xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_atomic_helper.h>
27 #include <drm/drm_gem_framebuffer_helper.h>
28 #include <drm/drm_plane_helper.h>
29 #include <drm/drm_probe_helper.h>
30 #include <drm/drm_self_refresh_helper.h>
31 #include <drm/drm_vblank.h>
32 
33 #ifdef CONFIG_DRM_ANALOGIX_DP
34 #include <drm/bridge/analogix_dp.h>
35 #endif
36 
37 #include "rockchip_drm_drv.h"
38 #include "rockchip_drm_gem.h"
39 #include "rockchip_drm_fb.h"
40 #include "rockchip_drm_vop.h"
41 #include "rockchip_rgb.h"
42 
43 #define VOP_WIN_SET(vop, win, name, v) \
44 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
45 #define VOP_SCL_SET(vop, win, name, v) \
46 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
47 #define VOP_SCL_SET_EXT(vop, win, name, v) \
48 		vop_reg_set(vop, &win->phy->scl->ext->name, \
49 			    win->base, ~0, v, #name)
50 
51 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
52 	do { \
53 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
54 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
55 	} while (0)
56 
57 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
58 	do { \
59 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
60 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
61 	} while (0)
62 
63 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
64 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
65 
66 #define VOP_REG_SET(vop, group, name, v) \
67 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
68 
69 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
70 	do { \
71 		int i, reg = 0, mask = 0; \
72 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
73 			if (vop->data->intr->intrs[i] & type) { \
74 				reg |= (v) << i; \
75 				mask |= 1 << i; \
76 			} \
77 		} \
78 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
79 	} while (0)
80 #define VOP_INTR_GET_TYPE(vop, name, type) \
81 		vop_get_intr_type(vop, &vop->data->intr->name, type)
82 
83 #define VOP_WIN_GET(vop, win, name) \
84 		vop_read_reg(vop, win->base, &win->phy->name)
85 
86 #define VOP_WIN_HAS_REG(win, name) \
87 	(!!(win->phy->name.mask))
88 
89 #define VOP_WIN_GET_YRGBADDR(vop, win) \
90 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
91 
92 #define VOP_WIN_TO_INDEX(vop_win) \
93 	((vop_win) - (vop_win)->vop->win)
94 
95 #define VOP_AFBC_SET(vop, name, v) \
96 	do { \
97 		if ((vop)->data->afbc) \
98 			vop_reg_set((vop), &(vop)->data->afbc->name, \
99 				    0, ~0, v, #name); \
100 	} while (0)
101 
102 #define to_vop(x) container_of(x, struct vop, crtc)
103 #define to_vop_win(x) container_of(x, struct vop_win, base)
104 
105 #define AFBC_FMT_RGB565		0x0
106 #define AFBC_FMT_U8U8U8U8	0x5
107 #define AFBC_FMT_U8U8U8		0x4
108 
109 #define AFBC_TILE_16x16		BIT(4)
110 
111 /*
112  * The coefficients of the following matrix are all fixed points.
113  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
114  * They are all represented in two's complement.
115  */
116 static const uint32_t bt601_yuv2rgb[] = {
117 	0x4A8, 0x0,    0x662,
118 	0x4A8, 0x1E6F, 0x1CBF,
119 	0x4A8, 0x812,  0x0,
120 	0x321168, 0x0877CF, 0x2EB127
121 };
122 
123 enum vop_pending {
124 	VOP_PENDING_FB_UNREF,
125 };
126 
127 struct vop_win {
128 	struct drm_plane base;
129 	const struct vop_win_data *data;
130 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
131 	struct vop *vop;
132 };
133 
134 struct rockchip_rgb;
135 struct vop {
136 	struct drm_crtc crtc;
137 	struct device *dev;
138 	struct drm_device *drm_dev;
139 	bool is_enabled;
140 
141 	struct completion dsp_hold_completion;
142 	unsigned int win_enabled;
143 
144 	/* protected by dev->event_lock */
145 	struct drm_pending_vblank_event *event;
146 
147 	struct drm_flip_work fb_unref_work;
148 	unsigned long pending;
149 
150 	struct completion line_flag_completion;
151 
152 	const struct vop_data *data;
153 
154 	uint32_t *regsbak;
155 	void __iomem *regs;
156 	void __iomem *lut_regs;
157 
158 	/* physical map length of vop register */
159 	uint32_t len;
160 
161 	/* one time only one process allowed to config the register */
162 	spinlock_t reg_lock;
163 	/* lock vop irq reg */
164 	spinlock_t irq_lock;
165 	/* protects crtc enable/disable */
166 	struct mutex vop_lock;
167 
168 	unsigned int irq;
169 
170 	/* vop AHP clk */
171 	struct clk *hclk;
172 	/* vop dclk */
173 	struct clk *dclk;
174 	/* vop share memory frequency */
175 	struct clk *aclk;
176 
177 	/* vop dclk reset */
178 	struct reset_control *dclk_rst;
179 
180 	/* optional internal rgb encoder */
181 	struct rockchip_rgb *rgb;
182 
183 	struct vop_win win[];
184 };
185 
186 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
187 {
188 	writel(v, vop->regs + offset);
189 	vop->regsbak[offset >> 2] = v;
190 }
191 
192 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
193 {
194 	return readl(vop->regs + offset);
195 }
196 
197 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
198 				    const struct vop_reg *reg)
199 {
200 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
201 }
202 
203 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
204 			uint32_t _offset, uint32_t _mask, uint32_t v,
205 			const char *reg_name)
206 {
207 	int offset, mask, shift;
208 
209 	if (!reg || !reg->mask) {
210 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
211 		return;
212 	}
213 
214 	offset = reg->offset + _offset;
215 	mask = reg->mask & _mask;
216 	shift = reg->shift;
217 
218 	if (reg->write_mask) {
219 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
220 	} else {
221 		uint32_t cached_val = vop->regsbak[offset >> 2];
222 
223 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
224 		vop->regsbak[offset >> 2] = v;
225 	}
226 
227 	if (reg->relaxed)
228 		writel_relaxed(v, vop->regs + offset);
229 	else
230 		writel(v, vop->regs + offset);
231 }
232 
233 static inline uint32_t vop_get_intr_type(struct vop *vop,
234 					 const struct vop_reg *reg, int type)
235 {
236 	uint32_t i, ret = 0;
237 	uint32_t regs = vop_read_reg(vop, 0, reg);
238 
239 	for (i = 0; i < vop->data->intr->nintrs; i++) {
240 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
241 			ret |= vop->data->intr->intrs[i];
242 	}
243 
244 	return ret;
245 }
246 
247 static inline void vop_cfg_done(struct vop *vop)
248 {
249 	VOP_REG_SET(vop, common, cfg_done, 1);
250 }
251 
252 static bool has_rb_swapped(uint32_t format)
253 {
254 	switch (format) {
255 	case DRM_FORMAT_XBGR8888:
256 	case DRM_FORMAT_ABGR8888:
257 	case DRM_FORMAT_BGR888:
258 	case DRM_FORMAT_BGR565:
259 		return true;
260 	default:
261 		return false;
262 	}
263 }
264 
265 static enum vop_data_format vop_convert_format(uint32_t format)
266 {
267 	switch (format) {
268 	case DRM_FORMAT_XRGB8888:
269 	case DRM_FORMAT_ARGB8888:
270 	case DRM_FORMAT_XBGR8888:
271 	case DRM_FORMAT_ABGR8888:
272 		return VOP_FMT_ARGB8888;
273 	case DRM_FORMAT_RGB888:
274 	case DRM_FORMAT_BGR888:
275 		return VOP_FMT_RGB888;
276 	case DRM_FORMAT_RGB565:
277 	case DRM_FORMAT_BGR565:
278 		return VOP_FMT_RGB565;
279 	case DRM_FORMAT_NV12:
280 		return VOP_FMT_YUV420SP;
281 	case DRM_FORMAT_NV16:
282 		return VOP_FMT_YUV422SP;
283 	case DRM_FORMAT_NV24:
284 		return VOP_FMT_YUV444SP;
285 	default:
286 		DRM_ERROR("unsupported format[%08x]\n", format);
287 		return -EINVAL;
288 	}
289 }
290 
291 static int vop_convert_afbc_format(uint32_t format)
292 {
293 	switch (format) {
294 	case DRM_FORMAT_XRGB8888:
295 	case DRM_FORMAT_ARGB8888:
296 	case DRM_FORMAT_XBGR8888:
297 	case DRM_FORMAT_ABGR8888:
298 		return AFBC_FMT_U8U8U8U8;
299 	case DRM_FORMAT_RGB888:
300 	case DRM_FORMAT_BGR888:
301 		return AFBC_FMT_U8U8U8;
302 	case DRM_FORMAT_RGB565:
303 	case DRM_FORMAT_BGR565:
304 		return AFBC_FMT_RGB565;
305 	/* either of the below should not be reachable */
306 	default:
307 		DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
308 		return -EINVAL;
309 	}
310 
311 	return -EINVAL;
312 }
313 
314 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
315 				  uint32_t dst, bool is_horizontal,
316 				  int vsu_mode, int *vskiplines)
317 {
318 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
319 
320 	if (vskiplines)
321 		*vskiplines = 0;
322 
323 	if (is_horizontal) {
324 		if (mode == SCALE_UP)
325 			val = GET_SCL_FT_BIC(src, dst);
326 		else if (mode == SCALE_DOWN)
327 			val = GET_SCL_FT_BILI_DN(src, dst);
328 	} else {
329 		if (mode == SCALE_UP) {
330 			if (vsu_mode == SCALE_UP_BIL)
331 				val = GET_SCL_FT_BILI_UP(src, dst);
332 			else
333 				val = GET_SCL_FT_BIC(src, dst);
334 		} else if (mode == SCALE_DOWN) {
335 			if (vskiplines) {
336 				*vskiplines = scl_get_vskiplines(src, dst);
337 				val = scl_get_bili_dn_vskip(src, dst,
338 							    *vskiplines);
339 			} else {
340 				val = GET_SCL_FT_BILI_DN(src, dst);
341 			}
342 		}
343 	}
344 
345 	return val;
346 }
347 
348 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
349 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
350 			     uint32_t dst_h, const struct drm_format_info *info)
351 {
352 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
353 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
354 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
355 	bool is_yuv = false;
356 	uint16_t cbcr_src_w = src_w / info->hsub;
357 	uint16_t cbcr_src_h = src_h / info->vsub;
358 	uint16_t vsu_mode;
359 	uint16_t lb_mode;
360 	uint32_t val;
361 	int vskiplines;
362 
363 	if (info->is_yuv)
364 		is_yuv = true;
365 
366 	if (dst_w > 3840) {
367 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
368 		return;
369 	}
370 
371 	if (!win->phy->scl->ext) {
372 		VOP_SCL_SET(vop, win, scale_yrgb_x,
373 			    scl_cal_scale2(src_w, dst_w));
374 		VOP_SCL_SET(vop, win, scale_yrgb_y,
375 			    scl_cal_scale2(src_h, dst_h));
376 		if (is_yuv) {
377 			VOP_SCL_SET(vop, win, scale_cbcr_x,
378 				    scl_cal_scale2(cbcr_src_w, dst_w));
379 			VOP_SCL_SET(vop, win, scale_cbcr_y,
380 				    scl_cal_scale2(cbcr_src_h, dst_h));
381 		}
382 		return;
383 	}
384 
385 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
386 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
387 
388 	if (is_yuv) {
389 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
390 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
391 		if (cbcr_hor_scl_mode == SCALE_DOWN)
392 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
393 		else
394 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
395 	} else {
396 		if (yrgb_hor_scl_mode == SCALE_DOWN)
397 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
398 		else
399 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
400 	}
401 
402 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
403 	if (lb_mode == LB_RGB_3840X2) {
404 		if (yrgb_ver_scl_mode != SCALE_NONE) {
405 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
406 			return;
407 		}
408 		if (cbcr_ver_scl_mode != SCALE_NONE) {
409 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
410 			return;
411 		}
412 		vsu_mode = SCALE_UP_BIL;
413 	} else if (lb_mode == LB_RGB_2560X4) {
414 		vsu_mode = SCALE_UP_BIL;
415 	} else {
416 		vsu_mode = SCALE_UP_BIC;
417 	}
418 
419 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
420 				true, 0, NULL);
421 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
422 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
423 				false, vsu_mode, &vskiplines);
424 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
425 
426 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
427 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
428 
429 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
430 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
431 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
432 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
433 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
434 	if (is_yuv) {
435 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
436 					dst_w, true, 0, NULL);
437 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
438 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
439 					dst_h, false, vsu_mode, &vskiplines);
440 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
441 
442 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
443 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
444 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
445 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
446 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
447 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
448 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
449 	}
450 }
451 
452 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
453 {
454 	unsigned long flags;
455 
456 	if (WARN_ON(!vop->is_enabled))
457 		return;
458 
459 	spin_lock_irqsave(&vop->irq_lock, flags);
460 
461 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
462 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
463 
464 	spin_unlock_irqrestore(&vop->irq_lock, flags);
465 }
466 
467 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
468 {
469 	unsigned long flags;
470 
471 	if (WARN_ON(!vop->is_enabled))
472 		return;
473 
474 	spin_lock_irqsave(&vop->irq_lock, flags);
475 
476 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
477 
478 	spin_unlock_irqrestore(&vop->irq_lock, flags);
479 }
480 
481 /*
482  * (1) each frame starts at the start of the Vsync pulse which is signaled by
483  *     the "FRAME_SYNC" interrupt.
484  * (2) the active data region of each frame ends at dsp_vact_end
485  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
486  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
487  *
488  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
489  * Interrupts
490  * LINE_FLAG -------------------------------+
491  * FRAME_SYNC ----+                         |
492  *                |                         |
493  *                v                         v
494  *                | Vsync | Vbp |  Vactive  | Vfp |
495  *                        ^     ^           ^     ^
496  *                        |     |           |     |
497  *                        |     |           |     |
498  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
499  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
500  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
501  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
502  */
503 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
504 {
505 	uint32_t line_flag_irq;
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&vop->irq_lock, flags);
509 
510 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
511 
512 	spin_unlock_irqrestore(&vop->irq_lock, flags);
513 
514 	return !!line_flag_irq;
515 }
516 
517 static void vop_line_flag_irq_enable(struct vop *vop)
518 {
519 	unsigned long flags;
520 
521 	if (WARN_ON(!vop->is_enabled))
522 		return;
523 
524 	spin_lock_irqsave(&vop->irq_lock, flags);
525 
526 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
527 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
528 
529 	spin_unlock_irqrestore(&vop->irq_lock, flags);
530 }
531 
532 static void vop_line_flag_irq_disable(struct vop *vop)
533 {
534 	unsigned long flags;
535 
536 	if (WARN_ON(!vop->is_enabled))
537 		return;
538 
539 	spin_lock_irqsave(&vop->irq_lock, flags);
540 
541 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
542 
543 	spin_unlock_irqrestore(&vop->irq_lock, flags);
544 }
545 
546 static int vop_core_clks_enable(struct vop *vop)
547 {
548 	int ret;
549 
550 	ret = clk_enable(vop->hclk);
551 	if (ret < 0)
552 		return ret;
553 
554 	ret = clk_enable(vop->aclk);
555 	if (ret < 0)
556 		goto err_disable_hclk;
557 
558 	return 0;
559 
560 err_disable_hclk:
561 	clk_disable(vop->hclk);
562 	return ret;
563 }
564 
565 static void vop_core_clks_disable(struct vop *vop)
566 {
567 	clk_disable(vop->aclk);
568 	clk_disable(vop->hclk);
569 }
570 
571 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
572 {
573 	const struct vop_win_data *win = vop_win->data;
574 
575 	if (win->phy->scl && win->phy->scl->ext) {
576 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
577 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
578 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
579 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
580 	}
581 
582 	VOP_WIN_SET(vop, win, enable, 0);
583 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
584 }
585 
586 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
587 {
588 	struct vop *vop = to_vop(crtc);
589 	int ret, i;
590 
591 	ret = pm_runtime_get_sync(vop->dev);
592 	if (ret < 0) {
593 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
594 		return ret;
595 	}
596 
597 	ret = vop_core_clks_enable(vop);
598 	if (WARN_ON(ret < 0))
599 		goto err_put_pm_runtime;
600 
601 	ret = clk_enable(vop->dclk);
602 	if (WARN_ON(ret < 0))
603 		goto err_disable_core;
604 
605 	/*
606 	 * Slave iommu shares power, irq and clock with vop.  It was associated
607 	 * automatically with this master device via common driver code.
608 	 * Now that we have enabled the clock we attach it to the shared drm
609 	 * mapping.
610 	 */
611 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
612 	if (ret) {
613 		DRM_DEV_ERROR(vop->dev,
614 			      "failed to attach dma mapping, %d\n", ret);
615 		goto err_disable_dclk;
616 	}
617 
618 	spin_lock(&vop->reg_lock);
619 	for (i = 0; i < vop->len; i += 4)
620 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
621 
622 	/*
623 	 * We need to make sure that all windows are disabled before we
624 	 * enable the crtc. Otherwise we might try to scan from a destroyed
625 	 * buffer later.
626 	 *
627 	 * In the case of enable-after-PSR, we don't need to worry about this
628 	 * case since the buffer is guaranteed to be valid and disabling the
629 	 * window will result in screen glitches on PSR exit.
630 	 */
631 	if (!old_state || !old_state->self_refresh_active) {
632 		for (i = 0; i < vop->data->win_size; i++) {
633 			struct vop_win *vop_win = &vop->win[i];
634 
635 			vop_win_disable(vop, vop_win);
636 		}
637 	}
638 
639 	if (vop->data->afbc) {
640 		struct rockchip_crtc_state *s;
641 		/*
642 		 * Disable AFBC and forget there was a vop window with AFBC
643 		 */
644 		VOP_AFBC_SET(vop, enable, 0);
645 		s = to_rockchip_crtc_state(crtc->state);
646 		s->enable_afbc = false;
647 	}
648 
649 	vop_cfg_done(vop);
650 
651 	spin_unlock(&vop->reg_lock);
652 
653 	/*
654 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
655 	 */
656 	vop->is_enabled = true;
657 
658 	spin_lock(&vop->reg_lock);
659 
660 	VOP_REG_SET(vop, common, standby, 1);
661 
662 	spin_unlock(&vop->reg_lock);
663 
664 	drm_crtc_vblank_on(crtc);
665 
666 	return 0;
667 
668 err_disable_dclk:
669 	clk_disable(vop->dclk);
670 err_disable_core:
671 	vop_core_clks_disable(vop);
672 err_put_pm_runtime:
673 	pm_runtime_put_sync(vop->dev);
674 	return ret;
675 }
676 
677 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
678 {
679         struct vop *vop = to_vop(crtc);
680         int i;
681 
682         spin_lock(&vop->reg_lock);
683 
684         for (i = 0; i < vop->data->win_size; i++) {
685                 struct vop_win *vop_win = &vop->win[i];
686                 const struct vop_win_data *win = vop_win->data;
687 
688                 VOP_WIN_SET(vop, win, enable,
689                             enabled && (vop->win_enabled & BIT(i)));
690         }
691         vop_cfg_done(vop);
692 
693         spin_unlock(&vop->reg_lock);
694 }
695 
696 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
697 				    struct drm_atomic_state *state)
698 {
699 	struct vop *vop = to_vop(crtc);
700 
701 	WARN_ON(vop->event);
702 
703 	if (crtc->state->self_refresh_active)
704 		rockchip_drm_set_win_enabled(crtc, false);
705 
706 	mutex_lock(&vop->vop_lock);
707 
708 	drm_crtc_vblank_off(crtc);
709 
710 	if (crtc->state->self_refresh_active)
711 		goto out;
712 
713 	/*
714 	 * Vop standby will take effect at end of current frame,
715 	 * if dsp hold valid irq happen, it means standby complete.
716 	 *
717 	 * we must wait standby complete when we want to disable aclk,
718 	 * if not, memory bus maybe dead.
719 	 */
720 	reinit_completion(&vop->dsp_hold_completion);
721 	vop_dsp_hold_valid_irq_enable(vop);
722 
723 	spin_lock(&vop->reg_lock);
724 
725 	VOP_REG_SET(vop, common, standby, 1);
726 
727 	spin_unlock(&vop->reg_lock);
728 
729 	wait_for_completion(&vop->dsp_hold_completion);
730 
731 	vop_dsp_hold_valid_irq_disable(vop);
732 
733 	vop->is_enabled = false;
734 
735 	/*
736 	 * vop standby complete, so iommu detach is safe.
737 	 */
738 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
739 
740 	clk_disable(vop->dclk);
741 	vop_core_clks_disable(vop);
742 	pm_runtime_put(vop->dev);
743 
744 out:
745 	mutex_unlock(&vop->vop_lock);
746 
747 	if (crtc->state->event && !crtc->state->active) {
748 		spin_lock_irq(&crtc->dev->event_lock);
749 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
750 		spin_unlock_irq(&crtc->dev->event_lock);
751 
752 		crtc->state->event = NULL;
753 	}
754 }
755 
756 static void vop_plane_destroy(struct drm_plane *plane)
757 {
758 	drm_plane_cleanup(plane);
759 }
760 
761 static inline bool rockchip_afbc(u64 modifier)
762 {
763 	return modifier == ROCKCHIP_AFBC_MOD;
764 }
765 
766 static bool rockchip_mod_supported(struct drm_plane *plane,
767 				   u32 format, u64 modifier)
768 {
769 	if (modifier == DRM_FORMAT_MOD_LINEAR)
770 		return true;
771 
772 	if (!rockchip_afbc(modifier)) {
773 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
774 
775 		return false;
776 	}
777 
778 	return vop_convert_afbc_format(format) >= 0;
779 }
780 
781 static int vop_plane_atomic_check(struct drm_plane *plane,
782 			   struct drm_atomic_state *state)
783 {
784 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
785 										 plane);
786 	struct drm_crtc *crtc = new_plane_state->crtc;
787 	struct drm_crtc_state *crtc_state;
788 	struct drm_framebuffer *fb = new_plane_state->fb;
789 	struct vop_win *vop_win = to_vop_win(plane);
790 	const struct vop_win_data *win = vop_win->data;
791 	int ret;
792 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
793 					DRM_PLANE_HELPER_NO_SCALING;
794 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
795 					DRM_PLANE_HELPER_NO_SCALING;
796 
797 	if (!crtc || WARN_ON(!fb))
798 		return 0;
799 
800 	crtc_state = drm_atomic_get_existing_crtc_state(state,
801 							crtc);
802 	if (WARN_ON(!crtc_state))
803 		return -EINVAL;
804 
805 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
806 						  min_scale, max_scale,
807 						  true, true);
808 	if (ret)
809 		return ret;
810 
811 	if (!new_plane_state->visible)
812 		return 0;
813 
814 	ret = vop_convert_format(fb->format->format);
815 	if (ret < 0)
816 		return ret;
817 
818 	/*
819 	 * Src.x1 can be odd when do clip, but yuv plane start point
820 	 * need align with 2 pixel.
821 	 */
822 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
823 		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
824 		return -EINVAL;
825 	}
826 
827 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
828 		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
829 		return -EINVAL;
830 	}
831 
832 	if (rockchip_afbc(fb->modifier)) {
833 		struct vop *vop = to_vop(crtc);
834 
835 		if (!vop->data->afbc) {
836 			DRM_ERROR("vop does not support AFBC\n");
837 			return -EINVAL;
838 		}
839 
840 		ret = vop_convert_afbc_format(fb->format->format);
841 		if (ret < 0)
842 			return ret;
843 
844 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
845 			DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
846 				  new_plane_state->src.x1,
847 				  new_plane_state->src.y1, fb->offsets[0]);
848 			return -EINVAL;
849 		}
850 
851 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
852 			DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
853 				  new_plane_state->rotation);
854 			return -EINVAL;
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 static void vop_plane_atomic_disable(struct drm_plane *plane,
862 				     struct drm_atomic_state *state)
863 {
864 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
865 									   plane);
866 	struct vop_win *vop_win = to_vop_win(plane);
867 	struct vop *vop = to_vop(old_state->crtc);
868 
869 	if (!old_state->crtc)
870 		return;
871 
872 	spin_lock(&vop->reg_lock);
873 
874 	vop_win_disable(vop, vop_win);
875 
876 	spin_unlock(&vop->reg_lock);
877 }
878 
879 static void vop_plane_atomic_update(struct drm_plane *plane,
880 		struct drm_atomic_state *state)
881 {
882 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
883 									   plane);
884 	struct drm_crtc *crtc = new_state->crtc;
885 	struct vop_win *vop_win = to_vop_win(plane);
886 	const struct vop_win_data *win = vop_win->data;
887 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
888 	struct vop *vop = to_vop(new_state->crtc);
889 	struct drm_framebuffer *fb = new_state->fb;
890 	unsigned int actual_w, actual_h;
891 	unsigned int dsp_stx, dsp_sty;
892 	uint32_t act_info, dsp_info, dsp_st;
893 	struct drm_rect *src = &new_state->src;
894 	struct drm_rect *dest = &new_state->dst;
895 	struct drm_gem_object *obj, *uv_obj;
896 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
897 	unsigned long offset;
898 	dma_addr_t dma_addr;
899 	uint32_t val;
900 	bool rb_swap;
901 	int win_index = VOP_WIN_TO_INDEX(vop_win);
902 	int format;
903 	int is_yuv = fb->format->is_yuv;
904 	int i;
905 
906 	/*
907 	 * can't update plane when vop is disabled.
908 	 */
909 	if (WARN_ON(!crtc))
910 		return;
911 
912 	if (WARN_ON(!vop->is_enabled))
913 		return;
914 
915 	if (!new_state->visible) {
916 		vop_plane_atomic_disable(plane, state);
917 		return;
918 	}
919 
920 	obj = fb->obj[0];
921 	rk_obj = to_rockchip_obj(obj);
922 
923 	actual_w = drm_rect_width(src) >> 16;
924 	actual_h = drm_rect_height(src) >> 16;
925 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
926 
927 	dsp_info = (drm_rect_height(dest) - 1) << 16;
928 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
929 
930 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
931 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
932 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
933 
934 	offset = (src->x1 >> 16) * fb->format->cpp[0];
935 	offset += (src->y1 >> 16) * fb->pitches[0];
936 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
937 
938 	/*
939 	 * For y-mirroring we need to move address
940 	 * to the beginning of the last line.
941 	 */
942 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
943 		dma_addr += (actual_h - 1) * fb->pitches[0];
944 
945 	format = vop_convert_format(fb->format->format);
946 
947 	spin_lock(&vop->reg_lock);
948 
949 	if (rockchip_afbc(fb->modifier)) {
950 		int afbc_format = vop_convert_afbc_format(fb->format->format);
951 
952 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
953 		VOP_AFBC_SET(vop, hreg_block_split, 0);
954 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
955 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
956 		VOP_AFBC_SET(vop, pic_size, act_info);
957 	}
958 
959 	VOP_WIN_SET(vop, win, format, format);
960 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
961 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
962 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
963 	VOP_WIN_SET(vop, win, y_mir_en,
964 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
965 	VOP_WIN_SET(vop, win, x_mir_en,
966 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
967 
968 	if (is_yuv) {
969 		int hsub = fb->format->hsub;
970 		int vsub = fb->format->vsub;
971 		int bpp = fb->format->cpp[1];
972 
973 		uv_obj = fb->obj[1];
974 		rk_uv_obj = to_rockchip_obj(uv_obj);
975 
976 		offset = (src->x1 >> 16) * bpp / hsub;
977 		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
978 
979 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
980 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
981 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
982 
983 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
984 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
985 							win_yuv2yuv,
986 							y2r_coefficients[i],
987 							bt601_yuv2rgb[i]);
988 		}
989 	}
990 
991 	if (win->phy->scl)
992 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
993 				    drm_rect_width(dest), drm_rect_height(dest),
994 				    fb->format);
995 
996 	VOP_WIN_SET(vop, win, act_info, act_info);
997 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
998 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
999 
1000 	rb_swap = has_rb_swapped(fb->format->format);
1001 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1002 
1003 	/*
1004 	 * Blending win0 with the background color doesn't seem to work
1005 	 * correctly. We only get the background color, no matter the contents
1006 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1007 	 * with the default opaque black default background color is a no-op,
1008 	 * so we can just disable blending to get the correct result.
1009 	 */
1010 	if (fb->format->has_alpha && win_index > 0) {
1011 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1012 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1013 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1014 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1015 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1016 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1017 			SRC_FACTOR_M0(ALPHA_ONE);
1018 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1019 
1020 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1021 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1022 		VOP_WIN_SET(vop, win, alpha_en, 1);
1023 	} else {
1024 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1025 		VOP_WIN_SET(vop, win, alpha_en, 0);
1026 	}
1027 
1028 	VOP_WIN_SET(vop, win, enable, 1);
1029 	vop->win_enabled |= BIT(win_index);
1030 	spin_unlock(&vop->reg_lock);
1031 }
1032 
1033 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1034 					struct drm_atomic_state *state)
1035 {
1036 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1037 										 plane);
1038 	struct vop_win *vop_win = to_vop_win(plane);
1039 	const struct vop_win_data *win = vop_win->data;
1040 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1041 					DRM_PLANE_HELPER_NO_SCALING;
1042 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1043 					DRM_PLANE_HELPER_NO_SCALING;
1044 	struct drm_crtc_state *crtc_state;
1045 
1046 	if (plane != new_plane_state->crtc->cursor)
1047 		return -EINVAL;
1048 
1049 	if (!plane->state)
1050 		return -EINVAL;
1051 
1052 	if (!plane->state->fb)
1053 		return -EINVAL;
1054 
1055 	if (state)
1056 		crtc_state = drm_atomic_get_existing_crtc_state(state,
1057 								new_plane_state->crtc);
1058 	else /* Special case for asynchronous cursor updates. */
1059 		crtc_state = plane->crtc->state;
1060 
1061 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1062 						   min_scale, max_scale,
1063 						   true, true);
1064 }
1065 
1066 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1067 					  struct drm_atomic_state *state)
1068 {
1069 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1070 									   plane);
1071 	struct vop *vop = to_vop(plane->state->crtc);
1072 	struct drm_framebuffer *old_fb = plane->state->fb;
1073 
1074 	plane->state->crtc_x = new_state->crtc_x;
1075 	plane->state->crtc_y = new_state->crtc_y;
1076 	plane->state->crtc_h = new_state->crtc_h;
1077 	plane->state->crtc_w = new_state->crtc_w;
1078 	plane->state->src_x = new_state->src_x;
1079 	plane->state->src_y = new_state->src_y;
1080 	plane->state->src_h = new_state->src_h;
1081 	plane->state->src_w = new_state->src_w;
1082 	swap(plane->state->fb, new_state->fb);
1083 
1084 	if (vop->is_enabled) {
1085 		vop_plane_atomic_update(plane, state);
1086 		spin_lock(&vop->reg_lock);
1087 		vop_cfg_done(vop);
1088 		spin_unlock(&vop->reg_lock);
1089 
1090 		/*
1091 		 * A scanout can still be occurring, so we can't drop the
1092 		 * reference to the old framebuffer. To solve this we get a
1093 		 * reference to old_fb and set a worker to release it later.
1094 		 * FIXME: if we perform 500 async_update calls before the
1095 		 * vblank, then we can have 500 different framebuffers waiting
1096 		 * to be released.
1097 		 */
1098 		if (old_fb && plane->state->fb != old_fb) {
1099 			drm_framebuffer_get(old_fb);
1100 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1101 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1102 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1103 		}
1104 	}
1105 }
1106 
1107 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1108 	.atomic_check = vop_plane_atomic_check,
1109 	.atomic_update = vop_plane_atomic_update,
1110 	.atomic_disable = vop_plane_atomic_disable,
1111 	.atomic_async_check = vop_plane_atomic_async_check,
1112 	.atomic_async_update = vop_plane_atomic_async_update,
1113 	.prepare_fb = drm_gem_plane_helper_prepare_fb,
1114 };
1115 
1116 static const struct drm_plane_funcs vop_plane_funcs = {
1117 	.update_plane	= drm_atomic_helper_update_plane,
1118 	.disable_plane	= drm_atomic_helper_disable_plane,
1119 	.destroy = vop_plane_destroy,
1120 	.reset = drm_atomic_helper_plane_reset,
1121 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1122 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1123 	.format_mod_supported = rockchip_mod_supported,
1124 };
1125 
1126 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1127 {
1128 	struct vop *vop = to_vop(crtc);
1129 	unsigned long flags;
1130 
1131 	if (WARN_ON(!vop->is_enabled))
1132 		return -EPERM;
1133 
1134 	spin_lock_irqsave(&vop->irq_lock, flags);
1135 
1136 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1137 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1138 
1139 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1140 
1141 	return 0;
1142 }
1143 
1144 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1145 {
1146 	struct vop *vop = to_vop(crtc);
1147 	unsigned long flags;
1148 
1149 	if (WARN_ON(!vop->is_enabled))
1150 		return;
1151 
1152 	spin_lock_irqsave(&vop->irq_lock, flags);
1153 
1154 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1155 
1156 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1157 }
1158 
1159 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1160 				const struct drm_display_mode *mode,
1161 				struct drm_display_mode *adjusted_mode)
1162 {
1163 	struct vop *vop = to_vop(crtc);
1164 	unsigned long rate;
1165 
1166 	/*
1167 	 * Clock craziness.
1168 	 *
1169 	 * Key points:
1170 	 *
1171 	 * - DRM works in in kHz.
1172 	 * - Clock framework works in Hz.
1173 	 * - Rockchip's clock driver picks the clock rate that is the
1174 	 *   same _OR LOWER_ than the one requested.
1175 	 *
1176 	 * Action plan:
1177 	 *
1178 	 * 1. When DRM gives us a mode, we should add 999 Hz to it.  That way
1179 	 *    if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1180 	 *    make 60000 kHz then the clock framework will actually give us
1181 	 *    the right clock.
1182 	 *
1183 	 *    NOTE: if the PLL (maybe through a divider) could actually make
1184 	 *    a clock rate 999 Hz higher instead of the one we want then this
1185 	 *    could be a problem.  Unfortunately there's not much we can do
1186 	 *    since it's baked into DRM to use kHz.  It shouldn't matter in
1187 	 *    practice since Rockchip PLLs are controlled by tables and
1188 	 *    even if there is a divider in the middle I wouldn't expect PLL
1189 	 *    rates in the table that are just a few kHz different.
1190 	 *
1191 	 * 2. Get the clock framework to round the rate for us to tell us
1192 	 *    what it will actually make.
1193 	 *
1194 	 * 3. Store the rounded up rate so that we don't need to worry about
1195 	 *    this in the actual clk_set_rate().
1196 	 */
1197 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1198 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1199 
1200 	return true;
1201 }
1202 
1203 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1204 {
1205 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1206 }
1207 
1208 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1209 {
1210 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1211 	unsigned int i;
1212 
1213 	for (i = 0; i < crtc->gamma_size; i++) {
1214 		u32 word;
1215 
1216 		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1217 		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
1218 			drm_color_lut_extract(lut[i].blue, 10);
1219 		writel(word, vop->lut_regs + i * 4);
1220 	}
1221 }
1222 
1223 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1224 			       struct drm_crtc_state *old_state)
1225 {
1226 	struct drm_crtc_state *state = crtc->state;
1227 	unsigned int idle;
1228 	int ret;
1229 
1230 	if (!vop->lut_regs)
1231 		return;
1232 	/*
1233 	 * To disable gamma (gamma_lut is null) or to write
1234 	 * an update to the LUT, clear dsp_lut_en.
1235 	 */
1236 	spin_lock(&vop->reg_lock);
1237 	VOP_REG_SET(vop, common, dsp_lut_en, 0);
1238 	vop_cfg_done(vop);
1239 	spin_unlock(&vop->reg_lock);
1240 
1241 	/*
1242 	 * In order to write the LUT to the internal memory,
1243 	 * we need to first make sure the dsp_lut_en bit is cleared.
1244 	 */
1245 	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1246 				 idle, !idle, 5, 30 * 1000);
1247 	if (ret) {
1248 		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1249 		return;
1250 	}
1251 
1252 	if (!state->gamma_lut)
1253 		return;
1254 
1255 	spin_lock(&vop->reg_lock);
1256 	vop_crtc_write_gamma_lut(vop, crtc);
1257 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1258 	vop_cfg_done(vop);
1259 	spin_unlock(&vop->reg_lock);
1260 }
1261 
1262 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1263 				  struct drm_atomic_state *state)
1264 {
1265 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1266 									  crtc);
1267 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1268 									      crtc);
1269 	struct vop *vop = to_vop(crtc);
1270 
1271 	/*
1272 	 * Only update GAMMA if the 'active' flag is not changed,
1273 	 * otherwise it's updated by .atomic_enable.
1274 	 */
1275 	if (crtc_state->color_mgmt_changed &&
1276 	    !crtc_state->active_changed)
1277 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1278 }
1279 
1280 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1281 				   struct drm_atomic_state *state)
1282 {
1283 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1284 									 crtc);
1285 	struct vop *vop = to_vop(crtc);
1286 	const struct vop_data *vop_data = vop->data;
1287 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1288 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1289 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1290 	u16 hdisplay = adjusted_mode->hdisplay;
1291 	u16 htotal = adjusted_mode->htotal;
1292 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1293 	u16 hact_end = hact_st + hdisplay;
1294 	u16 vdisplay = adjusted_mode->vdisplay;
1295 	u16 vtotal = adjusted_mode->vtotal;
1296 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1297 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1298 	u16 vact_end = vact_st + vdisplay;
1299 	uint32_t pin_pol, val;
1300 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1301 	int ret;
1302 
1303 	if (old_state && old_state->self_refresh_active) {
1304 		drm_crtc_vblank_on(crtc);
1305 		rockchip_drm_set_win_enabled(crtc, true);
1306 		return;
1307 	}
1308 
1309 	/*
1310 	 * If we have a GAMMA LUT in the state, then let's make sure
1311 	 * it's updated. We might be coming out of suspend,
1312 	 * which means the LUT internal memory needs to be re-written.
1313 	 */
1314 	if (crtc->state->gamma_lut)
1315 		vop_crtc_gamma_set(vop, crtc, old_state);
1316 
1317 	mutex_lock(&vop->vop_lock);
1318 
1319 	WARN_ON(vop->event);
1320 
1321 	ret = vop_enable(crtc, old_state);
1322 	if (ret) {
1323 		mutex_unlock(&vop->vop_lock);
1324 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1325 		return;
1326 	}
1327 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1328 		   BIT(HSYNC_POSITIVE) : 0;
1329 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1330 		   BIT(VSYNC_POSITIVE) : 0;
1331 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1332 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1333 
1334 	switch (s->output_type) {
1335 	case DRM_MODE_CONNECTOR_LVDS:
1336 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1337 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1338 		VOP_REG_SET(vop, output, rgb_en, 1);
1339 		break;
1340 	case DRM_MODE_CONNECTOR_eDP:
1341 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1342 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1343 		VOP_REG_SET(vop, output, edp_en, 1);
1344 		break;
1345 	case DRM_MODE_CONNECTOR_HDMIA:
1346 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1347 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1348 		VOP_REG_SET(vop, output, hdmi_en, 1);
1349 		break;
1350 	case DRM_MODE_CONNECTOR_DSI:
1351 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1352 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1353 		VOP_REG_SET(vop, output, mipi_en, 1);
1354 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1355 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1356 		break;
1357 	case DRM_MODE_CONNECTOR_DisplayPort:
1358 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1359 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1360 		VOP_REG_SET(vop, output, dp_en, 1);
1361 		break;
1362 	default:
1363 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1364 			      s->output_type);
1365 	}
1366 
1367 	/*
1368 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1369 	 */
1370 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1371 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1372 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1373 
1374 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1375 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1376 	else
1377 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1378 
1379 	if (dither_bpc == 6) {
1380 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1381 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1382 		VOP_REG_SET(vop, common, dither_down_en, 1);
1383 	} else {
1384 		VOP_REG_SET(vop, common, dither_down_en, 0);
1385 	}
1386 
1387 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1388 
1389 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1390 	val = hact_st << 16;
1391 	val |= hact_end;
1392 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1393 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1394 
1395 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1396 	val = vact_st << 16;
1397 	val |= vact_end;
1398 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1399 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1400 
1401 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1402 
1403 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1404 
1405 	VOP_REG_SET(vop, common, standby, 0);
1406 	mutex_unlock(&vop->vop_lock);
1407 }
1408 
1409 static bool vop_fs_irq_is_pending(struct vop *vop)
1410 {
1411 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1412 }
1413 
1414 static void vop_wait_for_irq_handler(struct vop *vop)
1415 {
1416 	bool pending;
1417 	int ret;
1418 
1419 	/*
1420 	 * Spin until frame start interrupt status bit goes low, which means
1421 	 * that interrupt handler was invoked and cleared it. The timeout of
1422 	 * 10 msecs is really too long, but it is just a safety measure if
1423 	 * something goes really wrong. The wait will only happen in the very
1424 	 * unlikely case of a vblank happening exactly at the same time and
1425 	 * shouldn't exceed microseconds range.
1426 	 */
1427 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1428 					!pending, 0, 10 * 1000);
1429 	if (ret)
1430 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1431 
1432 	synchronize_irq(vop->irq);
1433 }
1434 
1435 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1436 				 struct drm_atomic_state *state)
1437 {
1438 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1439 									  crtc);
1440 	struct vop *vop = to_vop(crtc);
1441 	struct drm_plane *plane;
1442 	struct drm_plane_state *plane_state;
1443 	struct rockchip_crtc_state *s;
1444 	int afbc_planes = 0;
1445 
1446 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1447 	    crtc_state->gamma_lut) {
1448 		unsigned int len;
1449 
1450 		len = drm_color_lut_size(crtc_state->gamma_lut);
1451 		if (len != crtc->gamma_size) {
1452 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1453 				      len, crtc->gamma_size);
1454 			return -EINVAL;
1455 		}
1456 	}
1457 
1458 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1459 		plane_state =
1460 			drm_atomic_get_plane_state(crtc_state->state, plane);
1461 		if (IS_ERR(plane_state)) {
1462 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1463 				      plane->name);
1464 			return PTR_ERR(plane_state);
1465 		}
1466 
1467 		if (drm_is_afbc(plane_state->fb->modifier))
1468 			++afbc_planes;
1469 	}
1470 
1471 	if (afbc_planes > 1) {
1472 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1473 		return -EINVAL;
1474 	}
1475 
1476 	s = to_rockchip_crtc_state(crtc_state);
1477 	s->enable_afbc = afbc_planes > 0;
1478 
1479 	return 0;
1480 }
1481 
1482 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1483 				  struct drm_atomic_state *state)
1484 {
1485 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1486 									      crtc);
1487 	struct drm_atomic_state *old_state = old_crtc_state->state;
1488 	struct drm_plane_state *old_plane_state, *new_plane_state;
1489 	struct vop *vop = to_vop(crtc);
1490 	struct drm_plane *plane;
1491 	struct rockchip_crtc_state *s;
1492 	int i;
1493 
1494 	if (WARN_ON(!vop->is_enabled))
1495 		return;
1496 
1497 	spin_lock(&vop->reg_lock);
1498 
1499 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1500 	s = to_rockchip_crtc_state(crtc->state);
1501 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1502 	vop_cfg_done(vop);
1503 
1504 	spin_unlock(&vop->reg_lock);
1505 
1506 	/*
1507 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1508 	 * fired before we set the cfg_done bit. To avoid spuriously
1509 	 * signalling flip completion we need to wait for it to finish.
1510 	 */
1511 	vop_wait_for_irq_handler(vop);
1512 
1513 	spin_lock_irq(&crtc->dev->event_lock);
1514 	if (crtc->state->event) {
1515 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1516 		WARN_ON(vop->event);
1517 
1518 		vop->event = crtc->state->event;
1519 		crtc->state->event = NULL;
1520 	}
1521 	spin_unlock_irq(&crtc->dev->event_lock);
1522 
1523 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1524 				       new_plane_state, i) {
1525 		if (!old_plane_state->fb)
1526 			continue;
1527 
1528 		if (old_plane_state->fb == new_plane_state->fb)
1529 			continue;
1530 
1531 		drm_framebuffer_get(old_plane_state->fb);
1532 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1533 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1534 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1535 	}
1536 }
1537 
1538 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1539 	.mode_fixup = vop_crtc_mode_fixup,
1540 	.atomic_check = vop_crtc_atomic_check,
1541 	.atomic_begin = vop_crtc_atomic_begin,
1542 	.atomic_flush = vop_crtc_atomic_flush,
1543 	.atomic_enable = vop_crtc_atomic_enable,
1544 	.atomic_disable = vop_crtc_atomic_disable,
1545 };
1546 
1547 static void vop_crtc_destroy(struct drm_crtc *crtc)
1548 {
1549 	drm_crtc_cleanup(crtc);
1550 }
1551 
1552 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1553 {
1554 	struct rockchip_crtc_state *rockchip_state;
1555 
1556 	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1557 	if (!rockchip_state)
1558 		return NULL;
1559 
1560 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1561 	return &rockchip_state->base;
1562 }
1563 
1564 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1565 				   struct drm_crtc_state *state)
1566 {
1567 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1568 
1569 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1570 	kfree(s);
1571 }
1572 
1573 static void vop_crtc_reset(struct drm_crtc *crtc)
1574 {
1575 	struct rockchip_crtc_state *crtc_state =
1576 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1577 
1578 	if (crtc->state)
1579 		vop_crtc_destroy_state(crtc, crtc->state);
1580 
1581 	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1582 }
1583 
1584 #ifdef CONFIG_DRM_ANALOGIX_DP
1585 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1586 {
1587 	struct drm_connector *connector;
1588 	struct drm_connector_list_iter conn_iter;
1589 
1590 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1591 	drm_for_each_connector_iter(connector, &conn_iter) {
1592 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1593 			drm_connector_list_iter_end(&conn_iter);
1594 			return connector;
1595 		}
1596 	}
1597 	drm_connector_list_iter_end(&conn_iter);
1598 
1599 	return NULL;
1600 }
1601 
1602 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1603 				   const char *source_name)
1604 {
1605 	struct vop *vop = to_vop(crtc);
1606 	struct drm_connector *connector;
1607 	int ret;
1608 
1609 	connector = vop_get_edp_connector(vop);
1610 	if (!connector)
1611 		return -EINVAL;
1612 
1613 	if (source_name && strcmp(source_name, "auto") == 0)
1614 		ret = analogix_dp_start_crc(connector);
1615 	else if (!source_name)
1616 		ret = analogix_dp_stop_crc(connector);
1617 	else
1618 		ret = -EINVAL;
1619 
1620 	return ret;
1621 }
1622 
1623 static int
1624 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1625 			   size_t *values_cnt)
1626 {
1627 	if (source_name && strcmp(source_name, "auto") != 0)
1628 		return -EINVAL;
1629 
1630 	*values_cnt = 3;
1631 	return 0;
1632 }
1633 
1634 #else
1635 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1636 				   const char *source_name)
1637 {
1638 	return -ENODEV;
1639 }
1640 
1641 static int
1642 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1643 			   size_t *values_cnt)
1644 {
1645 	return -ENODEV;
1646 }
1647 #endif
1648 
1649 static const struct drm_crtc_funcs vop_crtc_funcs = {
1650 	.set_config = drm_atomic_helper_set_config,
1651 	.page_flip = drm_atomic_helper_page_flip,
1652 	.destroy = vop_crtc_destroy,
1653 	.reset = vop_crtc_reset,
1654 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1655 	.atomic_destroy_state = vop_crtc_destroy_state,
1656 	.enable_vblank = vop_crtc_enable_vblank,
1657 	.disable_vblank = vop_crtc_disable_vblank,
1658 	.set_crc_source = vop_crtc_set_crc_source,
1659 	.verify_crc_source = vop_crtc_verify_crc_source,
1660 };
1661 
1662 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1663 {
1664 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1665 	struct drm_framebuffer *fb = val;
1666 
1667 	drm_crtc_vblank_put(&vop->crtc);
1668 	drm_framebuffer_put(fb);
1669 }
1670 
1671 static void vop_handle_vblank(struct vop *vop)
1672 {
1673 	struct drm_device *drm = vop->drm_dev;
1674 	struct drm_crtc *crtc = &vop->crtc;
1675 
1676 	spin_lock(&drm->event_lock);
1677 	if (vop->event) {
1678 		drm_crtc_send_vblank_event(crtc, vop->event);
1679 		drm_crtc_vblank_put(crtc);
1680 		vop->event = NULL;
1681 	}
1682 	spin_unlock(&drm->event_lock);
1683 
1684 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1685 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1686 }
1687 
1688 static irqreturn_t vop_isr(int irq, void *data)
1689 {
1690 	struct vop *vop = data;
1691 	struct drm_crtc *crtc = &vop->crtc;
1692 	uint32_t active_irqs;
1693 	int ret = IRQ_NONE;
1694 
1695 	/*
1696 	 * The irq is shared with the iommu. If the runtime-pm state of the
1697 	 * vop-device is disabled the irq has to be targeted at the iommu.
1698 	 */
1699 	if (!pm_runtime_get_if_in_use(vop->dev))
1700 		return IRQ_NONE;
1701 
1702 	if (vop_core_clks_enable(vop)) {
1703 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1704 		goto out;
1705 	}
1706 
1707 	/*
1708 	 * interrupt register has interrupt status, enable and clear bits, we
1709 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1710 	*/
1711 	spin_lock(&vop->irq_lock);
1712 
1713 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1714 	/* Clear all active interrupt sources */
1715 	if (active_irqs)
1716 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1717 
1718 	spin_unlock(&vop->irq_lock);
1719 
1720 	/* This is expected for vop iommu irqs, since the irq is shared */
1721 	if (!active_irqs)
1722 		goto out_disable;
1723 
1724 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1725 		complete(&vop->dsp_hold_completion);
1726 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1727 		ret = IRQ_HANDLED;
1728 	}
1729 
1730 	if (active_irqs & LINE_FLAG_INTR) {
1731 		complete(&vop->line_flag_completion);
1732 		active_irqs &= ~LINE_FLAG_INTR;
1733 		ret = IRQ_HANDLED;
1734 	}
1735 
1736 	if (active_irqs & FS_INTR) {
1737 		drm_crtc_handle_vblank(crtc);
1738 		vop_handle_vblank(vop);
1739 		active_irqs &= ~FS_INTR;
1740 		ret = IRQ_HANDLED;
1741 	}
1742 
1743 	/* Unhandled irqs are spurious. */
1744 	if (active_irqs)
1745 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1746 			      active_irqs);
1747 
1748 out_disable:
1749 	vop_core_clks_disable(vop);
1750 out:
1751 	pm_runtime_put(vop->dev);
1752 	return ret;
1753 }
1754 
1755 static void vop_plane_add_properties(struct drm_plane *plane,
1756 				     const struct vop_win_data *win_data)
1757 {
1758 	unsigned int flags = 0;
1759 
1760 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1761 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1762 	if (flags)
1763 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1764 						   DRM_MODE_ROTATE_0 | flags);
1765 }
1766 
1767 static int vop_create_crtc(struct vop *vop)
1768 {
1769 	const struct vop_data *vop_data = vop->data;
1770 	struct device *dev = vop->dev;
1771 	struct drm_device *drm_dev = vop->drm_dev;
1772 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1773 	struct drm_crtc *crtc = &vop->crtc;
1774 	struct device_node *port;
1775 	int ret;
1776 	int i;
1777 
1778 	/*
1779 	 * Create drm_plane for primary and cursor planes first, since we need
1780 	 * to pass them to drm_crtc_init_with_planes, which sets the
1781 	 * "possible_crtcs" to the newly initialized crtc.
1782 	 */
1783 	for (i = 0; i < vop_data->win_size; i++) {
1784 		struct vop_win *vop_win = &vop->win[i];
1785 		const struct vop_win_data *win_data = vop_win->data;
1786 
1787 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1788 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1789 			continue;
1790 
1791 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1792 					       0, &vop_plane_funcs,
1793 					       win_data->phy->data_formats,
1794 					       win_data->phy->nformats,
1795 					       win_data->phy->format_modifiers,
1796 					       win_data->type, NULL);
1797 		if (ret) {
1798 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1799 				      ret);
1800 			goto err_cleanup_planes;
1801 		}
1802 
1803 		plane = &vop_win->base;
1804 		drm_plane_helper_add(plane, &plane_helper_funcs);
1805 		vop_plane_add_properties(plane, win_data);
1806 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1807 			primary = plane;
1808 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1809 			cursor = plane;
1810 	}
1811 
1812 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1813 					&vop_crtc_funcs, NULL);
1814 	if (ret)
1815 		goto err_cleanup_planes;
1816 
1817 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1818 	if (vop->lut_regs) {
1819 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1820 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1821 	}
1822 
1823 	/*
1824 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1825 	 * to the newly created crtc.
1826 	 */
1827 	for (i = 0; i < vop_data->win_size; i++) {
1828 		struct vop_win *vop_win = &vop->win[i];
1829 		const struct vop_win_data *win_data = vop_win->data;
1830 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1831 
1832 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1833 			continue;
1834 
1835 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1836 					       possible_crtcs,
1837 					       &vop_plane_funcs,
1838 					       win_data->phy->data_formats,
1839 					       win_data->phy->nformats,
1840 					       win_data->phy->format_modifiers,
1841 					       win_data->type, NULL);
1842 		if (ret) {
1843 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1844 				      ret);
1845 			goto err_cleanup_crtc;
1846 		}
1847 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1848 		vop_plane_add_properties(&vop_win->base, win_data);
1849 	}
1850 
1851 	port = of_get_child_by_name(dev->of_node, "port");
1852 	if (!port) {
1853 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1854 			      dev->of_node);
1855 		ret = -ENOENT;
1856 		goto err_cleanup_crtc;
1857 	}
1858 
1859 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1860 			   vop_fb_unref_worker);
1861 
1862 	init_completion(&vop->dsp_hold_completion);
1863 	init_completion(&vop->line_flag_completion);
1864 	crtc->port = port;
1865 
1866 	ret = drm_self_refresh_helper_init(crtc);
1867 	if (ret)
1868 		DRM_DEV_DEBUG_KMS(vop->dev,
1869 			"Failed to init %s with SR helpers %d, ignoring\n",
1870 			crtc->name, ret);
1871 
1872 	return 0;
1873 
1874 err_cleanup_crtc:
1875 	drm_crtc_cleanup(crtc);
1876 err_cleanup_planes:
1877 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1878 				 head)
1879 		drm_plane_cleanup(plane);
1880 	return ret;
1881 }
1882 
1883 static void vop_destroy_crtc(struct vop *vop)
1884 {
1885 	struct drm_crtc *crtc = &vop->crtc;
1886 	struct drm_device *drm_dev = vop->drm_dev;
1887 	struct drm_plane *plane, *tmp;
1888 
1889 	drm_self_refresh_helper_cleanup(crtc);
1890 
1891 	of_node_put(crtc->port);
1892 
1893 	/*
1894 	 * We need to cleanup the planes now.  Why?
1895 	 *
1896 	 * The planes are "&vop->win[i].base".  That means the memory is
1897 	 * all part of the big "struct vop" chunk of memory.  That memory
1898 	 * was devm allocated and associated with this component.  We need to
1899 	 * free it ourselves before vop_unbind() finishes.
1900 	 */
1901 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1902 				 head)
1903 		vop_plane_destroy(plane);
1904 
1905 	/*
1906 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1907 	 * references the CRTC.
1908 	 */
1909 	drm_crtc_cleanup(crtc);
1910 	drm_flip_work_cleanup(&vop->fb_unref_work);
1911 }
1912 
1913 static int vop_initial(struct vop *vop)
1914 {
1915 	struct reset_control *ahb_rst;
1916 	int i, ret;
1917 
1918 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1919 	if (IS_ERR(vop->hclk)) {
1920 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1921 		return PTR_ERR(vop->hclk);
1922 	}
1923 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1924 	if (IS_ERR(vop->aclk)) {
1925 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1926 		return PTR_ERR(vop->aclk);
1927 	}
1928 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1929 	if (IS_ERR(vop->dclk)) {
1930 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1931 		return PTR_ERR(vop->dclk);
1932 	}
1933 
1934 	ret = pm_runtime_get_sync(vop->dev);
1935 	if (ret < 0) {
1936 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1937 		return ret;
1938 	}
1939 
1940 	ret = clk_prepare(vop->dclk);
1941 	if (ret < 0) {
1942 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1943 		goto err_put_pm_runtime;
1944 	}
1945 
1946 	/* Enable both the hclk and aclk to setup the vop */
1947 	ret = clk_prepare_enable(vop->hclk);
1948 	if (ret < 0) {
1949 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1950 		goto err_unprepare_dclk;
1951 	}
1952 
1953 	ret = clk_prepare_enable(vop->aclk);
1954 	if (ret < 0) {
1955 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1956 		goto err_disable_hclk;
1957 	}
1958 
1959 	/*
1960 	 * do hclk_reset, reset all vop registers.
1961 	 */
1962 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1963 	if (IS_ERR(ahb_rst)) {
1964 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1965 		ret = PTR_ERR(ahb_rst);
1966 		goto err_disable_aclk;
1967 	}
1968 	reset_control_assert(ahb_rst);
1969 	usleep_range(10, 20);
1970 	reset_control_deassert(ahb_rst);
1971 
1972 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1973 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1974 
1975 	for (i = 0; i < vop->len; i += sizeof(u32))
1976 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1977 
1978 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
1979 	VOP_REG_SET(vop, common, dsp_blank, 0);
1980 
1981 	for (i = 0; i < vop->data->win_size; i++) {
1982 		struct vop_win *vop_win = &vop->win[i];
1983 		const struct vop_win_data *win = vop_win->data;
1984 		int channel = i * 2 + 1;
1985 
1986 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1987 		vop_win_disable(vop, vop_win);
1988 		VOP_WIN_SET(vop, win, gate, 1);
1989 	}
1990 
1991 	vop_cfg_done(vop);
1992 
1993 	/*
1994 	 * do dclk_reset, let all config take affect.
1995 	 */
1996 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1997 	if (IS_ERR(vop->dclk_rst)) {
1998 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1999 		ret = PTR_ERR(vop->dclk_rst);
2000 		goto err_disable_aclk;
2001 	}
2002 	reset_control_assert(vop->dclk_rst);
2003 	usleep_range(10, 20);
2004 	reset_control_deassert(vop->dclk_rst);
2005 
2006 	clk_disable(vop->hclk);
2007 	clk_disable(vop->aclk);
2008 
2009 	vop->is_enabled = false;
2010 
2011 	pm_runtime_put_sync(vop->dev);
2012 
2013 	return 0;
2014 
2015 err_disable_aclk:
2016 	clk_disable_unprepare(vop->aclk);
2017 err_disable_hclk:
2018 	clk_disable_unprepare(vop->hclk);
2019 err_unprepare_dclk:
2020 	clk_unprepare(vop->dclk);
2021 err_put_pm_runtime:
2022 	pm_runtime_put_sync(vop->dev);
2023 	return ret;
2024 }
2025 
2026 /*
2027  * Initialize the vop->win array elements.
2028  */
2029 static void vop_win_init(struct vop *vop)
2030 {
2031 	const struct vop_data *vop_data = vop->data;
2032 	unsigned int i;
2033 
2034 	for (i = 0; i < vop_data->win_size; i++) {
2035 		struct vop_win *vop_win = &vop->win[i];
2036 		const struct vop_win_data *win_data = &vop_data->win[i];
2037 
2038 		vop_win->data = win_data;
2039 		vop_win->vop = vop;
2040 
2041 		if (vop_data->win_yuv2yuv)
2042 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2043 	}
2044 }
2045 
2046 /**
2047  * rockchip_drm_wait_vact_end
2048  * @crtc: CRTC to enable line flag
2049  * @mstimeout: millisecond for timeout
2050  *
2051  * Wait for vact_end line flag irq or timeout.
2052  *
2053  * Returns:
2054  * Zero on success, negative errno on failure.
2055  */
2056 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2057 {
2058 	struct vop *vop = to_vop(crtc);
2059 	unsigned long jiffies_left;
2060 	int ret = 0;
2061 
2062 	if (!crtc || !vop->is_enabled)
2063 		return -ENODEV;
2064 
2065 	mutex_lock(&vop->vop_lock);
2066 	if (mstimeout <= 0) {
2067 		ret = -EINVAL;
2068 		goto out;
2069 	}
2070 
2071 	if (vop_line_flag_irq_is_enabled(vop)) {
2072 		ret = -EBUSY;
2073 		goto out;
2074 	}
2075 
2076 	reinit_completion(&vop->line_flag_completion);
2077 	vop_line_flag_irq_enable(vop);
2078 
2079 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2080 						   msecs_to_jiffies(mstimeout));
2081 	vop_line_flag_irq_disable(vop);
2082 
2083 	if (jiffies_left == 0) {
2084 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2085 		ret = -ETIMEDOUT;
2086 		goto out;
2087 	}
2088 
2089 out:
2090 	mutex_unlock(&vop->vop_lock);
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2094 
2095 static int vop_bind(struct device *dev, struct device *master, void *data)
2096 {
2097 	struct platform_device *pdev = to_platform_device(dev);
2098 	const struct vop_data *vop_data;
2099 	struct drm_device *drm_dev = data;
2100 	struct vop *vop;
2101 	struct resource *res;
2102 	int ret, irq;
2103 
2104 	vop_data = of_device_get_match_data(dev);
2105 	if (!vop_data)
2106 		return -ENODEV;
2107 
2108 	/* Allocate vop struct and its vop_win array */
2109 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2110 			   GFP_KERNEL);
2111 	if (!vop)
2112 		return -ENOMEM;
2113 
2114 	vop->dev = dev;
2115 	vop->data = vop_data;
2116 	vop->drm_dev = drm_dev;
2117 	dev_set_drvdata(dev, vop);
2118 
2119 	vop_win_init(vop);
2120 
2121 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2122 	vop->len = resource_size(res);
2123 	vop->regs = devm_ioremap_resource(dev, res);
2124 	if (IS_ERR(vop->regs))
2125 		return PTR_ERR(vop->regs);
2126 
2127 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2128 	if (res) {
2129 		if (!vop_data->lut_size) {
2130 			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2131 			return -EINVAL;
2132 		}
2133 		vop->lut_regs = devm_ioremap_resource(dev, res);
2134 		if (IS_ERR(vop->lut_regs))
2135 			return PTR_ERR(vop->lut_regs);
2136 	}
2137 
2138 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2139 	if (!vop->regsbak)
2140 		return -ENOMEM;
2141 
2142 	irq = platform_get_irq(pdev, 0);
2143 	if (irq < 0) {
2144 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2145 		return irq;
2146 	}
2147 	vop->irq = (unsigned int)irq;
2148 
2149 	spin_lock_init(&vop->reg_lock);
2150 	spin_lock_init(&vop->irq_lock);
2151 	mutex_init(&vop->vop_lock);
2152 
2153 	ret = vop_create_crtc(vop);
2154 	if (ret)
2155 		return ret;
2156 
2157 	pm_runtime_enable(&pdev->dev);
2158 
2159 	ret = vop_initial(vop);
2160 	if (ret < 0) {
2161 		DRM_DEV_ERROR(&pdev->dev,
2162 			      "cannot initial vop dev - err %d\n", ret);
2163 		goto err_disable_pm_runtime;
2164 	}
2165 
2166 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2167 			       IRQF_SHARED, dev_name(dev), vop);
2168 	if (ret)
2169 		goto err_disable_pm_runtime;
2170 
2171 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2172 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2173 		if (IS_ERR(vop->rgb)) {
2174 			ret = PTR_ERR(vop->rgb);
2175 			goto err_disable_pm_runtime;
2176 		}
2177 	}
2178 
2179 	return 0;
2180 
2181 err_disable_pm_runtime:
2182 	pm_runtime_disable(&pdev->dev);
2183 	vop_destroy_crtc(vop);
2184 	return ret;
2185 }
2186 
2187 static void vop_unbind(struct device *dev, struct device *master, void *data)
2188 {
2189 	struct vop *vop = dev_get_drvdata(dev);
2190 
2191 	if (vop->rgb)
2192 		rockchip_rgb_fini(vop->rgb);
2193 
2194 	pm_runtime_disable(dev);
2195 	vop_destroy_crtc(vop);
2196 
2197 	clk_unprepare(vop->aclk);
2198 	clk_unprepare(vop->hclk);
2199 	clk_unprepare(vop->dclk);
2200 }
2201 
2202 const struct component_ops vop_component_ops = {
2203 	.bind = vop_bind,
2204 	.unbind = vop_unbind,
2205 };
2206 EXPORT_SYMBOL_GPL(vop_component_ops);
2207