xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 0e9ab8e4d44ae9d9aaf213bfd2c90bbe7289337b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/overflow.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 
21 #include <drm/drm.h>
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_uapi.h>
24 #include <drm/drm_blend.h>
25 #include <drm/drm_crtc.h>
26 #include <drm/drm_flip_work.h>
27 #include <drm/drm_fourcc.h>
28 #include <drm/drm_framebuffer.h>
29 #include <drm/drm_gem_atomic_helper.h>
30 #include <drm/drm_gem_framebuffer_helper.h>
31 #include <drm/drm_probe_helper.h>
32 #include <drm/drm_self_refresh_helper.h>
33 #include <drm/drm_vblank.h>
34 
35 #ifdef CONFIG_DRM_ANALOGIX_DP
36 #include <drm/bridge/analogix_dp.h>
37 #endif
38 
39 #include "rockchip_drm_drv.h"
40 #include "rockchip_drm_gem.h"
41 #include "rockchip_drm_fb.h"
42 #include "rockchip_drm_vop.h"
43 #include "rockchip_rgb.h"
44 
45 #define VOP_WIN_SET(vop, win, name, v) \
46 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
47 #define VOP_SCL_SET(vop, win, name, v) \
48 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
49 #define VOP_SCL_SET_EXT(vop, win, name, v) \
50 		vop_reg_set(vop, &win->phy->scl->ext->name, \
51 			    win->base, ~0, v, #name)
52 
53 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
54 	do { \
55 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
56 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
57 	} while (0)
58 
59 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
60 	do { \
61 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
62 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
63 	} while (0)
64 
65 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
66 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
67 
68 #define VOP_REG_SET(vop, group, name, v) \
69 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
70 
71 #define VOP_HAS_REG(vop, group, name) \
72 		(!!(vop->data->group->name.mask))
73 
74 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
75 	do { \
76 		int i, reg = 0, mask = 0; \
77 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
78 			if (vop->data->intr->intrs[i] & type) { \
79 				reg |= (v) << i; \
80 				mask |= 1 << i; \
81 			} \
82 		} \
83 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
84 	} while (0)
85 #define VOP_INTR_GET_TYPE(vop, name, type) \
86 		vop_get_intr_type(vop, &vop->data->intr->name, type)
87 
88 #define VOP_WIN_GET(vop, win, name) \
89 		vop_read_reg(vop, win->base, &win->phy->name)
90 
91 #define VOP_WIN_HAS_REG(win, name) \
92 	(!!(win->phy->name.mask))
93 
94 #define VOP_WIN_GET_YRGBADDR(vop, win) \
95 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
96 
97 #define VOP_WIN_TO_INDEX(vop_win) \
98 	((vop_win) - (vop_win)->vop->win)
99 
100 #define VOP_AFBC_SET(vop, name, v) \
101 	do { \
102 		if ((vop)->data->afbc) \
103 			vop_reg_set((vop), &(vop)->data->afbc->name, \
104 				    0, ~0, v, #name); \
105 	} while (0)
106 
107 #define to_vop(x) container_of(x, struct vop, crtc)
108 #define to_vop_win(x) container_of(x, struct vop_win, base)
109 
110 #define AFBC_FMT_RGB565		0x0
111 #define AFBC_FMT_U8U8U8U8	0x5
112 #define AFBC_FMT_U8U8U8		0x4
113 
114 #define AFBC_TILE_16x16		BIT(4)
115 
116 /*
117  * The coefficients of the following matrix are all fixed points.
118  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
119  * They are all represented in two's complement.
120  */
121 static const uint32_t bt601_yuv2rgb[] = {
122 	0x4A8, 0x0,    0x662,
123 	0x4A8, 0x1E6F, 0x1CBF,
124 	0x4A8, 0x812,  0x0,
125 	0x321168, 0x0877CF, 0x2EB127
126 };
127 
128 enum vop_pending {
129 	VOP_PENDING_FB_UNREF,
130 };
131 
132 struct vop_win {
133 	struct drm_plane base;
134 	const struct vop_win_data *data;
135 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
136 	struct vop *vop;
137 };
138 
139 struct rockchip_rgb;
140 struct vop {
141 	struct drm_crtc crtc;
142 	struct device *dev;
143 	struct drm_device *drm_dev;
144 	bool is_enabled;
145 
146 	struct completion dsp_hold_completion;
147 	unsigned int win_enabled;
148 
149 	/* protected by dev->event_lock */
150 	struct drm_pending_vblank_event *event;
151 
152 	struct drm_flip_work fb_unref_work;
153 	unsigned long pending;
154 
155 	struct completion line_flag_completion;
156 
157 	const struct vop_data *data;
158 
159 	uint32_t *regsbak;
160 	void __iomem *regs;
161 	void __iomem *lut_regs;
162 
163 	/* physical map length of vop register */
164 	uint32_t len;
165 
166 	/* one time only one process allowed to config the register */
167 	spinlock_t reg_lock;
168 	/* lock vop irq reg */
169 	spinlock_t irq_lock;
170 	/* protects crtc enable/disable */
171 	struct mutex vop_lock;
172 
173 	unsigned int irq;
174 
175 	/* vop AHP clk */
176 	struct clk *hclk;
177 	/* vop dclk */
178 	struct clk *dclk;
179 	/* vop share memory frequency */
180 	struct clk *aclk;
181 
182 	/* vop dclk reset */
183 	struct reset_control *dclk_rst;
184 
185 	/* optional internal rgb encoder */
186 	struct rockchip_rgb *rgb;
187 
188 	struct vop_win win[];
189 };
190 
191 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
192 {
193 	return readl(vop->regs + offset);
194 }
195 
196 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
197 				    const struct vop_reg *reg)
198 {
199 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
200 }
201 
202 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
203 			uint32_t _offset, uint32_t _mask, uint32_t v,
204 			const char *reg_name)
205 {
206 	int offset, mask, shift;
207 
208 	if (!reg || !reg->mask) {
209 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
210 		return;
211 	}
212 
213 	offset = reg->offset + _offset;
214 	mask = reg->mask & _mask;
215 	shift = reg->shift;
216 
217 	if (reg->write_mask) {
218 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
219 	} else {
220 		uint32_t cached_val = vop->regsbak[offset >> 2];
221 
222 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
223 		vop->regsbak[offset >> 2] = v;
224 	}
225 
226 	if (reg->relaxed)
227 		writel_relaxed(v, vop->regs + offset);
228 	else
229 		writel(v, vop->regs + offset);
230 }
231 
232 static inline uint32_t vop_get_intr_type(struct vop *vop,
233 					 const struct vop_reg *reg, int type)
234 {
235 	uint32_t i, ret = 0;
236 	uint32_t regs = vop_read_reg(vop, 0, reg);
237 
238 	for (i = 0; i < vop->data->intr->nintrs; i++) {
239 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
240 			ret |= vop->data->intr->intrs[i];
241 	}
242 
243 	return ret;
244 }
245 
246 static inline void vop_cfg_done(struct vop *vop)
247 {
248 	VOP_REG_SET(vop, common, cfg_done, 1);
249 }
250 
251 static bool has_rb_swapped(uint32_t format)
252 {
253 	switch (format) {
254 	case DRM_FORMAT_XBGR8888:
255 	case DRM_FORMAT_ABGR8888:
256 	case DRM_FORMAT_BGR888:
257 	case DRM_FORMAT_BGR565:
258 		return true;
259 	default:
260 		return false;
261 	}
262 }
263 
264 static bool has_uv_swapped(uint32_t format)
265 {
266 	switch (format) {
267 	case DRM_FORMAT_NV21:
268 	case DRM_FORMAT_NV61:
269 	case DRM_FORMAT_NV42:
270 		return true;
271 	default:
272 		return false;
273 	}
274 }
275 
276 static enum vop_data_format vop_convert_format(uint32_t format)
277 {
278 	switch (format) {
279 	case DRM_FORMAT_XRGB8888:
280 	case DRM_FORMAT_ARGB8888:
281 	case DRM_FORMAT_XBGR8888:
282 	case DRM_FORMAT_ABGR8888:
283 		return VOP_FMT_ARGB8888;
284 	case DRM_FORMAT_RGB888:
285 	case DRM_FORMAT_BGR888:
286 		return VOP_FMT_RGB888;
287 	case DRM_FORMAT_RGB565:
288 	case DRM_FORMAT_BGR565:
289 		return VOP_FMT_RGB565;
290 	case DRM_FORMAT_NV12:
291 	case DRM_FORMAT_NV21:
292 		return VOP_FMT_YUV420SP;
293 	case DRM_FORMAT_NV16:
294 	case DRM_FORMAT_NV61:
295 		return VOP_FMT_YUV422SP;
296 	case DRM_FORMAT_NV24:
297 	case DRM_FORMAT_NV42:
298 		return VOP_FMT_YUV444SP;
299 	default:
300 		DRM_ERROR("unsupported format[%08x]\n", format);
301 		return -EINVAL;
302 	}
303 }
304 
305 static int vop_convert_afbc_format(uint32_t format)
306 {
307 	switch (format) {
308 	case DRM_FORMAT_XRGB8888:
309 	case DRM_FORMAT_ARGB8888:
310 	case DRM_FORMAT_XBGR8888:
311 	case DRM_FORMAT_ABGR8888:
312 		return AFBC_FMT_U8U8U8U8;
313 	case DRM_FORMAT_RGB888:
314 	case DRM_FORMAT_BGR888:
315 		return AFBC_FMT_U8U8U8;
316 	case DRM_FORMAT_RGB565:
317 	case DRM_FORMAT_BGR565:
318 		return AFBC_FMT_RGB565;
319 	/* either of the below should not be reachable */
320 	default:
321 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
322 		return -EINVAL;
323 	}
324 
325 	return -EINVAL;
326 }
327 
328 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
329 				  uint32_t dst, bool is_horizontal,
330 				  int vsu_mode, int *vskiplines)
331 {
332 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
333 
334 	if (vskiplines)
335 		*vskiplines = 0;
336 
337 	if (is_horizontal) {
338 		if (mode == SCALE_UP)
339 			val = GET_SCL_FT_BIC(src, dst);
340 		else if (mode == SCALE_DOWN)
341 			val = GET_SCL_FT_BILI_DN(src, dst);
342 	} else {
343 		if (mode == SCALE_UP) {
344 			if (vsu_mode == SCALE_UP_BIL)
345 				val = GET_SCL_FT_BILI_UP(src, dst);
346 			else
347 				val = GET_SCL_FT_BIC(src, dst);
348 		} else if (mode == SCALE_DOWN) {
349 			if (vskiplines) {
350 				*vskiplines = scl_get_vskiplines(src, dst);
351 				val = scl_get_bili_dn_vskip(src, dst,
352 							    *vskiplines);
353 			} else {
354 				val = GET_SCL_FT_BILI_DN(src, dst);
355 			}
356 		}
357 	}
358 
359 	return val;
360 }
361 
362 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
363 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
364 			     uint32_t dst_h, const struct drm_format_info *info)
365 {
366 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
367 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
368 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
369 	bool is_yuv = false;
370 	uint16_t cbcr_src_w = src_w / info->hsub;
371 	uint16_t cbcr_src_h = src_h / info->vsub;
372 	uint16_t vsu_mode;
373 	uint16_t lb_mode;
374 	uint32_t val;
375 	int vskiplines;
376 
377 	if (info->is_yuv)
378 		is_yuv = true;
379 
380 	if (dst_w > 3840) {
381 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
382 		return;
383 	}
384 
385 	if (!win->phy->scl->ext) {
386 		VOP_SCL_SET(vop, win, scale_yrgb_x,
387 			    scl_cal_scale2(src_w, dst_w));
388 		VOP_SCL_SET(vop, win, scale_yrgb_y,
389 			    scl_cal_scale2(src_h, dst_h));
390 		if (is_yuv) {
391 			VOP_SCL_SET(vop, win, scale_cbcr_x,
392 				    scl_cal_scale2(cbcr_src_w, dst_w));
393 			VOP_SCL_SET(vop, win, scale_cbcr_y,
394 				    scl_cal_scale2(cbcr_src_h, dst_h));
395 		}
396 		return;
397 	}
398 
399 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
400 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
401 
402 	if (is_yuv) {
403 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
404 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
405 		if (cbcr_hor_scl_mode == SCALE_DOWN)
406 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
407 		else
408 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
409 	} else {
410 		if (yrgb_hor_scl_mode == SCALE_DOWN)
411 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
412 		else
413 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
414 	}
415 
416 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
417 	if (lb_mode == LB_RGB_3840X2) {
418 		if (yrgb_ver_scl_mode != SCALE_NONE) {
419 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
420 			return;
421 		}
422 		if (cbcr_ver_scl_mode != SCALE_NONE) {
423 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
424 			return;
425 		}
426 		vsu_mode = SCALE_UP_BIL;
427 	} else if (lb_mode == LB_RGB_2560X4) {
428 		vsu_mode = SCALE_UP_BIL;
429 	} else {
430 		vsu_mode = SCALE_UP_BIC;
431 	}
432 
433 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
434 				true, 0, NULL);
435 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
436 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
437 				false, vsu_mode, &vskiplines);
438 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
439 
440 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
441 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
442 
443 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
444 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
445 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
446 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
447 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
448 	if (is_yuv) {
449 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
450 					dst_w, true, 0, NULL);
451 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
452 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
453 					dst_h, false, vsu_mode, &vskiplines);
454 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
455 
456 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
457 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
458 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
459 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
460 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
461 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
462 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
463 	}
464 }
465 
466 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
467 {
468 	unsigned long flags;
469 
470 	if (WARN_ON(!vop->is_enabled))
471 		return;
472 
473 	spin_lock_irqsave(&vop->irq_lock, flags);
474 
475 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
476 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
477 
478 	spin_unlock_irqrestore(&vop->irq_lock, flags);
479 }
480 
481 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
482 {
483 	unsigned long flags;
484 
485 	if (WARN_ON(!vop->is_enabled))
486 		return;
487 
488 	spin_lock_irqsave(&vop->irq_lock, flags);
489 
490 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
491 
492 	spin_unlock_irqrestore(&vop->irq_lock, flags);
493 }
494 
495 /*
496  * (1) each frame starts at the start of the Vsync pulse which is signaled by
497  *     the "FRAME_SYNC" interrupt.
498  * (2) the active data region of each frame ends at dsp_vact_end
499  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
500  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
501  *
502  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
503  * Interrupts
504  * LINE_FLAG -------------------------------+
505  * FRAME_SYNC ----+                         |
506  *                |                         |
507  *                v                         v
508  *                | Vsync | Vbp |  Vactive  | Vfp |
509  *                        ^     ^           ^     ^
510  *                        |     |           |     |
511  *                        |     |           |     |
512  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
513  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
514  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
515  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
516  */
517 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
518 {
519 	uint32_t line_flag_irq;
520 	unsigned long flags;
521 
522 	spin_lock_irqsave(&vop->irq_lock, flags);
523 
524 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
525 
526 	spin_unlock_irqrestore(&vop->irq_lock, flags);
527 
528 	return !!line_flag_irq;
529 }
530 
531 static void vop_line_flag_irq_enable(struct vop *vop)
532 {
533 	unsigned long flags;
534 
535 	if (WARN_ON(!vop->is_enabled))
536 		return;
537 
538 	spin_lock_irqsave(&vop->irq_lock, flags);
539 
540 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
541 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
542 
543 	spin_unlock_irqrestore(&vop->irq_lock, flags);
544 }
545 
546 static void vop_line_flag_irq_disable(struct vop *vop)
547 {
548 	unsigned long flags;
549 
550 	if (WARN_ON(!vop->is_enabled))
551 		return;
552 
553 	spin_lock_irqsave(&vop->irq_lock, flags);
554 
555 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
556 
557 	spin_unlock_irqrestore(&vop->irq_lock, flags);
558 }
559 
560 static int vop_core_clks_enable(struct vop *vop)
561 {
562 	int ret;
563 
564 	ret = clk_enable(vop->hclk);
565 	if (ret < 0)
566 		return ret;
567 
568 	ret = clk_enable(vop->aclk);
569 	if (ret < 0)
570 		goto err_disable_hclk;
571 
572 	return 0;
573 
574 err_disable_hclk:
575 	clk_disable(vop->hclk);
576 	return ret;
577 }
578 
579 static void vop_core_clks_disable(struct vop *vop)
580 {
581 	clk_disable(vop->aclk);
582 	clk_disable(vop->hclk);
583 }
584 
585 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
586 {
587 	const struct vop_win_data *win = vop_win->data;
588 
589 	if (win->phy->scl && win->phy->scl->ext) {
590 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
591 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
592 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
593 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
594 	}
595 
596 	VOP_WIN_SET(vop, win, enable, 0);
597 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
598 }
599 
600 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
601 {
602 	struct vop *vop = to_vop(crtc);
603 	int ret, i;
604 
605 	ret = pm_runtime_resume_and_get(vop->dev);
606 	if (ret < 0) {
607 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
608 		return ret;
609 	}
610 
611 	ret = vop_core_clks_enable(vop);
612 	if (WARN_ON(ret < 0))
613 		goto err_put_pm_runtime;
614 
615 	ret = clk_enable(vop->dclk);
616 	if (WARN_ON(ret < 0))
617 		goto err_disable_core;
618 
619 	/*
620 	 * Slave iommu shares power, irq and clock with vop.  It was associated
621 	 * automatically with this master device via common driver code.
622 	 * Now that we have enabled the clock we attach it to the shared drm
623 	 * mapping.
624 	 */
625 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
626 	if (ret) {
627 		DRM_DEV_ERROR(vop->dev,
628 			      "failed to attach dma mapping, %d\n", ret);
629 		goto err_disable_dclk;
630 	}
631 
632 	spin_lock(&vop->reg_lock);
633 	for (i = 0; i < vop->len; i += 4)
634 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
635 
636 	/*
637 	 * We need to make sure that all windows are disabled before we
638 	 * enable the crtc. Otherwise we might try to scan from a destroyed
639 	 * buffer later.
640 	 *
641 	 * In the case of enable-after-PSR, we don't need to worry about this
642 	 * case since the buffer is guaranteed to be valid and disabling the
643 	 * window will result in screen glitches on PSR exit.
644 	 */
645 	if (!old_state || !old_state->self_refresh_active) {
646 		for (i = 0; i < vop->data->win_size; i++) {
647 			struct vop_win *vop_win = &vop->win[i];
648 
649 			vop_win_disable(vop, vop_win);
650 		}
651 	}
652 
653 	if (vop->data->afbc) {
654 		struct rockchip_crtc_state *s;
655 		/*
656 		 * Disable AFBC and forget there was a vop window with AFBC
657 		 */
658 		VOP_AFBC_SET(vop, enable, 0);
659 		s = to_rockchip_crtc_state(crtc->state);
660 		s->enable_afbc = false;
661 	}
662 
663 	vop_cfg_done(vop);
664 
665 	spin_unlock(&vop->reg_lock);
666 
667 	/*
668 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
669 	 */
670 	vop->is_enabled = true;
671 
672 	spin_lock(&vop->reg_lock);
673 
674 	VOP_REG_SET(vop, common, standby, 1);
675 
676 	spin_unlock(&vop->reg_lock);
677 
678 	drm_crtc_vblank_on(crtc);
679 
680 	return 0;
681 
682 err_disable_dclk:
683 	clk_disable(vop->dclk);
684 err_disable_core:
685 	vop_core_clks_disable(vop);
686 err_put_pm_runtime:
687 	pm_runtime_put_sync(vop->dev);
688 	return ret;
689 }
690 
691 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
692 {
693         struct vop *vop = to_vop(crtc);
694         int i;
695 
696         spin_lock(&vop->reg_lock);
697 
698         for (i = 0; i < vop->data->win_size; i++) {
699                 struct vop_win *vop_win = &vop->win[i];
700                 const struct vop_win_data *win = vop_win->data;
701 
702                 VOP_WIN_SET(vop, win, enable,
703                             enabled && (vop->win_enabled & BIT(i)));
704         }
705         vop_cfg_done(vop);
706 
707         spin_unlock(&vop->reg_lock);
708 }
709 
710 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
711 				    struct drm_atomic_state *state)
712 {
713 	struct vop *vop = to_vop(crtc);
714 
715 	WARN_ON(vop->event);
716 
717 	if (crtc->state->self_refresh_active)
718 		rockchip_drm_set_win_enabled(crtc, false);
719 
720 	mutex_lock(&vop->vop_lock);
721 
722 	drm_crtc_vblank_off(crtc);
723 
724 	if (crtc->state->self_refresh_active)
725 		goto out;
726 
727 	/*
728 	 * Vop standby will take effect at end of current frame,
729 	 * if dsp hold valid irq happen, it means standby complete.
730 	 *
731 	 * we must wait standby complete when we want to disable aclk,
732 	 * if not, memory bus maybe dead.
733 	 */
734 	reinit_completion(&vop->dsp_hold_completion);
735 	vop_dsp_hold_valid_irq_enable(vop);
736 
737 	spin_lock(&vop->reg_lock);
738 
739 	VOP_REG_SET(vop, common, standby, 1);
740 
741 	spin_unlock(&vop->reg_lock);
742 
743 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
744 					 msecs_to_jiffies(200)))
745 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
746 
747 	vop_dsp_hold_valid_irq_disable(vop);
748 
749 	vop->is_enabled = false;
750 
751 	/*
752 	 * vop standby complete, so iommu detach is safe.
753 	 */
754 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
755 
756 	clk_disable(vop->dclk);
757 	vop_core_clks_disable(vop);
758 	pm_runtime_put(vop->dev);
759 
760 out:
761 	mutex_unlock(&vop->vop_lock);
762 
763 	if (crtc->state->event && !crtc->state->active) {
764 		spin_lock_irq(&crtc->dev->event_lock);
765 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
766 		spin_unlock_irq(&crtc->dev->event_lock);
767 
768 		crtc->state->event = NULL;
769 	}
770 }
771 
772 static void vop_plane_destroy(struct drm_plane *plane)
773 {
774 	drm_plane_cleanup(plane);
775 }
776 
777 static inline bool rockchip_afbc(u64 modifier)
778 {
779 	return modifier == ROCKCHIP_AFBC_MOD;
780 }
781 
782 static bool rockchip_mod_supported(struct drm_plane *plane,
783 				   u32 format, u64 modifier)
784 {
785 	if (modifier == DRM_FORMAT_MOD_LINEAR)
786 		return true;
787 
788 	if (!rockchip_afbc(modifier)) {
789 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
790 
791 		return false;
792 	}
793 
794 	return vop_convert_afbc_format(format) >= 0;
795 }
796 
797 static int vop_plane_atomic_check(struct drm_plane *plane,
798 			   struct drm_atomic_state *state)
799 {
800 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
801 										 plane);
802 	struct drm_crtc *crtc = new_plane_state->crtc;
803 	struct drm_crtc_state *crtc_state;
804 	struct drm_framebuffer *fb = new_plane_state->fb;
805 	struct vop_win *vop_win = to_vop_win(plane);
806 	const struct vop_win_data *win = vop_win->data;
807 	int ret;
808 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
809 					DRM_PLANE_NO_SCALING;
810 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
811 					DRM_PLANE_NO_SCALING;
812 
813 	if (!crtc || WARN_ON(!fb))
814 		return 0;
815 
816 	crtc_state = drm_atomic_get_existing_crtc_state(state,
817 							crtc);
818 	if (WARN_ON(!crtc_state))
819 		return -EINVAL;
820 
821 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
822 						  min_scale, max_scale,
823 						  true, true);
824 	if (ret)
825 		return ret;
826 
827 	if (!new_plane_state->visible)
828 		return 0;
829 
830 	ret = vop_convert_format(fb->format->format);
831 	if (ret < 0)
832 		return ret;
833 
834 	/*
835 	 * Src.x1 can be odd when do clip, but yuv plane start point
836 	 * need align with 2 pixel.
837 	 */
838 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
839 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
840 		return -EINVAL;
841 	}
842 
843 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
844 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
845 		return -EINVAL;
846 	}
847 
848 	if (rockchip_afbc(fb->modifier)) {
849 		struct vop *vop = to_vop(crtc);
850 
851 		if (!vop->data->afbc) {
852 			DRM_ERROR("vop does not support AFBC\n");
853 			return -EINVAL;
854 		}
855 
856 		ret = vop_convert_afbc_format(fb->format->format);
857 		if (ret < 0)
858 			return ret;
859 
860 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
861 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
862 				  new_plane_state->src.x1,
863 				  new_plane_state->src.y1, fb->offsets[0]);
864 			return -EINVAL;
865 		}
866 
867 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
868 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
869 				  new_plane_state->rotation);
870 			return -EINVAL;
871 		}
872 	}
873 
874 	return 0;
875 }
876 
877 static void vop_plane_atomic_disable(struct drm_plane *plane,
878 				     struct drm_atomic_state *state)
879 {
880 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
881 									   plane);
882 	struct vop_win *vop_win = to_vop_win(plane);
883 	struct vop *vop = to_vop(old_state->crtc);
884 
885 	if (!old_state->crtc)
886 		return;
887 
888 	spin_lock(&vop->reg_lock);
889 
890 	vop_win_disable(vop, vop_win);
891 
892 	spin_unlock(&vop->reg_lock);
893 }
894 
895 static void vop_plane_atomic_update(struct drm_plane *plane,
896 		struct drm_atomic_state *state)
897 {
898 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
899 									   plane);
900 	struct drm_crtc *crtc = new_state->crtc;
901 	struct vop_win *vop_win = to_vop_win(plane);
902 	const struct vop_win_data *win = vop_win->data;
903 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
904 	struct vop *vop = to_vop(new_state->crtc);
905 	struct drm_framebuffer *fb = new_state->fb;
906 	unsigned int actual_w, actual_h;
907 	unsigned int dsp_stx, dsp_sty;
908 	uint32_t act_info, dsp_info, dsp_st;
909 	struct drm_rect *src = &new_state->src;
910 	struct drm_rect *dest = &new_state->dst;
911 	struct drm_gem_object *obj, *uv_obj;
912 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
913 	unsigned long offset;
914 	dma_addr_t dma_addr;
915 	uint32_t val;
916 	bool rb_swap, uv_swap;
917 	int win_index = VOP_WIN_TO_INDEX(vop_win);
918 	int format;
919 	int is_yuv = fb->format->is_yuv;
920 	int i;
921 
922 	/*
923 	 * can't update plane when vop is disabled.
924 	 */
925 	if (WARN_ON(!crtc))
926 		return;
927 
928 	if (WARN_ON(!vop->is_enabled))
929 		return;
930 
931 	if (!new_state->visible) {
932 		vop_plane_atomic_disable(plane, state);
933 		return;
934 	}
935 
936 	obj = fb->obj[0];
937 	rk_obj = to_rockchip_obj(obj);
938 
939 	actual_w = drm_rect_width(src) >> 16;
940 	actual_h = drm_rect_height(src) >> 16;
941 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
942 
943 	dsp_info = (drm_rect_height(dest) - 1) << 16;
944 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
945 
946 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
947 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
948 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
949 
950 	offset = (src->x1 >> 16) * fb->format->cpp[0];
951 	offset += (src->y1 >> 16) * fb->pitches[0];
952 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
953 
954 	/*
955 	 * For y-mirroring we need to move address
956 	 * to the beginning of the last line.
957 	 */
958 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
959 		dma_addr += (actual_h - 1) * fb->pitches[0];
960 
961 	format = vop_convert_format(fb->format->format);
962 
963 	spin_lock(&vop->reg_lock);
964 
965 	if (rockchip_afbc(fb->modifier)) {
966 		int afbc_format = vop_convert_afbc_format(fb->format->format);
967 
968 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
969 		VOP_AFBC_SET(vop, hreg_block_split, 0);
970 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
971 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
972 		VOP_AFBC_SET(vop, pic_size, act_info);
973 	}
974 
975 	VOP_WIN_SET(vop, win, format, format);
976 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
977 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
978 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
979 	VOP_WIN_SET(vop, win, y_mir_en,
980 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
981 	VOP_WIN_SET(vop, win, x_mir_en,
982 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
983 
984 	if (is_yuv) {
985 		int hsub = fb->format->hsub;
986 		int vsub = fb->format->vsub;
987 		int bpp = fb->format->cpp[1];
988 
989 		uv_obj = fb->obj[1];
990 		rk_uv_obj = to_rockchip_obj(uv_obj);
991 
992 		offset = (src->x1 >> 16) * bpp / hsub;
993 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
994 
995 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
996 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
997 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
998 
999 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1000 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1001 							win_yuv2yuv,
1002 							y2r_coefficients[i],
1003 							bt601_yuv2rgb[i]);
1004 		}
1005 
1006 		uv_swap = has_uv_swapped(fb->format->format);
1007 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1008 	}
1009 
1010 	if (win->phy->scl)
1011 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1012 				    drm_rect_width(dest), drm_rect_height(dest),
1013 				    fb->format);
1014 
1015 	VOP_WIN_SET(vop, win, act_info, act_info);
1016 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1017 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1018 
1019 	rb_swap = has_rb_swapped(fb->format->format);
1020 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1021 
1022 	/*
1023 	 * Blending win0 with the background color doesn't seem to work
1024 	 * correctly. We only get the background color, no matter the contents
1025 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1026 	 * with the default opaque black default background color is a no-op,
1027 	 * so we can just disable blending to get the correct result.
1028 	 */
1029 	if (fb->format->has_alpha && win_index > 0) {
1030 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1031 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1032 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1033 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1034 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1035 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1036 			SRC_FACTOR_M0(ALPHA_ONE);
1037 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1038 
1039 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1040 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1041 		VOP_WIN_SET(vop, win, alpha_en, 1);
1042 	} else {
1043 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1044 		VOP_WIN_SET(vop, win, alpha_en, 0);
1045 	}
1046 
1047 	VOP_WIN_SET(vop, win, enable, 1);
1048 	vop->win_enabled |= BIT(win_index);
1049 	spin_unlock(&vop->reg_lock);
1050 }
1051 
1052 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1053 					struct drm_atomic_state *state)
1054 {
1055 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1056 										 plane);
1057 	struct vop_win *vop_win = to_vop_win(plane);
1058 	const struct vop_win_data *win = vop_win->data;
1059 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1060 					DRM_PLANE_NO_SCALING;
1061 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1062 					DRM_PLANE_NO_SCALING;
1063 	struct drm_crtc_state *crtc_state;
1064 
1065 	if (plane != new_plane_state->crtc->cursor)
1066 		return -EINVAL;
1067 
1068 	if (!plane->state)
1069 		return -EINVAL;
1070 
1071 	if (!plane->state->fb)
1072 		return -EINVAL;
1073 
1074 	if (state)
1075 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1076 								new_plane_state->crtc);
1077 	else /* Special case for asynchronous cursor updates. */
1078 		crtc_state = plane->crtc->state;
1079 
1080 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1081 						   min_scale, max_scale,
1082 						   true, true);
1083 }
1084 
1085 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1086 					  struct drm_atomic_state *state)
1087 {
1088 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1089 									   plane);
1090 	struct vop *vop = to_vop(plane->state->crtc);
1091 	struct drm_framebuffer *old_fb = plane->state->fb;
1092 
1093 	plane->state->crtc_x = new_state->crtc_x;
1094 	plane->state->crtc_y = new_state->crtc_y;
1095 	plane->state->crtc_h = new_state->crtc_h;
1096 	plane->state->crtc_w = new_state->crtc_w;
1097 	plane->state->src_x = new_state->src_x;
1098 	plane->state->src_y = new_state->src_y;
1099 	plane->state->src_h = new_state->src_h;
1100 	plane->state->src_w = new_state->src_w;
1101 	swap(plane->state->fb, new_state->fb);
1102 
1103 	if (vop->is_enabled) {
1104 		vop_plane_atomic_update(plane, state);
1105 		spin_lock(&vop->reg_lock);
1106 		vop_cfg_done(vop);
1107 		spin_unlock(&vop->reg_lock);
1108 
1109 		/*
1110 		 * A scanout can still be occurring, so we can't drop the
1111 		 * reference to the old framebuffer. To solve this we get a
1112 		 * reference to old_fb and set a worker to release it later.
1113 		 * FIXME: if we perform 500 async_update calls before the
1114 		 * vblank, then we can have 500 different framebuffers waiting
1115 		 * to be released.
1116 		 */
1117 		if (old_fb && plane->state->fb != old_fb) {
1118 			drm_framebuffer_get(old_fb);
1119 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1120 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1121 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1122 		}
1123 	}
1124 }
1125 
1126 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1127 	.atomic_check = vop_plane_atomic_check,
1128 	.atomic_update = vop_plane_atomic_update,
1129 	.atomic_disable = vop_plane_atomic_disable,
1130 	.atomic_async_check = vop_plane_atomic_async_check,
1131 	.atomic_async_update = vop_plane_atomic_async_update,
1132 };
1133 
1134 static const struct drm_plane_funcs vop_plane_funcs = {
1135 	.update_plane	= drm_atomic_helper_update_plane,
1136 	.disable_plane	= drm_atomic_helper_disable_plane,
1137 	.destroy = vop_plane_destroy,
1138 	.reset = drm_atomic_helper_plane_reset,
1139 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1140 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1141 	.format_mod_supported = rockchip_mod_supported,
1142 };
1143 
1144 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1145 {
1146 	struct vop *vop = to_vop(crtc);
1147 	unsigned long flags;
1148 
1149 	if (WARN_ON(!vop->is_enabled))
1150 		return -EPERM;
1151 
1152 	spin_lock_irqsave(&vop->irq_lock, flags);
1153 
1154 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1155 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1156 
1157 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1158 
1159 	return 0;
1160 }
1161 
1162 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1163 {
1164 	struct vop *vop = to_vop(crtc);
1165 	unsigned long flags;
1166 
1167 	if (WARN_ON(!vop->is_enabled))
1168 		return;
1169 
1170 	spin_lock_irqsave(&vop->irq_lock, flags);
1171 
1172 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1173 
1174 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1175 }
1176 
1177 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1178 				const struct drm_display_mode *mode,
1179 				struct drm_display_mode *adjusted_mode)
1180 {
1181 	struct vop *vop = to_vop(crtc);
1182 	unsigned long rate;
1183 
1184 	/*
1185 	 * Clock craziness.
1186 	 *
1187 	 * Key points:
1188 	 *
1189 	 * - DRM works in kHz.
1190 	 * - Clock framework works in Hz.
1191 	 * - Rockchip's clock driver picks the clock rate that is the
1192 	 *   same _OR LOWER_ than the one requested.
1193 	 *
1194 	 * Action plan:
1195 	 *
1196 	 * 1. Try to set the exact rate first, and confirm the clock framework
1197 	 *    can provide it.
1198 	 *
1199 	 * 2. If the clock framework cannot provide the exact rate, we should
1200 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1201 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1202 	 *    the clock framework will actually give us the right clock.
1203 	 *
1204 	 * 3. Get the clock framework to round the rate for us to tell us
1205 	 *    what it will actually make.
1206 	 *
1207 	 * 4. Store the rounded up rate so that we don't need to worry about
1208 	 *    this in the actual clk_set_rate().
1209 	 */
1210 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1211 	if (rate / 1000 != adjusted_mode->clock)
1212 		rate = clk_round_rate(vop->dclk,
1213 				      adjusted_mode->clock * 1000 + 999);
1214 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1215 
1216 	return true;
1217 }
1218 
1219 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1220 {
1221 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1222 }
1223 
1224 static u32 vop_lut_buffer_index(struct vop *vop)
1225 {
1226 	return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1227 }
1228 
1229 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1230 {
1231 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1232 	unsigned int i, bpc = ilog2(vop->data->lut_size);
1233 
1234 	for (i = 0; i < crtc->gamma_size; i++) {
1235 		u32 word;
1236 
1237 		word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1238 		       (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1239 			drm_color_lut_extract(lut[i].blue, bpc);
1240 		writel(word, vop->lut_regs + i * 4);
1241 	}
1242 }
1243 
1244 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1245 			       struct drm_crtc_state *old_state)
1246 {
1247 	struct drm_crtc_state *state = crtc->state;
1248 	unsigned int idle;
1249 	u32 lut_idx, old_idx;
1250 	int ret;
1251 
1252 	if (!vop->lut_regs)
1253 		return;
1254 
1255 	if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1256 		/*
1257 		 * To disable gamma (gamma_lut is null) or to write
1258 		 * an update to the LUT, clear dsp_lut_en.
1259 		 */
1260 		spin_lock(&vop->reg_lock);
1261 		VOP_REG_SET(vop, common, dsp_lut_en, 0);
1262 		vop_cfg_done(vop);
1263 		spin_unlock(&vop->reg_lock);
1264 
1265 		/*
1266 		 * In order to write the LUT to the internal memory,
1267 		 * we need to first make sure the dsp_lut_en bit is cleared.
1268 		 */
1269 		ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1270 					 idle, !idle, 5, 30 * 1000);
1271 		if (ret) {
1272 			DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1273 			return;
1274 		}
1275 
1276 		if (!state->gamma_lut)
1277 			return;
1278 	} else {
1279 		/*
1280 		 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1281 		 * by setting update_gamma_lut then waiting for lut_buffer_index change
1282 		 */
1283 		old_idx = vop_lut_buffer_index(vop);
1284 	}
1285 
1286 	spin_lock(&vop->reg_lock);
1287 	vop_crtc_write_gamma_lut(vop, crtc);
1288 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1289 	VOP_REG_SET(vop, common, update_gamma_lut, 1);
1290 	vop_cfg_done(vop);
1291 	spin_unlock(&vop->reg_lock);
1292 
1293 	if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1294 		ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1295 					 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1296 		if (ret) {
1297 			DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1298 			return;
1299 		}
1300 
1301 		/*
1302 		 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1303 		 * in our backup of the regs.
1304 		 */
1305 		spin_lock(&vop->reg_lock);
1306 		VOP_REG_SET(vop, common, update_gamma_lut, 0);
1307 		spin_unlock(&vop->reg_lock);
1308 	}
1309 }
1310 
1311 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1312 				  struct drm_atomic_state *state)
1313 {
1314 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1315 									  crtc);
1316 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1317 									      crtc);
1318 	struct vop *vop = to_vop(crtc);
1319 
1320 	/*
1321 	 * Only update GAMMA if the 'active' flag is not changed,
1322 	 * otherwise it's updated by .atomic_enable.
1323 	 */
1324 	if (crtc_state->color_mgmt_changed &&
1325 	    !crtc_state->active_changed)
1326 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1327 }
1328 
1329 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1330 				   struct drm_atomic_state *state)
1331 {
1332 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1333 									 crtc);
1334 	struct vop *vop = to_vop(crtc);
1335 	const struct vop_data *vop_data = vop->data;
1336 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1337 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1338 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1339 	u16 hdisplay = adjusted_mode->hdisplay;
1340 	u16 htotal = adjusted_mode->htotal;
1341 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1342 	u16 hact_end = hact_st + hdisplay;
1343 	u16 vdisplay = adjusted_mode->vdisplay;
1344 	u16 vtotal = adjusted_mode->vtotal;
1345 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1346 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1347 	u16 vact_end = vact_st + vdisplay;
1348 	uint32_t pin_pol, val;
1349 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1350 	int ret;
1351 
1352 	if (old_state && old_state->self_refresh_active) {
1353 		drm_crtc_vblank_on(crtc);
1354 		rockchip_drm_set_win_enabled(crtc, true);
1355 		return;
1356 	}
1357 
1358 	mutex_lock(&vop->vop_lock);
1359 
1360 	WARN_ON(vop->event);
1361 
1362 	ret = vop_enable(crtc, old_state);
1363 	if (ret) {
1364 		mutex_unlock(&vop->vop_lock);
1365 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1366 		return;
1367 	}
1368 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1369 		   BIT(HSYNC_POSITIVE) : 0;
1370 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1371 		   BIT(VSYNC_POSITIVE) : 0;
1372 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1373 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1374 
1375 	switch (s->output_type) {
1376 	case DRM_MODE_CONNECTOR_LVDS:
1377 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1378 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1379 		VOP_REG_SET(vop, output, rgb_en, 1);
1380 		break;
1381 	case DRM_MODE_CONNECTOR_eDP:
1382 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1383 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1384 		VOP_REG_SET(vop, output, edp_en, 1);
1385 		break;
1386 	case DRM_MODE_CONNECTOR_HDMIA:
1387 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1388 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1389 		VOP_REG_SET(vop, output, hdmi_en, 1);
1390 		break;
1391 	case DRM_MODE_CONNECTOR_DSI:
1392 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1393 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1394 		VOP_REG_SET(vop, output, mipi_en, 1);
1395 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1396 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1397 		break;
1398 	case DRM_MODE_CONNECTOR_DisplayPort:
1399 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1400 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1401 		VOP_REG_SET(vop, output, dp_en, 1);
1402 		break;
1403 	default:
1404 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1405 			      s->output_type);
1406 	}
1407 
1408 	/*
1409 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1410 	 */
1411 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1412 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1413 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1414 
1415 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1416 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1417 	else
1418 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1419 
1420 	if (dither_bpc == 6) {
1421 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1422 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1423 		VOP_REG_SET(vop, common, dither_down_en, 1);
1424 	} else {
1425 		VOP_REG_SET(vop, common, dither_down_en, 0);
1426 	}
1427 
1428 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1429 
1430 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1431 	val = hact_st << 16;
1432 	val |= hact_end;
1433 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1434 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1435 
1436 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1437 	val = vact_st << 16;
1438 	val |= vact_end;
1439 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1440 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1441 
1442 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1443 
1444 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1445 
1446 	VOP_REG_SET(vop, common, standby, 0);
1447 	mutex_unlock(&vop->vop_lock);
1448 
1449 	/*
1450 	 * If we have a GAMMA LUT in the state, then let's make sure
1451 	 * it's updated. We might be coming out of suspend,
1452 	 * which means the LUT internal memory needs to be re-written.
1453 	 */
1454 	if (crtc->state->gamma_lut)
1455 		vop_crtc_gamma_set(vop, crtc, old_state);
1456 }
1457 
1458 static bool vop_fs_irq_is_pending(struct vop *vop)
1459 {
1460 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1461 }
1462 
1463 static void vop_wait_for_irq_handler(struct vop *vop)
1464 {
1465 	bool pending;
1466 	int ret;
1467 
1468 	/*
1469 	 * Spin until frame start interrupt status bit goes low, which means
1470 	 * that interrupt handler was invoked and cleared it. The timeout of
1471 	 * 10 msecs is really too long, but it is just a safety measure if
1472 	 * something goes really wrong. The wait will only happen in the very
1473 	 * unlikely case of a vblank happening exactly at the same time and
1474 	 * shouldn't exceed microseconds range.
1475 	 */
1476 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1477 					!pending, 0, 10 * 1000);
1478 	if (ret)
1479 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1480 
1481 	synchronize_irq(vop->irq);
1482 }
1483 
1484 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1485 				 struct drm_atomic_state *state)
1486 {
1487 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1488 									  crtc);
1489 	struct vop *vop = to_vop(crtc);
1490 	struct drm_plane *plane;
1491 	struct drm_plane_state *plane_state;
1492 	struct rockchip_crtc_state *s;
1493 	int afbc_planes = 0;
1494 
1495 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1496 	    crtc_state->gamma_lut) {
1497 		unsigned int len;
1498 
1499 		len = drm_color_lut_size(crtc_state->gamma_lut);
1500 		if (len != crtc->gamma_size) {
1501 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1502 				      len, crtc->gamma_size);
1503 			return -EINVAL;
1504 		}
1505 	}
1506 
1507 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1508 		plane_state =
1509 			drm_atomic_get_plane_state(crtc_state->state, plane);
1510 		if (IS_ERR(plane_state)) {
1511 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1512 				      plane->name);
1513 			return PTR_ERR(plane_state);
1514 		}
1515 
1516 		if (drm_is_afbc(plane_state->fb->modifier))
1517 			++afbc_planes;
1518 	}
1519 
1520 	if (afbc_planes > 1) {
1521 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1522 		return -EINVAL;
1523 	}
1524 
1525 	s = to_rockchip_crtc_state(crtc_state);
1526 	s->enable_afbc = afbc_planes > 0;
1527 
1528 	return 0;
1529 }
1530 
1531 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1532 				  struct drm_atomic_state *state)
1533 {
1534 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1535 									      crtc);
1536 	struct drm_atomic_state *old_state = old_crtc_state->state;
1537 	struct drm_plane_state *old_plane_state, *new_plane_state;
1538 	struct vop *vop = to_vop(crtc);
1539 	struct drm_plane *plane;
1540 	struct rockchip_crtc_state *s;
1541 	int i;
1542 
1543 	if (WARN_ON(!vop->is_enabled))
1544 		return;
1545 
1546 	spin_lock(&vop->reg_lock);
1547 
1548 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1549 	s = to_rockchip_crtc_state(crtc->state);
1550 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1551 	vop_cfg_done(vop);
1552 
1553 	spin_unlock(&vop->reg_lock);
1554 
1555 	/*
1556 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1557 	 * fired before we set the cfg_done bit. To avoid spuriously
1558 	 * signalling flip completion we need to wait for it to finish.
1559 	 */
1560 	vop_wait_for_irq_handler(vop);
1561 
1562 	spin_lock_irq(&crtc->dev->event_lock);
1563 	if (crtc->state->event) {
1564 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1565 		WARN_ON(vop->event);
1566 
1567 		vop->event = crtc->state->event;
1568 		crtc->state->event = NULL;
1569 	}
1570 	spin_unlock_irq(&crtc->dev->event_lock);
1571 
1572 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1573 				       new_plane_state, i) {
1574 		if (!old_plane_state->fb)
1575 			continue;
1576 
1577 		if (old_plane_state->fb == new_plane_state->fb)
1578 			continue;
1579 
1580 		drm_framebuffer_get(old_plane_state->fb);
1581 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1582 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1583 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1584 	}
1585 }
1586 
1587 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1588 	.mode_fixup = vop_crtc_mode_fixup,
1589 	.atomic_check = vop_crtc_atomic_check,
1590 	.atomic_begin = vop_crtc_atomic_begin,
1591 	.atomic_flush = vop_crtc_atomic_flush,
1592 	.atomic_enable = vop_crtc_atomic_enable,
1593 	.atomic_disable = vop_crtc_atomic_disable,
1594 };
1595 
1596 static void vop_crtc_destroy(struct drm_crtc *crtc)
1597 {
1598 	drm_crtc_cleanup(crtc);
1599 }
1600 
1601 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1602 {
1603 	struct rockchip_crtc_state *rockchip_state;
1604 
1605 	if (WARN_ON(!crtc->state))
1606 		return NULL;
1607 
1608 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1609 	if (!rockchip_state)
1610 		return NULL;
1611 
1612 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1613 	return &rockchip_state->base;
1614 }
1615 
1616 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1617 				   struct drm_crtc_state *state)
1618 {
1619 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1620 
1621 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1622 	kfree(s);
1623 }
1624 
1625 static void vop_crtc_reset(struct drm_crtc *crtc)
1626 {
1627 	struct rockchip_crtc_state *crtc_state =
1628 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1629 
1630 	if (crtc->state)
1631 		vop_crtc_destroy_state(crtc, crtc->state);
1632 
1633 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1634 }
1635 
1636 #ifdef CONFIG_DRM_ANALOGIX_DP
1637 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1638 {
1639 	struct drm_connector *connector;
1640 	struct drm_connector_list_iter conn_iter;
1641 
1642 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1643 	drm_for_each_connector_iter(connector, &conn_iter) {
1644 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1645 			drm_connector_list_iter_end(&conn_iter);
1646 			return connector;
1647 		}
1648 	}
1649 	drm_connector_list_iter_end(&conn_iter);
1650 
1651 	return NULL;
1652 }
1653 
1654 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1655 				   const char *source_name)
1656 {
1657 	struct vop *vop = to_vop(crtc);
1658 	struct drm_connector *connector;
1659 	int ret;
1660 
1661 	connector = vop_get_edp_connector(vop);
1662 	if (!connector)
1663 		return -EINVAL;
1664 
1665 	if (source_name && strcmp(source_name, "auto") == 0)
1666 		ret = analogix_dp_start_crc(connector);
1667 	else if (!source_name)
1668 		ret = analogix_dp_stop_crc(connector);
1669 	else
1670 		ret = -EINVAL;
1671 
1672 	return ret;
1673 }
1674 
1675 static int
1676 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1677 			   size_t *values_cnt)
1678 {
1679 	if (source_name && strcmp(source_name, "auto") != 0)
1680 		return -EINVAL;
1681 
1682 	*values_cnt = 3;
1683 	return 0;
1684 }
1685 
1686 #else
1687 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1688 				   const char *source_name)
1689 {
1690 	return -ENODEV;
1691 }
1692 
1693 static int
1694 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1695 			   size_t *values_cnt)
1696 {
1697 	return -ENODEV;
1698 }
1699 #endif
1700 
1701 static const struct drm_crtc_funcs vop_crtc_funcs = {
1702 	.set_config = drm_atomic_helper_set_config,
1703 	.page_flip = drm_atomic_helper_page_flip,
1704 	.destroy = vop_crtc_destroy,
1705 	.reset = vop_crtc_reset,
1706 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1707 	.atomic_destroy_state = vop_crtc_destroy_state,
1708 	.enable_vblank = vop_crtc_enable_vblank,
1709 	.disable_vblank = vop_crtc_disable_vblank,
1710 	.set_crc_source = vop_crtc_set_crc_source,
1711 	.verify_crc_source = vop_crtc_verify_crc_source,
1712 };
1713 
1714 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1715 {
1716 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1717 	struct drm_framebuffer *fb = val;
1718 
1719 	drm_crtc_vblank_put(&vop->crtc);
1720 	drm_framebuffer_put(fb);
1721 }
1722 
1723 static void vop_handle_vblank(struct vop *vop)
1724 {
1725 	struct drm_device *drm = vop->drm_dev;
1726 	struct drm_crtc *crtc = &vop->crtc;
1727 
1728 	spin_lock(&drm->event_lock);
1729 	if (vop->event) {
1730 		drm_crtc_send_vblank_event(crtc, vop->event);
1731 		drm_crtc_vblank_put(crtc);
1732 		vop->event = NULL;
1733 	}
1734 	spin_unlock(&drm->event_lock);
1735 
1736 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1737 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1738 }
1739 
1740 static irqreturn_t vop_isr(int irq, void *data)
1741 {
1742 	struct vop *vop = data;
1743 	struct drm_crtc *crtc = &vop->crtc;
1744 	uint32_t active_irqs;
1745 	int ret = IRQ_NONE;
1746 
1747 	/*
1748 	 * The irq is shared with the iommu. If the runtime-pm state of the
1749 	 * vop-device is disabled the irq has to be targeted at the iommu.
1750 	 */
1751 	if (!pm_runtime_get_if_in_use(vop->dev))
1752 		return IRQ_NONE;
1753 
1754 	if (vop_core_clks_enable(vop)) {
1755 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1756 		goto out;
1757 	}
1758 
1759 	/*
1760 	 * interrupt register has interrupt status, enable and clear bits, we
1761 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1762 	*/
1763 	spin_lock(&vop->irq_lock);
1764 
1765 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1766 	/* Clear all active interrupt sources */
1767 	if (active_irqs)
1768 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1769 
1770 	spin_unlock(&vop->irq_lock);
1771 
1772 	/* This is expected for vop iommu irqs, since the irq is shared */
1773 	if (!active_irqs)
1774 		goto out_disable;
1775 
1776 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1777 		complete(&vop->dsp_hold_completion);
1778 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1779 		ret = IRQ_HANDLED;
1780 	}
1781 
1782 	if (active_irqs & LINE_FLAG_INTR) {
1783 		complete(&vop->line_flag_completion);
1784 		active_irqs &= ~LINE_FLAG_INTR;
1785 		ret = IRQ_HANDLED;
1786 	}
1787 
1788 	if (active_irqs & FS_INTR) {
1789 		drm_crtc_handle_vblank(crtc);
1790 		vop_handle_vblank(vop);
1791 		active_irqs &= ~FS_INTR;
1792 		ret = IRQ_HANDLED;
1793 	}
1794 
1795 	/* Unhandled irqs are spurious. */
1796 	if (active_irqs)
1797 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1798 			      active_irqs);
1799 
1800 out_disable:
1801 	vop_core_clks_disable(vop);
1802 out:
1803 	pm_runtime_put(vop->dev);
1804 	return ret;
1805 }
1806 
1807 static void vop_plane_add_properties(struct drm_plane *plane,
1808 				     const struct vop_win_data *win_data)
1809 {
1810 	unsigned int flags = 0;
1811 
1812 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1813 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1814 	if (flags)
1815 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1816 						   DRM_MODE_ROTATE_0 | flags);
1817 }
1818 
1819 static int vop_create_crtc(struct vop *vop)
1820 {
1821 	const struct vop_data *vop_data = vop->data;
1822 	struct device *dev = vop->dev;
1823 	struct drm_device *drm_dev = vop->drm_dev;
1824 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1825 	struct drm_crtc *crtc = &vop->crtc;
1826 	struct device_node *port;
1827 	int ret;
1828 	int i;
1829 
1830 	/*
1831 	 * Create drm_plane for primary and cursor planes first, since we need
1832 	 * to pass them to drm_crtc_init_with_planes, which sets the
1833 	 * "possible_crtcs" to the newly initialized crtc.
1834 	 */
1835 	for (i = 0; i < vop_data->win_size; i++) {
1836 		struct vop_win *vop_win = &vop->win[i];
1837 		const struct vop_win_data *win_data = vop_win->data;
1838 
1839 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1840 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1841 			continue;
1842 
1843 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1844 					       0, &vop_plane_funcs,
1845 					       win_data->phy->data_formats,
1846 					       win_data->phy->nformats,
1847 					       win_data->phy->format_modifiers,
1848 					       win_data->type, NULL);
1849 		if (ret) {
1850 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1851 				      ret);
1852 			goto err_cleanup_planes;
1853 		}
1854 
1855 		plane = &vop_win->base;
1856 		drm_plane_helper_add(plane, &plane_helper_funcs);
1857 		vop_plane_add_properties(plane, win_data);
1858 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1859 			primary = plane;
1860 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1861 			cursor = plane;
1862 	}
1863 
1864 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1865 					&vop_crtc_funcs, NULL);
1866 	if (ret)
1867 		goto err_cleanup_planes;
1868 
1869 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1870 	if (vop->lut_regs) {
1871 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1872 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1873 	}
1874 
1875 	/*
1876 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1877 	 * to the newly created crtc.
1878 	 */
1879 	for (i = 0; i < vop_data->win_size; i++) {
1880 		struct vop_win *vop_win = &vop->win[i];
1881 		const struct vop_win_data *win_data = vop_win->data;
1882 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1883 
1884 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1885 			continue;
1886 
1887 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1888 					       possible_crtcs,
1889 					       &vop_plane_funcs,
1890 					       win_data->phy->data_formats,
1891 					       win_data->phy->nformats,
1892 					       win_data->phy->format_modifiers,
1893 					       win_data->type, NULL);
1894 		if (ret) {
1895 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1896 				      ret);
1897 			goto err_cleanup_crtc;
1898 		}
1899 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1900 		vop_plane_add_properties(&vop_win->base, win_data);
1901 	}
1902 
1903 	port = of_get_child_by_name(dev->of_node, "port");
1904 	if (!port) {
1905 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1906 			      dev->of_node);
1907 		ret = -ENOENT;
1908 		goto err_cleanup_crtc;
1909 	}
1910 
1911 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1912 			   vop_fb_unref_worker);
1913 
1914 	init_completion(&vop->dsp_hold_completion);
1915 	init_completion(&vop->line_flag_completion);
1916 	crtc->port = port;
1917 
1918 	ret = drm_self_refresh_helper_init(crtc);
1919 	if (ret)
1920 		DRM_DEV_DEBUG_KMS(vop->dev,
1921 			"Failed to init %s with SR helpers %d, ignoring\n",
1922 			crtc->name, ret);
1923 
1924 	return 0;
1925 
1926 err_cleanup_crtc:
1927 	drm_crtc_cleanup(crtc);
1928 err_cleanup_planes:
1929 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1930 				 head)
1931 		drm_plane_cleanup(plane);
1932 	return ret;
1933 }
1934 
1935 static void vop_destroy_crtc(struct vop *vop)
1936 {
1937 	struct drm_crtc *crtc = &vop->crtc;
1938 	struct drm_device *drm_dev = vop->drm_dev;
1939 	struct drm_plane *plane, *tmp;
1940 
1941 	drm_self_refresh_helper_cleanup(crtc);
1942 
1943 	of_node_put(crtc->port);
1944 
1945 	/*
1946 	 * We need to cleanup the planes now.  Why?
1947 	 *
1948 	 * The planes are "&vop->win[i].base".  That means the memory is
1949 	 * all part of the big "struct vop" chunk of memory.  That memory
1950 	 * was devm allocated and associated with this component.  We need to
1951 	 * free it ourselves before vop_unbind() finishes.
1952 	 */
1953 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1954 				 head)
1955 		vop_plane_destroy(plane);
1956 
1957 	/*
1958 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1959 	 * references the CRTC.
1960 	 */
1961 	drm_crtc_cleanup(crtc);
1962 	drm_flip_work_cleanup(&vop->fb_unref_work);
1963 }
1964 
1965 static int vop_initial(struct vop *vop)
1966 {
1967 	struct reset_control *ahb_rst;
1968 	int i, ret;
1969 
1970 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1971 	if (IS_ERR(vop->hclk)) {
1972 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1973 		return PTR_ERR(vop->hclk);
1974 	}
1975 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1976 	if (IS_ERR(vop->aclk)) {
1977 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1978 		return PTR_ERR(vop->aclk);
1979 	}
1980 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1981 	if (IS_ERR(vop->dclk)) {
1982 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1983 		return PTR_ERR(vop->dclk);
1984 	}
1985 
1986 	ret = pm_runtime_resume_and_get(vop->dev);
1987 	if (ret < 0) {
1988 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1989 		return ret;
1990 	}
1991 
1992 	ret = clk_prepare(vop->dclk);
1993 	if (ret < 0) {
1994 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1995 		goto err_put_pm_runtime;
1996 	}
1997 
1998 	/* Enable both the hclk and aclk to setup the vop */
1999 	ret = clk_prepare_enable(vop->hclk);
2000 	if (ret < 0) {
2001 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2002 		goto err_unprepare_dclk;
2003 	}
2004 
2005 	ret = clk_prepare_enable(vop->aclk);
2006 	if (ret < 0) {
2007 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2008 		goto err_disable_hclk;
2009 	}
2010 
2011 	/*
2012 	 * do hclk_reset, reset all vop registers.
2013 	 */
2014 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2015 	if (IS_ERR(ahb_rst)) {
2016 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2017 		ret = PTR_ERR(ahb_rst);
2018 		goto err_disable_aclk;
2019 	}
2020 	reset_control_assert(ahb_rst);
2021 	usleep_range(10, 20);
2022 	reset_control_deassert(ahb_rst);
2023 
2024 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2025 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2026 
2027 	for (i = 0; i < vop->len; i += sizeof(u32))
2028 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2029 
2030 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2031 	VOP_REG_SET(vop, common, dsp_blank, 0);
2032 
2033 	for (i = 0; i < vop->data->win_size; i++) {
2034 		struct vop_win *vop_win = &vop->win[i];
2035 		const struct vop_win_data *win = vop_win->data;
2036 		int channel = i * 2 + 1;
2037 
2038 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2039 		vop_win_disable(vop, vop_win);
2040 		VOP_WIN_SET(vop, win, gate, 1);
2041 	}
2042 
2043 	vop_cfg_done(vop);
2044 
2045 	/*
2046 	 * do dclk_reset, let all config take affect.
2047 	 */
2048 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2049 	if (IS_ERR(vop->dclk_rst)) {
2050 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2051 		ret = PTR_ERR(vop->dclk_rst);
2052 		goto err_disable_aclk;
2053 	}
2054 	reset_control_assert(vop->dclk_rst);
2055 	usleep_range(10, 20);
2056 	reset_control_deassert(vop->dclk_rst);
2057 
2058 	clk_disable(vop->hclk);
2059 	clk_disable(vop->aclk);
2060 
2061 	vop->is_enabled = false;
2062 
2063 	pm_runtime_put_sync(vop->dev);
2064 
2065 	return 0;
2066 
2067 err_disable_aclk:
2068 	clk_disable_unprepare(vop->aclk);
2069 err_disable_hclk:
2070 	clk_disable_unprepare(vop->hclk);
2071 err_unprepare_dclk:
2072 	clk_unprepare(vop->dclk);
2073 err_put_pm_runtime:
2074 	pm_runtime_put_sync(vop->dev);
2075 	return ret;
2076 }
2077 
2078 /*
2079  * Initialize the vop->win array elements.
2080  */
2081 static void vop_win_init(struct vop *vop)
2082 {
2083 	const struct vop_data *vop_data = vop->data;
2084 	unsigned int i;
2085 
2086 	for (i = 0; i < vop_data->win_size; i++) {
2087 		struct vop_win *vop_win = &vop->win[i];
2088 		const struct vop_win_data *win_data = &vop_data->win[i];
2089 
2090 		vop_win->data = win_data;
2091 		vop_win->vop = vop;
2092 
2093 		if (vop_data->win_yuv2yuv)
2094 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2095 	}
2096 }
2097 
2098 /**
2099  * rockchip_drm_wait_vact_end
2100  * @crtc: CRTC to enable line flag
2101  * @mstimeout: millisecond for timeout
2102  *
2103  * Wait for vact_end line flag irq or timeout.
2104  *
2105  * Returns:
2106  * Zero on success, negative errno on failure.
2107  */
2108 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2109 {
2110 	struct vop *vop = to_vop(crtc);
2111 	unsigned long jiffies_left;
2112 	int ret = 0;
2113 
2114 	if (!crtc || !vop->is_enabled)
2115 		return -ENODEV;
2116 
2117 	mutex_lock(&vop->vop_lock);
2118 	if (mstimeout <= 0) {
2119 		ret = -EINVAL;
2120 		goto out;
2121 	}
2122 
2123 	if (vop_line_flag_irq_is_enabled(vop)) {
2124 		ret = -EBUSY;
2125 		goto out;
2126 	}
2127 
2128 	reinit_completion(&vop->line_flag_completion);
2129 	vop_line_flag_irq_enable(vop);
2130 
2131 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2132 						   msecs_to_jiffies(mstimeout));
2133 	vop_line_flag_irq_disable(vop);
2134 
2135 	if (jiffies_left == 0) {
2136 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2137 		ret = -ETIMEDOUT;
2138 		goto out;
2139 	}
2140 
2141 out:
2142 	mutex_unlock(&vop->vop_lock);
2143 	return ret;
2144 }
2145 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2146 
2147 static int vop_bind(struct device *dev, struct device *master, void *data)
2148 {
2149 	struct platform_device *pdev = to_platform_device(dev);
2150 	const struct vop_data *vop_data;
2151 	struct drm_device *drm_dev = data;
2152 	struct vop *vop;
2153 	struct resource *res;
2154 	int ret, irq;
2155 
2156 	vop_data = of_device_get_match_data(dev);
2157 	if (!vop_data)
2158 		return -ENODEV;
2159 
2160 	/* Allocate vop struct and its vop_win array */
2161 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2162 			   GFP_KERNEL);
2163 	if (!vop)
2164 		return -ENOMEM;
2165 
2166 	vop->dev = dev;
2167 	vop->data = vop_data;
2168 	vop->drm_dev = drm_dev;
2169 	dev_set_drvdata(dev, vop);
2170 
2171 	vop_win_init(vop);
2172 
2173 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2174 	vop->regs = devm_ioremap_resource(dev, res);
2175 	if (IS_ERR(vop->regs))
2176 		return PTR_ERR(vop->regs);
2177 	vop->len = resource_size(res);
2178 
2179 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2180 	if (res) {
2181 		if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2182 			DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2183 			return -EINVAL;
2184 		}
2185 		vop->lut_regs = devm_ioremap_resource(dev, res);
2186 		if (IS_ERR(vop->lut_regs))
2187 			return PTR_ERR(vop->lut_regs);
2188 	}
2189 
2190 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2191 	if (!vop->regsbak)
2192 		return -ENOMEM;
2193 
2194 	irq = platform_get_irq(pdev, 0);
2195 	if (irq < 0) {
2196 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2197 		return irq;
2198 	}
2199 	vop->irq = (unsigned int)irq;
2200 
2201 	spin_lock_init(&vop->reg_lock);
2202 	spin_lock_init(&vop->irq_lock);
2203 	mutex_init(&vop->vop_lock);
2204 
2205 	ret = vop_create_crtc(vop);
2206 	if (ret)
2207 		return ret;
2208 
2209 	pm_runtime_enable(&pdev->dev);
2210 
2211 	ret = vop_initial(vop);
2212 	if (ret < 0) {
2213 		DRM_DEV_ERROR(&pdev->dev,
2214 			      "cannot initial vop dev - err %d\n", ret);
2215 		goto err_disable_pm_runtime;
2216 	}
2217 
2218 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2219 			       IRQF_SHARED, dev_name(dev), vop);
2220 	if (ret)
2221 		goto err_disable_pm_runtime;
2222 
2223 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2224 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2225 		if (IS_ERR(vop->rgb)) {
2226 			ret = PTR_ERR(vop->rgb);
2227 			goto err_disable_pm_runtime;
2228 		}
2229 	}
2230 
2231 	rockchip_drm_dma_init_device(drm_dev, dev);
2232 
2233 	return 0;
2234 
2235 err_disable_pm_runtime:
2236 	pm_runtime_disable(&pdev->dev);
2237 	vop_destroy_crtc(vop);
2238 	return ret;
2239 }
2240 
2241 static void vop_unbind(struct device *dev, struct device *master, void *data)
2242 {
2243 	struct vop *vop = dev_get_drvdata(dev);
2244 
2245 	if (vop->rgb)
2246 		rockchip_rgb_fini(vop->rgb);
2247 
2248 	pm_runtime_disable(dev);
2249 	vop_destroy_crtc(vop);
2250 
2251 	clk_unprepare(vop->aclk);
2252 	clk_unprepare(vop->hclk);
2253 	clk_unprepare(vop->dclk);
2254 }
2255 
2256 const struct component_ops vop_component_ops = {
2257 	.bind = vop_bind,
2258 	.unbind = vop_unbind,
2259 };
2260 EXPORT_SYMBOL_GPL(vop_component_ops);
2261