xref: /linux/drivers/gpu/drm/radeon/radeon_ring.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  *          Christian König
28  */
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <drm/drmP.h>
32 #include <drm/radeon_drm.h>
33 #include "radeon_reg.h"
34 #include "radeon.h"
35 #include "atom.h"
36 
37 /*
38  * IB
39  * IBs (Indirect Buffers) and areas of GPU accessible memory where
40  * commands are stored.  You can put a pointer to the IB in the
41  * command ring and the hw will fetch the commands from the IB
42  * and execute them.  Generally userspace acceleration drivers
43  * produce command buffers which are send to the kernel and
44  * put in IBs for execution by the requested ring.
45  */
46 static int radeon_debugfs_sa_init(struct radeon_device *rdev);
47 
48 /**
49  * radeon_ib_get - request an IB (Indirect Buffer)
50  *
51  * @rdev: radeon_device pointer
52  * @ring: ring index the IB is associated with
53  * @ib: IB object returned
54  * @size: requested IB size
55  *
56  * Request an IB (all asics).  IBs are allocated using the
57  * suballocator.
58  * Returns 0 on success, error on failure.
59  */
60 int radeon_ib_get(struct radeon_device *rdev, int ring,
61 		  struct radeon_ib *ib, struct radeon_vm *vm,
62 		  unsigned size)
63 {
64 	int i, r;
65 
66 	r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true);
67 	if (r) {
68 		dev_err(rdev->dev, "failed to get a new IB (%d)\n", r);
69 		return r;
70 	}
71 
72 	r = radeon_semaphore_create(rdev, &ib->semaphore);
73 	if (r) {
74 		return r;
75 	}
76 
77 	ib->ring = ring;
78 	ib->fence = NULL;
79 	ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo);
80 	ib->vm = vm;
81 	if (vm) {
82 		/* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address
83 		 * space and soffset is the offset inside the pool bo
84 		 */
85 		ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET;
86 	} else {
87 		ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo);
88 	}
89 	ib->is_const_ib = false;
90 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
91 		ib->sync_to[i] = NULL;
92 
93 	return 0;
94 }
95 
96 /**
97  * radeon_ib_free - free an IB (Indirect Buffer)
98  *
99  * @rdev: radeon_device pointer
100  * @ib: IB object to free
101  *
102  * Free an IB (all asics).
103  */
104 void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib)
105 {
106 	radeon_semaphore_free(rdev, &ib->semaphore, ib->fence);
107 	radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence);
108 	radeon_fence_unref(&ib->fence);
109 }
110 
111 /**
112  * radeon_ib_sync_to - sync to fence before executing the IB
113  *
114  * @ib: IB object to add fence to
115  * @fence: fence to sync to
116  *
117  * Sync to the fence before executing the IB
118  */
119 void radeon_ib_sync_to(struct radeon_ib *ib, struct radeon_fence *fence)
120 {
121 	struct radeon_fence *other;
122 
123 	if (!fence)
124 		return;
125 
126 	other = ib->sync_to[fence->ring];
127 	ib->sync_to[fence->ring] = radeon_fence_later(fence, other);
128 }
129 
130 /**
131  * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring
132  *
133  * @rdev: radeon_device pointer
134  * @ib: IB object to schedule
135  * @const_ib: Const IB to schedule (SI only)
136  *
137  * Schedule an IB on the associated ring (all asics).
138  * Returns 0 on success, error on failure.
139  *
140  * On SI, there are two parallel engines fed from the primary ring,
141  * the CE (Constant Engine) and the DE (Drawing Engine).  Since
142  * resource descriptors have moved to memory, the CE allows you to
143  * prime the caches while the DE is updating register state so that
144  * the resource descriptors will be already in cache when the draw is
145  * processed.  To accomplish this, the userspace driver submits two
146  * IBs, one for the CE and one for the DE.  If there is a CE IB (called
147  * a CONST_IB), it will be put on the ring prior to the DE IB.  Prior
148  * to SI there was just a DE IB.
149  */
150 int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib,
151 		       struct radeon_ib *const_ib)
152 {
153 	struct radeon_ring *ring = &rdev->ring[ib->ring];
154 	bool need_sync = false;
155 	int i, r = 0;
156 
157 	if (!ib->length_dw || !ring->ready) {
158 		/* TODO: Nothings in the ib we should report. */
159 		dev_err(rdev->dev, "couldn't schedule ib\n");
160 		return -EINVAL;
161 	}
162 
163 	/* 64 dwords should be enough for fence too */
164 	r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8);
165 	if (r) {
166 		dev_err(rdev->dev, "scheduling IB failed (%d).\n", r);
167 		return r;
168 	}
169 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
170 		struct radeon_fence *fence = ib->sync_to[i];
171 		if (radeon_fence_need_sync(fence, ib->ring)) {
172 			need_sync = true;
173 			radeon_semaphore_sync_rings(rdev, ib->semaphore,
174 						    fence->ring, ib->ring);
175 			radeon_fence_note_sync(fence, ib->ring);
176 		}
177 	}
178 	/* immediately free semaphore when we don't need to sync */
179 	if (!need_sync) {
180 		radeon_semaphore_free(rdev, &ib->semaphore, NULL);
181 	}
182 	/* if we can't remember our last VM flush then flush now! */
183 	/* XXX figure out why we have to flush for every IB */
184 	if (ib->vm /*&& !ib->vm->last_flush*/) {
185 		radeon_ring_vm_flush(rdev, ib->ring, ib->vm);
186 	}
187 	if (const_ib) {
188 		radeon_ring_ib_execute(rdev, const_ib->ring, const_ib);
189 		radeon_semaphore_free(rdev, &const_ib->semaphore, NULL);
190 	}
191 	radeon_ring_ib_execute(rdev, ib->ring, ib);
192 	r = radeon_fence_emit(rdev, &ib->fence, ib->ring);
193 	if (r) {
194 		dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r);
195 		radeon_ring_unlock_undo(rdev, ring);
196 		return r;
197 	}
198 	if (const_ib) {
199 		const_ib->fence = radeon_fence_ref(ib->fence);
200 	}
201 	/* we just flushed the VM, remember that */
202 	if (ib->vm && !ib->vm->last_flush) {
203 		ib->vm->last_flush = radeon_fence_ref(ib->fence);
204 	}
205 	radeon_ring_unlock_commit(rdev, ring);
206 	return 0;
207 }
208 
209 /**
210  * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool
211  *
212  * @rdev: radeon_device pointer
213  *
214  * Initialize the suballocator to manage a pool of memory
215  * for use as IBs (all asics).
216  * Returns 0 on success, error on failure.
217  */
218 int radeon_ib_pool_init(struct radeon_device *rdev)
219 {
220 	int r;
221 
222 	if (rdev->ib_pool_ready) {
223 		return 0;
224 	}
225 	r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo,
226 				      RADEON_IB_POOL_SIZE*64*1024,
227 				      RADEON_GEM_DOMAIN_GTT);
228 	if (r) {
229 		return r;
230 	}
231 
232 	r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo);
233 	if (r) {
234 		return r;
235 	}
236 
237 	rdev->ib_pool_ready = true;
238 	if (radeon_debugfs_sa_init(rdev)) {
239 		dev_err(rdev->dev, "failed to register debugfs file for SA\n");
240 	}
241 	return 0;
242 }
243 
244 /**
245  * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool
246  *
247  * @rdev: radeon_device pointer
248  *
249  * Tear down the suballocator managing the pool of memory
250  * for use as IBs (all asics).
251  */
252 void radeon_ib_pool_fini(struct radeon_device *rdev)
253 {
254 	if (rdev->ib_pool_ready) {
255 		radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo);
256 		radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo);
257 		rdev->ib_pool_ready = false;
258 	}
259 }
260 
261 /**
262  * radeon_ib_ring_tests - test IBs on the rings
263  *
264  * @rdev: radeon_device pointer
265  *
266  * Test an IB (Indirect Buffer) on each ring.
267  * If the test fails, disable the ring.
268  * Returns 0 on success, error if the primary GFX ring
269  * IB test fails.
270  */
271 int radeon_ib_ring_tests(struct radeon_device *rdev)
272 {
273 	unsigned i;
274 	int r;
275 
276 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
277 		struct radeon_ring *ring = &rdev->ring[i];
278 
279 		if (!ring->ready)
280 			continue;
281 
282 		r = radeon_ib_test(rdev, i, ring);
283 		if (r) {
284 			ring->ready = false;
285 
286 			if (i == RADEON_RING_TYPE_GFX_INDEX) {
287 				/* oh, oh, that's really bad */
288 				DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r);
289 		                rdev->accel_working = false;
290 				return r;
291 
292 			} else {
293 				/* still not good, but we can live with it */
294 				DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r);
295 			}
296 		}
297 	}
298 	return 0;
299 }
300 
301 /*
302  * Rings
303  * Most engines on the GPU are fed via ring buffers.  Ring
304  * buffers are areas of GPU accessible memory that the host
305  * writes commands into and the GPU reads commands out of.
306  * There is a rptr (read pointer) that determines where the
307  * GPU is currently reading, and a wptr (write pointer)
308  * which determines where the host has written.  When the
309  * pointers are equal, the ring is idle.  When the host
310  * writes commands to the ring buffer, it increments the
311  * wptr.  The GPU then starts fetching commands and executes
312  * them until the pointers are equal again.
313  */
314 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring);
315 
316 /**
317  * radeon_ring_write - write a value to the ring
318  *
319  * @ring: radeon_ring structure holding ring information
320  * @v: dword (dw) value to write
321  *
322  * Write a value to the requested ring buffer (all asics).
323  */
324 void radeon_ring_write(struct radeon_ring *ring, uint32_t v)
325 {
326 #if DRM_DEBUG_CODE
327 	if (ring->count_dw <= 0) {
328 		DRM_ERROR("radeon: writing more dwords to the ring than expected!\n");
329 	}
330 #endif
331 	ring->ring[ring->wptr++] = v;
332 	ring->wptr &= ring->ptr_mask;
333 	ring->count_dw--;
334 	ring->ring_free_dw--;
335 }
336 
337 /**
338  * radeon_ring_supports_scratch_reg - check if the ring supports
339  * writing to scratch registers
340  *
341  * @rdev: radeon_device pointer
342  * @ring: radeon_ring structure holding ring information
343  *
344  * Check if a specific ring supports writing to scratch registers (all asics).
345  * Returns true if the ring supports writing to scratch regs, false if not.
346  */
347 bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev,
348 				      struct radeon_ring *ring)
349 {
350 	switch (ring->idx) {
351 	case RADEON_RING_TYPE_GFX_INDEX:
352 	case CAYMAN_RING_TYPE_CP1_INDEX:
353 	case CAYMAN_RING_TYPE_CP2_INDEX:
354 		return true;
355 	default:
356 		return false;
357 	}
358 }
359 
360 u32 radeon_ring_generic_get_rptr(struct radeon_device *rdev,
361 				 struct radeon_ring *ring)
362 {
363 	u32 rptr;
364 
365 	if (rdev->wb.enabled && ring != &rdev->ring[R600_RING_TYPE_UVD_INDEX])
366 		rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]);
367 	else
368 		rptr = RREG32(ring->rptr_reg);
369 	rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
370 
371 	return rptr;
372 }
373 
374 u32 radeon_ring_generic_get_wptr(struct radeon_device *rdev,
375 				 struct radeon_ring *ring)
376 {
377 	u32 wptr;
378 
379 	wptr = RREG32(ring->wptr_reg);
380 	wptr = (wptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift;
381 
382 	return wptr;
383 }
384 
385 void radeon_ring_generic_set_wptr(struct radeon_device *rdev,
386 				  struct radeon_ring *ring)
387 {
388 	WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask);
389 	(void)RREG32(ring->wptr_reg);
390 }
391 
392 /**
393  * radeon_ring_free_size - update the free size
394  *
395  * @rdev: radeon_device pointer
396  * @ring: radeon_ring structure holding ring information
397  *
398  * Update the free dw slots in the ring buffer (all asics).
399  */
400 void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring)
401 {
402 	ring->rptr = radeon_ring_get_rptr(rdev, ring);
403 	/* This works because ring_size is a power of 2 */
404 	ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4));
405 	ring->ring_free_dw -= ring->wptr;
406 	ring->ring_free_dw &= ring->ptr_mask;
407 	if (!ring->ring_free_dw) {
408 		ring->ring_free_dw = ring->ring_size / 4;
409 	}
410 }
411 
412 /**
413  * radeon_ring_alloc - allocate space on the ring buffer
414  *
415  * @rdev: radeon_device pointer
416  * @ring: radeon_ring structure holding ring information
417  * @ndw: number of dwords to allocate in the ring buffer
418  *
419  * Allocate @ndw dwords in the ring buffer (all asics).
420  * Returns 0 on success, error on failure.
421  */
422 int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
423 {
424 	int r;
425 
426 	/* make sure we aren't trying to allocate more space than there is on the ring */
427 	if (ndw > (ring->ring_size / 4))
428 		return -ENOMEM;
429 	/* Align requested size with padding so unlock_commit can
430 	 * pad safely */
431 	radeon_ring_free_size(rdev, ring);
432 	if (ring->ring_free_dw == (ring->ring_size / 4)) {
433 		/* This is an empty ring update lockup info to avoid
434 		 * false positive.
435 		 */
436 		radeon_ring_lockup_update(ring);
437 	}
438 	ndw = (ndw + ring->align_mask) & ~ring->align_mask;
439 	while (ndw > (ring->ring_free_dw - 1)) {
440 		radeon_ring_free_size(rdev, ring);
441 		if (ndw < ring->ring_free_dw) {
442 			break;
443 		}
444 		r = radeon_fence_wait_next_locked(rdev, ring->idx);
445 		if (r)
446 			return r;
447 	}
448 	ring->count_dw = ndw;
449 	ring->wptr_old = ring->wptr;
450 	return 0;
451 }
452 
453 /**
454  * radeon_ring_lock - lock the ring and allocate space on it
455  *
456  * @rdev: radeon_device pointer
457  * @ring: radeon_ring structure holding ring information
458  * @ndw: number of dwords to allocate in the ring buffer
459  *
460  * Lock the ring and allocate @ndw dwords in the ring buffer
461  * (all asics).
462  * Returns 0 on success, error on failure.
463  */
464 int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw)
465 {
466 	int r;
467 
468 	mutex_lock(&rdev->ring_lock);
469 	r = radeon_ring_alloc(rdev, ring, ndw);
470 	if (r) {
471 		mutex_unlock(&rdev->ring_lock);
472 		return r;
473 	}
474 	return 0;
475 }
476 
477 /**
478  * radeon_ring_commit - tell the GPU to execute the new
479  * commands on the ring buffer
480  *
481  * @rdev: radeon_device pointer
482  * @ring: radeon_ring structure holding ring information
483  *
484  * Update the wptr (write pointer) to tell the GPU to
485  * execute new commands on the ring buffer (all asics).
486  */
487 void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring)
488 {
489 	/* We pad to match fetch size */
490 	while (ring->wptr & ring->align_mask) {
491 		radeon_ring_write(ring, ring->nop);
492 	}
493 	DRM_MEMORYBARRIER();
494 	radeon_ring_set_wptr(rdev, ring);
495 }
496 
497 /**
498  * radeon_ring_unlock_commit - tell the GPU to execute the new
499  * commands on the ring buffer and unlock it
500  *
501  * @rdev: radeon_device pointer
502  * @ring: radeon_ring structure holding ring information
503  *
504  * Call radeon_ring_commit() then unlock the ring (all asics).
505  */
506 void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring)
507 {
508 	radeon_ring_commit(rdev, ring);
509 	mutex_unlock(&rdev->ring_lock);
510 }
511 
512 /**
513  * radeon_ring_undo - reset the wptr
514  *
515  * @ring: radeon_ring structure holding ring information
516  *
517  * Reset the driver's copy of the wptr (all asics).
518  */
519 void radeon_ring_undo(struct radeon_ring *ring)
520 {
521 	ring->wptr = ring->wptr_old;
522 }
523 
524 /**
525  * radeon_ring_unlock_undo - reset the wptr and unlock the ring
526  *
527  * @ring: radeon_ring structure holding ring information
528  *
529  * Call radeon_ring_undo() then unlock the ring (all asics).
530  */
531 void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring)
532 {
533 	radeon_ring_undo(ring);
534 	mutex_unlock(&rdev->ring_lock);
535 }
536 
537 /**
538  * radeon_ring_force_activity - add some nop packets to the ring
539  *
540  * @rdev: radeon_device pointer
541  * @ring: radeon_ring structure holding ring information
542  *
543  * Add some nop packets to the ring to force activity (all asics).
544  * Used for lockup detection to see if the rptr is advancing.
545  */
546 void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring)
547 {
548 	int r;
549 
550 	radeon_ring_free_size(rdev, ring);
551 	if (ring->rptr == ring->wptr) {
552 		r = radeon_ring_alloc(rdev, ring, 1);
553 		if (!r) {
554 			radeon_ring_write(ring, ring->nop);
555 			radeon_ring_commit(rdev, ring);
556 		}
557 	}
558 }
559 
560 /**
561  * radeon_ring_lockup_update - update lockup variables
562  *
563  * @ring: radeon_ring structure holding ring information
564  *
565  * Update the last rptr value and timestamp (all asics).
566  */
567 void radeon_ring_lockup_update(struct radeon_ring *ring)
568 {
569 	ring->last_rptr = ring->rptr;
570 	ring->last_activity = jiffies;
571 }
572 
573 /**
574  * radeon_ring_test_lockup() - check if ring is lockedup by recording information
575  * @rdev:       radeon device structure
576  * @ring:       radeon_ring structure holding ring information
577  *
578  * We don't need to initialize the lockup tracking information as we will either
579  * have CP rptr to a different value of jiffies wrap around which will force
580  * initialization of the lockup tracking informations.
581  *
582  * A possible false positivie is if we get call after while and last_cp_rptr ==
583  * the current CP rptr, even if it's unlikely it might happen. To avoid this
584  * if the elapsed time since last call is bigger than 2 second than we return
585  * false and update the tracking information. Due to this the caller must call
586  * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported
587  * the fencing code should be cautious about that.
588  *
589  * Caller should write to the ring to force CP to do something so we don't get
590  * false positive when CP is just gived nothing to do.
591  *
592  **/
593 bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
594 {
595 	unsigned long cjiffies, elapsed;
596 
597 	cjiffies = jiffies;
598 	if (!time_after(cjiffies, ring->last_activity)) {
599 		/* likely a wrap around */
600 		radeon_ring_lockup_update(ring);
601 		return false;
602 	}
603 	ring->rptr = radeon_ring_get_rptr(rdev, ring);
604 	if (ring->rptr != ring->last_rptr) {
605 		/* CP is still working no lockup */
606 		radeon_ring_lockup_update(ring);
607 		return false;
608 	}
609 	elapsed = jiffies_to_msecs(cjiffies - ring->last_activity);
610 	if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) {
611 		dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed);
612 		return true;
613 	}
614 	/* give a chance to the GPU ... */
615 	return false;
616 }
617 
618 /**
619  * radeon_ring_backup - Back up the content of a ring
620  *
621  * @rdev: radeon_device pointer
622  * @ring: the ring we want to back up
623  *
624  * Saves all unprocessed commits from a ring, returns the number of dwords saved.
625  */
626 unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring,
627 			    uint32_t **data)
628 {
629 	unsigned size, ptr, i;
630 
631 	/* just in case lock the ring */
632 	mutex_lock(&rdev->ring_lock);
633 	*data = NULL;
634 
635 	if (ring->ring_obj == NULL) {
636 		mutex_unlock(&rdev->ring_lock);
637 		return 0;
638 	}
639 
640 	/* it doesn't make sense to save anything if all fences are signaled */
641 	if (!radeon_fence_count_emitted(rdev, ring->idx)) {
642 		mutex_unlock(&rdev->ring_lock);
643 		return 0;
644 	}
645 
646 	/* calculate the number of dw on the ring */
647 	if (ring->rptr_save_reg)
648 		ptr = RREG32(ring->rptr_save_reg);
649 	else if (rdev->wb.enabled)
650 		ptr = le32_to_cpu(*ring->next_rptr_cpu_addr);
651 	else {
652 		/* no way to read back the next rptr */
653 		mutex_unlock(&rdev->ring_lock);
654 		return 0;
655 	}
656 
657 	size = ring->wptr + (ring->ring_size / 4);
658 	size -= ptr;
659 	size &= ring->ptr_mask;
660 	if (size == 0) {
661 		mutex_unlock(&rdev->ring_lock);
662 		return 0;
663 	}
664 
665 	/* and then save the content of the ring */
666 	*data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
667 	if (!*data) {
668 		mutex_unlock(&rdev->ring_lock);
669 		return 0;
670 	}
671 	for (i = 0; i < size; ++i) {
672 		(*data)[i] = ring->ring[ptr++];
673 		ptr &= ring->ptr_mask;
674 	}
675 
676 	mutex_unlock(&rdev->ring_lock);
677 	return size;
678 }
679 
680 /**
681  * radeon_ring_restore - append saved commands to the ring again
682  *
683  * @rdev: radeon_device pointer
684  * @ring: ring to append commands to
685  * @size: number of dwords we want to write
686  * @data: saved commands
687  *
688  * Allocates space on the ring and restore the previously saved commands.
689  */
690 int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring,
691 			unsigned size, uint32_t *data)
692 {
693 	int i, r;
694 
695 	if (!size || !data)
696 		return 0;
697 
698 	/* restore the saved ring content */
699 	r = radeon_ring_lock(rdev, ring, size);
700 	if (r)
701 		return r;
702 
703 	for (i = 0; i < size; ++i) {
704 		radeon_ring_write(ring, data[i]);
705 	}
706 
707 	radeon_ring_unlock_commit(rdev, ring);
708 	kfree(data);
709 	return 0;
710 }
711 
712 /**
713  * radeon_ring_init - init driver ring struct.
714  *
715  * @rdev: radeon_device pointer
716  * @ring: radeon_ring structure holding ring information
717  * @ring_size: size of the ring
718  * @rptr_offs: offset of the rptr writeback location in the WB buffer
719  * @rptr_reg: MMIO offset of the rptr register
720  * @wptr_reg: MMIO offset of the wptr register
721  * @ptr_reg_shift: bit offset of the rptr/wptr values
722  * @ptr_reg_mask: bit mask of the rptr/wptr values
723  * @nop: nop packet for this ring
724  *
725  * Initialize the driver information for the selected ring (all asics).
726  * Returns 0 on success, error on failure.
727  */
728 int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size,
729 		     unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg,
730 		     u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop)
731 {
732 	int r;
733 
734 	ring->ring_size = ring_size;
735 	ring->rptr_offs = rptr_offs;
736 	ring->rptr_reg = rptr_reg;
737 	ring->wptr_reg = wptr_reg;
738 	ring->ptr_reg_shift = ptr_reg_shift;
739 	ring->ptr_reg_mask = ptr_reg_mask;
740 	ring->nop = nop;
741 	/* Allocate ring buffer */
742 	if (ring->ring_obj == NULL) {
743 		r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true,
744 				     RADEON_GEM_DOMAIN_GTT,
745 				     NULL, &ring->ring_obj);
746 		if (r) {
747 			dev_err(rdev->dev, "(%d) ring create failed\n", r);
748 			return r;
749 		}
750 		r = radeon_bo_reserve(ring->ring_obj, false);
751 		if (unlikely(r != 0))
752 			return r;
753 		r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT,
754 					&ring->gpu_addr);
755 		if (r) {
756 			radeon_bo_unreserve(ring->ring_obj);
757 			dev_err(rdev->dev, "(%d) ring pin failed\n", r);
758 			return r;
759 		}
760 		r = radeon_bo_kmap(ring->ring_obj,
761 				       (void **)&ring->ring);
762 		radeon_bo_unreserve(ring->ring_obj);
763 		if (r) {
764 			dev_err(rdev->dev, "(%d) ring map failed\n", r);
765 			return r;
766 		}
767 	}
768 	ring->ptr_mask = (ring->ring_size / 4) - 1;
769 	ring->ring_free_dw = ring->ring_size / 4;
770 	if (rdev->wb.enabled) {
771 		u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4);
772 		ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index;
773 		ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4];
774 	}
775 	if (radeon_debugfs_ring_init(rdev, ring)) {
776 		DRM_ERROR("Failed to register debugfs file for rings !\n");
777 	}
778 	radeon_ring_lockup_update(ring);
779 	return 0;
780 }
781 
782 /**
783  * radeon_ring_fini - tear down the driver ring struct.
784  *
785  * @rdev: radeon_device pointer
786  * @ring: radeon_ring structure holding ring information
787  *
788  * Tear down the driver information for the selected ring (all asics).
789  */
790 void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring)
791 {
792 	int r;
793 	struct radeon_bo *ring_obj;
794 
795 	mutex_lock(&rdev->ring_lock);
796 	ring_obj = ring->ring_obj;
797 	ring->ready = false;
798 	ring->ring = NULL;
799 	ring->ring_obj = NULL;
800 	mutex_unlock(&rdev->ring_lock);
801 
802 	if (ring_obj) {
803 		r = radeon_bo_reserve(ring_obj, false);
804 		if (likely(r == 0)) {
805 			radeon_bo_kunmap(ring_obj);
806 			radeon_bo_unpin(ring_obj);
807 			radeon_bo_unreserve(ring_obj);
808 		}
809 		radeon_bo_unref(&ring_obj);
810 	}
811 }
812 
813 /*
814  * Debugfs info
815  */
816 #if defined(CONFIG_DEBUG_FS)
817 
818 static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
819 {
820 	struct drm_info_node *node = (struct drm_info_node *) m->private;
821 	struct drm_device *dev = node->minor->dev;
822 	struct radeon_device *rdev = dev->dev_private;
823 	int ridx = *(int*)node->info_ent->data;
824 	struct radeon_ring *ring = &rdev->ring[ridx];
825 	unsigned count, i, j;
826 	u32 tmp;
827 
828 	radeon_ring_free_size(rdev, ring);
829 	count = (ring->ring_size / 4) - ring->ring_free_dw;
830 	tmp = radeon_ring_get_wptr(rdev, ring);
831 	seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp);
832 	tmp = radeon_ring_get_rptr(rdev, ring);
833 	seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp);
834 	if (ring->rptr_save_reg) {
835 		seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
836 			   RREG32(ring->rptr_save_reg));
837 	}
838 	seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr);
839 	seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr);
840 	seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr);
841 	seq_printf(m, "last semaphore wait addr   : 0x%016llx\n", ring->last_semaphore_wait_addr);
842 	seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
843 	seq_printf(m, "%u dwords in ring\n", count);
844 	/* print 8 dw before current rptr as often it's the last executed
845 	 * packet that is the root issue
846 	 */
847 	i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask;
848 	for (j = 0; j <= (count + 32); j++) {
849 		seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]);
850 		i = (i + 1) & ring->ptr_mask;
851 	}
852 	return 0;
853 }
854 
855 static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX;
856 static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX;
857 static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX;
858 static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX;
859 static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX;
860 static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX;
861 
862 static struct drm_info_list radeon_debugfs_ring_info_list[] = {
863 	{"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index},
864 	{"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index},
865 	{"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index},
866 	{"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index},
867 	{"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index},
868 	{"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index},
869 };
870 
871 static int radeon_debugfs_sa_info(struct seq_file *m, void *data)
872 {
873 	struct drm_info_node *node = (struct drm_info_node *) m->private;
874 	struct drm_device *dev = node->minor->dev;
875 	struct radeon_device *rdev = dev->dev_private;
876 
877 	radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m);
878 
879 	return 0;
880 
881 }
882 
883 static struct drm_info_list radeon_debugfs_sa_list[] = {
884         {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL},
885 };
886 
887 #endif
888 
889 static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring)
890 {
891 #if defined(CONFIG_DEBUG_FS)
892 	unsigned i;
893 	for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) {
894 		struct drm_info_list *info = &radeon_debugfs_ring_info_list[i];
895 		int ridx = *(int*)radeon_debugfs_ring_info_list[i].data;
896 		unsigned r;
897 
898 		if (&rdev->ring[ridx] != ring)
899 			continue;
900 
901 		r = radeon_debugfs_add_files(rdev, info, 1);
902 		if (r)
903 			return r;
904 	}
905 #endif
906 	return 0;
907 }
908 
909 static int radeon_debugfs_sa_init(struct radeon_device *rdev)
910 {
911 #if defined(CONFIG_DEBUG_FS)
912 	return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1);
913 #else
914 	return 0;
915 #endif
916 }
917