xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_atomic_helper.h>
27 #include <drm/drm_gem_framebuffer_helper.h>
28 #include <drm/drm_plane_helper.h>
29 #include <drm/drm_probe_helper.h>
30 #include <drm/drm_self_refresh_helper.h>
31 #include <drm/drm_vblank.h>
32 
33 #ifdef CONFIG_DRM_ANALOGIX_DP
34 #include <drm/bridge/analogix_dp.h>
35 #endif
36 
37 #include "rockchip_drm_drv.h"
38 #include "rockchip_drm_gem.h"
39 #include "rockchip_drm_fb.h"
40 #include "rockchip_drm_vop.h"
41 #include "rockchip_rgb.h"
42 
43 #define VOP_WIN_SET(vop, win, name, v) \
44 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
45 #define VOP_SCL_SET(vop, win, name, v) \
46 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
47 #define VOP_SCL_SET_EXT(vop, win, name, v) \
48 		vop_reg_set(vop, &win->phy->scl->ext->name, \
49 			    win->base, ~0, v, #name)
50 
51 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
52 	do { \
53 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
54 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
55 	} while (0)
56 
57 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
58 	do { \
59 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
60 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
61 	} while (0)
62 
63 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
64 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
65 
66 #define VOP_REG_SET(vop, group, name, v) \
67 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
68 
69 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
70 	do { \
71 		int i, reg = 0, mask = 0; \
72 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
73 			if (vop->data->intr->intrs[i] & type) { \
74 				reg |= (v) << i; \
75 				mask |= 1 << i; \
76 			} \
77 		} \
78 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
79 	} while (0)
80 #define VOP_INTR_GET_TYPE(vop, name, type) \
81 		vop_get_intr_type(vop, &vop->data->intr->name, type)
82 
83 #define VOP_WIN_GET(vop, win, name) \
84 		vop_read_reg(vop, win->base, &win->phy->name)
85 
86 #define VOP_WIN_HAS_REG(win, name) \
87 	(!!(win->phy->name.mask))
88 
89 #define VOP_WIN_GET_YRGBADDR(vop, win) \
90 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
91 
92 #define VOP_WIN_TO_INDEX(vop_win) \
93 	((vop_win) - (vop_win)->vop->win)
94 
95 #define VOP_AFBC_SET(vop, name, v) \
96 	do { \
97 		if ((vop)->data->afbc) \
98 			vop_reg_set((vop), &(vop)->data->afbc->name, \
99 				    0, ~0, v, #name); \
100 	} while (0)
101 
102 #define to_vop(x) container_of(x, struct vop, crtc)
103 #define to_vop_win(x) container_of(x, struct vop_win, base)
104 
105 #define AFBC_FMT_RGB565		0x0
106 #define AFBC_FMT_U8U8U8U8	0x5
107 #define AFBC_FMT_U8U8U8		0x4
108 
109 #define AFBC_TILE_16x16		BIT(4)
110 
111 /*
112  * The coefficients of the following matrix are all fixed points.
113  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
114  * They are all represented in two's complement.
115  */
116 static const uint32_t bt601_yuv2rgb[] = {
117 	0x4A8, 0x0,    0x662,
118 	0x4A8, 0x1E6F, 0x1CBF,
119 	0x4A8, 0x812,  0x0,
120 	0x321168, 0x0877CF, 0x2EB127
121 };
122 
123 enum vop_pending {
124 	VOP_PENDING_FB_UNREF,
125 };
126 
127 struct vop_win {
128 	struct drm_plane base;
129 	const struct vop_win_data *data;
130 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
131 	struct vop *vop;
132 };
133 
134 struct rockchip_rgb;
135 struct vop {
136 	struct drm_crtc crtc;
137 	struct device *dev;
138 	struct drm_device *drm_dev;
139 	bool is_enabled;
140 
141 	struct completion dsp_hold_completion;
142 	unsigned int win_enabled;
143 
144 	/* protected by dev->event_lock */
145 	struct drm_pending_vblank_event *event;
146 
147 	struct drm_flip_work fb_unref_work;
148 	unsigned long pending;
149 
150 	struct completion line_flag_completion;
151 
152 	const struct vop_data *data;
153 
154 	uint32_t *regsbak;
155 	void __iomem *regs;
156 	void __iomem *lut_regs;
157 
158 	/* physical map length of vop register */
159 	uint32_t len;
160 
161 	/* one time only one process allowed to config the register */
162 	spinlock_t reg_lock;
163 	/* lock vop irq reg */
164 	spinlock_t irq_lock;
165 	/* protects crtc enable/disable */
166 	struct mutex vop_lock;
167 
168 	unsigned int irq;
169 
170 	/* vop AHP clk */
171 	struct clk *hclk;
172 	/* vop dclk */
173 	struct clk *dclk;
174 	/* vop share memory frequency */
175 	struct clk *aclk;
176 
177 	/* vop dclk reset */
178 	struct reset_control *dclk_rst;
179 
180 	/* optional internal rgb encoder */
181 	struct rockchip_rgb *rgb;
182 
183 	struct vop_win win[];
184 };
185 
186 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
187 {
188 	writel(v, vop->regs + offset);
189 	vop->regsbak[offset >> 2] = v;
190 }
191 
192 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
193 {
194 	return readl(vop->regs + offset);
195 }
196 
197 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
198 				    const struct vop_reg *reg)
199 {
200 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
201 }
202 
203 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
204 			uint32_t _offset, uint32_t _mask, uint32_t v,
205 			const char *reg_name)
206 {
207 	int offset, mask, shift;
208 
209 	if (!reg || !reg->mask) {
210 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
211 		return;
212 	}
213 
214 	offset = reg->offset + _offset;
215 	mask = reg->mask & _mask;
216 	shift = reg->shift;
217 
218 	if (reg->write_mask) {
219 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
220 	} else {
221 		uint32_t cached_val = vop->regsbak[offset >> 2];
222 
223 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
224 		vop->regsbak[offset >> 2] = v;
225 	}
226 
227 	if (reg->relaxed)
228 		writel_relaxed(v, vop->regs + offset);
229 	else
230 		writel(v, vop->regs + offset);
231 }
232 
233 static inline uint32_t vop_get_intr_type(struct vop *vop,
234 					 const struct vop_reg *reg, int type)
235 {
236 	uint32_t i, ret = 0;
237 	uint32_t regs = vop_read_reg(vop, 0, reg);
238 
239 	for (i = 0; i < vop->data->intr->nintrs; i++) {
240 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
241 			ret |= vop->data->intr->intrs[i];
242 	}
243 
244 	return ret;
245 }
246 
247 static inline void vop_cfg_done(struct vop *vop)
248 {
249 	VOP_REG_SET(vop, common, cfg_done, 1);
250 }
251 
252 static bool has_rb_swapped(uint32_t format)
253 {
254 	switch (format) {
255 	case DRM_FORMAT_XBGR8888:
256 	case DRM_FORMAT_ABGR8888:
257 	case DRM_FORMAT_BGR888:
258 	case DRM_FORMAT_BGR565:
259 		return true;
260 	default:
261 		return false;
262 	}
263 }
264 
265 static bool has_uv_swapped(uint32_t format)
266 {
267 	switch (format) {
268 	case DRM_FORMAT_NV21:
269 	case DRM_FORMAT_NV61:
270 	case DRM_FORMAT_NV42:
271 		return true;
272 	default:
273 		return false;
274 	}
275 }
276 
277 static enum vop_data_format vop_convert_format(uint32_t format)
278 {
279 	switch (format) {
280 	case DRM_FORMAT_XRGB8888:
281 	case DRM_FORMAT_ARGB8888:
282 	case DRM_FORMAT_XBGR8888:
283 	case DRM_FORMAT_ABGR8888:
284 		return VOP_FMT_ARGB8888;
285 	case DRM_FORMAT_RGB888:
286 	case DRM_FORMAT_BGR888:
287 		return VOP_FMT_RGB888;
288 	case DRM_FORMAT_RGB565:
289 	case DRM_FORMAT_BGR565:
290 		return VOP_FMT_RGB565;
291 	case DRM_FORMAT_NV12:
292 	case DRM_FORMAT_NV21:
293 		return VOP_FMT_YUV420SP;
294 	case DRM_FORMAT_NV16:
295 	case DRM_FORMAT_NV61:
296 		return VOP_FMT_YUV422SP;
297 	case DRM_FORMAT_NV24:
298 	case DRM_FORMAT_NV42:
299 		return VOP_FMT_YUV444SP;
300 	default:
301 		DRM_ERROR("unsupported format[%08x]\n", format);
302 		return -EINVAL;
303 	}
304 }
305 
306 static int vop_convert_afbc_format(uint32_t format)
307 {
308 	switch (format) {
309 	case DRM_FORMAT_XRGB8888:
310 	case DRM_FORMAT_ARGB8888:
311 	case DRM_FORMAT_XBGR8888:
312 	case DRM_FORMAT_ABGR8888:
313 		return AFBC_FMT_U8U8U8U8;
314 	case DRM_FORMAT_RGB888:
315 	case DRM_FORMAT_BGR888:
316 		return AFBC_FMT_U8U8U8;
317 	case DRM_FORMAT_RGB565:
318 	case DRM_FORMAT_BGR565:
319 		return AFBC_FMT_RGB565;
320 	/* either of the below should not be reachable */
321 	default:
322 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
323 		return -EINVAL;
324 	}
325 
326 	return -EINVAL;
327 }
328 
329 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
330 				  uint32_t dst, bool is_horizontal,
331 				  int vsu_mode, int *vskiplines)
332 {
333 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
334 
335 	if (vskiplines)
336 		*vskiplines = 0;
337 
338 	if (is_horizontal) {
339 		if (mode == SCALE_UP)
340 			val = GET_SCL_FT_BIC(src, dst);
341 		else if (mode == SCALE_DOWN)
342 			val = GET_SCL_FT_BILI_DN(src, dst);
343 	} else {
344 		if (mode == SCALE_UP) {
345 			if (vsu_mode == SCALE_UP_BIL)
346 				val = GET_SCL_FT_BILI_UP(src, dst);
347 			else
348 				val = GET_SCL_FT_BIC(src, dst);
349 		} else if (mode == SCALE_DOWN) {
350 			if (vskiplines) {
351 				*vskiplines = scl_get_vskiplines(src, dst);
352 				val = scl_get_bili_dn_vskip(src, dst,
353 							    *vskiplines);
354 			} else {
355 				val = GET_SCL_FT_BILI_DN(src, dst);
356 			}
357 		}
358 	}
359 
360 	return val;
361 }
362 
363 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
364 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
365 			     uint32_t dst_h, const struct drm_format_info *info)
366 {
367 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
368 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
369 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
370 	bool is_yuv = false;
371 	uint16_t cbcr_src_w = src_w / info->hsub;
372 	uint16_t cbcr_src_h = src_h / info->vsub;
373 	uint16_t vsu_mode;
374 	uint16_t lb_mode;
375 	uint32_t val;
376 	int vskiplines;
377 
378 	if (info->is_yuv)
379 		is_yuv = true;
380 
381 	if (dst_w > 3840) {
382 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
383 		return;
384 	}
385 
386 	if (!win->phy->scl->ext) {
387 		VOP_SCL_SET(vop, win, scale_yrgb_x,
388 			    scl_cal_scale2(src_w, dst_w));
389 		VOP_SCL_SET(vop, win, scale_yrgb_y,
390 			    scl_cal_scale2(src_h, dst_h));
391 		if (is_yuv) {
392 			VOP_SCL_SET(vop, win, scale_cbcr_x,
393 				    scl_cal_scale2(cbcr_src_w, dst_w));
394 			VOP_SCL_SET(vop, win, scale_cbcr_y,
395 				    scl_cal_scale2(cbcr_src_h, dst_h));
396 		}
397 		return;
398 	}
399 
400 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
401 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
402 
403 	if (is_yuv) {
404 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
405 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
406 		if (cbcr_hor_scl_mode == SCALE_DOWN)
407 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
408 		else
409 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
410 	} else {
411 		if (yrgb_hor_scl_mode == SCALE_DOWN)
412 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
413 		else
414 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
415 	}
416 
417 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
418 	if (lb_mode == LB_RGB_3840X2) {
419 		if (yrgb_ver_scl_mode != SCALE_NONE) {
420 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
421 			return;
422 		}
423 		if (cbcr_ver_scl_mode != SCALE_NONE) {
424 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
425 			return;
426 		}
427 		vsu_mode = SCALE_UP_BIL;
428 	} else if (lb_mode == LB_RGB_2560X4) {
429 		vsu_mode = SCALE_UP_BIL;
430 	} else {
431 		vsu_mode = SCALE_UP_BIC;
432 	}
433 
434 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
435 				true, 0, NULL);
436 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
437 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
438 				false, vsu_mode, &vskiplines);
439 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
440 
441 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
442 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
443 
444 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
445 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
446 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
447 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
448 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
449 	if (is_yuv) {
450 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
451 					dst_w, true, 0, NULL);
452 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
453 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
454 					dst_h, false, vsu_mode, &vskiplines);
455 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
456 
457 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
458 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
459 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
460 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
461 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
462 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
463 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
464 	}
465 }
466 
467 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
468 {
469 	unsigned long flags;
470 
471 	if (WARN_ON(!vop->is_enabled))
472 		return;
473 
474 	spin_lock_irqsave(&vop->irq_lock, flags);
475 
476 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
477 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
478 
479 	spin_unlock_irqrestore(&vop->irq_lock, flags);
480 }
481 
482 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
483 {
484 	unsigned long flags;
485 
486 	if (WARN_ON(!vop->is_enabled))
487 		return;
488 
489 	spin_lock_irqsave(&vop->irq_lock, flags);
490 
491 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
492 
493 	spin_unlock_irqrestore(&vop->irq_lock, flags);
494 }
495 
496 /*
497  * (1) each frame starts at the start of the Vsync pulse which is signaled by
498  *     the "FRAME_SYNC" interrupt.
499  * (2) the active data region of each frame ends at dsp_vact_end
500  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
501  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
502  *
503  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
504  * Interrupts
505  * LINE_FLAG -------------------------------+
506  * FRAME_SYNC ----+                         |
507  *                |                         |
508  *                v                         v
509  *                | Vsync | Vbp |  Vactive  | Vfp |
510  *                        ^     ^           ^     ^
511  *                        |     |           |     |
512  *                        |     |           |     |
513  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
514  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
515  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
516  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
517  */
518 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
519 {
520 	uint32_t line_flag_irq;
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&vop->irq_lock, flags);
524 
525 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
526 
527 	spin_unlock_irqrestore(&vop->irq_lock, flags);
528 
529 	return !!line_flag_irq;
530 }
531 
532 static void vop_line_flag_irq_enable(struct vop *vop)
533 {
534 	unsigned long flags;
535 
536 	if (WARN_ON(!vop->is_enabled))
537 		return;
538 
539 	spin_lock_irqsave(&vop->irq_lock, flags);
540 
541 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
542 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
543 
544 	spin_unlock_irqrestore(&vop->irq_lock, flags);
545 }
546 
547 static void vop_line_flag_irq_disable(struct vop *vop)
548 {
549 	unsigned long flags;
550 
551 	if (WARN_ON(!vop->is_enabled))
552 		return;
553 
554 	spin_lock_irqsave(&vop->irq_lock, flags);
555 
556 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
557 
558 	spin_unlock_irqrestore(&vop->irq_lock, flags);
559 }
560 
561 static int vop_core_clks_enable(struct vop *vop)
562 {
563 	int ret;
564 
565 	ret = clk_enable(vop->hclk);
566 	if (ret < 0)
567 		return ret;
568 
569 	ret = clk_enable(vop->aclk);
570 	if (ret < 0)
571 		goto err_disable_hclk;
572 
573 	return 0;
574 
575 err_disable_hclk:
576 	clk_disable(vop->hclk);
577 	return ret;
578 }
579 
580 static void vop_core_clks_disable(struct vop *vop)
581 {
582 	clk_disable(vop->aclk);
583 	clk_disable(vop->hclk);
584 }
585 
586 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
587 {
588 	const struct vop_win_data *win = vop_win->data;
589 
590 	if (win->phy->scl && win->phy->scl->ext) {
591 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
592 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
593 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
594 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
595 	}
596 
597 	VOP_WIN_SET(vop, win, enable, 0);
598 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
599 }
600 
601 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
602 {
603 	struct vop *vop = to_vop(crtc);
604 	int ret, i;
605 
606 	ret = pm_runtime_get_sync(vop->dev);
607 	if (ret < 0) {
608 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
609 		return ret;
610 	}
611 
612 	ret = vop_core_clks_enable(vop);
613 	if (WARN_ON(ret < 0))
614 		goto err_put_pm_runtime;
615 
616 	ret = clk_enable(vop->dclk);
617 	if (WARN_ON(ret < 0))
618 		goto err_disable_core;
619 
620 	/*
621 	 * Slave iommu shares power, irq and clock with vop.  It was associated
622 	 * automatically with this master device via common driver code.
623 	 * Now that we have enabled the clock we attach it to the shared drm
624 	 * mapping.
625 	 */
626 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
627 	if (ret) {
628 		DRM_DEV_ERROR(vop->dev,
629 			      "failed to attach dma mapping, %d\n", ret);
630 		goto err_disable_dclk;
631 	}
632 
633 	spin_lock(&vop->reg_lock);
634 	for (i = 0; i < vop->len; i += 4)
635 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
636 
637 	/*
638 	 * We need to make sure that all windows are disabled before we
639 	 * enable the crtc. Otherwise we might try to scan from a destroyed
640 	 * buffer later.
641 	 *
642 	 * In the case of enable-after-PSR, we don't need to worry about this
643 	 * case since the buffer is guaranteed to be valid and disabling the
644 	 * window will result in screen glitches on PSR exit.
645 	 */
646 	if (!old_state || !old_state->self_refresh_active) {
647 		for (i = 0; i < vop->data->win_size; i++) {
648 			struct vop_win *vop_win = &vop->win[i];
649 
650 			vop_win_disable(vop, vop_win);
651 		}
652 	}
653 
654 	if (vop->data->afbc) {
655 		struct rockchip_crtc_state *s;
656 		/*
657 		 * Disable AFBC and forget there was a vop window with AFBC
658 		 */
659 		VOP_AFBC_SET(vop, enable, 0);
660 		s = to_rockchip_crtc_state(crtc->state);
661 		s->enable_afbc = false;
662 	}
663 
664 	vop_cfg_done(vop);
665 
666 	spin_unlock(&vop->reg_lock);
667 
668 	/*
669 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
670 	 */
671 	vop->is_enabled = true;
672 
673 	spin_lock(&vop->reg_lock);
674 
675 	VOP_REG_SET(vop, common, standby, 1);
676 
677 	spin_unlock(&vop->reg_lock);
678 
679 	drm_crtc_vblank_on(crtc);
680 
681 	return 0;
682 
683 err_disable_dclk:
684 	clk_disable(vop->dclk);
685 err_disable_core:
686 	vop_core_clks_disable(vop);
687 err_put_pm_runtime:
688 	pm_runtime_put_sync(vop->dev);
689 	return ret;
690 }
691 
692 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
693 {
694         struct vop *vop = to_vop(crtc);
695         int i;
696 
697         spin_lock(&vop->reg_lock);
698 
699         for (i = 0; i < vop->data->win_size; i++) {
700                 struct vop_win *vop_win = &vop->win[i];
701                 const struct vop_win_data *win = vop_win->data;
702 
703                 VOP_WIN_SET(vop, win, enable,
704                             enabled && (vop->win_enabled & BIT(i)));
705         }
706         vop_cfg_done(vop);
707 
708         spin_unlock(&vop->reg_lock);
709 }
710 
711 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
712 				    struct drm_atomic_state *state)
713 {
714 	struct vop *vop = to_vop(crtc);
715 
716 	WARN_ON(vop->event);
717 
718 	if (crtc->state->self_refresh_active)
719 		rockchip_drm_set_win_enabled(crtc, false);
720 
721 	mutex_lock(&vop->vop_lock);
722 
723 	drm_crtc_vblank_off(crtc);
724 
725 	if (crtc->state->self_refresh_active)
726 		goto out;
727 
728 	/*
729 	 * Vop standby will take effect at end of current frame,
730 	 * if dsp hold valid irq happen, it means standby complete.
731 	 *
732 	 * we must wait standby complete when we want to disable aclk,
733 	 * if not, memory bus maybe dead.
734 	 */
735 	reinit_completion(&vop->dsp_hold_completion);
736 	vop_dsp_hold_valid_irq_enable(vop);
737 
738 	spin_lock(&vop->reg_lock);
739 
740 	VOP_REG_SET(vop, common, standby, 1);
741 
742 	spin_unlock(&vop->reg_lock);
743 
744 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
745 					 msecs_to_jiffies(200)))
746 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
747 
748 	vop_dsp_hold_valid_irq_disable(vop);
749 
750 	vop->is_enabled = false;
751 
752 	/*
753 	 * vop standby complete, so iommu detach is safe.
754 	 */
755 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
756 
757 	clk_disable(vop->dclk);
758 	vop_core_clks_disable(vop);
759 	pm_runtime_put(vop->dev);
760 
761 out:
762 	mutex_unlock(&vop->vop_lock);
763 
764 	if (crtc->state->event && !crtc->state->active) {
765 		spin_lock_irq(&crtc->dev->event_lock);
766 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
767 		spin_unlock_irq(&crtc->dev->event_lock);
768 
769 		crtc->state->event = NULL;
770 	}
771 }
772 
773 static void vop_plane_destroy(struct drm_plane *plane)
774 {
775 	drm_plane_cleanup(plane);
776 }
777 
778 static inline bool rockchip_afbc(u64 modifier)
779 {
780 	return modifier == ROCKCHIP_AFBC_MOD;
781 }
782 
783 static bool rockchip_mod_supported(struct drm_plane *plane,
784 				   u32 format, u64 modifier)
785 {
786 	if (modifier == DRM_FORMAT_MOD_LINEAR)
787 		return true;
788 
789 	if (!rockchip_afbc(modifier)) {
790 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
791 
792 		return false;
793 	}
794 
795 	return vop_convert_afbc_format(format) >= 0;
796 }
797 
798 static int vop_plane_atomic_check(struct drm_plane *plane,
799 			   struct drm_atomic_state *state)
800 {
801 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
802 										 plane);
803 	struct drm_crtc *crtc = new_plane_state->crtc;
804 	struct drm_crtc_state *crtc_state;
805 	struct drm_framebuffer *fb = new_plane_state->fb;
806 	struct vop_win *vop_win = to_vop_win(plane);
807 	const struct vop_win_data *win = vop_win->data;
808 	int ret;
809 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
810 					DRM_PLANE_HELPER_NO_SCALING;
811 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
812 					DRM_PLANE_HELPER_NO_SCALING;
813 
814 	if (!crtc || WARN_ON(!fb))
815 		return 0;
816 
817 	crtc_state = drm_atomic_get_existing_crtc_state(state,
818 							crtc);
819 	if (WARN_ON(!crtc_state))
820 		return -EINVAL;
821 
822 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
823 						  min_scale, max_scale,
824 						  true, true);
825 	if (ret)
826 		return ret;
827 
828 	if (!new_plane_state->visible)
829 		return 0;
830 
831 	ret = vop_convert_format(fb->format->format);
832 	if (ret < 0)
833 		return ret;
834 
835 	/*
836 	 * Src.x1 can be odd when do clip, but yuv plane start point
837 	 * need align with 2 pixel.
838 	 */
839 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
840 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
841 		return -EINVAL;
842 	}
843 
844 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
845 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
846 		return -EINVAL;
847 	}
848 
849 	if (rockchip_afbc(fb->modifier)) {
850 		struct vop *vop = to_vop(crtc);
851 
852 		if (!vop->data->afbc) {
853 			DRM_ERROR("vop does not support AFBC\n");
854 			return -EINVAL;
855 		}
856 
857 		ret = vop_convert_afbc_format(fb->format->format);
858 		if (ret < 0)
859 			return ret;
860 
861 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
862 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
863 				  new_plane_state->src.x1,
864 				  new_plane_state->src.y1, fb->offsets[0]);
865 			return -EINVAL;
866 		}
867 
868 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
869 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
870 				  new_plane_state->rotation);
871 			return -EINVAL;
872 		}
873 	}
874 
875 	return 0;
876 }
877 
878 static void vop_plane_atomic_disable(struct drm_plane *plane,
879 				     struct drm_atomic_state *state)
880 {
881 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
882 									   plane);
883 	struct vop_win *vop_win = to_vop_win(plane);
884 	struct vop *vop = to_vop(old_state->crtc);
885 
886 	if (!old_state->crtc)
887 		return;
888 
889 	spin_lock(&vop->reg_lock);
890 
891 	vop_win_disable(vop, vop_win);
892 
893 	spin_unlock(&vop->reg_lock);
894 }
895 
896 static void vop_plane_atomic_update(struct drm_plane *plane,
897 		struct drm_atomic_state *state)
898 {
899 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
900 									   plane);
901 	struct drm_crtc *crtc = new_state->crtc;
902 	struct vop_win *vop_win = to_vop_win(plane);
903 	const struct vop_win_data *win = vop_win->data;
904 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
905 	struct vop *vop = to_vop(new_state->crtc);
906 	struct drm_framebuffer *fb = new_state->fb;
907 	unsigned int actual_w, actual_h;
908 	unsigned int dsp_stx, dsp_sty;
909 	uint32_t act_info, dsp_info, dsp_st;
910 	struct drm_rect *src = &new_state->src;
911 	struct drm_rect *dest = &new_state->dst;
912 	struct drm_gem_object *obj, *uv_obj;
913 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
914 	unsigned long offset;
915 	dma_addr_t dma_addr;
916 	uint32_t val;
917 	bool rb_swap, uv_swap;
918 	int win_index = VOP_WIN_TO_INDEX(vop_win);
919 	int format;
920 	int is_yuv = fb->format->is_yuv;
921 	int i;
922 
923 	/*
924 	 * can't update plane when vop is disabled.
925 	 */
926 	if (WARN_ON(!crtc))
927 		return;
928 
929 	if (WARN_ON(!vop->is_enabled))
930 		return;
931 
932 	if (!new_state->visible) {
933 		vop_plane_atomic_disable(plane, state);
934 		return;
935 	}
936 
937 	obj = fb->obj[0];
938 	rk_obj = to_rockchip_obj(obj);
939 
940 	actual_w = drm_rect_width(src) >> 16;
941 	actual_h = drm_rect_height(src) >> 16;
942 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
943 
944 	dsp_info = (drm_rect_height(dest) - 1) << 16;
945 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
946 
947 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
948 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
949 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
950 
951 	offset = (src->x1 >> 16) * fb->format->cpp[0];
952 	offset += (src->y1 >> 16) * fb->pitches[0];
953 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
954 
955 	/*
956 	 * For y-mirroring we need to move address
957 	 * to the beginning of the last line.
958 	 */
959 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
960 		dma_addr += (actual_h - 1) * fb->pitches[0];
961 
962 	format = vop_convert_format(fb->format->format);
963 
964 	spin_lock(&vop->reg_lock);
965 
966 	if (rockchip_afbc(fb->modifier)) {
967 		int afbc_format = vop_convert_afbc_format(fb->format->format);
968 
969 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
970 		VOP_AFBC_SET(vop, hreg_block_split, 0);
971 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
972 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
973 		VOP_AFBC_SET(vop, pic_size, act_info);
974 	}
975 
976 	VOP_WIN_SET(vop, win, format, format);
977 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
978 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
979 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
980 	VOP_WIN_SET(vop, win, y_mir_en,
981 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
982 	VOP_WIN_SET(vop, win, x_mir_en,
983 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
984 
985 	if (is_yuv) {
986 		int hsub = fb->format->hsub;
987 		int vsub = fb->format->vsub;
988 		int bpp = fb->format->cpp[1];
989 
990 		uv_obj = fb->obj[1];
991 		rk_uv_obj = to_rockchip_obj(uv_obj);
992 
993 		offset = (src->x1 >> 16) * bpp / hsub;
994 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
995 
996 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
997 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
998 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
999 
1000 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1001 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1002 							win_yuv2yuv,
1003 							y2r_coefficients[i],
1004 							bt601_yuv2rgb[i]);
1005 		}
1006 
1007 		uv_swap = has_uv_swapped(fb->format->format);
1008 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1009 	}
1010 
1011 	if (win->phy->scl)
1012 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1013 				    drm_rect_width(dest), drm_rect_height(dest),
1014 				    fb->format);
1015 
1016 	VOP_WIN_SET(vop, win, act_info, act_info);
1017 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1018 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1019 
1020 	rb_swap = has_rb_swapped(fb->format->format);
1021 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1022 
1023 	/*
1024 	 * Blending win0 with the background color doesn't seem to work
1025 	 * correctly. We only get the background color, no matter the contents
1026 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1027 	 * with the default opaque black default background color is a no-op,
1028 	 * so we can just disable blending to get the correct result.
1029 	 */
1030 	if (fb->format->has_alpha && win_index > 0) {
1031 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1032 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1033 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1034 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1035 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1036 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1037 			SRC_FACTOR_M0(ALPHA_ONE);
1038 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1039 
1040 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1041 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1042 		VOP_WIN_SET(vop, win, alpha_en, 1);
1043 	} else {
1044 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1045 		VOP_WIN_SET(vop, win, alpha_en, 0);
1046 	}
1047 
1048 	VOP_WIN_SET(vop, win, enable, 1);
1049 	vop->win_enabled |= BIT(win_index);
1050 	spin_unlock(&vop->reg_lock);
1051 }
1052 
1053 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1054 					struct drm_atomic_state *state)
1055 {
1056 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1057 										 plane);
1058 	struct vop_win *vop_win = to_vop_win(plane);
1059 	const struct vop_win_data *win = vop_win->data;
1060 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1061 					DRM_PLANE_HELPER_NO_SCALING;
1062 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1063 					DRM_PLANE_HELPER_NO_SCALING;
1064 	struct drm_crtc_state *crtc_state;
1065 
1066 	if (plane != new_plane_state->crtc->cursor)
1067 		return -EINVAL;
1068 
1069 	if (!plane->state)
1070 		return -EINVAL;
1071 
1072 	if (!plane->state->fb)
1073 		return -EINVAL;
1074 
1075 	if (state)
1076 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1077 								new_plane_state->crtc);
1078 	else /* Special case for asynchronous cursor updates. */
1079 		crtc_state = plane->crtc->state;
1080 
1081 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1082 						   min_scale, max_scale,
1083 						   true, true);
1084 }
1085 
1086 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1087 					  struct drm_atomic_state *state)
1088 {
1089 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1090 									   plane);
1091 	struct vop *vop = to_vop(plane->state->crtc);
1092 	struct drm_framebuffer *old_fb = plane->state->fb;
1093 
1094 	plane->state->crtc_x = new_state->crtc_x;
1095 	plane->state->crtc_y = new_state->crtc_y;
1096 	plane->state->crtc_h = new_state->crtc_h;
1097 	plane->state->crtc_w = new_state->crtc_w;
1098 	plane->state->src_x = new_state->src_x;
1099 	plane->state->src_y = new_state->src_y;
1100 	plane->state->src_h = new_state->src_h;
1101 	plane->state->src_w = new_state->src_w;
1102 	swap(plane->state->fb, new_state->fb);
1103 
1104 	if (vop->is_enabled) {
1105 		vop_plane_atomic_update(plane, state);
1106 		spin_lock(&vop->reg_lock);
1107 		vop_cfg_done(vop);
1108 		spin_unlock(&vop->reg_lock);
1109 
1110 		/*
1111 		 * A scanout can still be occurring, so we can't drop the
1112 		 * reference to the old framebuffer. To solve this we get a
1113 		 * reference to old_fb and set a worker to release it later.
1114 		 * FIXME: if we perform 500 async_update calls before the
1115 		 * vblank, then we can have 500 different framebuffers waiting
1116 		 * to be released.
1117 		 */
1118 		if (old_fb && plane->state->fb != old_fb) {
1119 			drm_framebuffer_get(old_fb);
1120 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1121 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1122 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1123 		}
1124 	}
1125 }
1126 
1127 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1128 	.atomic_check = vop_plane_atomic_check,
1129 	.atomic_update = vop_plane_atomic_update,
1130 	.atomic_disable = vop_plane_atomic_disable,
1131 	.atomic_async_check = vop_plane_atomic_async_check,
1132 	.atomic_async_update = vop_plane_atomic_async_update,
1133 };
1134 
1135 static const struct drm_plane_funcs vop_plane_funcs = {
1136 	.update_plane	= drm_atomic_helper_update_plane,
1137 	.disable_plane	= drm_atomic_helper_disable_plane,
1138 	.destroy = vop_plane_destroy,
1139 	.reset = drm_atomic_helper_plane_reset,
1140 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1141 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1142 	.format_mod_supported = rockchip_mod_supported,
1143 };
1144 
1145 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1146 {
1147 	struct vop *vop = to_vop(crtc);
1148 	unsigned long flags;
1149 
1150 	if (WARN_ON(!vop->is_enabled))
1151 		return -EPERM;
1152 
1153 	spin_lock_irqsave(&vop->irq_lock, flags);
1154 
1155 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1156 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1157 
1158 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1159 
1160 	return 0;
1161 }
1162 
1163 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1164 {
1165 	struct vop *vop = to_vop(crtc);
1166 	unsigned long flags;
1167 
1168 	if (WARN_ON(!vop->is_enabled))
1169 		return;
1170 
1171 	spin_lock_irqsave(&vop->irq_lock, flags);
1172 
1173 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1174 
1175 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1176 }
1177 
1178 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1179 				const struct drm_display_mode *mode,
1180 				struct drm_display_mode *adjusted_mode)
1181 {
1182 	struct vop *vop = to_vop(crtc);
1183 	unsigned long rate;
1184 
1185 	/*
1186 	 * Clock craziness.
1187 	 *
1188 	 * Key points:
1189 	 *
1190 	 * - DRM works in in kHz.
1191 	 * - Clock framework works in Hz.
1192 	 * - Rockchip's clock driver picks the clock rate that is the
1193 	 *   same _OR LOWER_ than the one requested.
1194 	 *
1195 	 * Action plan:
1196 	 *
1197 	 * 1. Try to set the exact rate first, and confirm the clock framework
1198 	 *    can provide it.
1199 	 *
1200 	 * 2. If the clock framework cannot provide the exact rate, we should
1201 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1202 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1203 	 *    the clock framework will actually give us the right clock.
1204 	 *
1205 	 * 3. Get the clock framework to round the rate for us to tell us
1206 	 *    what it will actually make.
1207 	 *
1208 	 * 4. Store the rounded up rate so that we don't need to worry about
1209 	 *    this in the actual clk_set_rate().
1210 	 */
1211 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1212 	if (rate / 1000 != adjusted_mode->clock)
1213 		rate = clk_round_rate(vop->dclk,
1214 				      adjusted_mode->clock * 1000 + 999);
1215 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1216 
1217 	return true;
1218 }
1219 
1220 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1221 {
1222 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1223 }
1224 
1225 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1226 {
1227 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1228 	unsigned int i;
1229 
1230 	for (i = 0; i < crtc->gamma_size; i++) {
1231 		u32 word;
1232 
1233 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1234 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1235 			drm_color_lut_extract(lut[i].blue, 10);
1236 		writel(word, vop->lut_regs + i * 4);
1237 	}
1238 }
1239 
1240 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1241 			       struct drm_crtc_state *old_state)
1242 {
1243 	struct drm_crtc_state *state = crtc->state;
1244 	unsigned int idle;
1245 	int ret;
1246 
1247 	if (!vop->lut_regs)
1248 		return;
1249 	/*
1250 	 * To disable gamma (gamma_lut is null) or to write
1251 	 * an update to the LUT, clear dsp_lut_en.
1252 	 */
1253 	spin_lock(&vop->reg_lock);
1254 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1255 	vop_cfg_done(vop);
1256 	spin_unlock(&vop->reg_lock);
1257 
1258 	/*
1259 	 * In order to write the LUT to the internal memory,
1260 	 * we need to first make sure the dsp_lut_en bit is cleared.
1261 	 */
1262 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1263 				 idle, !idle, 5, 30 * 1000);
1264 	if (ret) {
1265 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1266 		return;
1267 	}
1268 
1269 	if (!state->gamma_lut)
1270 		return;
1271 
1272 	spin_lock(&vop->reg_lock);
1273 	vop_crtc_write_gamma_lut(vop, crtc);
1274 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1275 	vop_cfg_done(vop);
1276 	spin_unlock(&vop->reg_lock);
1277 }
1278 
1279 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1280 				  struct drm_atomic_state *state)
1281 {
1282 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1283 									  crtc);
1284 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1285 									      crtc);
1286 	struct vop *vop = to_vop(crtc);
1287 
1288 	/*
1289 	 * Only update GAMMA if the 'active' flag is not changed,
1290 	 * otherwise it's updated by .atomic_enable.
1291 	 */
1292 	if (crtc_state->color_mgmt_changed &&
1293 	    !crtc_state->active_changed)
1294 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1295 }
1296 
1297 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1298 				   struct drm_atomic_state *state)
1299 {
1300 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1301 									 crtc);
1302 	struct vop *vop = to_vop(crtc);
1303 	const struct vop_data *vop_data = vop->data;
1304 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1305 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1306 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1307 	u16 hdisplay = adjusted_mode->hdisplay;
1308 	u16 htotal = adjusted_mode->htotal;
1309 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1310 	u16 hact_end = hact_st + hdisplay;
1311 	u16 vdisplay = adjusted_mode->vdisplay;
1312 	u16 vtotal = adjusted_mode->vtotal;
1313 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1314 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1315 	u16 vact_end = vact_st + vdisplay;
1316 	uint32_t pin_pol, val;
1317 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1318 	int ret;
1319 
1320 	if (old_state && old_state->self_refresh_active) {
1321 		drm_crtc_vblank_on(crtc);
1322 		rockchip_drm_set_win_enabled(crtc, true);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * If we have a GAMMA LUT in the state, then let's make sure
1328 	 * it's updated. We might be coming out of suspend,
1329 	 * which means the LUT internal memory needs to be re-written.
1330 	 */
1331 	if (crtc->state->gamma_lut)
1332 		vop_crtc_gamma_set(vop, crtc, old_state);
1333 
1334 	mutex_lock(&vop->vop_lock);
1335 
1336 	WARN_ON(vop->event);
1337 
1338 	ret = vop_enable(crtc, old_state);
1339 	if (ret) {
1340 		mutex_unlock(&vop->vop_lock);
1341 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1342 		return;
1343 	}
1344 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1345 		   BIT(HSYNC_POSITIVE) : 0;
1346 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1347 		   BIT(VSYNC_POSITIVE) : 0;
1348 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1349 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1350 
1351 	switch (s->output_type) {
1352 	case DRM_MODE_CONNECTOR_LVDS:
1353 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1354 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1355 		VOP_REG_SET(vop, output, rgb_en, 1);
1356 		break;
1357 	case DRM_MODE_CONNECTOR_eDP:
1358 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1359 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1360 		VOP_REG_SET(vop, output, edp_en, 1);
1361 		break;
1362 	case DRM_MODE_CONNECTOR_HDMIA:
1363 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1364 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1365 		VOP_REG_SET(vop, output, hdmi_en, 1);
1366 		break;
1367 	case DRM_MODE_CONNECTOR_DSI:
1368 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1369 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1370 		VOP_REG_SET(vop, output, mipi_en, 1);
1371 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1372 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1373 		break;
1374 	case DRM_MODE_CONNECTOR_DisplayPort:
1375 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1376 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1377 		VOP_REG_SET(vop, output, dp_en, 1);
1378 		break;
1379 	default:
1380 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1381 			      s->output_type);
1382 	}
1383 
1384 	/*
1385 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1386 	 */
1387 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1388 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1389 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1390 
1391 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1392 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1393 	else
1394 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1395 
1396 	if (dither_bpc == 6) {
1397 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1398 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1399 		VOP_REG_SET(vop, common, dither_down_en, 1);
1400 	} else {
1401 		VOP_REG_SET(vop, common, dither_down_en, 0);
1402 	}
1403 
1404 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1405 
1406 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1407 	val = hact_st << 16;
1408 	val |= hact_end;
1409 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1410 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1411 
1412 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1413 	val = vact_st << 16;
1414 	val |= vact_end;
1415 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1416 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1417 
1418 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1419 
1420 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1421 
1422 	VOP_REG_SET(vop, common, standby, 0);
1423 	mutex_unlock(&vop->vop_lock);
1424 }
1425 
1426 static bool vop_fs_irq_is_pending(struct vop *vop)
1427 {
1428 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1429 }
1430 
1431 static void vop_wait_for_irq_handler(struct vop *vop)
1432 {
1433 	bool pending;
1434 	int ret;
1435 
1436 	/*
1437 	 * Spin until frame start interrupt status bit goes low, which means
1438 	 * that interrupt handler was invoked and cleared it. The timeout of
1439 	 * 10 msecs is really too long, but it is just a safety measure if
1440 	 * something goes really wrong. The wait will only happen in the very
1441 	 * unlikely case of a vblank happening exactly at the same time and
1442 	 * shouldn't exceed microseconds range.
1443 	 */
1444 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1445 					!pending, 0, 10 * 1000);
1446 	if (ret)
1447 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1448 
1449 	synchronize_irq(vop->irq);
1450 }
1451 
1452 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1453 				 struct drm_atomic_state *state)
1454 {
1455 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1456 									  crtc);
1457 	struct vop *vop = to_vop(crtc);
1458 	struct drm_plane *plane;
1459 	struct drm_plane_state *plane_state;
1460 	struct rockchip_crtc_state *s;
1461 	int afbc_planes = 0;
1462 
1463 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1464 	    crtc_state->gamma_lut) {
1465 		unsigned int len;
1466 
1467 		len = drm_color_lut_size(crtc_state->gamma_lut);
1468 		if (len != crtc->gamma_size) {
1469 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1470 				      len, crtc->gamma_size);
1471 			return -EINVAL;
1472 		}
1473 	}
1474 
1475 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1476 		plane_state =
1477 			drm_atomic_get_plane_state(crtc_state->state, plane);
1478 		if (IS_ERR(plane_state)) {
1479 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1480 				      plane->name);
1481 			return PTR_ERR(plane_state);
1482 		}
1483 
1484 		if (drm_is_afbc(plane_state->fb->modifier))
1485 			++afbc_planes;
1486 	}
1487 
1488 	if (afbc_planes > 1) {
1489 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1490 		return -EINVAL;
1491 	}
1492 
1493 	s = to_rockchip_crtc_state(crtc_state);
1494 	s->enable_afbc = afbc_planes > 0;
1495 
1496 	return 0;
1497 }
1498 
1499 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1500 				  struct drm_atomic_state *state)
1501 {
1502 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1503 									      crtc);
1504 	struct drm_atomic_state *old_state = old_crtc_state->state;
1505 	struct drm_plane_state *old_plane_state, *new_plane_state;
1506 	struct vop *vop = to_vop(crtc);
1507 	struct drm_plane *plane;
1508 	struct rockchip_crtc_state *s;
1509 	int i;
1510 
1511 	if (WARN_ON(!vop->is_enabled))
1512 		return;
1513 
1514 	spin_lock(&vop->reg_lock);
1515 
1516 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1517 	s = to_rockchip_crtc_state(crtc->state);
1518 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1519 	vop_cfg_done(vop);
1520 
1521 	spin_unlock(&vop->reg_lock);
1522 
1523 	/*
1524 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1525 	 * fired before we set the cfg_done bit. To avoid spuriously
1526 	 * signalling flip completion we need to wait for it to finish.
1527 	 */
1528 	vop_wait_for_irq_handler(vop);
1529 
1530 	spin_lock_irq(&crtc->dev->event_lock);
1531 	if (crtc->state->event) {
1532 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1533 		WARN_ON(vop->event);
1534 
1535 		vop->event = crtc->state->event;
1536 		crtc->state->event = NULL;
1537 	}
1538 	spin_unlock_irq(&crtc->dev->event_lock);
1539 
1540 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1541 				       new_plane_state, i) {
1542 		if (!old_plane_state->fb)
1543 			continue;
1544 
1545 		if (old_plane_state->fb == new_plane_state->fb)
1546 			continue;
1547 
1548 		drm_framebuffer_get(old_plane_state->fb);
1549 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1550 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1551 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1552 	}
1553 }
1554 
1555 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1556 	.mode_fixup = vop_crtc_mode_fixup,
1557 	.atomic_check = vop_crtc_atomic_check,
1558 	.atomic_begin = vop_crtc_atomic_begin,
1559 	.atomic_flush = vop_crtc_atomic_flush,
1560 	.atomic_enable = vop_crtc_atomic_enable,
1561 	.atomic_disable = vop_crtc_atomic_disable,
1562 };
1563 
1564 static void vop_crtc_destroy(struct drm_crtc *crtc)
1565 {
1566 	drm_crtc_cleanup(crtc);
1567 }
1568 
1569 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1570 {
1571 	struct rockchip_crtc_state *rockchip_state;
1572 
1573 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1574 	if (!rockchip_state)
1575 		return NULL;
1576 
1577 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1578 	return &rockchip_state->base;
1579 }
1580 
1581 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1582 				   struct drm_crtc_state *state)
1583 {
1584 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1585 
1586 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1587 	kfree(s);
1588 }
1589 
1590 static void vop_crtc_reset(struct drm_crtc *crtc)
1591 {
1592 	struct rockchip_crtc_state *crtc_state =
1593 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1594 
1595 	if (crtc->state)
1596 		vop_crtc_destroy_state(crtc, crtc->state);
1597 
1598 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1599 }
1600 
1601 #ifdef CONFIG_DRM_ANALOGIX_DP
1602 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1603 {
1604 	struct drm_connector *connector;
1605 	struct drm_connector_list_iter conn_iter;
1606 
1607 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1608 	drm_for_each_connector_iter(connector, &conn_iter) {
1609 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1610 			drm_connector_list_iter_end(&conn_iter);
1611 			return connector;
1612 		}
1613 	}
1614 	drm_connector_list_iter_end(&conn_iter);
1615 
1616 	return NULL;
1617 }
1618 
1619 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1620 				   const char *source_name)
1621 {
1622 	struct vop *vop = to_vop(crtc);
1623 	struct drm_connector *connector;
1624 	int ret;
1625 
1626 	connector = vop_get_edp_connector(vop);
1627 	if (!connector)
1628 		return -EINVAL;
1629 
1630 	if (source_name && strcmp(source_name, "auto") == 0)
1631 		ret = analogix_dp_start_crc(connector);
1632 	else if (!source_name)
1633 		ret = analogix_dp_stop_crc(connector);
1634 	else
1635 		ret = -EINVAL;
1636 
1637 	return ret;
1638 }
1639 
1640 static int
1641 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1642 			   size_t *values_cnt)
1643 {
1644 	if (source_name && strcmp(source_name, "auto") != 0)
1645 		return -EINVAL;
1646 
1647 	*values_cnt = 3;
1648 	return 0;
1649 }
1650 
1651 #else
1652 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1653 				   const char *source_name)
1654 {
1655 	return -ENODEV;
1656 }
1657 
1658 static int
1659 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1660 			   size_t *values_cnt)
1661 {
1662 	return -ENODEV;
1663 }
1664 #endif
1665 
1666 static const struct drm_crtc_funcs vop_crtc_funcs = {
1667 	.set_config = drm_atomic_helper_set_config,
1668 	.page_flip = drm_atomic_helper_page_flip,
1669 	.destroy = vop_crtc_destroy,
1670 	.reset = vop_crtc_reset,
1671 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1672 	.atomic_destroy_state = vop_crtc_destroy_state,
1673 	.enable_vblank = vop_crtc_enable_vblank,
1674 	.disable_vblank = vop_crtc_disable_vblank,
1675 	.set_crc_source = vop_crtc_set_crc_source,
1676 	.verify_crc_source = vop_crtc_verify_crc_source,
1677 };
1678 
1679 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1680 {
1681 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1682 	struct drm_framebuffer *fb = val;
1683 
1684 	drm_crtc_vblank_put(&vop->crtc);
1685 	drm_framebuffer_put(fb);
1686 }
1687 
1688 static void vop_handle_vblank(struct vop *vop)
1689 {
1690 	struct drm_device *drm = vop->drm_dev;
1691 	struct drm_crtc *crtc = &vop->crtc;
1692 
1693 	spin_lock(&drm->event_lock);
1694 	if (vop->event) {
1695 		drm_crtc_send_vblank_event(crtc, vop->event);
1696 		drm_crtc_vblank_put(crtc);
1697 		vop->event = NULL;
1698 	}
1699 	spin_unlock(&drm->event_lock);
1700 
1701 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1702 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1703 }
1704 
1705 static irqreturn_t vop_isr(int irq, void *data)
1706 {
1707 	struct vop *vop = data;
1708 	struct drm_crtc *crtc = &vop->crtc;
1709 	uint32_t active_irqs;
1710 	int ret = IRQ_NONE;
1711 
1712 	/*
1713 	 * The irq is shared with the iommu. If the runtime-pm state of the
1714 	 * vop-device is disabled the irq has to be targeted at the iommu.
1715 	 */
1716 	if (!pm_runtime_get_if_in_use(vop->dev))
1717 		return IRQ_NONE;
1718 
1719 	if (vop_core_clks_enable(vop)) {
1720 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1721 		goto out;
1722 	}
1723 
1724 	/*
1725 	 * interrupt register has interrupt status, enable and clear bits, we
1726 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1727 	*/
1728 	spin_lock(&vop->irq_lock);
1729 
1730 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1731 	/* Clear all active interrupt sources */
1732 	if (active_irqs)
1733 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1734 
1735 	spin_unlock(&vop->irq_lock);
1736 
1737 	/* This is expected for vop iommu irqs, since the irq is shared */
1738 	if (!active_irqs)
1739 		goto out_disable;
1740 
1741 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1742 		complete(&vop->dsp_hold_completion);
1743 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1744 		ret = IRQ_HANDLED;
1745 	}
1746 
1747 	if (active_irqs & LINE_FLAG_INTR) {
1748 		complete(&vop->line_flag_completion);
1749 		active_irqs &= ~LINE_FLAG_INTR;
1750 		ret = IRQ_HANDLED;
1751 	}
1752 
1753 	if (active_irqs & FS_INTR) {
1754 		drm_crtc_handle_vblank(crtc);
1755 		vop_handle_vblank(vop);
1756 		active_irqs &= ~FS_INTR;
1757 		ret = IRQ_HANDLED;
1758 	}
1759 
1760 	/* Unhandled irqs are spurious. */
1761 	if (active_irqs)
1762 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1763 			      active_irqs);
1764 
1765 out_disable:
1766 	vop_core_clks_disable(vop);
1767 out:
1768 	pm_runtime_put(vop->dev);
1769 	return ret;
1770 }
1771 
1772 static void vop_plane_add_properties(struct drm_plane *plane,
1773 				     const struct vop_win_data *win_data)
1774 {
1775 	unsigned int flags = 0;
1776 
1777 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1778 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1779 	if (flags)
1780 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1781 						   DRM_MODE_ROTATE_0 | flags);
1782 }
1783 
1784 static int vop_create_crtc(struct vop *vop)
1785 {
1786 	const struct vop_data *vop_data = vop->data;
1787 	struct device *dev = vop->dev;
1788 	struct drm_device *drm_dev = vop->drm_dev;
1789 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1790 	struct drm_crtc *crtc = &vop->crtc;
1791 	struct device_node *port;
1792 	int ret;
1793 	int i;
1794 
1795 	/*
1796 	 * Create drm_plane for primary and cursor planes first, since we need
1797 	 * to pass them to drm_crtc_init_with_planes, which sets the
1798 	 * "possible_crtcs" to the newly initialized crtc.
1799 	 */
1800 	for (i = 0; i < vop_data->win_size; i++) {
1801 		struct vop_win *vop_win = &vop->win[i];
1802 		const struct vop_win_data *win_data = vop_win->data;
1803 
1804 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1805 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1806 			continue;
1807 
1808 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1809 					       0, &vop_plane_funcs,
1810 					       win_data->phy->data_formats,
1811 					       win_data->phy->nformats,
1812 					       win_data->phy->format_modifiers,
1813 					       win_data->type, NULL);
1814 		if (ret) {
1815 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1816 				      ret);
1817 			goto err_cleanup_planes;
1818 		}
1819 
1820 		plane = &vop_win->base;
1821 		drm_plane_helper_add(plane, &plane_helper_funcs);
1822 		vop_plane_add_properties(plane, win_data);
1823 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1824 			primary = plane;
1825 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1826 			cursor = plane;
1827 	}
1828 
1829 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1830 					&vop_crtc_funcs, NULL);
1831 	if (ret)
1832 		goto err_cleanup_planes;
1833 
1834 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1835 	if (vop->lut_regs) {
1836 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1837 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1838 	}
1839 
1840 	/*
1841 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1842 	 * to the newly created crtc.
1843 	 */
1844 	for (i = 0; i < vop_data->win_size; i++) {
1845 		struct vop_win *vop_win = &vop->win[i];
1846 		const struct vop_win_data *win_data = vop_win->data;
1847 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1848 
1849 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1850 			continue;
1851 
1852 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1853 					       possible_crtcs,
1854 					       &vop_plane_funcs,
1855 					       win_data->phy->data_formats,
1856 					       win_data->phy->nformats,
1857 					       win_data->phy->format_modifiers,
1858 					       win_data->type, NULL);
1859 		if (ret) {
1860 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1861 				      ret);
1862 			goto err_cleanup_crtc;
1863 		}
1864 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1865 		vop_plane_add_properties(&vop_win->base, win_data);
1866 	}
1867 
1868 	port = of_get_child_by_name(dev->of_node, "port");
1869 	if (!port) {
1870 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1871 			      dev->of_node);
1872 		ret = -ENOENT;
1873 		goto err_cleanup_crtc;
1874 	}
1875 
1876 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1877 			   vop_fb_unref_worker);
1878 
1879 	init_completion(&vop->dsp_hold_completion);
1880 	init_completion(&vop->line_flag_completion);
1881 	crtc->port = port;
1882 
1883 	ret = drm_self_refresh_helper_init(crtc);
1884 	if (ret)
1885 		DRM_DEV_DEBUG_KMS(vop->dev,
1886 			"Failed to init %s with SR helpers %d, ignoring\n",
1887 			crtc->name, ret);
1888 
1889 	return 0;
1890 
1891 err_cleanup_crtc:
1892 	drm_crtc_cleanup(crtc);
1893 err_cleanup_planes:
1894 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1895 				 head)
1896 		drm_plane_cleanup(plane);
1897 	return ret;
1898 }
1899 
1900 static void vop_destroy_crtc(struct vop *vop)
1901 {
1902 	struct drm_crtc *crtc = &vop->crtc;
1903 	struct drm_device *drm_dev = vop->drm_dev;
1904 	struct drm_plane *plane, *tmp;
1905 
1906 	drm_self_refresh_helper_cleanup(crtc);
1907 
1908 	of_node_put(crtc->port);
1909 
1910 	/*
1911 	 * We need to cleanup the planes now.  Why?
1912 	 *
1913 	 * The planes are "&vop->win[i].base".  That means the memory is
1914 	 * all part of the big "struct vop" chunk of memory.  That memory
1915 	 * was devm allocated and associated with this component.  We need to
1916 	 * free it ourselves before vop_unbind() finishes.
1917 	 */
1918 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1919 				 head)
1920 		vop_plane_destroy(plane);
1921 
1922 	/*
1923 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1924 	 * references the CRTC.
1925 	 */
1926 	drm_crtc_cleanup(crtc);
1927 	drm_flip_work_cleanup(&vop->fb_unref_work);
1928 }
1929 
1930 static int vop_initial(struct vop *vop)
1931 {
1932 	struct reset_control *ahb_rst;
1933 	int i, ret;
1934 
1935 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1936 	if (IS_ERR(vop->hclk)) {
1937 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1938 		return PTR_ERR(vop->hclk);
1939 	}
1940 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1941 	if (IS_ERR(vop->aclk)) {
1942 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1943 		return PTR_ERR(vop->aclk);
1944 	}
1945 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1946 	if (IS_ERR(vop->dclk)) {
1947 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1948 		return PTR_ERR(vop->dclk);
1949 	}
1950 
1951 	ret = pm_runtime_get_sync(vop->dev);
1952 	if (ret < 0) {
1953 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1954 		return ret;
1955 	}
1956 
1957 	ret = clk_prepare(vop->dclk);
1958 	if (ret < 0) {
1959 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1960 		goto err_put_pm_runtime;
1961 	}
1962 
1963 	/* Enable both the hclk and aclk to setup the vop */
1964 	ret = clk_prepare_enable(vop->hclk);
1965 	if (ret < 0) {
1966 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1967 		goto err_unprepare_dclk;
1968 	}
1969 
1970 	ret = clk_prepare_enable(vop->aclk);
1971 	if (ret < 0) {
1972 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1973 		goto err_disable_hclk;
1974 	}
1975 
1976 	/*
1977 	 * do hclk_reset, reset all vop registers.
1978 	 */
1979 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1980 	if (IS_ERR(ahb_rst)) {
1981 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1982 		ret = PTR_ERR(ahb_rst);
1983 		goto err_disable_aclk;
1984 	}
1985 	reset_control_assert(ahb_rst);
1986 	usleep_range(10, 20);
1987 	reset_control_deassert(ahb_rst);
1988 
1989 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1990 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1991 
1992 	for (i = 0; i < vop->len; i += sizeof(u32))
1993 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1994 
1995 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1996 	VOP_REG_SET(vop, common, dsp_blank, 0);
1997 
1998 	for (i = 0; i < vop->data->win_size; i++) {
1999 		struct vop_win *vop_win = &vop->win[i];
2000 		const struct vop_win_data *win = vop_win->data;
2001 		int channel = i * 2 + 1;
2002 
2003 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2004 		vop_win_disable(vop, vop_win);
2005 		VOP_WIN_SET(vop, win, gate, 1);
2006 	}
2007 
2008 	vop_cfg_done(vop);
2009 
2010 	/*
2011 	 * do dclk_reset, let all config take affect.
2012 	 */
2013 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2014 	if (IS_ERR(vop->dclk_rst)) {
2015 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2016 		ret = PTR_ERR(vop->dclk_rst);
2017 		goto err_disable_aclk;
2018 	}
2019 	reset_control_assert(vop->dclk_rst);
2020 	usleep_range(10, 20);
2021 	reset_control_deassert(vop->dclk_rst);
2022 
2023 	clk_disable(vop->hclk);
2024 	clk_disable(vop->aclk);
2025 
2026 	vop->is_enabled = false;
2027 
2028 	pm_runtime_put_sync(vop->dev);
2029 
2030 	return 0;
2031 
2032 err_disable_aclk:
2033 	clk_disable_unprepare(vop->aclk);
2034 err_disable_hclk:
2035 	clk_disable_unprepare(vop->hclk);
2036 err_unprepare_dclk:
2037 	clk_unprepare(vop->dclk);
2038 err_put_pm_runtime:
2039 	pm_runtime_put_sync(vop->dev);
2040 	return ret;
2041 }
2042 
2043 /*
2044  * Initialize the vop->win array elements.
2045  */
2046 static void vop_win_init(struct vop *vop)
2047 {
2048 	const struct vop_data *vop_data = vop->data;
2049 	unsigned int i;
2050 
2051 	for (i = 0; i < vop_data->win_size; i++) {
2052 		struct vop_win *vop_win = &vop->win[i];
2053 		const struct vop_win_data *win_data = &vop_data->win[i];
2054 
2055 		vop_win->data = win_data;
2056 		vop_win->vop = vop;
2057 
2058 		if (vop_data->win_yuv2yuv)
2059 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2060 	}
2061 }
2062 
2063 /**
2064  * rockchip_drm_wait_vact_end
2065  * @crtc: CRTC to enable line flag
2066  * @mstimeout: millisecond for timeout
2067  *
2068  * Wait for vact_end line flag irq or timeout.
2069  *
2070  * Returns:
2071  * Zero on success, negative errno on failure.
2072  */
2073 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2074 {
2075 	struct vop *vop = to_vop(crtc);
2076 	unsigned long jiffies_left;
2077 	int ret = 0;
2078 
2079 	if (!crtc || !vop->is_enabled)
2080 		return -ENODEV;
2081 
2082 	mutex_lock(&vop->vop_lock);
2083 	if (mstimeout <= 0) {
2084 		ret = -EINVAL;
2085 		goto out;
2086 	}
2087 
2088 	if (vop_line_flag_irq_is_enabled(vop)) {
2089 		ret = -EBUSY;
2090 		goto out;
2091 	}
2092 
2093 	reinit_completion(&vop->line_flag_completion);
2094 	vop_line_flag_irq_enable(vop);
2095 
2096 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2097 						   msecs_to_jiffies(mstimeout));
2098 	vop_line_flag_irq_disable(vop);
2099 
2100 	if (jiffies_left == 0) {
2101 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2102 		ret = -ETIMEDOUT;
2103 		goto out;
2104 	}
2105 
2106 out:
2107 	mutex_unlock(&vop->vop_lock);
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2111 
2112 static int vop_bind(struct device *dev, struct device *master, void *data)
2113 {
2114 	struct platform_device *pdev = to_platform_device(dev);
2115 	const struct vop_data *vop_data;
2116 	struct drm_device *drm_dev = data;
2117 	struct vop *vop;
2118 	struct resource *res;
2119 	int ret, irq;
2120 
2121 	vop_data = of_device_get_match_data(dev);
2122 	if (!vop_data)
2123 		return -ENODEV;
2124 
2125 	/* Allocate vop struct and its vop_win array */
2126 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2127 			   GFP_KERNEL);
2128 	if (!vop)
2129 		return -ENOMEM;
2130 
2131 	vop->dev = dev;
2132 	vop->data = vop_data;
2133 	vop->drm_dev = drm_dev;
2134 	dev_set_drvdata(dev, vop);
2135 
2136 	vop_win_init(vop);
2137 
2138 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2139 	vop->regs = devm_ioremap_resource(dev, res);
2140 	if (IS_ERR(vop->regs))
2141 		return PTR_ERR(vop->regs);
2142 	vop->len = resource_size(res);
2143 
2144 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2145 	if (res) {
2146 		if (!vop_data->lut_size) {
2147 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2148 			return -EINVAL;
2149 		}
2150 		vop->lut_regs = devm_ioremap_resource(dev, res);
2151 		if (IS_ERR(vop->lut_regs))
2152 			return PTR_ERR(vop->lut_regs);
2153 	}
2154 
2155 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2156 	if (!vop->regsbak)
2157 		return -ENOMEM;
2158 
2159 	irq = platform_get_irq(pdev, 0);
2160 	if (irq < 0) {
2161 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2162 		return irq;
2163 	}
2164 	vop->irq = (unsigned int)irq;
2165 
2166 	spin_lock_init(&vop->reg_lock);
2167 	spin_lock_init(&vop->irq_lock);
2168 	mutex_init(&vop->vop_lock);
2169 
2170 	ret = vop_create_crtc(vop);
2171 	if (ret)
2172 		return ret;
2173 
2174 	pm_runtime_enable(&pdev->dev);
2175 
2176 	ret = vop_initial(vop);
2177 	if (ret < 0) {
2178 		DRM_DEV_ERROR(&pdev->dev,
2179 			      "cannot initial vop dev - err %d\n", ret);
2180 		goto err_disable_pm_runtime;
2181 	}
2182 
2183 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2184 			       IRQF_SHARED, dev_name(dev), vop);
2185 	if (ret)
2186 		goto err_disable_pm_runtime;
2187 
2188 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2189 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2190 		if (IS_ERR(vop->rgb)) {
2191 			ret = PTR_ERR(vop->rgb);
2192 			goto err_disable_pm_runtime;
2193 		}
2194 	}
2195 
2196 	rockchip_drm_dma_init_device(drm_dev, dev);
2197 
2198 	return 0;
2199 
2200 err_disable_pm_runtime:
2201 	pm_runtime_disable(&pdev->dev);
2202 	vop_destroy_crtc(vop);
2203 	return ret;
2204 }
2205 
2206 static void vop_unbind(struct device *dev, struct device *master, void *data)
2207 {
2208 	struct vop *vop = dev_get_drvdata(dev);
2209 
2210 	if (vop->rgb)
2211 		rockchip_rgb_fini(vop->rgb);
2212 
2213 	pm_runtime_disable(dev);
2214 	vop_destroy_crtc(vop);
2215 
2216 	clk_unprepare(vop->aclk);
2217 	clk_unprepare(vop->hclk);
2218 	clk_unprepare(vop->dclk);
2219 }
2220 
2221 const struct component_ops vop_component_ops = {
2222 	.bind = vop_bind,
2223 	.unbind = vop_unbind,
2224 };
2225 EXPORT_SYMBOL_GPL(vop_component_ops);
2226