1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_trace.h" 32 33 /* 34 * GPUVM 35 * GPUVM is similar to the legacy gart on older asics, however 36 * rather than there being a single global gart table 37 * for the entire GPU, there are multiple VM page tables active 38 * at any given time. The VM page tables can contain a mix 39 * vram pages and system memory pages and system memory pages 40 * can be mapped as snooped (cached system pages) or unsnooped 41 * (uncached system pages). 42 * Each VM has an ID associated with it and there is a page table 43 * associated with each VMID. When execting a command buffer, 44 * the kernel tells the the ring what VMID to use for that command 45 * buffer. VMIDs are allocated dynamically as commands are submitted. 46 * The userspace drivers maintain their own address space and the kernel 47 * sets up their pages tables accordingly when they submit their 48 * command buffers and a VMID is assigned. 49 * Cayman/Trinity support up to 8 active VMs at any given time; 50 * SI supports 16. 51 */ 52 53 /** 54 * radeon_vm_num_pde - return the number of page directory entries 55 * 56 * @rdev: radeon_device pointer 57 * 58 * Calculate the number of page directory entries (cayman+). 59 */ 60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 61 { 62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size; 63 } 64 65 /** 66 * radeon_vm_directory_size - returns the size of the page directory in bytes 67 * 68 * @rdev: radeon_device pointer 69 * 70 * Calculate the size of the page directory in bytes (cayman+). 71 */ 72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 73 { 74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 75 } 76 77 /** 78 * radeon_vm_manager_init - init the vm manager 79 * 80 * @rdev: radeon_device pointer 81 * 82 * Init the vm manager (cayman+). 83 * Returns 0 for success, error for failure. 84 */ 85 int radeon_vm_manager_init(struct radeon_device *rdev) 86 { 87 int r; 88 89 if (!rdev->vm_manager.enabled) { 90 r = radeon_asic_vm_init(rdev); 91 if (r) 92 return r; 93 94 rdev->vm_manager.enabled = true; 95 } 96 return 0; 97 } 98 99 /** 100 * radeon_vm_manager_fini - tear down the vm manager 101 * 102 * @rdev: radeon_device pointer 103 * 104 * Tear down the VM manager (cayman+). 105 */ 106 void radeon_vm_manager_fini(struct radeon_device *rdev) 107 { 108 int i; 109 110 if (!rdev->vm_manager.enabled) 111 return; 112 113 for (i = 0; i < RADEON_NUM_VM; ++i) 114 radeon_fence_unref(&rdev->vm_manager.active[i]); 115 radeon_asic_vm_fini(rdev); 116 rdev->vm_manager.enabled = false; 117 } 118 119 /** 120 * radeon_vm_get_bos - add the vm BOs to a validation list 121 * 122 * @vm: vm providing the BOs 123 * @head: head of validation list 124 * 125 * Add the page directory to the list of BOs to 126 * validate for command submission (cayman+). 127 */ 128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, 129 struct radeon_vm *vm, 130 struct list_head *head) 131 { 132 struct radeon_bo_list *list; 133 unsigned i, idx; 134 135 list = drm_malloc_ab(vm->max_pde_used + 2, 136 sizeof(struct radeon_bo_list)); 137 if (!list) 138 return NULL; 139 140 /* add the vm page table to the list */ 141 list[0].robj = vm->page_directory; 142 list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 144 list[0].tv.bo = &vm->page_directory->tbo; 145 list[0].tv.shared = true; 146 list[0].tiling_flags = 0; 147 list_add(&list[0].tv.head, head); 148 149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { 150 if (!vm->page_tables[i].bo) 151 continue; 152 153 list[idx].robj = vm->page_tables[i].bo; 154 list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM; 155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; 156 list[idx].tv.bo = &list[idx].robj->tbo; 157 list[idx].tv.shared = true; 158 list[idx].tiling_flags = 0; 159 list_add(&list[idx++].tv.head, head); 160 } 161 162 return list; 163 } 164 165 /** 166 * radeon_vm_grab_id - allocate the next free VMID 167 * 168 * @rdev: radeon_device pointer 169 * @vm: vm to allocate id for 170 * @ring: ring we want to submit job to 171 * 172 * Allocate an id for the vm (cayman+). 173 * Returns the fence we need to sync to (if any). 174 * 175 * Global and local mutex must be locked! 176 */ 177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 178 struct radeon_vm *vm, int ring) 179 { 180 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 181 struct radeon_vm_id *vm_id = &vm->ids[ring]; 182 183 unsigned choices[2] = {}; 184 unsigned i; 185 186 /* check if the id is still valid */ 187 if (vm_id->id && vm_id->last_id_use && 188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) 189 return NULL; 190 191 /* we definately need to flush */ 192 vm_id->pd_gpu_addr = ~0ll; 193 194 /* skip over VMID 0, since it is the system VM */ 195 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 196 struct radeon_fence *fence = rdev->vm_manager.active[i]; 197 198 if (fence == NULL) { 199 /* found a free one */ 200 vm_id->id = i; 201 trace_radeon_vm_grab_id(i, ring); 202 return NULL; 203 } 204 205 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 206 best[fence->ring] = fence; 207 choices[fence->ring == ring ? 0 : 1] = i; 208 } 209 } 210 211 for (i = 0; i < 2; ++i) { 212 if (choices[i]) { 213 vm_id->id = choices[i]; 214 trace_radeon_vm_grab_id(choices[i], ring); 215 return rdev->vm_manager.active[choices[i]]; 216 } 217 } 218 219 /* should never happen */ 220 BUG(); 221 return NULL; 222 } 223 224 /** 225 * radeon_vm_flush - hardware flush the vm 226 * 227 * @rdev: radeon_device pointer 228 * @vm: vm we want to flush 229 * @ring: ring to use for flush 230 * @updates: last vm update that is waited for 231 * 232 * Flush the vm (cayman+). 233 * 234 * Global and local mutex must be locked! 235 */ 236 void radeon_vm_flush(struct radeon_device *rdev, 237 struct radeon_vm *vm, 238 int ring, struct radeon_fence *updates) 239 { 240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); 241 struct radeon_vm_id *vm_id = &vm->ids[ring]; 242 243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || 244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { 245 246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); 247 radeon_fence_unref(&vm_id->flushed_updates); 248 vm_id->flushed_updates = radeon_fence_ref(updates); 249 vm_id->pd_gpu_addr = pd_addr; 250 radeon_ring_vm_flush(rdev, &rdev->ring[ring], 251 vm_id->id, vm_id->pd_gpu_addr); 252 253 } 254 } 255 256 /** 257 * radeon_vm_fence - remember fence for vm 258 * 259 * @rdev: radeon_device pointer 260 * @vm: vm we want to fence 261 * @fence: fence to remember 262 * 263 * Fence the vm (cayman+). 264 * Set the fence used to protect page table and id. 265 * 266 * Global and local mutex must be locked! 267 */ 268 void radeon_vm_fence(struct radeon_device *rdev, 269 struct radeon_vm *vm, 270 struct radeon_fence *fence) 271 { 272 unsigned vm_id = vm->ids[fence->ring].id; 273 274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]); 275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); 276 277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use); 278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); 279 } 280 281 /** 282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 283 * 284 * @vm: requested vm 285 * @bo: requested buffer object 286 * 287 * Find @bo inside the requested vm (cayman+). 288 * Search inside the @bos vm list for the requested vm 289 * Returns the found bo_va or NULL if none is found 290 * 291 * Object has to be reserved! 292 */ 293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 294 struct radeon_bo *bo) 295 { 296 struct radeon_bo_va *bo_va; 297 298 list_for_each_entry(bo_va, &bo->va, bo_list) { 299 if (bo_va->vm == vm) { 300 return bo_va; 301 } 302 } 303 return NULL; 304 } 305 306 /** 307 * radeon_vm_bo_add - add a bo to a specific vm 308 * 309 * @rdev: radeon_device pointer 310 * @vm: requested vm 311 * @bo: radeon buffer object 312 * 313 * Add @bo into the requested vm (cayman+). 314 * Add @bo to the list of bos associated with the vm 315 * Returns newly added bo_va or NULL for failure 316 * 317 * Object has to be reserved! 318 */ 319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 320 struct radeon_vm *vm, 321 struct radeon_bo *bo) 322 { 323 struct radeon_bo_va *bo_va; 324 325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 326 if (bo_va == NULL) { 327 return NULL; 328 } 329 bo_va->vm = vm; 330 bo_va->bo = bo; 331 bo_va->it.start = 0; 332 bo_va->it.last = 0; 333 bo_va->flags = 0; 334 bo_va->ref_count = 1; 335 INIT_LIST_HEAD(&bo_va->bo_list); 336 INIT_LIST_HEAD(&bo_va->vm_status); 337 338 mutex_lock(&vm->mutex); 339 list_add_tail(&bo_va->bo_list, &bo->va); 340 mutex_unlock(&vm->mutex); 341 342 return bo_va; 343 } 344 345 /** 346 * radeon_vm_set_pages - helper to call the right asic function 347 * 348 * @rdev: radeon_device pointer 349 * @ib: indirect buffer to fill with commands 350 * @pe: addr of the page entry 351 * @addr: dst addr to write into pe 352 * @count: number of page entries to update 353 * @incr: increase next addr by incr bytes 354 * @flags: hw access flags 355 * 356 * Traces the parameters and calls the right asic functions 357 * to setup the page table using the DMA. 358 */ 359 static void radeon_vm_set_pages(struct radeon_device *rdev, 360 struct radeon_ib *ib, 361 uint64_t pe, 362 uint64_t addr, unsigned count, 363 uint32_t incr, uint32_t flags) 364 { 365 trace_radeon_vm_set_page(pe, addr, count, incr, flags); 366 367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; 369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); 370 371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { 372 radeon_asic_vm_write_pages(rdev, ib, pe, addr, 373 count, incr, flags); 374 375 } else { 376 radeon_asic_vm_set_pages(rdev, ib, pe, addr, 377 count, incr, flags); 378 } 379 } 380 381 /** 382 * radeon_vm_clear_bo - initially clear the page dir/table 383 * 384 * @rdev: radeon_device pointer 385 * @bo: bo to clear 386 */ 387 static int radeon_vm_clear_bo(struct radeon_device *rdev, 388 struct radeon_bo *bo) 389 { 390 struct radeon_ib ib; 391 unsigned entries; 392 uint64_t addr; 393 int r; 394 395 r = radeon_bo_reserve(bo, false); 396 if (r) 397 return r; 398 399 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 400 if (r) 401 goto error_unreserve; 402 403 addr = radeon_bo_gpu_offset(bo); 404 entries = radeon_bo_size(bo) / 8; 405 406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); 407 if (r) 408 goto error_unreserve; 409 410 ib.length_dw = 0; 411 412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); 413 radeon_asic_vm_pad_ib(rdev, &ib); 414 WARN_ON(ib.length_dw > 64); 415 416 r = radeon_ib_schedule(rdev, &ib, NULL, false); 417 if (r) 418 goto error_free; 419 420 ib.fence->is_vm_update = true; 421 radeon_bo_fence(bo, ib.fence, false); 422 423 error_free: 424 radeon_ib_free(rdev, &ib); 425 426 error_unreserve: 427 radeon_bo_unreserve(bo); 428 return r; 429 } 430 431 /** 432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 433 * 434 * @rdev: radeon_device pointer 435 * @bo_va: bo_va to store the address 436 * @soffset: requested offset of the buffer in the VM address space 437 * @flags: attributes of pages (read/write/valid/etc.) 438 * 439 * Set offset of @bo_va (cayman+). 440 * Validate and set the offset requested within the vm address space. 441 * Returns 0 for success, error for failure. 442 * 443 * Object has to be reserved and gets unreserved by this function! 444 */ 445 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 446 struct radeon_bo_va *bo_va, 447 uint64_t soffset, 448 uint32_t flags) 449 { 450 uint64_t size = radeon_bo_size(bo_va->bo); 451 struct radeon_vm *vm = bo_va->vm; 452 unsigned last_pfn, pt_idx; 453 uint64_t eoffset; 454 int r; 455 456 if (soffset) { 457 /* make sure object fit at this offset */ 458 eoffset = soffset + size; 459 if (soffset >= eoffset) { 460 r = -EINVAL; 461 goto error_unreserve; 462 } 463 464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 465 if (last_pfn > rdev->vm_manager.max_pfn) { 466 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 467 last_pfn, rdev->vm_manager.max_pfn); 468 r = -EINVAL; 469 goto error_unreserve; 470 } 471 472 } else { 473 eoffset = last_pfn = 0; 474 } 475 476 mutex_lock(&vm->mutex); 477 soffset /= RADEON_GPU_PAGE_SIZE; 478 eoffset /= RADEON_GPU_PAGE_SIZE; 479 if (soffset || eoffset) { 480 struct interval_tree_node *it; 481 it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1); 482 if (it && it != &bo_va->it) { 483 struct radeon_bo_va *tmp; 484 tmp = container_of(it, struct radeon_bo_va, it); 485 /* bo and tmp overlap, invalid offset */ 486 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " 487 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, 488 soffset, tmp->bo, tmp->it.start, tmp->it.last); 489 mutex_unlock(&vm->mutex); 490 r = -EINVAL; 491 goto error_unreserve; 492 } 493 } 494 495 if (bo_va->it.start || bo_va->it.last) { 496 /* add a clone of the bo_va to clear the old address */ 497 struct radeon_bo_va *tmp; 498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 499 if (!tmp) { 500 mutex_unlock(&vm->mutex); 501 r = -ENOMEM; 502 goto error_unreserve; 503 } 504 tmp->it.start = bo_va->it.start; 505 tmp->it.last = bo_va->it.last; 506 tmp->vm = vm; 507 tmp->bo = radeon_bo_ref(bo_va->bo); 508 509 interval_tree_remove(&bo_va->it, &vm->va); 510 spin_lock(&vm->status_lock); 511 bo_va->it.start = 0; 512 bo_va->it.last = 0; 513 list_del_init(&bo_va->vm_status); 514 list_add(&tmp->vm_status, &vm->freed); 515 spin_unlock(&vm->status_lock); 516 } 517 518 if (soffset || eoffset) { 519 spin_lock(&vm->status_lock); 520 bo_va->it.start = soffset; 521 bo_va->it.last = eoffset - 1; 522 list_add(&bo_va->vm_status, &vm->cleared); 523 spin_unlock(&vm->status_lock); 524 interval_tree_insert(&bo_va->it, &vm->va); 525 } 526 527 bo_va->flags = flags; 528 529 soffset >>= radeon_vm_block_size; 530 eoffset >>= radeon_vm_block_size; 531 532 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); 533 534 if (eoffset > vm->max_pde_used) 535 vm->max_pde_used = eoffset; 536 537 radeon_bo_unreserve(bo_va->bo); 538 539 /* walk over the address space and allocate the page tables */ 540 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { 541 struct radeon_bo *pt; 542 543 if (vm->page_tables[pt_idx].bo) 544 continue; 545 546 /* drop mutex to allocate and clear page table */ 547 mutex_unlock(&vm->mutex); 548 549 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, 550 RADEON_GPU_PAGE_SIZE, true, 551 RADEON_GEM_DOMAIN_VRAM, 0, 552 NULL, NULL, &pt); 553 if (r) 554 return r; 555 556 r = radeon_vm_clear_bo(rdev, pt); 557 if (r) { 558 radeon_bo_unref(&pt); 559 return r; 560 } 561 562 /* aquire mutex again */ 563 mutex_lock(&vm->mutex); 564 if (vm->page_tables[pt_idx].bo) { 565 /* someone else allocated the pt in the meantime */ 566 mutex_unlock(&vm->mutex); 567 radeon_bo_unref(&pt); 568 mutex_lock(&vm->mutex); 569 continue; 570 } 571 572 vm->page_tables[pt_idx].addr = 0; 573 vm->page_tables[pt_idx].bo = pt; 574 } 575 576 mutex_unlock(&vm->mutex); 577 return 0; 578 579 error_unreserve: 580 radeon_bo_unreserve(bo_va->bo); 581 return r; 582 } 583 584 /** 585 * radeon_vm_map_gart - get the physical address of a gart page 586 * 587 * @rdev: radeon_device pointer 588 * @addr: the unmapped addr 589 * 590 * Look up the physical address of the page that the pte resolves 591 * to (cayman+). 592 * Returns the physical address of the page. 593 */ 594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 595 { 596 uint64_t result; 597 598 /* page table offset */ 599 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; 600 result &= ~RADEON_GPU_PAGE_MASK; 601 602 return result; 603 } 604 605 /** 606 * radeon_vm_page_flags - translate page flags to what the hw uses 607 * 608 * @flags: flags comming from userspace 609 * 610 * Translate the flags the userspace ABI uses to hw flags. 611 */ 612 static uint32_t radeon_vm_page_flags(uint32_t flags) 613 { 614 uint32_t hw_flags = 0; 615 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; 616 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; 617 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; 618 if (flags & RADEON_VM_PAGE_SYSTEM) { 619 hw_flags |= R600_PTE_SYSTEM; 620 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; 621 } 622 return hw_flags; 623 } 624 625 /** 626 * radeon_vm_update_pdes - make sure that page directory is valid 627 * 628 * @rdev: radeon_device pointer 629 * @vm: requested vm 630 * @start: start of GPU address range 631 * @end: end of GPU address range 632 * 633 * Allocates new page tables if necessary 634 * and updates the page directory (cayman+). 635 * Returns 0 for success, error for failure. 636 * 637 * Global and local mutex must be locked! 638 */ 639 int radeon_vm_update_page_directory(struct radeon_device *rdev, 640 struct radeon_vm *vm) 641 { 642 struct radeon_bo *pd = vm->page_directory; 643 uint64_t pd_addr = radeon_bo_gpu_offset(pd); 644 uint32_t incr = RADEON_VM_PTE_COUNT * 8; 645 uint64_t last_pde = ~0, last_pt = ~0; 646 unsigned count = 0, pt_idx, ndw; 647 struct radeon_ib ib; 648 int r; 649 650 /* padding, etc. */ 651 ndw = 64; 652 653 /* assume the worst case */ 654 ndw += vm->max_pde_used * 6; 655 656 /* update too big for an IB */ 657 if (ndw > 0xfffff) 658 return -ENOMEM; 659 660 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 661 if (r) 662 return r; 663 ib.length_dw = 0; 664 665 /* walk over the address space and update the page directory */ 666 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 667 struct radeon_bo *bo = vm->page_tables[pt_idx].bo; 668 uint64_t pde, pt; 669 670 if (bo == NULL) 671 continue; 672 673 pt = radeon_bo_gpu_offset(bo); 674 if (vm->page_tables[pt_idx].addr == pt) 675 continue; 676 vm->page_tables[pt_idx].addr = pt; 677 678 pde = pd_addr + pt_idx * 8; 679 if (((last_pde + 8 * count) != pde) || 680 ((last_pt + incr * count) != pt)) { 681 682 if (count) { 683 radeon_vm_set_pages(rdev, &ib, last_pde, 684 last_pt, count, incr, 685 R600_PTE_VALID); 686 } 687 688 count = 1; 689 last_pde = pde; 690 last_pt = pt; 691 } else { 692 ++count; 693 } 694 } 695 696 if (count) 697 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, 698 incr, R600_PTE_VALID); 699 700 if (ib.length_dw != 0) { 701 radeon_asic_vm_pad_ib(rdev, &ib); 702 703 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true); 704 WARN_ON(ib.length_dw > ndw); 705 r = radeon_ib_schedule(rdev, &ib, NULL, false); 706 if (r) { 707 radeon_ib_free(rdev, &ib); 708 return r; 709 } 710 ib.fence->is_vm_update = true; 711 radeon_bo_fence(pd, ib.fence, false); 712 } 713 radeon_ib_free(rdev, &ib); 714 715 return 0; 716 } 717 718 /** 719 * radeon_vm_frag_ptes - add fragment information to PTEs 720 * 721 * @rdev: radeon_device pointer 722 * @ib: IB for the update 723 * @pe_start: first PTE to handle 724 * @pe_end: last PTE to handle 725 * @addr: addr those PTEs should point to 726 * @flags: hw mapping flags 727 * 728 * Global and local mutex must be locked! 729 */ 730 static void radeon_vm_frag_ptes(struct radeon_device *rdev, 731 struct radeon_ib *ib, 732 uint64_t pe_start, uint64_t pe_end, 733 uint64_t addr, uint32_t flags) 734 { 735 /** 736 * The MC L1 TLB supports variable sized pages, based on a fragment 737 * field in the PTE. When this field is set to a non-zero value, page 738 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 739 * flags are considered valid for all PTEs within the fragment range 740 * and corresponding mappings are assumed to be physically contiguous. 741 * 742 * The L1 TLB can store a single PTE for the whole fragment, 743 * significantly increasing the space available for translation 744 * caching. This leads to large improvements in throughput when the 745 * TLB is under pressure. 746 * 747 * The L2 TLB distributes small and large fragments into two 748 * asymmetric partitions. The large fragment cache is significantly 749 * larger. Thus, we try to use large fragments wherever possible. 750 * Userspace can support this by aligning virtual base address and 751 * allocation size to the fragment size. 752 */ 753 754 /* NI is optimized for 256KB fragments, SI and newer for 64KB */ 755 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || 756 (rdev->family == CHIP_ARUBA)) ? 757 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; 758 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || 759 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; 760 761 uint64_t frag_start = ALIGN(pe_start, frag_align); 762 uint64_t frag_end = pe_end & ~(frag_align - 1); 763 764 unsigned count; 765 766 /* system pages are non continuously */ 767 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || 768 (frag_start >= frag_end)) { 769 770 count = (pe_end - pe_start) / 8; 771 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 772 RADEON_GPU_PAGE_SIZE, flags); 773 return; 774 } 775 776 /* handle the 4K area at the beginning */ 777 if (pe_start != frag_start) { 778 count = (frag_start - pe_start) / 8; 779 radeon_vm_set_pages(rdev, ib, pe_start, addr, count, 780 RADEON_GPU_PAGE_SIZE, flags); 781 addr += RADEON_GPU_PAGE_SIZE * count; 782 } 783 784 /* handle the area in the middle */ 785 count = (frag_end - frag_start) / 8; 786 radeon_vm_set_pages(rdev, ib, frag_start, addr, count, 787 RADEON_GPU_PAGE_SIZE, flags | frag_flags); 788 789 /* handle the 4K area at the end */ 790 if (frag_end != pe_end) { 791 addr += RADEON_GPU_PAGE_SIZE * count; 792 count = (pe_end - frag_end) / 8; 793 radeon_vm_set_pages(rdev, ib, frag_end, addr, count, 794 RADEON_GPU_PAGE_SIZE, flags); 795 } 796 } 797 798 /** 799 * radeon_vm_update_ptes - make sure that page tables are valid 800 * 801 * @rdev: radeon_device pointer 802 * @vm: requested vm 803 * @start: start of GPU address range 804 * @end: end of GPU address range 805 * @dst: destination address to map to 806 * @flags: mapping flags 807 * 808 * Update the page tables in the range @start - @end (cayman+). 809 * 810 * Global and local mutex must be locked! 811 */ 812 static int radeon_vm_update_ptes(struct radeon_device *rdev, 813 struct radeon_vm *vm, 814 struct radeon_ib *ib, 815 uint64_t start, uint64_t end, 816 uint64_t dst, uint32_t flags) 817 { 818 uint64_t mask = RADEON_VM_PTE_COUNT - 1; 819 uint64_t last_pte = ~0, last_dst = ~0; 820 unsigned count = 0; 821 uint64_t addr; 822 823 /* walk over the address space and update the page tables */ 824 for (addr = start; addr < end; ) { 825 uint64_t pt_idx = addr >> radeon_vm_block_size; 826 struct radeon_bo *pt = vm->page_tables[pt_idx].bo; 827 unsigned nptes; 828 uint64_t pte; 829 int r; 830 831 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true); 832 r = reservation_object_reserve_shared(pt->tbo.resv); 833 if (r) 834 return r; 835 836 if ((addr & ~mask) == (end & ~mask)) 837 nptes = end - addr; 838 else 839 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 840 841 pte = radeon_bo_gpu_offset(pt); 842 pte += (addr & mask) * 8; 843 844 if ((last_pte + 8 * count) != pte) { 845 846 if (count) { 847 radeon_vm_frag_ptes(rdev, ib, last_pte, 848 last_pte + 8 * count, 849 last_dst, flags); 850 } 851 852 count = nptes; 853 last_pte = pte; 854 last_dst = dst; 855 } else { 856 count += nptes; 857 } 858 859 addr += nptes; 860 dst += nptes * RADEON_GPU_PAGE_SIZE; 861 } 862 863 if (count) { 864 radeon_vm_frag_ptes(rdev, ib, last_pte, 865 last_pte + 8 * count, 866 last_dst, flags); 867 } 868 869 return 0; 870 } 871 872 /** 873 * radeon_vm_fence_pts - fence page tables after an update 874 * 875 * @vm: requested vm 876 * @start: start of GPU address range 877 * @end: end of GPU address range 878 * @fence: fence to use 879 * 880 * Fence the page tables in the range @start - @end (cayman+). 881 * 882 * Global and local mutex must be locked! 883 */ 884 static void radeon_vm_fence_pts(struct radeon_vm *vm, 885 uint64_t start, uint64_t end, 886 struct radeon_fence *fence) 887 { 888 unsigned i; 889 890 start >>= radeon_vm_block_size; 891 end >>= radeon_vm_block_size; 892 893 for (i = start; i <= end; ++i) 894 radeon_bo_fence(vm->page_tables[i].bo, fence, true); 895 } 896 897 /** 898 * radeon_vm_bo_update - map a bo into the vm page table 899 * 900 * @rdev: radeon_device pointer 901 * @vm: requested vm 902 * @bo: radeon buffer object 903 * @mem: ttm mem 904 * 905 * Fill in the page table entries for @bo (cayman+). 906 * Returns 0 for success, -EINVAL for failure. 907 * 908 * Object have to be reserved and mutex must be locked! 909 */ 910 int radeon_vm_bo_update(struct radeon_device *rdev, 911 struct radeon_bo_va *bo_va, 912 struct ttm_mem_reg *mem) 913 { 914 struct radeon_vm *vm = bo_va->vm; 915 struct radeon_ib ib; 916 unsigned nptes, ncmds, ndw; 917 uint64_t addr; 918 uint32_t flags; 919 int r; 920 921 if (!bo_va->it.start) { 922 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 923 bo_va->bo, vm); 924 return -EINVAL; 925 } 926 927 spin_lock(&vm->status_lock); 928 if (mem) { 929 if (list_empty(&bo_va->vm_status)) { 930 spin_unlock(&vm->status_lock); 931 return 0; 932 } 933 list_del_init(&bo_va->vm_status); 934 } else { 935 list_del(&bo_va->vm_status); 936 list_add(&bo_va->vm_status, &vm->cleared); 937 } 938 spin_unlock(&vm->status_lock); 939 940 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 941 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 942 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; 943 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm)) 944 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; 945 946 if (mem) { 947 addr = mem->start << PAGE_SHIFT; 948 if (mem->mem_type != TTM_PL_SYSTEM) { 949 bo_va->flags |= RADEON_VM_PAGE_VALID; 950 } 951 if (mem->mem_type == TTM_PL_TT) { 952 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 953 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) 954 bo_va->flags |= RADEON_VM_PAGE_SNOOPED; 955 956 } else { 957 addr += rdev->vm_manager.vram_base_offset; 958 } 959 } else { 960 addr = 0; 961 } 962 963 trace_radeon_vm_bo_update(bo_va); 964 965 nptes = bo_va->it.last - bo_va->it.start + 1; 966 967 /* reserve space for one command every (1 << BLOCK_SIZE) entries 968 or 2k dwords (whatever is smaller) */ 969 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; 970 971 /* padding, etc. */ 972 ndw = 64; 973 974 flags = radeon_vm_page_flags(bo_va->flags); 975 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { 976 /* only copy commands needed */ 977 ndw += ncmds * 7; 978 979 } else if (flags & R600_PTE_SYSTEM) { 980 /* header for write data commands */ 981 ndw += ncmds * 4; 982 983 /* body of write data command */ 984 ndw += nptes * 2; 985 986 } else { 987 /* set page commands needed */ 988 ndw += ncmds * 10; 989 990 /* two extra commands for begin/end of fragment */ 991 ndw += 2 * 10; 992 } 993 994 /* update too big for an IB */ 995 if (ndw > 0xfffff) 996 return -ENOMEM; 997 998 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); 999 if (r) 1000 return r; 1001 ib.length_dw = 0; 1002 1003 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { 1004 unsigned i; 1005 1006 for (i = 0; i < RADEON_NUM_RINGS; ++i) 1007 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); 1008 } 1009 1010 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, 1011 bo_va->it.last + 1, addr, 1012 radeon_vm_page_flags(bo_va->flags)); 1013 if (r) { 1014 radeon_ib_free(rdev, &ib); 1015 return r; 1016 } 1017 1018 radeon_asic_vm_pad_ib(rdev, &ib); 1019 WARN_ON(ib.length_dw > ndw); 1020 1021 r = radeon_ib_schedule(rdev, &ib, NULL, false); 1022 if (r) { 1023 radeon_ib_free(rdev, &ib); 1024 return r; 1025 } 1026 ib.fence->is_vm_update = true; 1027 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); 1028 radeon_fence_unref(&bo_va->last_pt_update); 1029 bo_va->last_pt_update = radeon_fence_ref(ib.fence); 1030 radeon_ib_free(rdev, &ib); 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * radeon_vm_clear_freed - clear freed BOs in the PT 1037 * 1038 * @rdev: radeon_device pointer 1039 * @vm: requested vm 1040 * 1041 * Make sure all freed BOs are cleared in the PT. 1042 * Returns 0 for success. 1043 * 1044 * PTs have to be reserved and mutex must be locked! 1045 */ 1046 int radeon_vm_clear_freed(struct radeon_device *rdev, 1047 struct radeon_vm *vm) 1048 { 1049 struct radeon_bo_va *bo_va; 1050 int r = 0; 1051 1052 spin_lock(&vm->status_lock); 1053 while (!list_empty(&vm->freed)) { 1054 bo_va = list_first_entry(&vm->freed, 1055 struct radeon_bo_va, vm_status); 1056 spin_unlock(&vm->status_lock); 1057 1058 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1059 radeon_bo_unref(&bo_va->bo); 1060 radeon_fence_unref(&bo_va->last_pt_update); 1061 spin_lock(&vm->status_lock); 1062 list_del(&bo_va->vm_status); 1063 kfree(bo_va); 1064 if (r) 1065 break; 1066 1067 } 1068 spin_unlock(&vm->status_lock); 1069 return r; 1070 1071 } 1072 1073 /** 1074 * radeon_vm_clear_invalids - clear invalidated BOs in the PT 1075 * 1076 * @rdev: radeon_device pointer 1077 * @vm: requested vm 1078 * 1079 * Make sure all invalidated BOs are cleared in the PT. 1080 * Returns 0 for success. 1081 * 1082 * PTs have to be reserved and mutex must be locked! 1083 */ 1084 int radeon_vm_clear_invalids(struct radeon_device *rdev, 1085 struct radeon_vm *vm) 1086 { 1087 struct radeon_bo_va *bo_va; 1088 int r; 1089 1090 spin_lock(&vm->status_lock); 1091 while (!list_empty(&vm->invalidated)) { 1092 bo_va = list_first_entry(&vm->invalidated, 1093 struct radeon_bo_va, vm_status); 1094 spin_unlock(&vm->status_lock); 1095 1096 r = radeon_vm_bo_update(rdev, bo_va, NULL); 1097 if (r) 1098 return r; 1099 1100 spin_lock(&vm->status_lock); 1101 } 1102 spin_unlock(&vm->status_lock); 1103 1104 return 0; 1105 } 1106 1107 /** 1108 * radeon_vm_bo_rmv - remove a bo to a specific vm 1109 * 1110 * @rdev: radeon_device pointer 1111 * @bo_va: requested bo_va 1112 * 1113 * Remove @bo_va->bo from the requested vm (cayman+). 1114 * 1115 * Object have to be reserved! 1116 */ 1117 void radeon_vm_bo_rmv(struct radeon_device *rdev, 1118 struct radeon_bo_va *bo_va) 1119 { 1120 struct radeon_vm *vm = bo_va->vm; 1121 1122 list_del(&bo_va->bo_list); 1123 1124 mutex_lock(&vm->mutex); 1125 if (bo_va->it.start || bo_va->it.last) 1126 interval_tree_remove(&bo_va->it, &vm->va); 1127 1128 spin_lock(&vm->status_lock); 1129 list_del(&bo_va->vm_status); 1130 if (bo_va->it.start || bo_va->it.last) { 1131 bo_va->bo = radeon_bo_ref(bo_va->bo); 1132 list_add(&bo_va->vm_status, &vm->freed); 1133 } else { 1134 radeon_fence_unref(&bo_va->last_pt_update); 1135 kfree(bo_va); 1136 } 1137 spin_unlock(&vm->status_lock); 1138 1139 mutex_unlock(&vm->mutex); 1140 } 1141 1142 /** 1143 * radeon_vm_bo_invalidate - mark the bo as invalid 1144 * 1145 * @rdev: radeon_device pointer 1146 * @vm: requested vm 1147 * @bo: radeon buffer object 1148 * 1149 * Mark @bo as invalid (cayman+). 1150 */ 1151 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1152 struct radeon_bo *bo) 1153 { 1154 struct radeon_bo_va *bo_va; 1155 1156 list_for_each_entry(bo_va, &bo->va, bo_list) { 1157 spin_lock(&bo_va->vm->status_lock); 1158 if (list_empty(&bo_va->vm_status) && 1159 (bo_va->it.start || bo_va->it.last)) 1160 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1161 spin_unlock(&bo_va->vm->status_lock); 1162 } 1163 } 1164 1165 /** 1166 * radeon_vm_init - initialize a vm instance 1167 * 1168 * @rdev: radeon_device pointer 1169 * @vm: requested vm 1170 * 1171 * Init @vm fields (cayman+). 1172 */ 1173 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1174 { 1175 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, 1176 RADEON_VM_PTE_COUNT * 8); 1177 unsigned pd_size, pd_entries, pts_size; 1178 int i, r; 1179 1180 vm->ib_bo_va = NULL; 1181 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1182 vm->ids[i].id = 0; 1183 vm->ids[i].flushed_updates = NULL; 1184 vm->ids[i].last_id_use = NULL; 1185 } 1186 mutex_init(&vm->mutex); 1187 vm->va = RB_ROOT; 1188 spin_lock_init(&vm->status_lock); 1189 INIT_LIST_HEAD(&vm->invalidated); 1190 INIT_LIST_HEAD(&vm->freed); 1191 INIT_LIST_HEAD(&vm->cleared); 1192 1193 pd_size = radeon_vm_directory_size(rdev); 1194 pd_entries = radeon_vm_num_pdes(rdev); 1195 1196 /* allocate page table array */ 1197 pts_size = pd_entries * sizeof(struct radeon_vm_pt); 1198 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 1199 if (vm->page_tables == NULL) { 1200 DRM_ERROR("Cannot allocate memory for page table array\n"); 1201 return -ENOMEM; 1202 } 1203 1204 r = radeon_bo_create(rdev, pd_size, align, true, 1205 RADEON_GEM_DOMAIN_VRAM, 0, NULL, 1206 NULL, &vm->page_directory); 1207 if (r) 1208 return r; 1209 1210 r = radeon_vm_clear_bo(rdev, vm->page_directory); 1211 if (r) { 1212 radeon_bo_unref(&vm->page_directory); 1213 vm->page_directory = NULL; 1214 return r; 1215 } 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * radeon_vm_fini - tear down a vm instance 1222 * 1223 * @rdev: radeon_device pointer 1224 * @vm: requested vm 1225 * 1226 * Tear down @vm (cayman+). 1227 * Unbind the VM and remove all bos from the vm bo list 1228 */ 1229 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1230 { 1231 struct radeon_bo_va *bo_va, *tmp; 1232 int i, r; 1233 1234 if (!RB_EMPTY_ROOT(&vm->va)) { 1235 dev_err(rdev->dev, "still active bo inside vm\n"); 1236 } 1237 rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) { 1238 interval_tree_remove(&bo_va->it, &vm->va); 1239 r = radeon_bo_reserve(bo_va->bo, false); 1240 if (!r) { 1241 list_del_init(&bo_va->bo_list); 1242 radeon_bo_unreserve(bo_va->bo); 1243 radeon_fence_unref(&bo_va->last_pt_update); 1244 kfree(bo_va); 1245 } 1246 } 1247 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { 1248 radeon_bo_unref(&bo_va->bo); 1249 radeon_fence_unref(&bo_va->last_pt_update); 1250 kfree(bo_va); 1251 } 1252 1253 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 1254 radeon_bo_unref(&vm->page_tables[i].bo); 1255 kfree(vm->page_tables); 1256 1257 radeon_bo_unref(&vm->page_directory); 1258 1259 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 1260 radeon_fence_unref(&vm->ids[i].flushed_updates); 1261 radeon_fence_unref(&vm->ids[i].last_id_use); 1262 } 1263 1264 mutex_destroy(&vm->mutex); 1265 } 1266