xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
3  * Author:Mark Yao <mark.yao@rock-chips.com>
4  *
5  * This software is licensed under the terms of the GNU General Public
6  * License version 2, as published by the Free Software Foundation, and
7  * may be copied, distributed, and modified under those terms.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <drm/drm.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_uapi.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_flip_work.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_probe_helper.h>
24 #ifdef CONFIG_DRM_ANALOGIX_DP
25 #include <drm/bridge/analogix_dp.h>
26 #endif
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/iopoll.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/component.h>
37 #include <linux/overflow.h>
38 
39 #include <linux/reset.h>
40 #include <linux/delay.h>
41 
42 #include "rockchip_drm_drv.h"
43 #include "rockchip_drm_gem.h"
44 #include "rockchip_drm_fb.h"
45 #include "rockchip_drm_psr.h"
46 #include "rockchip_drm_vop.h"
47 #include "rockchip_rgb.h"
48 
49 #define VOP_WIN_SET(vop, win, name, v) \
50 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
51 #define VOP_SCL_SET(vop, win, name, v) \
52 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
53 #define VOP_SCL_SET_EXT(vop, win, name, v) \
54 		vop_reg_set(vop, &win->phy->scl->ext->name, \
55 			    win->base, ~0, v, #name)
56 
57 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
58 	do { \
59 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
60 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
61 	} while (0)
62 
63 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
64 	do { \
65 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
66 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
67 	} while (0)
68 
69 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
70 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
71 
72 #define VOP_REG_SET(vop, group, name, v) \
73 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
74 
75 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
76 	do { \
77 		int i, reg = 0, mask = 0; \
78 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
79 			if (vop->data->intr->intrs[i] & type) { \
80 				reg |= (v) << i; \
81 				mask |= 1 << i; \
82 			} \
83 		} \
84 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
85 	} while (0)
86 #define VOP_INTR_GET_TYPE(vop, name, type) \
87 		vop_get_intr_type(vop, &vop->data->intr->name, type)
88 
89 #define VOP_WIN_GET(vop, win, name) \
90 		vop_read_reg(vop, win->offset, win->phy->name)
91 
92 #define VOP_WIN_HAS_REG(win, name) \
93 	(!!(win->phy->name.mask))
94 
95 #define VOP_WIN_GET_YRGBADDR(vop, win) \
96 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
97 
98 #define VOP_WIN_TO_INDEX(vop_win) \
99 	((vop_win) - (vop_win)->vop->win)
100 
101 #define to_vop(x) container_of(x, struct vop, crtc)
102 #define to_vop_win(x) container_of(x, struct vop_win, base)
103 
104 /*
105  * The coefficients of the following matrix are all fixed points.
106  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
107  * They are all represented in two's complement.
108  */
109 static const uint32_t bt601_yuv2rgb[] = {
110 	0x4A8, 0x0,    0x662,
111 	0x4A8, 0x1E6F, 0x1CBF,
112 	0x4A8, 0x812,  0x0,
113 	0x321168, 0x0877CF, 0x2EB127
114 };
115 
116 enum vop_pending {
117 	VOP_PENDING_FB_UNREF,
118 };
119 
120 struct vop_win {
121 	struct drm_plane base;
122 	const struct vop_win_data *data;
123 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
124 	struct vop *vop;
125 };
126 
127 struct rockchip_rgb;
128 struct vop {
129 	struct drm_crtc crtc;
130 	struct device *dev;
131 	struct drm_device *drm_dev;
132 	bool is_enabled;
133 
134 	struct completion dsp_hold_completion;
135 
136 	/* protected by dev->event_lock */
137 	struct drm_pending_vblank_event *event;
138 
139 	struct drm_flip_work fb_unref_work;
140 	unsigned long pending;
141 
142 	struct completion line_flag_completion;
143 
144 	const struct vop_data *data;
145 
146 	uint32_t *regsbak;
147 	void __iomem *regs;
148 
149 	/* physical map length of vop register */
150 	uint32_t len;
151 
152 	/* one time only one process allowed to config the register */
153 	spinlock_t reg_lock;
154 	/* lock vop irq reg */
155 	spinlock_t irq_lock;
156 	/* protects crtc enable/disable */
157 	struct mutex vop_lock;
158 
159 	unsigned int irq;
160 
161 	/* vop AHP clk */
162 	struct clk *hclk;
163 	/* vop dclk */
164 	struct clk *dclk;
165 	/* vop share memory frequency */
166 	struct clk *aclk;
167 
168 	/* vop dclk reset */
169 	struct reset_control *dclk_rst;
170 
171 	/* optional internal rgb encoder */
172 	struct rockchip_rgb *rgb;
173 
174 	struct vop_win win[];
175 };
176 
177 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
178 {
179 	writel(v, vop->regs + offset);
180 	vop->regsbak[offset >> 2] = v;
181 }
182 
183 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
184 {
185 	return readl(vop->regs + offset);
186 }
187 
188 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
189 				    const struct vop_reg *reg)
190 {
191 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
192 }
193 
194 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
195 			uint32_t _offset, uint32_t _mask, uint32_t v,
196 			const char *reg_name)
197 {
198 	int offset, mask, shift;
199 
200 	if (!reg || !reg->mask) {
201 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
202 		return;
203 	}
204 
205 	offset = reg->offset + _offset;
206 	mask = reg->mask & _mask;
207 	shift = reg->shift;
208 
209 	if (reg->write_mask) {
210 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
211 	} else {
212 		uint32_t cached_val = vop->regsbak[offset >> 2];
213 
214 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
215 		vop->regsbak[offset >> 2] = v;
216 	}
217 
218 	if (reg->relaxed)
219 		writel_relaxed(v, vop->regs + offset);
220 	else
221 		writel(v, vop->regs + offset);
222 }
223 
224 static inline uint32_t vop_get_intr_type(struct vop *vop,
225 					 const struct vop_reg *reg, int type)
226 {
227 	uint32_t i, ret = 0;
228 	uint32_t regs = vop_read_reg(vop, 0, reg);
229 
230 	for (i = 0; i < vop->data->intr->nintrs; i++) {
231 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
232 			ret |= vop->data->intr->intrs[i];
233 	}
234 
235 	return ret;
236 }
237 
238 static inline void vop_cfg_done(struct vop *vop)
239 {
240 	VOP_REG_SET(vop, common, cfg_done, 1);
241 }
242 
243 static bool has_rb_swapped(uint32_t format)
244 {
245 	switch (format) {
246 	case DRM_FORMAT_XBGR8888:
247 	case DRM_FORMAT_ABGR8888:
248 	case DRM_FORMAT_BGR888:
249 	case DRM_FORMAT_BGR565:
250 		return true;
251 	default:
252 		return false;
253 	}
254 }
255 
256 static enum vop_data_format vop_convert_format(uint32_t format)
257 {
258 	switch (format) {
259 	case DRM_FORMAT_XRGB8888:
260 	case DRM_FORMAT_ARGB8888:
261 	case DRM_FORMAT_XBGR8888:
262 	case DRM_FORMAT_ABGR8888:
263 		return VOP_FMT_ARGB8888;
264 	case DRM_FORMAT_RGB888:
265 	case DRM_FORMAT_BGR888:
266 		return VOP_FMT_RGB888;
267 	case DRM_FORMAT_RGB565:
268 	case DRM_FORMAT_BGR565:
269 		return VOP_FMT_RGB565;
270 	case DRM_FORMAT_NV12:
271 		return VOP_FMT_YUV420SP;
272 	case DRM_FORMAT_NV16:
273 		return VOP_FMT_YUV422SP;
274 	case DRM_FORMAT_NV24:
275 		return VOP_FMT_YUV444SP;
276 	default:
277 		DRM_ERROR("unsupported format[%08x]\n", format);
278 		return -EINVAL;
279 	}
280 }
281 
282 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
283 				  uint32_t dst, bool is_horizontal,
284 				  int vsu_mode, int *vskiplines)
285 {
286 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
287 
288 	if (vskiplines)
289 		*vskiplines = 0;
290 
291 	if (is_horizontal) {
292 		if (mode == SCALE_UP)
293 			val = GET_SCL_FT_BIC(src, dst);
294 		else if (mode == SCALE_DOWN)
295 			val = GET_SCL_FT_BILI_DN(src, dst);
296 	} else {
297 		if (mode == SCALE_UP) {
298 			if (vsu_mode == SCALE_UP_BIL)
299 				val = GET_SCL_FT_BILI_UP(src, dst);
300 			else
301 				val = GET_SCL_FT_BIC(src, dst);
302 		} else if (mode == SCALE_DOWN) {
303 			if (vskiplines) {
304 				*vskiplines = scl_get_vskiplines(src, dst);
305 				val = scl_get_bili_dn_vskip(src, dst,
306 							    *vskiplines);
307 			} else {
308 				val = GET_SCL_FT_BILI_DN(src, dst);
309 			}
310 		}
311 	}
312 
313 	return val;
314 }
315 
316 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
317 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
318 			     uint32_t dst_h, uint32_t pixel_format)
319 {
320 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
321 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
322 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
323 	int hsub = drm_format_horz_chroma_subsampling(pixel_format);
324 	int vsub = drm_format_vert_chroma_subsampling(pixel_format);
325 	const struct drm_format_info *info;
326 	bool is_yuv = false;
327 	uint16_t cbcr_src_w = src_w / hsub;
328 	uint16_t cbcr_src_h = src_h / vsub;
329 	uint16_t vsu_mode;
330 	uint16_t lb_mode;
331 	uint32_t val;
332 	int vskiplines;
333 
334 	info = drm_format_info(pixel_format);
335 
336 	if (info->is_yuv)
337 		is_yuv = true;
338 
339 	if (dst_w > 3840) {
340 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
341 		return;
342 	}
343 
344 	if (!win->phy->scl->ext) {
345 		VOP_SCL_SET(vop, win, scale_yrgb_x,
346 			    scl_cal_scale2(src_w, dst_w));
347 		VOP_SCL_SET(vop, win, scale_yrgb_y,
348 			    scl_cal_scale2(src_h, dst_h));
349 		if (is_yuv) {
350 			VOP_SCL_SET(vop, win, scale_cbcr_x,
351 				    scl_cal_scale2(cbcr_src_w, dst_w));
352 			VOP_SCL_SET(vop, win, scale_cbcr_y,
353 				    scl_cal_scale2(cbcr_src_h, dst_h));
354 		}
355 		return;
356 	}
357 
358 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
359 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
360 
361 	if (is_yuv) {
362 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
363 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
364 		if (cbcr_hor_scl_mode == SCALE_DOWN)
365 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
366 		else
367 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
368 	} else {
369 		if (yrgb_hor_scl_mode == SCALE_DOWN)
370 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
371 		else
372 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
373 	}
374 
375 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
376 	if (lb_mode == LB_RGB_3840X2) {
377 		if (yrgb_ver_scl_mode != SCALE_NONE) {
378 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
379 			return;
380 		}
381 		if (cbcr_ver_scl_mode != SCALE_NONE) {
382 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
383 			return;
384 		}
385 		vsu_mode = SCALE_UP_BIL;
386 	} else if (lb_mode == LB_RGB_2560X4) {
387 		vsu_mode = SCALE_UP_BIL;
388 	} else {
389 		vsu_mode = SCALE_UP_BIC;
390 	}
391 
392 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
393 				true, 0, NULL);
394 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
395 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
396 				false, vsu_mode, &vskiplines);
397 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
398 
399 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
400 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
401 
402 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
403 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
404 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
405 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
406 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
407 	if (is_yuv) {
408 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
409 					dst_w, true, 0, NULL);
410 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
411 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
412 					dst_h, false, vsu_mode, &vskiplines);
413 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
414 
415 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
416 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
417 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
418 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
419 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
420 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
421 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
422 	}
423 }
424 
425 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
426 {
427 	unsigned long flags;
428 
429 	if (WARN_ON(!vop->is_enabled))
430 		return;
431 
432 	spin_lock_irqsave(&vop->irq_lock, flags);
433 
434 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
435 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
436 
437 	spin_unlock_irqrestore(&vop->irq_lock, flags);
438 }
439 
440 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
441 {
442 	unsigned long flags;
443 
444 	if (WARN_ON(!vop->is_enabled))
445 		return;
446 
447 	spin_lock_irqsave(&vop->irq_lock, flags);
448 
449 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
450 
451 	spin_unlock_irqrestore(&vop->irq_lock, flags);
452 }
453 
454 /*
455  * (1) each frame starts at the start of the Vsync pulse which is signaled by
456  *     the "FRAME_SYNC" interrupt.
457  * (2) the active data region of each frame ends at dsp_vact_end
458  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
459  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
460  *
461  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
462  * Interrupts
463  * LINE_FLAG -------------------------------+
464  * FRAME_SYNC ----+                         |
465  *                |                         |
466  *                v                         v
467  *                | Vsync | Vbp |  Vactive  | Vfp |
468  *                        ^     ^           ^     ^
469  *                        |     |           |     |
470  *                        |     |           |     |
471  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
472  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
473  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
474  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
475  */
476 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
477 {
478 	uint32_t line_flag_irq;
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(&vop->irq_lock, flags);
482 
483 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
484 
485 	spin_unlock_irqrestore(&vop->irq_lock, flags);
486 
487 	return !!line_flag_irq;
488 }
489 
490 static void vop_line_flag_irq_enable(struct vop *vop)
491 {
492 	unsigned long flags;
493 
494 	if (WARN_ON(!vop->is_enabled))
495 		return;
496 
497 	spin_lock_irqsave(&vop->irq_lock, flags);
498 
499 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
500 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
501 
502 	spin_unlock_irqrestore(&vop->irq_lock, flags);
503 }
504 
505 static void vop_line_flag_irq_disable(struct vop *vop)
506 {
507 	unsigned long flags;
508 
509 	if (WARN_ON(!vop->is_enabled))
510 		return;
511 
512 	spin_lock_irqsave(&vop->irq_lock, flags);
513 
514 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
515 
516 	spin_unlock_irqrestore(&vop->irq_lock, flags);
517 }
518 
519 static int vop_core_clks_enable(struct vop *vop)
520 {
521 	int ret;
522 
523 	ret = clk_enable(vop->hclk);
524 	if (ret < 0)
525 		return ret;
526 
527 	ret = clk_enable(vop->aclk);
528 	if (ret < 0)
529 		goto err_disable_hclk;
530 
531 	return 0;
532 
533 err_disable_hclk:
534 	clk_disable(vop->hclk);
535 	return ret;
536 }
537 
538 static void vop_core_clks_disable(struct vop *vop)
539 {
540 	clk_disable(vop->aclk);
541 	clk_disable(vop->hclk);
542 }
543 
544 static int vop_enable(struct drm_crtc *crtc)
545 {
546 	struct vop *vop = to_vop(crtc);
547 	int ret, i;
548 
549 	ret = pm_runtime_get_sync(vop->dev);
550 	if (ret < 0) {
551 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
552 		return ret;
553 	}
554 
555 	ret = vop_core_clks_enable(vop);
556 	if (WARN_ON(ret < 0))
557 		goto err_put_pm_runtime;
558 
559 	ret = clk_enable(vop->dclk);
560 	if (WARN_ON(ret < 0))
561 		goto err_disable_core;
562 
563 	/*
564 	 * Slave iommu shares power, irq and clock with vop.  It was associated
565 	 * automatically with this master device via common driver code.
566 	 * Now that we have enabled the clock we attach it to the shared drm
567 	 * mapping.
568 	 */
569 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
570 	if (ret) {
571 		DRM_DEV_ERROR(vop->dev,
572 			      "failed to attach dma mapping, %d\n", ret);
573 		goto err_disable_dclk;
574 	}
575 
576 	spin_lock(&vop->reg_lock);
577 	for (i = 0; i < vop->len; i += 4)
578 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
579 
580 	/*
581 	 * We need to make sure that all windows are disabled before we
582 	 * enable the crtc. Otherwise we might try to scan from a destroyed
583 	 * buffer later.
584 	 */
585 	for (i = 0; i < vop->data->win_size; i++) {
586 		struct vop_win *vop_win = &vop->win[i];
587 		const struct vop_win_data *win = vop_win->data;
588 
589 		VOP_WIN_SET(vop, win, enable, 0);
590 	}
591 	spin_unlock(&vop->reg_lock);
592 
593 	vop_cfg_done(vop);
594 
595 	/*
596 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
597 	 */
598 	vop->is_enabled = true;
599 
600 	spin_lock(&vop->reg_lock);
601 
602 	VOP_REG_SET(vop, common, standby, 1);
603 
604 	spin_unlock(&vop->reg_lock);
605 
606 	drm_crtc_vblank_on(crtc);
607 
608 	return 0;
609 
610 err_disable_dclk:
611 	clk_disable(vop->dclk);
612 err_disable_core:
613 	vop_core_clks_disable(vop);
614 err_put_pm_runtime:
615 	pm_runtime_put_sync(vop->dev);
616 	return ret;
617 }
618 
619 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
620 				    struct drm_crtc_state *old_state)
621 {
622 	struct vop *vop = to_vop(crtc);
623 
624 	WARN_ON(vop->event);
625 
626 	mutex_lock(&vop->vop_lock);
627 	drm_crtc_vblank_off(crtc);
628 
629 	/*
630 	 * Vop standby will take effect at end of current frame,
631 	 * if dsp hold valid irq happen, it means standby complete.
632 	 *
633 	 * we must wait standby complete when we want to disable aclk,
634 	 * if not, memory bus maybe dead.
635 	 */
636 	reinit_completion(&vop->dsp_hold_completion);
637 	vop_dsp_hold_valid_irq_enable(vop);
638 
639 	spin_lock(&vop->reg_lock);
640 
641 	VOP_REG_SET(vop, common, standby, 1);
642 
643 	spin_unlock(&vop->reg_lock);
644 
645 	wait_for_completion(&vop->dsp_hold_completion);
646 
647 	vop_dsp_hold_valid_irq_disable(vop);
648 
649 	vop->is_enabled = false;
650 
651 	/*
652 	 * vop standby complete, so iommu detach is safe.
653 	 */
654 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
655 
656 	clk_disable(vop->dclk);
657 	vop_core_clks_disable(vop);
658 	pm_runtime_put(vop->dev);
659 	mutex_unlock(&vop->vop_lock);
660 
661 	if (crtc->state->event && !crtc->state->active) {
662 		spin_lock_irq(&crtc->dev->event_lock);
663 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
664 		spin_unlock_irq(&crtc->dev->event_lock);
665 
666 		crtc->state->event = NULL;
667 	}
668 }
669 
670 static void vop_plane_destroy(struct drm_plane *plane)
671 {
672 	drm_plane_cleanup(plane);
673 }
674 
675 static int vop_plane_atomic_check(struct drm_plane *plane,
676 			   struct drm_plane_state *state)
677 {
678 	struct drm_crtc *crtc = state->crtc;
679 	struct drm_crtc_state *crtc_state;
680 	struct drm_framebuffer *fb = state->fb;
681 	struct vop_win *vop_win = to_vop_win(plane);
682 	const struct vop_win_data *win = vop_win->data;
683 	int ret;
684 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
685 					DRM_PLANE_HELPER_NO_SCALING;
686 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
687 					DRM_PLANE_HELPER_NO_SCALING;
688 
689 	if (!crtc || !fb)
690 		return 0;
691 
692 	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
693 	if (WARN_ON(!crtc_state))
694 		return -EINVAL;
695 
696 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
697 						  min_scale, max_scale,
698 						  true, true);
699 	if (ret)
700 		return ret;
701 
702 	if (!state->visible)
703 		return 0;
704 
705 	ret = vop_convert_format(fb->format->format);
706 	if (ret < 0)
707 		return ret;
708 
709 	/*
710 	 * Src.x1 can be odd when do clip, but yuv plane start point
711 	 * need align with 2 pixel.
712 	 */
713 	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
714 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
715 		return -EINVAL;
716 	}
717 
718 	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
719 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
720 		return -EINVAL;
721 	}
722 
723 	return 0;
724 }
725 
726 static void vop_plane_atomic_disable(struct drm_plane *plane,
727 				     struct drm_plane_state *old_state)
728 {
729 	struct vop_win *vop_win = to_vop_win(plane);
730 	const struct vop_win_data *win = vop_win->data;
731 	struct vop *vop = to_vop(old_state->crtc);
732 
733 	if (!old_state->crtc)
734 		return;
735 
736 	spin_lock(&vop->reg_lock);
737 
738 	VOP_WIN_SET(vop, win, enable, 0);
739 
740 	spin_unlock(&vop->reg_lock);
741 }
742 
743 static void vop_plane_atomic_update(struct drm_plane *plane,
744 		struct drm_plane_state *old_state)
745 {
746 	struct drm_plane_state *state = plane->state;
747 	struct drm_crtc *crtc = state->crtc;
748 	struct vop_win *vop_win = to_vop_win(plane);
749 	const struct vop_win_data *win = vop_win->data;
750 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
751 	struct vop *vop = to_vop(state->crtc);
752 	struct drm_framebuffer *fb = state->fb;
753 	unsigned int actual_w, actual_h;
754 	unsigned int dsp_stx, dsp_sty;
755 	uint32_t act_info, dsp_info, dsp_st;
756 	struct drm_rect *src = &state->src;
757 	struct drm_rect *dest = &state->dst;
758 	struct drm_gem_object *obj, *uv_obj;
759 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
760 	unsigned long offset;
761 	dma_addr_t dma_addr;
762 	uint32_t val;
763 	bool rb_swap;
764 	int win_index = VOP_WIN_TO_INDEX(vop_win);
765 	int format;
766 	int is_yuv = fb->format->is_yuv;
767 	int i;
768 
769 	/*
770 	 * can't update plane when vop is disabled.
771 	 */
772 	if (WARN_ON(!crtc))
773 		return;
774 
775 	if (WARN_ON(!vop->is_enabled))
776 		return;
777 
778 	if (!state->visible) {
779 		vop_plane_atomic_disable(plane, old_state);
780 		return;
781 	}
782 
783 	obj = fb->obj[0];
784 	rk_obj = to_rockchip_obj(obj);
785 
786 	actual_w = drm_rect_width(src) >> 16;
787 	actual_h = drm_rect_height(src) >> 16;
788 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
789 
790 	dsp_info = (drm_rect_height(dest) - 1) << 16;
791 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
792 
793 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
794 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
795 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
796 
797 	offset = (src->x1 >> 16) * fb->format->cpp[0];
798 	offset += (src->y1 >> 16) * fb->pitches[0];
799 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
800 
801 	/*
802 	 * For y-mirroring we need to move address
803 	 * to the beginning of the last line.
804 	 */
805 	if (state->rotation & DRM_MODE_REFLECT_Y)
806 		dma_addr += (actual_h - 1) * fb->pitches[0];
807 
808 	format = vop_convert_format(fb->format->format);
809 
810 	spin_lock(&vop->reg_lock);
811 
812 	VOP_WIN_SET(vop, win, format, format);
813 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
814 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
815 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
816 	VOP_WIN_SET(vop, win, y_mir_en,
817 		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
818 	VOP_WIN_SET(vop, win, x_mir_en,
819 		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
820 
821 	if (is_yuv) {
822 		int hsub = drm_format_horz_chroma_subsampling(fb->format->format);
823 		int vsub = drm_format_vert_chroma_subsampling(fb->format->format);
824 		int bpp = fb->format->cpp[1];
825 
826 		uv_obj = fb->obj[1];
827 		rk_uv_obj = to_rockchip_obj(uv_obj);
828 
829 		offset = (src->x1 >> 16) * bpp / hsub;
830 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
831 
832 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
833 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
834 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
835 
836 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
837 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
838 							win_yuv2yuv,
839 							y2r_coefficients[i],
840 							bt601_yuv2rgb[i]);
841 		}
842 	}
843 
844 	if (win->phy->scl)
845 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
846 				    drm_rect_width(dest), drm_rect_height(dest),
847 				    fb->format->format);
848 
849 	VOP_WIN_SET(vop, win, act_info, act_info);
850 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
851 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
852 
853 	rb_swap = has_rb_swapped(fb->format->format);
854 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
855 
856 	/*
857 	 * Blending win0 with the background color doesn't seem to work
858 	 * correctly. We only get the background color, no matter the contents
859 	 * of the win0 framebuffer.  However, blending pre-multiplied color
860 	 * with the default opaque black default background color is a no-op,
861 	 * so we can just disable blending to get the correct result.
862 	 */
863 	if (fb->format->has_alpha && win_index > 0) {
864 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
865 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
866 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
867 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
868 			SRC_BLEND_M0(ALPHA_PER_PIX) |
869 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
870 			SRC_FACTOR_M0(ALPHA_ONE);
871 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
872 	} else {
873 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
874 	}
875 
876 	VOP_WIN_SET(vop, win, enable, 1);
877 	spin_unlock(&vop->reg_lock);
878 }
879 
880 static int vop_plane_atomic_async_check(struct drm_plane *plane,
881 					struct drm_plane_state *state)
882 {
883 	struct vop_win *vop_win = to_vop_win(plane);
884 	const struct vop_win_data *win = vop_win->data;
885 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
886 					DRM_PLANE_HELPER_NO_SCALING;
887 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
888 					DRM_PLANE_HELPER_NO_SCALING;
889 	struct drm_crtc_state *crtc_state;
890 
891 	if (plane != state->crtc->cursor)
892 		return -EINVAL;
893 
894 	if (!plane->state)
895 		return -EINVAL;
896 
897 	if (!plane->state->fb)
898 		return -EINVAL;
899 
900 	if (state->state)
901 		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
902 								state->crtc);
903 	else /* Special case for asynchronous cursor updates. */
904 		crtc_state = plane->crtc->state;
905 
906 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
907 						   min_scale, max_scale,
908 						   true, true);
909 }
910 
911 static void vop_plane_atomic_async_update(struct drm_plane *plane,
912 					  struct drm_plane_state *new_state)
913 {
914 	struct vop *vop = to_vop(plane->state->crtc);
915 	struct drm_plane_state *plane_state;
916 
917 	plane_state = plane->funcs->atomic_duplicate_state(plane);
918 	plane_state->crtc_x = new_state->crtc_x;
919 	plane_state->crtc_y = new_state->crtc_y;
920 	plane_state->crtc_h = new_state->crtc_h;
921 	plane_state->crtc_w = new_state->crtc_w;
922 	plane_state->src_x = new_state->src_x;
923 	plane_state->src_y = new_state->src_y;
924 	plane_state->src_h = new_state->src_h;
925 	plane_state->src_w = new_state->src_w;
926 
927 	if (plane_state->fb != new_state->fb)
928 		drm_atomic_set_fb_for_plane(plane_state, new_state->fb);
929 
930 	swap(plane_state, plane->state);
931 
932 	if (plane->state->fb && plane->state->fb != new_state->fb) {
933 		drm_framebuffer_get(plane->state->fb);
934 		WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
935 		drm_flip_work_queue(&vop->fb_unref_work, plane->state->fb);
936 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
937 	}
938 
939 	if (vop->is_enabled) {
940 		rockchip_drm_psr_inhibit_get_state(new_state->state);
941 		vop_plane_atomic_update(plane, plane->state);
942 		spin_lock(&vop->reg_lock);
943 		vop_cfg_done(vop);
944 		spin_unlock(&vop->reg_lock);
945 		rockchip_drm_psr_inhibit_put_state(new_state->state);
946 	}
947 
948 	plane->funcs->atomic_destroy_state(plane, plane_state);
949 }
950 
951 static const struct drm_plane_helper_funcs plane_helper_funcs = {
952 	.atomic_check = vop_plane_atomic_check,
953 	.atomic_update = vop_plane_atomic_update,
954 	.atomic_disable = vop_plane_atomic_disable,
955 	.atomic_async_check = vop_plane_atomic_async_check,
956 	.atomic_async_update = vop_plane_atomic_async_update,
957 	.prepare_fb = drm_gem_fb_prepare_fb,
958 };
959 
960 static const struct drm_plane_funcs vop_plane_funcs = {
961 	.update_plane	= drm_atomic_helper_update_plane,
962 	.disable_plane	= drm_atomic_helper_disable_plane,
963 	.destroy = vop_plane_destroy,
964 	.reset = drm_atomic_helper_plane_reset,
965 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
966 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
967 };
968 
969 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
970 {
971 	struct vop *vop = to_vop(crtc);
972 	unsigned long flags;
973 
974 	if (WARN_ON(!vop->is_enabled))
975 		return -EPERM;
976 
977 	spin_lock_irqsave(&vop->irq_lock, flags);
978 
979 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
980 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
981 
982 	spin_unlock_irqrestore(&vop->irq_lock, flags);
983 
984 	return 0;
985 }
986 
987 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
988 {
989 	struct vop *vop = to_vop(crtc);
990 	unsigned long flags;
991 
992 	if (WARN_ON(!vop->is_enabled))
993 		return;
994 
995 	spin_lock_irqsave(&vop->irq_lock, flags);
996 
997 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
998 
999 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1000 }
1001 
1002 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1003 				const struct drm_display_mode *mode,
1004 				struct drm_display_mode *adjusted_mode)
1005 {
1006 	struct vop *vop = to_vop(crtc);
1007 
1008 	adjusted_mode->clock =
1009 		clk_round_rate(vop->dclk, mode->clock * 1000) / 1000;
1010 
1011 	return true;
1012 }
1013 
1014 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1015 				   struct drm_crtc_state *old_state)
1016 {
1017 	struct vop *vop = to_vop(crtc);
1018 	const struct vop_data *vop_data = vop->data;
1019 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1020 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1021 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1022 	u16 hdisplay = adjusted_mode->hdisplay;
1023 	u16 htotal = adjusted_mode->htotal;
1024 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1025 	u16 hact_end = hact_st + hdisplay;
1026 	u16 vdisplay = adjusted_mode->vdisplay;
1027 	u16 vtotal = adjusted_mode->vtotal;
1028 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1029 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1030 	u16 vact_end = vact_st + vdisplay;
1031 	uint32_t pin_pol, val;
1032 	int ret;
1033 
1034 	mutex_lock(&vop->vop_lock);
1035 
1036 	WARN_ON(vop->event);
1037 
1038 	ret = vop_enable(crtc);
1039 	if (ret) {
1040 		mutex_unlock(&vop->vop_lock);
1041 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1042 		return;
1043 	}
1044 
1045 	pin_pol = BIT(DCLK_INVERT);
1046 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1047 		   BIT(HSYNC_POSITIVE) : 0;
1048 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1049 		   BIT(VSYNC_POSITIVE) : 0;
1050 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1051 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1052 
1053 	switch (s->output_type) {
1054 	case DRM_MODE_CONNECTOR_LVDS:
1055 		VOP_REG_SET(vop, output, rgb_en, 1);
1056 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1057 		break;
1058 	case DRM_MODE_CONNECTOR_eDP:
1059 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1060 		VOP_REG_SET(vop, output, edp_en, 1);
1061 		break;
1062 	case DRM_MODE_CONNECTOR_HDMIA:
1063 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1064 		VOP_REG_SET(vop, output, hdmi_en, 1);
1065 		break;
1066 	case DRM_MODE_CONNECTOR_DSI:
1067 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1068 		VOP_REG_SET(vop, output, mipi_en, 1);
1069 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1070 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1071 		break;
1072 	case DRM_MODE_CONNECTOR_DisplayPort:
1073 		pin_pol &= ~BIT(DCLK_INVERT);
1074 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1075 		VOP_REG_SET(vop, output, dp_en, 1);
1076 		break;
1077 	default:
1078 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1079 			      s->output_type);
1080 	}
1081 
1082 	/*
1083 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1084 	 */
1085 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1086 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1087 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1088 
1089 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && s->output_bpc == 8)
1090 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1091 	else
1092 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1093 
1094 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1095 
1096 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1097 	val = hact_st << 16;
1098 	val |= hact_end;
1099 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1100 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1101 
1102 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1103 	val = vact_st << 16;
1104 	val |= vact_end;
1105 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1106 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1107 
1108 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1109 
1110 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1111 
1112 	VOP_REG_SET(vop, common, standby, 0);
1113 	mutex_unlock(&vop->vop_lock);
1114 }
1115 
1116 static bool vop_fs_irq_is_pending(struct vop *vop)
1117 {
1118 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1119 }
1120 
1121 static void vop_wait_for_irq_handler(struct vop *vop)
1122 {
1123 	bool pending;
1124 	int ret;
1125 
1126 	/*
1127 	 * Spin until frame start interrupt status bit goes low, which means
1128 	 * that interrupt handler was invoked and cleared it. The timeout of
1129 	 * 10 msecs is really too long, but it is just a safety measure if
1130 	 * something goes really wrong. The wait will only happen in the very
1131 	 * unlikely case of a vblank happening exactly at the same time and
1132 	 * shouldn't exceed microseconds range.
1133 	 */
1134 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1135 					!pending, 0, 10 * 1000);
1136 	if (ret)
1137 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1138 
1139 	synchronize_irq(vop->irq);
1140 }
1141 
1142 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1143 				  struct drm_crtc_state *old_crtc_state)
1144 {
1145 	struct drm_atomic_state *old_state = old_crtc_state->state;
1146 	struct drm_plane_state *old_plane_state, *new_plane_state;
1147 	struct vop *vop = to_vop(crtc);
1148 	struct drm_plane *plane;
1149 	int i;
1150 
1151 	if (WARN_ON(!vop->is_enabled))
1152 		return;
1153 
1154 	spin_lock(&vop->reg_lock);
1155 
1156 	vop_cfg_done(vop);
1157 
1158 	spin_unlock(&vop->reg_lock);
1159 
1160 	/*
1161 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1162 	 * fired before we set the cfg_done bit. To avoid spuriously
1163 	 * signalling flip completion we need to wait for it to finish.
1164 	 */
1165 	vop_wait_for_irq_handler(vop);
1166 
1167 	spin_lock_irq(&crtc->dev->event_lock);
1168 	if (crtc->state->event) {
1169 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1170 		WARN_ON(vop->event);
1171 
1172 		vop->event = crtc->state->event;
1173 		crtc->state->event = NULL;
1174 	}
1175 	spin_unlock_irq(&crtc->dev->event_lock);
1176 
1177 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1178 				       new_plane_state, i) {
1179 		if (!old_plane_state->fb)
1180 			continue;
1181 
1182 		if (old_plane_state->fb == new_plane_state->fb)
1183 			continue;
1184 
1185 		drm_framebuffer_get(old_plane_state->fb);
1186 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1187 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1188 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1189 	}
1190 }
1191 
1192 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1193 	.mode_fixup = vop_crtc_mode_fixup,
1194 	.atomic_flush = vop_crtc_atomic_flush,
1195 	.atomic_enable = vop_crtc_atomic_enable,
1196 	.atomic_disable = vop_crtc_atomic_disable,
1197 };
1198 
1199 static void vop_crtc_destroy(struct drm_crtc *crtc)
1200 {
1201 	drm_crtc_cleanup(crtc);
1202 }
1203 
1204 static void vop_crtc_reset(struct drm_crtc *crtc)
1205 {
1206 	if (crtc->state)
1207 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1208 	kfree(crtc->state);
1209 
1210 	crtc->state = kzalloc(sizeof(struct rockchip_crtc_state), GFP_KERNEL);
1211 	if (crtc->state)
1212 		crtc->state->crtc = crtc;
1213 }
1214 
1215 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1216 {
1217 	struct rockchip_crtc_state *rockchip_state;
1218 
1219 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1220 	if (!rockchip_state)
1221 		return NULL;
1222 
1223 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1224 	return &rockchip_state->base;
1225 }
1226 
1227 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1228 				   struct drm_crtc_state *state)
1229 {
1230 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1231 
1232 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1233 	kfree(s);
1234 }
1235 
1236 #ifdef CONFIG_DRM_ANALOGIX_DP
1237 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1238 {
1239 	struct drm_connector *connector;
1240 	struct drm_connector_list_iter conn_iter;
1241 
1242 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1243 	drm_for_each_connector_iter(connector, &conn_iter) {
1244 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1245 			drm_connector_list_iter_end(&conn_iter);
1246 			return connector;
1247 		}
1248 	}
1249 	drm_connector_list_iter_end(&conn_iter);
1250 
1251 	return NULL;
1252 }
1253 
1254 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1255 				   const char *source_name)
1256 {
1257 	struct vop *vop = to_vop(crtc);
1258 	struct drm_connector *connector;
1259 	int ret;
1260 
1261 	connector = vop_get_edp_connector(vop);
1262 	if (!connector)
1263 		return -EINVAL;
1264 
1265 	if (source_name && strcmp(source_name, "auto") == 0)
1266 		ret = analogix_dp_start_crc(connector);
1267 	else if (!source_name)
1268 		ret = analogix_dp_stop_crc(connector);
1269 	else
1270 		ret = -EINVAL;
1271 
1272 	return ret;
1273 }
1274 
1275 static int
1276 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1277 			   size_t *values_cnt)
1278 {
1279 	if (source_name && strcmp(source_name, "auto") != 0)
1280 		return -EINVAL;
1281 
1282 	*values_cnt = 3;
1283 	return 0;
1284 }
1285 
1286 #else
1287 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1288 				   const char *source_name)
1289 {
1290 	return -ENODEV;
1291 }
1292 
1293 static int
1294 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1295 			   size_t *values_cnt)
1296 {
1297 	return -ENODEV;
1298 }
1299 #endif
1300 
1301 static const struct drm_crtc_funcs vop_crtc_funcs = {
1302 	.set_config = drm_atomic_helper_set_config,
1303 	.page_flip = drm_atomic_helper_page_flip,
1304 	.destroy = vop_crtc_destroy,
1305 	.reset = vop_crtc_reset,
1306 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1307 	.atomic_destroy_state = vop_crtc_destroy_state,
1308 	.enable_vblank = vop_crtc_enable_vblank,
1309 	.disable_vblank = vop_crtc_disable_vblank,
1310 	.set_crc_source = vop_crtc_set_crc_source,
1311 	.verify_crc_source = vop_crtc_verify_crc_source,
1312 };
1313 
1314 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1315 {
1316 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1317 	struct drm_framebuffer *fb = val;
1318 
1319 	drm_crtc_vblank_put(&vop->crtc);
1320 	drm_framebuffer_put(fb);
1321 }
1322 
1323 static void vop_handle_vblank(struct vop *vop)
1324 {
1325 	struct drm_device *drm = vop->drm_dev;
1326 	struct drm_crtc *crtc = &vop->crtc;
1327 
1328 	spin_lock(&drm->event_lock);
1329 	if (vop->event) {
1330 		drm_crtc_send_vblank_event(crtc, vop->event);
1331 		drm_crtc_vblank_put(crtc);
1332 		vop->event = NULL;
1333 	}
1334 	spin_unlock(&drm->event_lock);
1335 
1336 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1337 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1338 }
1339 
1340 static irqreturn_t vop_isr(int irq, void *data)
1341 {
1342 	struct vop *vop = data;
1343 	struct drm_crtc *crtc = &vop->crtc;
1344 	uint32_t active_irqs;
1345 	int ret = IRQ_NONE;
1346 
1347 	/*
1348 	 * The irq is shared with the iommu. If the runtime-pm state of the
1349 	 * vop-device is disabled the irq has to be targeted at the iommu.
1350 	 */
1351 	if (!pm_runtime_get_if_in_use(vop->dev))
1352 		return IRQ_NONE;
1353 
1354 	if (vop_core_clks_enable(vop)) {
1355 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1356 		goto out;
1357 	}
1358 
1359 	/*
1360 	 * interrupt register has interrupt status, enable and clear bits, we
1361 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1362 	*/
1363 	spin_lock(&vop->irq_lock);
1364 
1365 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1366 	/* Clear all active interrupt sources */
1367 	if (active_irqs)
1368 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1369 
1370 	spin_unlock(&vop->irq_lock);
1371 
1372 	/* This is expected for vop iommu irqs, since the irq is shared */
1373 	if (!active_irqs)
1374 		goto out_disable;
1375 
1376 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1377 		complete(&vop->dsp_hold_completion);
1378 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1379 		ret = IRQ_HANDLED;
1380 	}
1381 
1382 	if (active_irqs & LINE_FLAG_INTR) {
1383 		complete(&vop->line_flag_completion);
1384 		active_irqs &= ~LINE_FLAG_INTR;
1385 		ret = IRQ_HANDLED;
1386 	}
1387 
1388 	if (active_irqs & FS_INTR) {
1389 		drm_crtc_handle_vblank(crtc);
1390 		vop_handle_vblank(vop);
1391 		active_irqs &= ~FS_INTR;
1392 		ret = IRQ_HANDLED;
1393 	}
1394 
1395 	/* Unhandled irqs are spurious. */
1396 	if (active_irqs)
1397 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1398 			      active_irqs);
1399 
1400 out_disable:
1401 	vop_core_clks_disable(vop);
1402 out:
1403 	pm_runtime_put(vop->dev);
1404 	return ret;
1405 }
1406 
1407 static void vop_plane_add_properties(struct drm_plane *plane,
1408 				     const struct vop_win_data *win_data)
1409 {
1410 	unsigned int flags = 0;
1411 
1412 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1413 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1414 	if (flags)
1415 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1416 						   DRM_MODE_ROTATE_0 | flags);
1417 }
1418 
1419 static int vop_create_crtc(struct vop *vop)
1420 {
1421 	const struct vop_data *vop_data = vop->data;
1422 	struct device *dev = vop->dev;
1423 	struct drm_device *drm_dev = vop->drm_dev;
1424 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1425 	struct drm_crtc *crtc = &vop->crtc;
1426 	struct device_node *port;
1427 	int ret;
1428 	int i;
1429 
1430 	/*
1431 	 * Create drm_plane for primary and cursor planes first, since we need
1432 	 * to pass them to drm_crtc_init_with_planes, which sets the
1433 	 * "possible_crtcs" to the newly initialized crtc.
1434 	 */
1435 	for (i = 0; i < vop_data->win_size; i++) {
1436 		struct vop_win *vop_win = &vop->win[i];
1437 		const struct vop_win_data *win_data = vop_win->data;
1438 
1439 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1440 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1441 			continue;
1442 
1443 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1444 					       0, &vop_plane_funcs,
1445 					       win_data->phy->data_formats,
1446 					       win_data->phy->nformats,
1447 					       NULL, win_data->type, NULL);
1448 		if (ret) {
1449 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1450 				      ret);
1451 			goto err_cleanup_planes;
1452 		}
1453 
1454 		plane = &vop_win->base;
1455 		drm_plane_helper_add(plane, &plane_helper_funcs);
1456 		vop_plane_add_properties(plane, win_data);
1457 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1458 			primary = plane;
1459 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1460 			cursor = plane;
1461 	}
1462 
1463 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1464 					&vop_crtc_funcs, NULL);
1465 	if (ret)
1466 		goto err_cleanup_planes;
1467 
1468 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1469 
1470 	/*
1471 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1472 	 * to the newly created crtc.
1473 	 */
1474 	for (i = 0; i < vop_data->win_size; i++) {
1475 		struct vop_win *vop_win = &vop->win[i];
1476 		const struct vop_win_data *win_data = vop_win->data;
1477 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1478 
1479 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1480 			continue;
1481 
1482 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1483 					       possible_crtcs,
1484 					       &vop_plane_funcs,
1485 					       win_data->phy->data_formats,
1486 					       win_data->phy->nformats,
1487 					       NULL, win_data->type, NULL);
1488 		if (ret) {
1489 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1490 				      ret);
1491 			goto err_cleanup_crtc;
1492 		}
1493 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1494 		vop_plane_add_properties(&vop_win->base, win_data);
1495 	}
1496 
1497 	port = of_get_child_by_name(dev->of_node, "port");
1498 	if (!port) {
1499 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1500 			      dev->of_node);
1501 		ret = -ENOENT;
1502 		goto err_cleanup_crtc;
1503 	}
1504 
1505 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1506 			   vop_fb_unref_worker);
1507 
1508 	init_completion(&vop->dsp_hold_completion);
1509 	init_completion(&vop->line_flag_completion);
1510 	crtc->port = port;
1511 
1512 	return 0;
1513 
1514 err_cleanup_crtc:
1515 	drm_crtc_cleanup(crtc);
1516 err_cleanup_planes:
1517 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1518 				 head)
1519 		drm_plane_cleanup(plane);
1520 	return ret;
1521 }
1522 
1523 static void vop_destroy_crtc(struct vop *vop)
1524 {
1525 	struct drm_crtc *crtc = &vop->crtc;
1526 	struct drm_device *drm_dev = vop->drm_dev;
1527 	struct drm_plane *plane, *tmp;
1528 
1529 	of_node_put(crtc->port);
1530 
1531 	/*
1532 	 * We need to cleanup the planes now.  Why?
1533 	 *
1534 	 * The planes are "&vop->win[i].base".  That means the memory is
1535 	 * all part of the big "struct vop" chunk of memory.  That memory
1536 	 * was devm allocated and associated with this component.  We need to
1537 	 * free it ourselves before vop_unbind() finishes.
1538 	 */
1539 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1540 				 head)
1541 		vop_plane_destroy(plane);
1542 
1543 	/*
1544 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1545 	 * references the CRTC.
1546 	 */
1547 	drm_crtc_cleanup(crtc);
1548 	drm_flip_work_cleanup(&vop->fb_unref_work);
1549 }
1550 
1551 static int vop_initial(struct vop *vop)
1552 {
1553 	const struct vop_data *vop_data = vop->data;
1554 	struct reset_control *ahb_rst;
1555 	int i, ret;
1556 
1557 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1558 	if (IS_ERR(vop->hclk)) {
1559 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1560 		return PTR_ERR(vop->hclk);
1561 	}
1562 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1563 	if (IS_ERR(vop->aclk)) {
1564 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1565 		return PTR_ERR(vop->aclk);
1566 	}
1567 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1568 	if (IS_ERR(vop->dclk)) {
1569 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1570 		return PTR_ERR(vop->dclk);
1571 	}
1572 
1573 	ret = pm_runtime_get_sync(vop->dev);
1574 	if (ret < 0) {
1575 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1576 		return ret;
1577 	}
1578 
1579 	ret = clk_prepare(vop->dclk);
1580 	if (ret < 0) {
1581 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1582 		goto err_put_pm_runtime;
1583 	}
1584 
1585 	/* Enable both the hclk and aclk to setup the vop */
1586 	ret = clk_prepare_enable(vop->hclk);
1587 	if (ret < 0) {
1588 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1589 		goto err_unprepare_dclk;
1590 	}
1591 
1592 	ret = clk_prepare_enable(vop->aclk);
1593 	if (ret < 0) {
1594 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1595 		goto err_disable_hclk;
1596 	}
1597 
1598 	/*
1599 	 * do hclk_reset, reset all vop registers.
1600 	 */
1601 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1602 	if (IS_ERR(ahb_rst)) {
1603 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1604 		ret = PTR_ERR(ahb_rst);
1605 		goto err_disable_aclk;
1606 	}
1607 	reset_control_assert(ahb_rst);
1608 	usleep_range(10, 20);
1609 	reset_control_deassert(ahb_rst);
1610 
1611 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1612 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1613 
1614 	for (i = 0; i < vop->len; i += sizeof(u32))
1615 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1616 
1617 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1618 	VOP_REG_SET(vop, common, dsp_blank, 0);
1619 
1620 	for (i = 0; i < vop_data->win_size; i++) {
1621 		const struct vop_win_data *win = &vop_data->win[i];
1622 		int channel = i * 2 + 1;
1623 
1624 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1625 		VOP_WIN_SET(vop, win, enable, 0);
1626 		VOP_WIN_SET(vop, win, gate, 1);
1627 	}
1628 
1629 	vop_cfg_done(vop);
1630 
1631 	/*
1632 	 * do dclk_reset, let all config take affect.
1633 	 */
1634 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1635 	if (IS_ERR(vop->dclk_rst)) {
1636 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1637 		ret = PTR_ERR(vop->dclk_rst);
1638 		goto err_disable_aclk;
1639 	}
1640 	reset_control_assert(vop->dclk_rst);
1641 	usleep_range(10, 20);
1642 	reset_control_deassert(vop->dclk_rst);
1643 
1644 	clk_disable(vop->hclk);
1645 	clk_disable(vop->aclk);
1646 
1647 	vop->is_enabled = false;
1648 
1649 	pm_runtime_put_sync(vop->dev);
1650 
1651 	return 0;
1652 
1653 err_disable_aclk:
1654 	clk_disable_unprepare(vop->aclk);
1655 err_disable_hclk:
1656 	clk_disable_unprepare(vop->hclk);
1657 err_unprepare_dclk:
1658 	clk_unprepare(vop->dclk);
1659 err_put_pm_runtime:
1660 	pm_runtime_put_sync(vop->dev);
1661 	return ret;
1662 }
1663 
1664 /*
1665  * Initialize the vop->win array elements.
1666  */
1667 static void vop_win_init(struct vop *vop)
1668 {
1669 	const struct vop_data *vop_data = vop->data;
1670 	unsigned int i;
1671 
1672 	for (i = 0; i < vop_data->win_size; i++) {
1673 		struct vop_win *vop_win = &vop->win[i];
1674 		const struct vop_win_data *win_data = &vop_data->win[i];
1675 
1676 		vop_win->data = win_data;
1677 		vop_win->vop = vop;
1678 
1679 		if (vop_data->win_yuv2yuv)
1680 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
1681 	}
1682 }
1683 
1684 /**
1685  * rockchip_drm_wait_vact_end
1686  * @crtc: CRTC to enable line flag
1687  * @mstimeout: millisecond for timeout
1688  *
1689  * Wait for vact_end line flag irq or timeout.
1690  *
1691  * Returns:
1692  * Zero on success, negative errno on failure.
1693  */
1694 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
1695 {
1696 	struct vop *vop = to_vop(crtc);
1697 	unsigned long jiffies_left;
1698 	int ret = 0;
1699 
1700 	if (!crtc || !vop->is_enabled)
1701 		return -ENODEV;
1702 
1703 	mutex_lock(&vop->vop_lock);
1704 	if (mstimeout <= 0) {
1705 		ret = -EINVAL;
1706 		goto out;
1707 	}
1708 
1709 	if (vop_line_flag_irq_is_enabled(vop)) {
1710 		ret = -EBUSY;
1711 		goto out;
1712 	}
1713 
1714 	reinit_completion(&vop->line_flag_completion);
1715 	vop_line_flag_irq_enable(vop);
1716 
1717 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
1718 						   msecs_to_jiffies(mstimeout));
1719 	vop_line_flag_irq_disable(vop);
1720 
1721 	if (jiffies_left == 0) {
1722 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
1723 		ret = -ETIMEDOUT;
1724 		goto out;
1725 	}
1726 
1727 out:
1728 	mutex_unlock(&vop->vop_lock);
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
1732 
1733 static int vop_bind(struct device *dev, struct device *master, void *data)
1734 {
1735 	struct platform_device *pdev = to_platform_device(dev);
1736 	const struct vop_data *vop_data;
1737 	struct drm_device *drm_dev = data;
1738 	struct vop *vop;
1739 	struct resource *res;
1740 	int ret, irq;
1741 
1742 	vop_data = of_device_get_match_data(dev);
1743 	if (!vop_data)
1744 		return -ENODEV;
1745 
1746 	/* Allocate vop struct and its vop_win array */
1747 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
1748 			   GFP_KERNEL);
1749 	if (!vop)
1750 		return -ENOMEM;
1751 
1752 	vop->dev = dev;
1753 	vop->data = vop_data;
1754 	vop->drm_dev = drm_dev;
1755 	dev_set_drvdata(dev, vop);
1756 
1757 	vop_win_init(vop);
1758 
1759 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1760 	vop->len = resource_size(res);
1761 	vop->regs = devm_ioremap_resource(dev, res);
1762 	if (IS_ERR(vop->regs))
1763 		return PTR_ERR(vop->regs);
1764 
1765 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
1766 	if (!vop->regsbak)
1767 		return -ENOMEM;
1768 
1769 	irq = platform_get_irq(pdev, 0);
1770 	if (irq < 0) {
1771 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
1772 		return irq;
1773 	}
1774 	vop->irq = (unsigned int)irq;
1775 
1776 	spin_lock_init(&vop->reg_lock);
1777 	spin_lock_init(&vop->irq_lock);
1778 	mutex_init(&vop->vop_lock);
1779 
1780 	ret = vop_create_crtc(vop);
1781 	if (ret)
1782 		return ret;
1783 
1784 	pm_runtime_enable(&pdev->dev);
1785 
1786 	ret = vop_initial(vop);
1787 	if (ret < 0) {
1788 		DRM_DEV_ERROR(&pdev->dev,
1789 			      "cannot initial vop dev - err %d\n", ret);
1790 		goto err_disable_pm_runtime;
1791 	}
1792 
1793 	ret = devm_request_irq(dev, vop->irq, vop_isr,
1794 			       IRQF_SHARED, dev_name(dev), vop);
1795 	if (ret)
1796 		goto err_disable_pm_runtime;
1797 
1798 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
1799 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
1800 		if (IS_ERR(vop->rgb)) {
1801 			ret = PTR_ERR(vop->rgb);
1802 			goto err_disable_pm_runtime;
1803 		}
1804 	}
1805 
1806 	return 0;
1807 
1808 err_disable_pm_runtime:
1809 	pm_runtime_disable(&pdev->dev);
1810 	vop_destroy_crtc(vop);
1811 	return ret;
1812 }
1813 
1814 static void vop_unbind(struct device *dev, struct device *master, void *data)
1815 {
1816 	struct vop *vop = dev_get_drvdata(dev);
1817 
1818 	if (vop->rgb)
1819 		rockchip_rgb_fini(vop->rgb);
1820 
1821 	pm_runtime_disable(dev);
1822 	vop_destroy_crtc(vop);
1823 
1824 	clk_unprepare(vop->aclk);
1825 	clk_unprepare(vop->hclk);
1826 	clk_unprepare(vop->dclk);
1827 }
1828 
1829 const struct component_ops vop_component_ops = {
1830 	.bind = vop_bind,
1831 	.unbind = vop_unbind,
1832 };
1833 EXPORT_SYMBOL_GPL(vop_component_ops);
1834