vop_data) 2195 return -ENODEV; 2196 2197 /* Allocate vop struct and its vop_win array */ 2198 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), 2199 GFP_KERNEL); 2200 if (!vop) 2201 return -ENOMEM; 2202 2203 vop->dev = dev; 2204 vop->data = vop_data; 2205 vop->drm_dev = drm_dev; 2206 dev_set_drvdata(dev, vop); 2207 2208 vop_win_init(vop); 2209 2210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2211 vop->regs = devm_ioremap_resource(dev, res); 2212 if (IS_ERR(vop->regs)) 2213 return PTR_ERR(vop->regs); 2214 vop->len = resource_size(res); 2215 2216 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2217 if (res) { 2218 if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) { 2219 DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size); 2220 return -EINVAL; 2221 } 2222 vop->lut_regs = devm_ioremap_resource(dev, res); 2223 if (IS_ERR(vop->lut_regs)) 2224 return PTR_ERR(vop->lut_regs); 2225 } 2226 2227 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); 2228 if (!vop->regsbak) 2229 return -ENOMEM; 2230 2231 irq = platform_get_irq(pdev, 0); 2232 if (irq < 0) { 2233 DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); 2234 return irq; 2235 } 2236 vop->irq = (unsigned int)irq; 2237 2238 spin_lock_init(&vop->reg_lock); 2239 spin_lock_init(&vop->irq_lock); 2240 mutex_init(&vop->vop_lock); 2241 2242 ret = vop_create_crtc(vop); 2243 if (ret) 2244 return ret; 2245 2246 pm_runtime_enable(&pdev->dev); 2247 2248 ret = vop_initial(vop); 2249 if (ret < 0) { 2250 DRM_DEV_ERROR(&pdev->dev, 2251 "cannot initial vop dev - err %d\n", ret); 2252 goto err_disable_pm_runtime; 2253 } 2254 2255 ret = devm_request_irq(dev, vop->irq, vop_isr, 2256 IRQF_SHARED, dev_name(dev), vop); 2257 if (ret) 2258 goto err_disable_pm_runtime; 2259 2260 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { 2261 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0); 2262 if (IS_ERR(vop->rgb)) { 2263 ret = PTR_ERR(vop->rgb); 2264 goto err_disable_pm_runtime; 2265 } 2266 } 2267 2268 rockchip_drm_dma_init_device(drm_dev, dev); 2269 2270 return 0; 2271 2272 err_disable_pm_runtime: 2273 pm_runtime_disable(&pdev->dev); 2274 vop_destroy_crtc(vop); 2275 return ret; 2276 } 2277 2278 static void vop_unbind(struct device *dev, struct device *master, void *data) 2279 { 2280 struct vop *vop = dev_get_drvdata(dev); 2281 2282 if (vop->rgb) 2283 rockchip_rgb_fini(vop->rgb); 2284 2285 pm_runtime_disable(dev); 2286 vop_destroy_crtc(vop); 2287 2288 clk_unprepare(vop->aclk); 2289 clk_unprepare(vop->hclk); 2290 clk_unprepare(vop->dclk); 2291 } 2292 2293 const struct component_ops vop_component_ops = { 2294 .bind = vop_bind, 2295 .unbind = vop_unbind, 2296 }; 2297 EXPORT_SYMBOL_GPL(vop_component_ops); 2298