1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * R-Car Display Unit Channels Pair 4 * 5 * Copyright (C) 2013-2015 Renesas Electronics Corporation 6 * 7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) 8 */ 9 10 /* 11 * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending 12 * unit, timings generator, ...) and device-global resources (start/stop 13 * control, planes, ...) shared between the two CRTCs. 14 * 15 * The R8A7790 introduced a third CRTC with its own set of global resources. 16 * This would be modeled as two separate DU device instances if it wasn't for 17 * a handful or resources that are shared between the three CRTCs (mostly 18 * related to input and output routing). For this reason the R8A7790 DU must be 19 * modeled as a single device with three CRTCs, two sets of "semi-global" 20 * resources, and a few device-global resources. 21 * 22 * The rcar_du_group object is a driver specific object, without any real 23 * counterpart in the DU documentation, that models those semi-global resources. 24 */ 25 26 #include <linux/clk.h> 27 #include <linux/io.h> 28 29 #include "rcar_du_drv.h" 30 #include "rcar_du_group.h" 31 #include "rcar_du_regs.h" 32 33 u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg) 34 { 35 return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg); 36 } 37 38 void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data) 39 { 40 rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data); 41 } 42 43 static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp) 44 { 45 u32 defr6 = DEFR6_CODE; 46 47 if (rgrp->channels_mask & BIT(0)) 48 defr6 |= DEFR6_ODPM02_DISP; 49 50 if (rgrp->channels_mask & BIT(1)) 51 defr6 |= DEFR6_ODPM12_DISP; 52 53 rcar_du_group_write(rgrp, DEFR6, defr6); 54 } 55 56 static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp) 57 { 58 struct rcar_du_device *rcdu = rgrp->dev; 59 u32 defr8 = DEFR8_CODE; 60 61 if (rcdu->info->gen < 3) { 62 defr8 |= DEFR8_DEFE8; 63 64 /* 65 * On Gen2 the DEFR8 register for the first group also controls 66 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for 67 * DU instances that support it. 68 */ 69 if (rgrp->index == 0) { 70 defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); 71 if (rgrp->dev->vspd1_sink == 2) 72 defr8 |= DEFR8_VSCS; 73 } 74 } else { 75 /* 76 * On Gen3 VSPD routing can't be configured, and DPAD routing 77 * is set in the group corresponding to the DPAD output (no Gen3 78 * SoC has multiple DPAD sources belonging to separate groups). 79 */ 80 if (rgrp->index == rcdu->dpad0_source / 2) 81 defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); 82 } 83 84 rcar_du_group_write(rgrp, DEFR8, defr8); 85 } 86 87 static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp) 88 { 89 struct rcar_du_device *rcdu = rgrp->dev; 90 struct rcar_du_crtc *rcrtc; 91 unsigned int num_crtcs = 0; 92 unsigned int i; 93 u32 didsr; 94 95 /* 96 * Configure input dot clock routing with a hardcoded configuration. If 97 * the DU channel can use the LVDS encoder output clock as the dot 98 * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn. 99 * 100 * Each channel can then select between the dot clock configured here 101 * and the clock provided by the CPG through the ESCR register. 102 */ 103 if (rcdu->info->gen < 3 && rgrp->index == 0) { 104 /* 105 * On Gen2 a single register in the first group controls dot 106 * clock selection for all channels. 107 */ 108 rcrtc = rcdu->crtcs; 109 num_crtcs = rcdu->num_crtcs; 110 } else if ((rcdu->info->gen == 3 && rgrp->num_crtcs > 1) || 111 rcdu->info->gen == 4) { 112 /* 113 * On Gen3 dot clocks are setup through per-group registers, 114 * only available when the group has two channels. 115 * On Gen4 the registers are there for single channel too. 116 */ 117 rcrtc = &rcdu->crtcs[rgrp->index * 2]; 118 num_crtcs = rgrp->num_crtcs; 119 } 120 121 if (!num_crtcs) 122 return; 123 124 didsr = DIDSR_CODE; 125 for (i = 0; i < num_crtcs; ++i, ++rcrtc) { 126 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) 127 didsr |= DIDSR_LDCS_LVDS0(i) 128 | DIDSR_PDCS_CLK(i, 0); 129 else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) 130 didsr |= DIDSR_LDCS_DSI(i); 131 else 132 didsr |= DIDSR_LDCS_DCLKIN(i) 133 | DIDSR_PDCS_CLK(i, 0); 134 } 135 136 rcar_du_group_write(rgrp, DIDSR, didsr); 137 } 138 139 static void rcar_du_group_setup(struct rcar_du_group *rgrp) 140 { 141 struct rcar_du_device *rcdu = rgrp->dev; 142 u32 defr7 = DEFR7_CODE; 143 u32 dorcr; 144 145 /* Enable extended features */ 146 rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE); 147 if (rcdu->info->gen < 3) { 148 rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G); 149 rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3); 150 rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE); 151 } 152 rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5); 153 154 if (rcdu->info->gen < 4) 155 rcar_du_group_setup_pins(rgrp); 156 157 if (rcdu->info->gen < 4) { 158 /* 159 * TODO: Handle routing of the DU output to CMM dynamically, as 160 * we should bypass CMM completely when no color management 161 * feature is used. 162 */ 163 defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) | 164 (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0); 165 rcar_du_group_write(rgrp, DEFR7, defr7); 166 } 167 168 if (rcdu->info->gen >= 2) { 169 if (rcdu->info->gen < 4) 170 rcar_du_group_setup_defr8(rgrp); 171 rcar_du_group_setup_didsr(rgrp); 172 } 173 174 if (rcdu->info->gen >= 3) 175 rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10); 176 177 /* 178 * Use DS1PR and DS2PR to configure planes priorities and connects the 179 * superposition 0 to DU0 pins. DU1 pins will be configured dynamically. 180 * 181 * Groups that have a single channel have a hardcoded configuration. On 182 * Gen3 and newer, the documentation requires PG1T, DK1S and PG1D_DS1 to 183 * always be set in this case. 184 */ 185 dorcr = DORCR_PG0D_DS0 | DORCR_DPRS; 186 if (rcdu->info->gen >= 3 && rgrp->num_crtcs == 1) 187 dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; 188 rcar_du_group_write(rgrp, DORCR, dorcr); 189 190 /* 191 * DPTSR is used to select the source for the planes of a group. The 192 * first source is chosen by writing 0 to the respective bits, and this 193 * is always the default value of the register. In other words, writing 194 * DPTSR is only needed if the SoC supports choosing the second source. 195 * 196 * The SoCs documentations seems to confirm this, as the DPTSR register 197 * is not documented if only the first source exists on that SoC. 198 */ 199 if (rgrp->channels_mask & BIT(1)) { 200 mutex_lock(&rgrp->lock); 201 rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) | 202 rgrp->dptsr_planes); 203 mutex_unlock(&rgrp->lock); 204 } 205 } 206 207 /* 208 * rcar_du_group_get - Acquire a reference to the DU channels group 209 * 210 * Acquiring the first reference setups core registers. A reference must be held 211 * before accessing any hardware registers. 212 * 213 * This function must be called with the DRM mode_config lock held. 214 * 215 * Return 0 in case of success or a negative error code otherwise. 216 */ 217 int rcar_du_group_get(struct rcar_du_group *rgrp) 218 { 219 if (rgrp->use_count) 220 goto done; 221 222 rcar_du_group_setup(rgrp); 223 224 done: 225 rgrp->use_count++; 226 return 0; 227 } 228 229 /* 230 * rcar_du_group_put - Release a reference to the DU 231 * 232 * This function must be called with the DRM mode_config lock held. 233 */ 234 void rcar_du_group_put(struct rcar_du_group *rgrp) 235 { 236 --rgrp->use_count; 237 } 238 239 static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) 240 { 241 struct rcar_du_device *rcdu = rgrp->dev; 242 243 /* 244 * Group start/stop is controlled by the DRES and DEN bits of DSYSR0 245 * for the first group and DSYSR2 for the second group. On most DU 246 * instances, this maps to the first CRTC of the group, and we can just 247 * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On 248 * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to 249 * access the register directly using group read/write. 250 */ 251 if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) { 252 struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2]; 253 254 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN, 255 start ? DSYSR_DEN : DSYSR_DRES); 256 } else { 257 rcar_du_group_write(rgrp, DSYSR, 258 start ? DSYSR_DEN : DSYSR_DRES); 259 } 260 } 261 262 void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) 263 { 264 /* 265 * Many of the configuration bits are only updated when the display 266 * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some 267 * of those bits could be pre-configured, but others (especially the 268 * bits related to plane assignment to display timing controllers) need 269 * to be modified at runtime. 270 * 271 * Restart the display controller if a start is requested. Sorry for the 272 * flicker. It should be possible to move most of the "DRES-update" bits 273 * setup to driver initialization time and minimize the number of cases 274 * when the display controller will have to be restarted. 275 */ 276 if (start) { 277 if (rgrp->used_crtcs++ != 0) 278 __rcar_du_group_start_stop(rgrp, false); 279 __rcar_du_group_start_stop(rgrp, true); 280 } else { 281 if (--rgrp->used_crtcs == 0) 282 __rcar_du_group_start_stop(rgrp, false); 283 } 284 } 285 286 void rcar_du_group_restart(struct rcar_du_group *rgrp) 287 { 288 rgrp->need_restart = false; 289 290 __rcar_du_group_start_stop(rgrp, false); 291 __rcar_du_group_start_stop(rgrp, true); 292 } 293 294 int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu) 295 { 296 struct rcar_du_group *rgrp; 297 struct rcar_du_crtc *crtc; 298 unsigned int index; 299 int ret; 300 301 if (rcdu->info->gen < 2) 302 return 0; 303 304 /* 305 * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are 306 * configured in the DEFR8 register of the first group on Gen2 and the 307 * last group on Gen3. As this function can be called with the DU 308 * channels of the corresponding CRTCs disabled, we need to enable the 309 * group clock before accessing the register. 310 */ 311 index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1; 312 rgrp = &rcdu->groups[index]; 313 crtc = &rcdu->crtcs[index * 2]; 314 315 ret = clk_prepare_enable(crtc->clock); 316 if (ret < 0) 317 return ret; 318 319 rcar_du_group_setup_defr8(rgrp); 320 321 clk_disable_unprepare(crtc->clock); 322 323 return 0; 324 } 325 326 static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp) 327 { 328 static const u32 doflr_values[2] = { 329 DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 | 330 DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0, 331 DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 | 332 DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1, 333 }; 334 static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1) 335 | BIT(RCAR_DU_OUTPUT_DPAD0); 336 struct rcar_du_device *rcdu = rgrp->dev; 337 u32 doflr = DOFLR_CODE; 338 unsigned int i; 339 340 if (rcdu->info->gen < 2) 341 return; 342 343 /* 344 * The DPAD outputs can't be controlled directly. However, the parallel 345 * output of the DU channels routed to DPAD can be set to fixed levels 346 * through the DOFLR group register. Use this to turn the DPAD on or off 347 * by driving fixed low-level signals at the output of any DU channel 348 * not routed to a DPAD output. This doesn't affect the DU output 349 * signals going to other outputs, such as the internal LVDS and HDMI 350 * encoders. 351 */ 352 353 for (i = 0; i < rgrp->num_crtcs; ++i) { 354 struct rcar_du_crtc_state *rstate; 355 struct rcar_du_crtc *rcrtc; 356 357 rcrtc = &rcdu->crtcs[rgrp->index * 2 + i]; 358 rstate = to_rcar_crtc_state(rcrtc->crtc.state); 359 360 if (!(rstate->outputs & dpad_mask)) 361 doflr |= doflr_values[i]; 362 } 363 364 rcar_du_group_write(rgrp, DOFLR, doflr); 365 } 366 367 int rcar_du_group_set_routing(struct rcar_du_group *rgrp) 368 { 369 struct rcar_du_device *rcdu = rgrp->dev; 370 u32 dorcr = rcar_du_group_read(rgrp, DORCR); 371 372 dorcr &= ~(DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_MASK); 373 374 /* 375 * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and 376 * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1 377 * by default. 378 */ 379 if (rcdu->dpad1_source == rgrp->index * 2) 380 dorcr |= DORCR_PG1D_DS0; 381 else 382 dorcr |= DORCR_PG1T | DORCR_DK1S | DORCR_PG1D_DS1; 383 384 rcar_du_group_write(rgrp, DORCR, dorcr); 385 386 rcar_du_group_set_dpad_levels(rgrp); 387 388 return rcar_du_set_dpad0_vsp1_routing(rgrp->dev); 389 } 390