xref: /linux/drivers/gpu/drm/radeon/radeon_gart.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include "drmP.h"
29 #include "radeon_drm.h"
30 #include "radeon.h"
31 #include "radeon_reg.h"
32 
33 /*
34  * GART
35  * The GART (Graphics Aperture Remapping Table) is an aperture
36  * in the GPU's address space.  System pages can be mapped into
37  * the aperture and look like contiguous pages from the GPU's
38  * perspective.  A page table maps the pages in the aperture
39  * to the actual backing pages in system memory.
40  *
41  * Radeon GPUs support both an internal GART, as described above,
42  * and AGP.  AGP works similarly, but the GART table is configured
43  * and maintained by the northbridge rather than the driver.
44  * Radeon hw has a separate AGP aperture that is programmed to
45  * point to the AGP aperture provided by the northbridge and the
46  * requests are passed through to the northbridge aperture.
47  * Both AGP and internal GART can be used at the same time, however
48  * that is not currently supported by the driver.
49  *
50  * This file handles the common internal GART management.
51  */
52 
53 /*
54  * Common GART table functions.
55  */
56 /**
57  * radeon_gart_table_ram_alloc - allocate system ram for gart page table
58  *
59  * @rdev: radeon_device pointer
60  *
61  * Allocate system memory for GART page table
62  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
63  * gart table to be in system memory.
64  * Returns 0 for success, -ENOMEM for failure.
65  */
66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
67 {
68 	void *ptr;
69 
70 	ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
71 				   &rdev->gart.table_addr);
72 	if (ptr == NULL) {
73 		return -ENOMEM;
74 	}
75 #ifdef CONFIG_X86
76 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
77 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
78 		set_memory_uc((unsigned long)ptr,
79 			      rdev->gart.table_size >> PAGE_SHIFT);
80 	}
81 #endif
82 	rdev->gart.ptr = ptr;
83 	memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
84 	return 0;
85 }
86 
87 /**
88  * radeon_gart_table_ram_free - free system ram for gart page table
89  *
90  * @rdev: radeon_device pointer
91  *
92  * Free system memory for GART page table
93  * (r1xx-r3xx, non-pcie r4xx, rs400).  These asics require the
94  * gart table to be in system memory.
95  */
96 void radeon_gart_table_ram_free(struct radeon_device *rdev)
97 {
98 	if (rdev->gart.ptr == NULL) {
99 		return;
100 	}
101 #ifdef CONFIG_X86
102 	if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
103 	    rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
104 		set_memory_wb((unsigned long)rdev->gart.ptr,
105 			      rdev->gart.table_size >> PAGE_SHIFT);
106 	}
107 #endif
108 	pci_free_consistent(rdev->pdev, rdev->gart.table_size,
109 			    (void *)rdev->gart.ptr,
110 			    rdev->gart.table_addr);
111 	rdev->gart.ptr = NULL;
112 	rdev->gart.table_addr = 0;
113 }
114 
115 /**
116  * radeon_gart_table_vram_alloc - allocate vram for gart page table
117  *
118  * @rdev: radeon_device pointer
119  *
120  * Allocate video memory for GART page table
121  * (pcie r4xx, r5xx+).  These asics require the
122  * gart table to be in video memory.
123  * Returns 0 for success, error for failure.
124  */
125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
126 {
127 	int r;
128 
129 	if (rdev->gart.robj == NULL) {
130 		r = radeon_bo_create(rdev, rdev->gart.table_size,
131 				     PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
132 				     NULL, &rdev->gart.robj);
133 		if (r) {
134 			return r;
135 		}
136 	}
137 	return 0;
138 }
139 
140 /**
141  * radeon_gart_table_vram_pin - pin gart page table in vram
142  *
143  * @rdev: radeon_device pointer
144  *
145  * Pin the GART page table in vram so it will not be moved
146  * by the memory manager (pcie r4xx, r5xx+).  These asics require the
147  * gart table to be in video memory.
148  * Returns 0 for success, error for failure.
149  */
150 int radeon_gart_table_vram_pin(struct radeon_device *rdev)
151 {
152 	uint64_t gpu_addr;
153 	int r;
154 
155 	r = radeon_bo_reserve(rdev->gart.robj, false);
156 	if (unlikely(r != 0))
157 		return r;
158 	r = radeon_bo_pin(rdev->gart.robj,
159 				RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
160 	if (r) {
161 		radeon_bo_unreserve(rdev->gart.robj);
162 		return r;
163 	}
164 	r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
165 	if (r)
166 		radeon_bo_unpin(rdev->gart.robj);
167 	radeon_bo_unreserve(rdev->gart.robj);
168 	rdev->gart.table_addr = gpu_addr;
169 	return r;
170 }
171 
172 /**
173  * radeon_gart_table_vram_unpin - unpin gart page table in vram
174  *
175  * @rdev: radeon_device pointer
176  *
177  * Unpin the GART page table in vram (pcie r4xx, r5xx+).
178  * These asics require the gart table to be in video memory.
179  */
180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
181 {
182 	int r;
183 
184 	if (rdev->gart.robj == NULL) {
185 		return;
186 	}
187 	r = radeon_bo_reserve(rdev->gart.robj, false);
188 	if (likely(r == 0)) {
189 		radeon_bo_kunmap(rdev->gart.robj);
190 		radeon_bo_unpin(rdev->gart.robj);
191 		radeon_bo_unreserve(rdev->gart.robj);
192 		rdev->gart.ptr = NULL;
193 	}
194 }
195 
196 /**
197  * radeon_gart_table_vram_free - free gart page table vram
198  *
199  * @rdev: radeon_device pointer
200  *
201  * Free the video memory used for the GART page table
202  * (pcie r4xx, r5xx+).  These asics require the gart table to
203  * be in video memory.
204  */
205 void radeon_gart_table_vram_free(struct radeon_device *rdev)
206 {
207 	if (rdev->gart.robj == NULL) {
208 		return;
209 	}
210 	radeon_gart_table_vram_unpin(rdev);
211 	radeon_bo_unref(&rdev->gart.robj);
212 }
213 
214 /*
215  * Common gart functions.
216  */
217 /**
218  * radeon_gart_unbind - unbind pages from the gart page table
219  *
220  * @rdev: radeon_device pointer
221  * @offset: offset into the GPU's gart aperture
222  * @pages: number of pages to unbind
223  *
224  * Unbinds the requested pages from the gart page table and
225  * replaces them with the dummy page (all asics).
226  */
227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
228 			int pages)
229 {
230 	unsigned t;
231 	unsigned p;
232 	int i, j;
233 	u64 page_base;
234 
235 	if (!rdev->gart.ready) {
236 		WARN(1, "trying to unbind memory from uninitialized GART !\n");
237 		return;
238 	}
239 	t = offset / RADEON_GPU_PAGE_SIZE;
240 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
241 	for (i = 0; i < pages; i++, p++) {
242 		if (rdev->gart.pages[p]) {
243 			rdev->gart.pages[p] = NULL;
244 			rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
245 			page_base = rdev->gart.pages_addr[p];
246 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
247 				if (rdev->gart.ptr) {
248 					radeon_gart_set_page(rdev, t, page_base);
249 				}
250 				page_base += RADEON_GPU_PAGE_SIZE;
251 			}
252 		}
253 	}
254 	mb();
255 	radeon_gart_tlb_flush(rdev);
256 }
257 
258 /**
259  * radeon_gart_bind - bind pages into the gart page table
260  *
261  * @rdev: radeon_device pointer
262  * @offset: offset into the GPU's gart aperture
263  * @pages: number of pages to bind
264  * @pagelist: pages to bind
265  * @dma_addr: DMA addresses of pages
266  *
267  * Binds the requested pages to the gart page table
268  * (all asics).
269  * Returns 0 for success, -EINVAL for failure.
270  */
271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
272 		     int pages, struct page **pagelist, dma_addr_t *dma_addr)
273 {
274 	unsigned t;
275 	unsigned p;
276 	uint64_t page_base;
277 	int i, j;
278 
279 	if (!rdev->gart.ready) {
280 		WARN(1, "trying to bind memory to uninitialized GART !\n");
281 		return -EINVAL;
282 	}
283 	t = offset / RADEON_GPU_PAGE_SIZE;
284 	p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
285 
286 	for (i = 0; i < pages; i++, p++) {
287 		rdev->gart.pages_addr[p] = dma_addr[i];
288 		rdev->gart.pages[p] = pagelist[i];
289 		if (rdev->gart.ptr) {
290 			page_base = rdev->gart.pages_addr[p];
291 			for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
292 				radeon_gart_set_page(rdev, t, page_base);
293 				page_base += RADEON_GPU_PAGE_SIZE;
294 			}
295 		}
296 	}
297 	mb();
298 	radeon_gart_tlb_flush(rdev);
299 	return 0;
300 }
301 
302 /**
303  * radeon_gart_restore - bind all pages in the gart page table
304  *
305  * @rdev: radeon_device pointer
306  *
307  * Binds all pages in the gart page table (all asics).
308  * Used to rebuild the gart table on device startup or resume.
309  */
310 void radeon_gart_restore(struct radeon_device *rdev)
311 {
312 	int i, j, t;
313 	u64 page_base;
314 
315 	if (!rdev->gart.ptr) {
316 		return;
317 	}
318 	for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
319 		page_base = rdev->gart.pages_addr[i];
320 		for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
321 			radeon_gart_set_page(rdev, t, page_base);
322 			page_base += RADEON_GPU_PAGE_SIZE;
323 		}
324 	}
325 	mb();
326 	radeon_gart_tlb_flush(rdev);
327 }
328 
329 /**
330  * radeon_gart_init - init the driver info for managing the gart
331  *
332  * @rdev: radeon_device pointer
333  *
334  * Allocate the dummy page and init the gart driver info (all asics).
335  * Returns 0 for success, error for failure.
336  */
337 int radeon_gart_init(struct radeon_device *rdev)
338 {
339 	int r, i;
340 
341 	if (rdev->gart.pages) {
342 		return 0;
343 	}
344 	/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
345 	if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
346 		DRM_ERROR("Page size is smaller than GPU page size!\n");
347 		return -EINVAL;
348 	}
349 	r = radeon_dummy_page_init(rdev);
350 	if (r)
351 		return r;
352 	/* Compute table size */
353 	rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
354 	rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
355 	DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
356 		 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
357 	/* Allocate pages table */
358 	rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages,
359 				   GFP_KERNEL);
360 	if (rdev->gart.pages == NULL) {
361 		radeon_gart_fini(rdev);
362 		return -ENOMEM;
363 	}
364 	rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) *
365 					rdev->gart.num_cpu_pages, GFP_KERNEL);
366 	if (rdev->gart.pages_addr == NULL) {
367 		radeon_gart_fini(rdev);
368 		return -ENOMEM;
369 	}
370 	/* set GART entry to point to the dummy page by default */
371 	for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
372 		rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
373 	}
374 	return 0;
375 }
376 
377 /**
378  * radeon_gart_fini - tear down the driver info for managing the gart
379  *
380  * @rdev: radeon_device pointer
381  *
382  * Tear down the gart driver info and free the dummy page (all asics).
383  */
384 void radeon_gart_fini(struct radeon_device *rdev)
385 {
386 	if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
387 		/* unbind pages */
388 		radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
389 	}
390 	rdev->gart.ready = false;
391 	kfree(rdev->gart.pages);
392 	kfree(rdev->gart.pages_addr);
393 	rdev->gart.pages = NULL;
394 	rdev->gart.pages_addr = NULL;
395 
396 	radeon_dummy_page_fini(rdev);
397 }
398 
399 /*
400  * GPUVM
401  * GPUVM is similar to the legacy gart on older asics, however
402  * rather than there being a single global gart table
403  * for the entire GPU, there are multiple VM page tables active
404  * at any given time.  The VM page tables can contain a mix
405  * vram pages and system memory pages and system memory pages
406  * can be mapped as snooped (cached system pages) or unsnooped
407  * (uncached system pages).
408  * Each VM has an ID associated with it and there is a page table
409  * associated with each VMID.  When execting a command buffer,
410  * the kernel tells the the ring what VMID to use for that command
411  * buffer.  VMIDs are allocated dynamically as commands are submitted.
412  * The userspace drivers maintain their own address space and the kernel
413  * sets up their pages tables accordingly when they submit their
414  * command buffers and a VMID is assigned.
415  * Cayman/Trinity support up to 8 active VMs at any given time;
416  * SI supports 16.
417  */
418 
419 /*
420  * vm helpers
421  *
422  * TODO bind a default page at vm initialization for default address
423  */
424 
425 /**
426  * radeon_vm_manager_init - init the vm manager
427  *
428  * @rdev: radeon_device pointer
429  *
430  * Init the vm manager (cayman+).
431  * Returns 0 for success, error for failure.
432  */
433 int radeon_vm_manager_init(struct radeon_device *rdev)
434 {
435 	struct radeon_vm *vm;
436 	struct radeon_bo_va *bo_va;
437 	int r;
438 
439 	if (!rdev->vm_manager.enabled) {
440 		/* mark first vm as always in use, it's the system one */
441 		/* allocate enough for 2 full VM pts */
442 		r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
443 					      rdev->vm_manager.max_pfn * 8 * 2,
444 					      RADEON_GEM_DOMAIN_VRAM);
445 		if (r) {
446 			dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
447 				(rdev->vm_manager.max_pfn * 8) >> 10);
448 			return r;
449 		}
450 
451 		r = rdev->vm_manager.funcs->init(rdev);
452 		if (r)
453 			return r;
454 
455 		rdev->vm_manager.enabled = true;
456 
457 		r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
458 		if (r)
459 			return r;
460 	}
461 
462 	/* restore page table */
463 	list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) {
464 		if (vm->id == -1)
465 			continue;
466 
467 		list_for_each_entry(bo_va, &vm->va, vm_list) {
468 			struct ttm_mem_reg *mem = NULL;
469 			if (bo_va->valid)
470 				mem = &bo_va->bo->tbo.mem;
471 
472 			bo_va->valid = false;
473 			r = radeon_vm_bo_update_pte(rdev, vm, bo_va->bo, mem);
474 			if (r) {
475 				DRM_ERROR("Failed to update pte for vm %d!\n", vm->id);
476 			}
477 		}
478 
479 		r = rdev->vm_manager.funcs->bind(rdev, vm, vm->id);
480 		if (r) {
481 			DRM_ERROR("Failed to bind vm %d!\n", vm->id);
482 		}
483 	}
484 	return 0;
485 }
486 
487 /* global mutex must be lock */
488 /**
489  * radeon_vm_unbind_locked - unbind a specific vm
490  *
491  * @rdev: radeon_device pointer
492  * @vm: vm to unbind
493  *
494  * Unbind the requested vm (cayman+).
495  * Wait for use of the VM to finish, then unbind the page table,
496  * and free the page table memory.
497  */
498 static void radeon_vm_unbind_locked(struct radeon_device *rdev,
499 				    struct radeon_vm *vm)
500 {
501 	struct radeon_bo_va *bo_va;
502 
503 	if (vm->id == -1) {
504 		return;
505 	}
506 
507 	/* wait for vm use to end */
508 	while (vm->fence) {
509 		int r;
510 		r = radeon_fence_wait(vm->fence, false);
511 		if (r)
512 			DRM_ERROR("error while waiting for fence: %d\n", r);
513 		if (r == -EDEADLK) {
514 			mutex_unlock(&rdev->vm_manager.lock);
515 			r = radeon_gpu_reset(rdev);
516 			mutex_lock(&rdev->vm_manager.lock);
517 			if (!r)
518 				continue;
519 		}
520 		break;
521 	}
522 	radeon_fence_unref(&vm->fence);
523 
524 	/* hw unbind */
525 	rdev->vm_manager.funcs->unbind(rdev, vm);
526 	rdev->vm_manager.use_bitmap &= ~(1 << vm->id);
527 	list_del_init(&vm->list);
528 	vm->id = -1;
529 	radeon_sa_bo_free(rdev, &vm->sa_bo, NULL);
530 	vm->pt = NULL;
531 
532 	list_for_each_entry(bo_va, &vm->va, vm_list) {
533 		bo_va->valid = false;
534 	}
535 }
536 
537 /**
538  * radeon_vm_manager_fini - tear down the vm manager
539  *
540  * @rdev: radeon_device pointer
541  *
542  * Tear down the VM manager (cayman+).
543  */
544 void radeon_vm_manager_fini(struct radeon_device *rdev)
545 {
546 	struct radeon_vm *vm, *tmp;
547 
548 	if (!rdev->vm_manager.enabled)
549 		return;
550 
551 	mutex_lock(&rdev->vm_manager.lock);
552 	/* unbind all active vm */
553 	list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
554 		radeon_vm_unbind_locked(rdev, vm);
555 	}
556 	rdev->vm_manager.funcs->fini(rdev);
557 	mutex_unlock(&rdev->vm_manager.lock);
558 
559 	radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
560 	radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
561 	rdev->vm_manager.enabled = false;
562 }
563 
564 /* global mutex must be locked */
565 /**
566  * radeon_vm_unbind - locked version of unbind
567  *
568  * @rdev: radeon_device pointer
569  * @vm: vm to unbind
570  *
571  * Locked version that wraps radeon_vm_unbind_locked (cayman+).
572  */
573 void radeon_vm_unbind(struct radeon_device *rdev, struct radeon_vm *vm)
574 {
575 	mutex_lock(&vm->mutex);
576 	radeon_vm_unbind_locked(rdev, vm);
577 	mutex_unlock(&vm->mutex);
578 }
579 
580 /* global and local mutex must be locked */
581 /**
582  * radeon_vm_bind - bind a page table to a VMID
583  *
584  * @rdev: radeon_device pointer
585  * @vm: vm to bind
586  *
587  * Bind the requested vm (cayman+).
588  * Suballocate memory for the page table, allocate a VMID
589  * and bind the page table to it, and finally start to populate
590  * the page table.
591  * Returns 0 for success, error for failure.
592  */
593 int radeon_vm_bind(struct radeon_device *rdev, struct radeon_vm *vm)
594 {
595 	struct radeon_vm *vm_evict;
596 	unsigned i;
597 	int id = -1, r;
598 
599 	if (vm == NULL) {
600 		return -EINVAL;
601 	}
602 
603 	if (vm->id != -1) {
604 		/* update lru */
605 		list_del_init(&vm->list);
606 		list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
607 		return 0;
608 	}
609 
610 retry:
611 	r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->sa_bo,
612 			     RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8),
613 			     RADEON_GPU_PAGE_SIZE, false);
614 	if (r) {
615 		if (list_empty(&rdev->vm_manager.lru_vm)) {
616 			return r;
617 		}
618 		vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
619 		radeon_vm_unbind(rdev, vm_evict);
620 		goto retry;
621 	}
622 	vm->pt = radeon_sa_bo_cpu_addr(vm->sa_bo);
623 	vm->pt_gpu_addr = radeon_sa_bo_gpu_addr(vm->sa_bo);
624 	memset(vm->pt, 0, RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8));
625 
626 retry_id:
627 	/* search for free vm */
628 	for (i = 0; i < rdev->vm_manager.nvm; i++) {
629 		if (!(rdev->vm_manager.use_bitmap & (1 << i))) {
630 			id = i;
631 			break;
632 		}
633 	}
634 	/* evict vm if necessary */
635 	if (id == -1) {
636 		vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
637 		radeon_vm_unbind(rdev, vm_evict);
638 		goto retry_id;
639 	}
640 
641 	/* do hw bind */
642 	r = rdev->vm_manager.funcs->bind(rdev, vm, id);
643 	if (r) {
644 		radeon_sa_bo_free(rdev, &vm->sa_bo, NULL);
645 		return r;
646 	}
647 	rdev->vm_manager.use_bitmap |= 1 << id;
648 	vm->id = id;
649 	list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
650 	return radeon_vm_bo_update_pte(rdev, vm, rdev->ring_tmp_bo.bo,
651 				       &rdev->ring_tmp_bo.bo->tbo.mem);
652 }
653 
654 /* object have to be reserved */
655 /**
656  * radeon_vm_bo_add - add a bo to a specific vm
657  *
658  * @rdev: radeon_device pointer
659  * @vm: requested vm
660  * @bo: radeon buffer object
661  * @offset: requested offset of the buffer in the VM address space
662  * @flags: attributes of pages (read/write/valid/etc.)
663  *
664  * Add @bo into the requested vm (cayman+).
665  * Add @bo to the list of bos associated with the vm and validate
666  * the offset requested within the vm address space.
667  * Returns 0 for success, error for failure.
668  */
669 int radeon_vm_bo_add(struct radeon_device *rdev,
670 		     struct radeon_vm *vm,
671 		     struct radeon_bo *bo,
672 		     uint64_t offset,
673 		     uint32_t flags)
674 {
675 	struct radeon_bo_va *bo_va, *tmp;
676 	struct list_head *head;
677 	uint64_t size = radeon_bo_size(bo), last_offset = 0;
678 	unsigned last_pfn;
679 
680 	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
681 	if (bo_va == NULL) {
682 		return -ENOMEM;
683 	}
684 	bo_va->vm = vm;
685 	bo_va->bo = bo;
686 	bo_va->soffset = offset;
687 	bo_va->eoffset = offset + size;
688 	bo_va->flags = flags;
689 	bo_va->valid = false;
690 	INIT_LIST_HEAD(&bo_va->bo_list);
691 	INIT_LIST_HEAD(&bo_va->vm_list);
692 	/* make sure object fit at this offset */
693 	if (bo_va->soffset >= bo_va->eoffset) {
694 		kfree(bo_va);
695 		return -EINVAL;
696 	}
697 
698 	last_pfn = bo_va->eoffset / RADEON_GPU_PAGE_SIZE;
699 	if (last_pfn > rdev->vm_manager.max_pfn) {
700 		kfree(bo_va);
701 		dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
702 			last_pfn, rdev->vm_manager.max_pfn);
703 		return -EINVAL;
704 	}
705 
706 	mutex_lock(&vm->mutex);
707 	if (last_pfn > vm->last_pfn) {
708 		/* release mutex and lock in right order */
709 		mutex_unlock(&vm->mutex);
710 		mutex_lock(&rdev->vm_manager.lock);
711 		mutex_lock(&vm->mutex);
712 		/* and check again */
713 		if (last_pfn > vm->last_pfn) {
714 			/* grow va space 32M by 32M */
715 			unsigned align = ((32 << 20) >> 12) - 1;
716 			radeon_vm_unbind_locked(rdev, vm);
717 			vm->last_pfn = (last_pfn + align) & ~align;
718 		}
719 		mutex_unlock(&rdev->vm_manager.lock);
720 	}
721 	head = &vm->va;
722 	last_offset = 0;
723 	list_for_each_entry(tmp, &vm->va, vm_list) {
724 		if (bo_va->soffset >= last_offset && bo_va->eoffset < tmp->soffset) {
725 			/* bo can be added before this one */
726 			break;
727 		}
728 		if (bo_va->soffset >= tmp->soffset && bo_va->soffset < tmp->eoffset) {
729 			/* bo and tmp overlap, invalid offset */
730 			dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
731 				bo, (unsigned)bo_va->soffset, tmp->bo,
732 				(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
733 			kfree(bo_va);
734 			mutex_unlock(&vm->mutex);
735 			return -EINVAL;
736 		}
737 		last_offset = tmp->eoffset;
738 		head = &tmp->vm_list;
739 	}
740 	list_add(&bo_va->vm_list, head);
741 	list_add_tail(&bo_va->bo_list, &bo->va);
742 	mutex_unlock(&vm->mutex);
743 	return 0;
744 }
745 
746 /**
747  * radeon_vm_get_addr - get the physical address of the page
748  *
749  * @rdev: radeon_device pointer
750  * @mem: ttm mem
751  * @pfn: pfn
752  *
753  * Look up the physical address of the page that the pte resolves
754  * to (cayman+).
755  * Returns the physical address of the page.
756  */
757 static u64 radeon_vm_get_addr(struct radeon_device *rdev,
758 			      struct ttm_mem_reg *mem,
759 			      unsigned pfn)
760 {
761 	u64 addr = 0;
762 
763 	switch (mem->mem_type) {
764 	case TTM_PL_VRAM:
765 		addr = (mem->start << PAGE_SHIFT);
766 		addr += pfn * RADEON_GPU_PAGE_SIZE;
767 		addr += rdev->vm_manager.vram_base_offset;
768 		break;
769 	case TTM_PL_TT:
770 		/* offset inside page table */
771 		addr = mem->start << PAGE_SHIFT;
772 		addr += pfn * RADEON_GPU_PAGE_SIZE;
773 		addr = addr >> PAGE_SHIFT;
774 		/* page table offset */
775 		addr = rdev->gart.pages_addr[addr];
776 		/* in case cpu page size != gpu page size*/
777 		addr += (pfn * RADEON_GPU_PAGE_SIZE) & (~PAGE_MASK);
778 		break;
779 	default:
780 		break;
781 	}
782 	return addr;
783 }
784 
785 /* object have to be reserved & global and local mutex must be locked */
786 /**
787  * radeon_vm_bo_update_pte - map a bo into the vm page table
788  *
789  * @rdev: radeon_device pointer
790  * @vm: requested vm
791  * @bo: radeon buffer object
792  * @mem: ttm mem
793  *
794  * Fill in the page table entries for @bo (cayman+).
795  * Returns 0 for success, -EINVAL for failure.
796  */
797 int radeon_vm_bo_update_pte(struct radeon_device *rdev,
798 			    struct radeon_vm *vm,
799 			    struct radeon_bo *bo,
800 			    struct ttm_mem_reg *mem)
801 {
802 	struct radeon_bo_va *bo_va;
803 	unsigned ngpu_pages, i;
804 	uint64_t addr = 0, pfn;
805 	uint32_t flags;
806 
807 	/* nothing to do if vm isn't bound */
808 	if (vm->id == -1)
809 		return 0;
810 
811 	bo_va = radeon_bo_va(bo, vm);
812 	if (bo_va == NULL) {
813 		dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
814 		return -EINVAL;
815 	}
816 
817 	if (bo_va->valid && mem)
818 		return 0;
819 
820 	ngpu_pages = radeon_bo_ngpu_pages(bo);
821 	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
822 	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
823 	if (mem) {
824 		if (mem->mem_type != TTM_PL_SYSTEM) {
825 			bo_va->flags |= RADEON_VM_PAGE_VALID;
826 			bo_va->valid = true;
827 		}
828 		if (mem->mem_type == TTM_PL_TT) {
829 			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
830 		}
831 	}
832 	pfn = bo_va->soffset / RADEON_GPU_PAGE_SIZE;
833 	flags = rdev->vm_manager.funcs->page_flags(rdev, bo_va->vm, bo_va->flags);
834 	for (i = 0, addr = 0; i < ngpu_pages; i++) {
835 		if (mem && bo_va->valid) {
836 			addr = radeon_vm_get_addr(rdev, mem, i);
837 		}
838 		rdev->vm_manager.funcs->set_page(rdev, bo_va->vm, i + pfn, addr, flags);
839 	}
840 	rdev->vm_manager.funcs->tlb_flush(rdev, bo_va->vm);
841 	return 0;
842 }
843 
844 /* object have to be reserved */
845 /**
846  * radeon_vm_bo_rmv - remove a bo to a specific vm
847  *
848  * @rdev: radeon_device pointer
849  * @vm: requested vm
850  * @bo: radeon buffer object
851  *
852  * Remove @bo from the requested vm (cayman+).
853  * Remove @bo from the list of bos associated with the vm and
854  * remove the ptes for @bo in the page table.
855  * Returns 0 for success.
856  */
857 int radeon_vm_bo_rmv(struct radeon_device *rdev,
858 		     struct radeon_vm *vm,
859 		     struct radeon_bo *bo)
860 {
861 	struct radeon_bo_va *bo_va;
862 	int r;
863 
864 	bo_va = radeon_bo_va(bo, vm);
865 	if (bo_va == NULL)
866 		return 0;
867 
868 	/* wait for va use to end */
869 	while (bo_va->fence) {
870 		r = radeon_fence_wait(bo_va->fence, false);
871 		if (r) {
872 			DRM_ERROR("error while waiting for fence: %d\n", r);
873 		}
874 		if (r == -EDEADLK) {
875 			r = radeon_gpu_reset(rdev);
876 			if (!r)
877 				continue;
878 		}
879 		break;
880 	}
881 	radeon_fence_unref(&bo_va->fence);
882 
883 	mutex_lock(&rdev->vm_manager.lock);
884 	mutex_lock(&vm->mutex);
885 	radeon_vm_bo_update_pte(rdev, vm, bo, NULL);
886 	mutex_unlock(&rdev->vm_manager.lock);
887 	list_del(&bo_va->vm_list);
888 	mutex_unlock(&vm->mutex);
889 	list_del(&bo_va->bo_list);
890 
891 	kfree(bo_va);
892 	return 0;
893 }
894 
895 /**
896  * radeon_vm_bo_invalidate - mark the bo as invalid
897  *
898  * @rdev: radeon_device pointer
899  * @vm: requested vm
900  * @bo: radeon buffer object
901  *
902  * Mark @bo as invalid (cayman+).
903  */
904 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
905 			     struct radeon_bo *bo)
906 {
907 	struct radeon_bo_va *bo_va;
908 
909 	BUG_ON(!atomic_read(&bo->tbo.reserved));
910 	list_for_each_entry(bo_va, &bo->va, bo_list) {
911 		bo_va->valid = false;
912 	}
913 }
914 
915 /**
916  * radeon_vm_init - initialize a vm instance
917  *
918  * @rdev: radeon_device pointer
919  * @vm: requested vm
920  *
921  * Init @vm (cayman+).
922  * Map the IB pool and any other shared objects into the VM
923  * by default as it's used by all VMs.
924  * Returns 0 for success, error for failure.
925  */
926 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
927 {
928 	int r;
929 
930 	vm->id = -1;
931 	vm->fence = NULL;
932 	mutex_init(&vm->mutex);
933 	INIT_LIST_HEAD(&vm->list);
934 	INIT_LIST_HEAD(&vm->va);
935 	/* SI requires equal sized PTs for all VMs, so always set
936 	 * last_pfn to max_pfn.  cayman allows variable sized
937 	 * pts so we can grow then as needed.  Once we switch
938 	 * to two level pts we can unify this again.
939 	 */
940 	if (rdev->family >= CHIP_TAHITI)
941 		vm->last_pfn = rdev->vm_manager.max_pfn;
942 	else
943 		vm->last_pfn = 0;
944 	/* map the ib pool buffer at 0 in virtual address space, set
945 	 * read only
946 	 */
947 	r = radeon_vm_bo_add(rdev, vm, rdev->ring_tmp_bo.bo, 0,
948 			     RADEON_VM_PAGE_READABLE | RADEON_VM_PAGE_SNOOPED);
949 	return r;
950 }
951 
952 /**
953  * radeon_vm_fini - tear down a vm instance
954  *
955  * @rdev: radeon_device pointer
956  * @vm: requested vm
957  *
958  * Tear down @vm (cayman+).
959  * Unbind the VM and remove all bos from the vm bo list
960  */
961 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
962 {
963 	struct radeon_bo_va *bo_va, *tmp;
964 	int r;
965 
966 	mutex_lock(&rdev->vm_manager.lock);
967 	mutex_lock(&vm->mutex);
968 	radeon_vm_unbind_locked(rdev, vm);
969 	mutex_unlock(&rdev->vm_manager.lock);
970 
971 	/* remove all bo at this point non are busy any more because unbind
972 	 * waited for the last vm fence to signal
973 	 */
974 	r = radeon_bo_reserve(rdev->ring_tmp_bo.bo, false);
975 	if (!r) {
976 		bo_va = radeon_bo_va(rdev->ring_tmp_bo.bo, vm);
977 		list_del_init(&bo_va->bo_list);
978 		list_del_init(&bo_va->vm_list);
979 		radeon_fence_unref(&bo_va->fence);
980 		radeon_bo_unreserve(rdev->ring_tmp_bo.bo);
981 		kfree(bo_va);
982 	}
983 	if (!list_empty(&vm->va)) {
984 		dev_err(rdev->dev, "still active bo inside vm\n");
985 	}
986 	list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
987 		list_del_init(&bo_va->vm_list);
988 		r = radeon_bo_reserve(bo_va->bo, false);
989 		if (!r) {
990 			list_del_init(&bo_va->bo_list);
991 			radeon_fence_unref(&bo_va->fence);
992 			radeon_bo_unreserve(bo_va->bo);
993 			kfree(bo_va);
994 		}
995 	}
996 	mutex_unlock(&vm->mutex);
997 }
998