1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_reg.h" 32 33 /* 34 * GART 35 * The GART (Graphics Aperture Remapping Table) is an aperture 36 * in the GPU's address space. System pages can be mapped into 37 * the aperture and look like contiguous pages from the GPU's 38 * perspective. A page table maps the pages in the aperture 39 * to the actual backing pages in system memory. 40 * 41 * Radeon GPUs support both an internal GART, as described above, 42 * and AGP. AGP works similarly, but the GART table is configured 43 * and maintained by the northbridge rather than the driver. 44 * Radeon hw has a separate AGP aperture that is programmed to 45 * point to the AGP aperture provided by the northbridge and the 46 * requests are passed through to the northbridge aperture. 47 * Both AGP and internal GART can be used at the same time, however 48 * that is not currently supported by the driver. 49 * 50 * This file handles the common internal GART management. 51 */ 52 53 /* 54 * Common GART table functions. 55 */ 56 /** 57 * radeon_gart_table_ram_alloc - allocate system ram for gart page table 58 * 59 * @rdev: radeon_device pointer 60 * 61 * Allocate system memory for GART page table 62 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 63 * gart table to be in system memory. 64 * Returns 0 for success, -ENOMEM for failure. 65 */ 66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev) 67 { 68 void *ptr; 69 70 ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, 71 &rdev->gart.table_addr); 72 if (ptr == NULL) { 73 return -ENOMEM; 74 } 75 #ifdef CONFIG_X86 76 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 77 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 78 set_memory_uc((unsigned long)ptr, 79 rdev->gart.table_size >> PAGE_SHIFT); 80 } 81 #endif 82 rdev->gart.ptr = ptr; 83 memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size); 84 return 0; 85 } 86 87 /** 88 * radeon_gart_table_ram_free - free system ram for gart page table 89 * 90 * @rdev: radeon_device pointer 91 * 92 * Free system memory for GART page table 93 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 94 * gart table to be in system memory. 95 */ 96 void radeon_gart_table_ram_free(struct radeon_device *rdev) 97 { 98 if (rdev->gart.ptr == NULL) { 99 return; 100 } 101 #ifdef CONFIG_X86 102 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 103 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 104 set_memory_wb((unsigned long)rdev->gart.ptr, 105 rdev->gart.table_size >> PAGE_SHIFT); 106 } 107 #endif 108 pci_free_consistent(rdev->pdev, rdev->gart.table_size, 109 (void *)rdev->gart.ptr, 110 rdev->gart.table_addr); 111 rdev->gart.ptr = NULL; 112 rdev->gart.table_addr = 0; 113 } 114 115 /** 116 * radeon_gart_table_vram_alloc - allocate vram for gart page table 117 * 118 * @rdev: radeon_device pointer 119 * 120 * Allocate video memory for GART page table 121 * (pcie r4xx, r5xx+). These asics require the 122 * gart table to be in video memory. 123 * Returns 0 for success, error for failure. 124 */ 125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev) 126 { 127 int r; 128 129 if (rdev->gart.robj == NULL) { 130 r = radeon_bo_create(rdev, rdev->gart.table_size, 131 PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 132 NULL, &rdev->gart.robj); 133 if (r) { 134 return r; 135 } 136 } 137 return 0; 138 } 139 140 /** 141 * radeon_gart_table_vram_pin - pin gart page table in vram 142 * 143 * @rdev: radeon_device pointer 144 * 145 * Pin the GART page table in vram so it will not be moved 146 * by the memory manager (pcie r4xx, r5xx+). These asics require the 147 * gart table to be in video memory. 148 * Returns 0 for success, error for failure. 149 */ 150 int radeon_gart_table_vram_pin(struct radeon_device *rdev) 151 { 152 uint64_t gpu_addr; 153 int r; 154 155 r = radeon_bo_reserve(rdev->gart.robj, false); 156 if (unlikely(r != 0)) 157 return r; 158 r = radeon_bo_pin(rdev->gart.robj, 159 RADEON_GEM_DOMAIN_VRAM, &gpu_addr); 160 if (r) { 161 radeon_bo_unreserve(rdev->gart.robj); 162 return r; 163 } 164 r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr); 165 if (r) 166 radeon_bo_unpin(rdev->gart.robj); 167 radeon_bo_unreserve(rdev->gart.robj); 168 rdev->gart.table_addr = gpu_addr; 169 return r; 170 } 171 172 /** 173 * radeon_gart_table_vram_unpin - unpin gart page table in vram 174 * 175 * @rdev: radeon_device pointer 176 * 177 * Unpin the GART page table in vram (pcie r4xx, r5xx+). 178 * These asics require the gart table to be in video memory. 179 */ 180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev) 181 { 182 int r; 183 184 if (rdev->gart.robj == NULL) { 185 return; 186 } 187 r = radeon_bo_reserve(rdev->gart.robj, false); 188 if (likely(r == 0)) { 189 radeon_bo_kunmap(rdev->gart.robj); 190 radeon_bo_unpin(rdev->gart.robj); 191 radeon_bo_unreserve(rdev->gart.robj); 192 rdev->gart.ptr = NULL; 193 } 194 } 195 196 /** 197 * radeon_gart_table_vram_free - free gart page table vram 198 * 199 * @rdev: radeon_device pointer 200 * 201 * Free the video memory used for the GART page table 202 * (pcie r4xx, r5xx+). These asics require the gart table to 203 * be in video memory. 204 */ 205 void radeon_gart_table_vram_free(struct radeon_device *rdev) 206 { 207 if (rdev->gart.robj == NULL) { 208 return; 209 } 210 radeon_gart_table_vram_unpin(rdev); 211 radeon_bo_unref(&rdev->gart.robj); 212 } 213 214 /* 215 * Common gart functions. 216 */ 217 /** 218 * radeon_gart_unbind - unbind pages from the gart page table 219 * 220 * @rdev: radeon_device pointer 221 * @offset: offset into the GPU's gart aperture 222 * @pages: number of pages to unbind 223 * 224 * Unbinds the requested pages from the gart page table and 225 * replaces them with the dummy page (all asics). 226 */ 227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, 228 int pages) 229 { 230 unsigned t; 231 unsigned p; 232 int i, j; 233 u64 page_base; 234 235 if (!rdev->gart.ready) { 236 WARN(1, "trying to unbind memory from uninitialized GART !\n"); 237 return; 238 } 239 t = offset / RADEON_GPU_PAGE_SIZE; 240 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 241 for (i = 0; i < pages; i++, p++) { 242 if (rdev->gart.pages[p]) { 243 rdev->gart.pages[p] = NULL; 244 rdev->gart.pages_addr[p] = rdev->dummy_page.addr; 245 page_base = rdev->gart.pages_addr[p]; 246 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 247 if (rdev->gart.ptr) { 248 radeon_gart_set_page(rdev, t, page_base); 249 } 250 page_base += RADEON_GPU_PAGE_SIZE; 251 } 252 } 253 } 254 mb(); 255 radeon_gart_tlb_flush(rdev); 256 } 257 258 /** 259 * radeon_gart_bind - bind pages into the gart page table 260 * 261 * @rdev: radeon_device pointer 262 * @offset: offset into the GPU's gart aperture 263 * @pages: number of pages to bind 264 * @pagelist: pages to bind 265 * @dma_addr: DMA addresses of pages 266 * 267 * Binds the requested pages to the gart page table 268 * (all asics). 269 * Returns 0 for success, -EINVAL for failure. 270 */ 271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, 272 int pages, struct page **pagelist, dma_addr_t *dma_addr) 273 { 274 unsigned t; 275 unsigned p; 276 uint64_t page_base; 277 int i, j; 278 279 if (!rdev->gart.ready) { 280 WARN(1, "trying to bind memory to uninitialized GART !\n"); 281 return -EINVAL; 282 } 283 t = offset / RADEON_GPU_PAGE_SIZE; 284 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 285 286 for (i = 0; i < pages; i++, p++) { 287 rdev->gart.pages_addr[p] = dma_addr[i]; 288 rdev->gart.pages[p] = pagelist[i]; 289 if (rdev->gart.ptr) { 290 page_base = rdev->gart.pages_addr[p]; 291 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 292 radeon_gart_set_page(rdev, t, page_base); 293 page_base += RADEON_GPU_PAGE_SIZE; 294 } 295 } 296 } 297 mb(); 298 radeon_gart_tlb_flush(rdev); 299 return 0; 300 } 301 302 /** 303 * radeon_gart_restore - bind all pages in the gart page table 304 * 305 * @rdev: radeon_device pointer 306 * 307 * Binds all pages in the gart page table (all asics). 308 * Used to rebuild the gart table on device startup or resume. 309 */ 310 void radeon_gart_restore(struct radeon_device *rdev) 311 { 312 int i, j, t; 313 u64 page_base; 314 315 if (!rdev->gart.ptr) { 316 return; 317 } 318 for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { 319 page_base = rdev->gart.pages_addr[i]; 320 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 321 radeon_gart_set_page(rdev, t, page_base); 322 page_base += RADEON_GPU_PAGE_SIZE; 323 } 324 } 325 mb(); 326 radeon_gart_tlb_flush(rdev); 327 } 328 329 /** 330 * radeon_gart_init - init the driver info for managing the gart 331 * 332 * @rdev: radeon_device pointer 333 * 334 * Allocate the dummy page and init the gart driver info (all asics). 335 * Returns 0 for success, error for failure. 336 */ 337 int radeon_gart_init(struct radeon_device *rdev) 338 { 339 int r, i; 340 341 if (rdev->gart.pages) { 342 return 0; 343 } 344 /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ 345 if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { 346 DRM_ERROR("Page size is smaller than GPU page size!\n"); 347 return -EINVAL; 348 } 349 r = radeon_dummy_page_init(rdev); 350 if (r) 351 return r; 352 /* Compute table size */ 353 rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; 354 rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; 355 DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", 356 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); 357 /* Allocate pages table */ 358 rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages); 359 if (rdev->gart.pages == NULL) { 360 radeon_gart_fini(rdev); 361 return -ENOMEM; 362 } 363 rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) * 364 rdev->gart.num_cpu_pages); 365 if (rdev->gart.pages_addr == NULL) { 366 radeon_gart_fini(rdev); 367 return -ENOMEM; 368 } 369 /* set GART entry to point to the dummy page by default */ 370 for (i = 0; i < rdev->gart.num_cpu_pages; i++) { 371 rdev->gart.pages_addr[i] = rdev->dummy_page.addr; 372 } 373 return 0; 374 } 375 376 /** 377 * radeon_gart_fini - tear down the driver info for managing the gart 378 * 379 * @rdev: radeon_device pointer 380 * 381 * Tear down the gart driver info and free the dummy page (all asics). 382 */ 383 void radeon_gart_fini(struct radeon_device *rdev) 384 { 385 if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { 386 /* unbind pages */ 387 radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); 388 } 389 rdev->gart.ready = false; 390 vfree(rdev->gart.pages); 391 vfree(rdev->gart.pages_addr); 392 rdev->gart.pages = NULL; 393 rdev->gart.pages_addr = NULL; 394 395 radeon_dummy_page_fini(rdev); 396 } 397 398 /* 399 * GPUVM 400 * GPUVM is similar to the legacy gart on older asics, however 401 * rather than there being a single global gart table 402 * for the entire GPU, there are multiple VM page tables active 403 * at any given time. The VM page tables can contain a mix 404 * vram pages and system memory pages and system memory pages 405 * can be mapped as snooped (cached system pages) or unsnooped 406 * (uncached system pages). 407 * Each VM has an ID associated with it and there is a page table 408 * associated with each VMID. When execting a command buffer, 409 * the kernel tells the the ring what VMID to use for that command 410 * buffer. VMIDs are allocated dynamically as commands are submitted. 411 * The userspace drivers maintain their own address space and the kernel 412 * sets up their pages tables accordingly when they submit their 413 * command buffers and a VMID is assigned. 414 * Cayman/Trinity support up to 8 active VMs at any given time; 415 * SI supports 16. 416 */ 417 418 /* 419 * vm helpers 420 * 421 * TODO bind a default page at vm initialization for default address 422 */ 423 424 /** 425 * radeon_vm_num_pde - return the number of page directory entries 426 * 427 * @rdev: radeon_device pointer 428 * 429 * Calculate the number of page directory entries (cayman+). 430 */ 431 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 432 { 433 return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE; 434 } 435 436 /** 437 * radeon_vm_directory_size - returns the size of the page directory in bytes 438 * 439 * @rdev: radeon_device pointer 440 * 441 * Calculate the size of the page directory in bytes (cayman+). 442 */ 443 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 444 { 445 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 446 } 447 448 /** 449 * radeon_vm_manager_init - init the vm manager 450 * 451 * @rdev: radeon_device pointer 452 * 453 * Init the vm manager (cayman+). 454 * Returns 0 for success, error for failure. 455 */ 456 int radeon_vm_manager_init(struct radeon_device *rdev) 457 { 458 struct radeon_vm *vm; 459 struct radeon_bo_va *bo_va; 460 int r; 461 unsigned size; 462 463 if (!rdev->vm_manager.enabled) { 464 /* allocate enough for 2 full VM pts */ 465 size = radeon_vm_directory_size(rdev); 466 size += rdev->vm_manager.max_pfn * 8; 467 size *= 2; 468 r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager, 469 RADEON_GPU_PAGE_ALIGN(size), 470 RADEON_GEM_DOMAIN_VRAM); 471 if (r) { 472 dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n", 473 (rdev->vm_manager.max_pfn * 8) >> 10); 474 return r; 475 } 476 477 r = radeon_asic_vm_init(rdev); 478 if (r) 479 return r; 480 481 rdev->vm_manager.enabled = true; 482 483 r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager); 484 if (r) 485 return r; 486 } 487 488 /* restore page table */ 489 list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) { 490 if (vm->page_directory == NULL) 491 continue; 492 493 list_for_each_entry(bo_va, &vm->va, vm_list) { 494 bo_va->valid = false; 495 } 496 } 497 return 0; 498 } 499 500 /** 501 * radeon_vm_free_pt - free the page table for a specific vm 502 * 503 * @rdev: radeon_device pointer 504 * @vm: vm to unbind 505 * 506 * Free the page table of a specific vm (cayman+). 507 * 508 * Global and local mutex must be lock! 509 */ 510 static void radeon_vm_free_pt(struct radeon_device *rdev, 511 struct radeon_vm *vm) 512 { 513 struct radeon_bo_va *bo_va; 514 int i; 515 516 if (!vm->page_directory) 517 return; 518 519 list_del_init(&vm->list); 520 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 521 522 list_for_each_entry(bo_va, &vm->va, vm_list) { 523 bo_va->valid = false; 524 } 525 526 if (vm->page_tables == NULL) 527 return; 528 529 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 530 radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence); 531 532 kfree(vm->page_tables); 533 } 534 535 /** 536 * radeon_vm_manager_fini - tear down the vm manager 537 * 538 * @rdev: radeon_device pointer 539 * 540 * Tear down the VM manager (cayman+). 541 */ 542 void radeon_vm_manager_fini(struct radeon_device *rdev) 543 { 544 struct radeon_vm *vm, *tmp; 545 int i; 546 547 if (!rdev->vm_manager.enabled) 548 return; 549 550 mutex_lock(&rdev->vm_manager.lock); 551 /* free all allocated page tables */ 552 list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) { 553 mutex_lock(&vm->mutex); 554 radeon_vm_free_pt(rdev, vm); 555 mutex_unlock(&vm->mutex); 556 } 557 for (i = 0; i < RADEON_NUM_VM; ++i) { 558 radeon_fence_unref(&rdev->vm_manager.active[i]); 559 } 560 radeon_asic_vm_fini(rdev); 561 mutex_unlock(&rdev->vm_manager.lock); 562 563 radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager); 564 radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager); 565 rdev->vm_manager.enabled = false; 566 } 567 568 /** 569 * radeon_vm_evict - evict page table to make room for new one 570 * 571 * @rdev: radeon_device pointer 572 * @vm: VM we want to allocate something for 573 * 574 * Evict a VM from the lru, making sure that it isn't @vm. (cayman+). 575 * Returns 0 for success, -ENOMEM for failure. 576 * 577 * Global and local mutex must be locked! 578 */ 579 static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm) 580 { 581 struct radeon_vm *vm_evict; 582 583 if (list_empty(&rdev->vm_manager.lru_vm)) 584 return -ENOMEM; 585 586 vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, 587 struct radeon_vm, list); 588 if (vm_evict == vm) 589 return -ENOMEM; 590 591 mutex_lock(&vm_evict->mutex); 592 radeon_vm_free_pt(rdev, vm_evict); 593 mutex_unlock(&vm_evict->mutex); 594 return 0; 595 } 596 597 /** 598 * radeon_vm_alloc_pt - allocates a page table for a VM 599 * 600 * @rdev: radeon_device pointer 601 * @vm: vm to bind 602 * 603 * Allocate a page table for the requested vm (cayman+). 604 * Returns 0 for success, error for failure. 605 * 606 * Global and local mutex must be locked! 607 */ 608 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm) 609 { 610 unsigned pd_size, pts_size; 611 u64 *pd_addr; 612 int r; 613 614 if (vm == NULL) { 615 return -EINVAL; 616 } 617 618 if (vm->page_directory != NULL) { 619 return 0; 620 } 621 622 retry: 623 pd_size = RADEON_GPU_PAGE_ALIGN(radeon_vm_directory_size(rdev)); 624 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 625 &vm->page_directory, pd_size, 626 RADEON_GPU_PAGE_SIZE, false); 627 if (r == -ENOMEM) { 628 r = radeon_vm_evict(rdev, vm); 629 if (r) 630 return r; 631 goto retry; 632 633 } else if (r) { 634 return r; 635 } 636 637 vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory); 638 639 /* Initially clear the page directory */ 640 pd_addr = radeon_sa_bo_cpu_addr(vm->page_directory); 641 memset(pd_addr, 0, pd_size); 642 643 pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *); 644 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 645 646 if (vm->page_tables == NULL) { 647 DRM_ERROR("Cannot allocate memory for page table array\n"); 648 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 649 return -ENOMEM; 650 } 651 652 return 0; 653 } 654 655 /** 656 * radeon_vm_add_to_lru - add VMs page table to LRU list 657 * 658 * @rdev: radeon_device pointer 659 * @vm: vm to add to LRU 660 * 661 * Add the allocated page table to the LRU list (cayman+). 662 * 663 * Global mutex must be locked! 664 */ 665 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm) 666 { 667 list_del_init(&vm->list); 668 list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); 669 } 670 671 /** 672 * radeon_vm_grab_id - allocate the next free VMID 673 * 674 * @rdev: radeon_device pointer 675 * @vm: vm to allocate id for 676 * @ring: ring we want to submit job to 677 * 678 * Allocate an id for the vm (cayman+). 679 * Returns the fence we need to sync to (if any). 680 * 681 * Global and local mutex must be locked! 682 */ 683 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 684 struct radeon_vm *vm, int ring) 685 { 686 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 687 unsigned choices[2] = {}; 688 unsigned i; 689 690 /* check if the id is still valid */ 691 if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id]) 692 return NULL; 693 694 /* we definately need to flush */ 695 radeon_fence_unref(&vm->last_flush); 696 697 /* skip over VMID 0, since it is the system VM */ 698 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 699 struct radeon_fence *fence = rdev->vm_manager.active[i]; 700 701 if (fence == NULL) { 702 /* found a free one */ 703 vm->id = i; 704 return NULL; 705 } 706 707 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 708 best[fence->ring] = fence; 709 choices[fence->ring == ring ? 0 : 1] = i; 710 } 711 } 712 713 for (i = 0; i < 2; ++i) { 714 if (choices[i]) { 715 vm->id = choices[i]; 716 return rdev->vm_manager.active[choices[i]]; 717 } 718 } 719 720 /* should never happen */ 721 BUG(); 722 return NULL; 723 } 724 725 /** 726 * radeon_vm_fence - remember fence for vm 727 * 728 * @rdev: radeon_device pointer 729 * @vm: vm we want to fence 730 * @fence: fence to remember 731 * 732 * Fence the vm (cayman+). 733 * Set the fence used to protect page table and id. 734 * 735 * Global and local mutex must be locked! 736 */ 737 void radeon_vm_fence(struct radeon_device *rdev, 738 struct radeon_vm *vm, 739 struct radeon_fence *fence) 740 { 741 radeon_fence_unref(&rdev->vm_manager.active[vm->id]); 742 rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence); 743 744 radeon_fence_unref(&vm->fence); 745 vm->fence = radeon_fence_ref(fence); 746 } 747 748 /** 749 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 750 * 751 * @vm: requested vm 752 * @bo: requested buffer object 753 * 754 * Find @bo inside the requested vm (cayman+). 755 * Search inside the @bos vm list for the requested vm 756 * Returns the found bo_va or NULL if none is found 757 * 758 * Object has to be reserved! 759 */ 760 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 761 struct radeon_bo *bo) 762 { 763 struct radeon_bo_va *bo_va; 764 765 list_for_each_entry(bo_va, &bo->va, bo_list) { 766 if (bo_va->vm == vm) { 767 return bo_va; 768 } 769 } 770 return NULL; 771 } 772 773 /** 774 * radeon_vm_bo_add - add a bo to a specific vm 775 * 776 * @rdev: radeon_device pointer 777 * @vm: requested vm 778 * @bo: radeon buffer object 779 * 780 * Add @bo into the requested vm (cayman+). 781 * Add @bo to the list of bos associated with the vm 782 * Returns newly added bo_va or NULL for failure 783 * 784 * Object has to be reserved! 785 */ 786 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 787 struct radeon_vm *vm, 788 struct radeon_bo *bo) 789 { 790 struct radeon_bo_va *bo_va; 791 792 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 793 if (bo_va == NULL) { 794 return NULL; 795 } 796 bo_va->vm = vm; 797 bo_va->bo = bo; 798 bo_va->soffset = 0; 799 bo_va->eoffset = 0; 800 bo_va->flags = 0; 801 bo_va->valid = false; 802 bo_va->ref_count = 1; 803 INIT_LIST_HEAD(&bo_va->bo_list); 804 INIT_LIST_HEAD(&bo_va->vm_list); 805 806 mutex_lock(&vm->mutex); 807 list_add(&bo_va->vm_list, &vm->va); 808 list_add_tail(&bo_va->bo_list, &bo->va); 809 mutex_unlock(&vm->mutex); 810 811 return bo_va; 812 } 813 814 /** 815 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 816 * 817 * @rdev: radeon_device pointer 818 * @bo_va: bo_va to store the address 819 * @soffset: requested offset of the buffer in the VM address space 820 * @flags: attributes of pages (read/write/valid/etc.) 821 * 822 * Set offset of @bo_va (cayman+). 823 * Validate and set the offset requested within the vm address space. 824 * Returns 0 for success, error for failure. 825 * 826 * Object has to be reserved! 827 */ 828 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 829 struct radeon_bo_va *bo_va, 830 uint64_t soffset, 831 uint32_t flags) 832 { 833 uint64_t size = radeon_bo_size(bo_va->bo); 834 uint64_t eoffset, last_offset = 0; 835 struct radeon_vm *vm = bo_va->vm; 836 struct radeon_bo_va *tmp; 837 struct list_head *head; 838 unsigned last_pfn; 839 840 if (soffset) { 841 /* make sure object fit at this offset */ 842 eoffset = soffset + size; 843 if (soffset >= eoffset) { 844 return -EINVAL; 845 } 846 847 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 848 if (last_pfn > rdev->vm_manager.max_pfn) { 849 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 850 last_pfn, rdev->vm_manager.max_pfn); 851 return -EINVAL; 852 } 853 854 } else { 855 eoffset = last_pfn = 0; 856 } 857 858 mutex_lock(&vm->mutex); 859 head = &vm->va; 860 last_offset = 0; 861 list_for_each_entry(tmp, &vm->va, vm_list) { 862 if (bo_va == tmp) { 863 /* skip over currently modified bo */ 864 continue; 865 } 866 867 if (soffset >= last_offset && eoffset <= tmp->soffset) { 868 /* bo can be added before this one */ 869 break; 870 } 871 if (eoffset > tmp->soffset && soffset < tmp->eoffset) { 872 /* bo and tmp overlap, invalid offset */ 873 dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n", 874 bo_va->bo, (unsigned)bo_va->soffset, tmp->bo, 875 (unsigned)tmp->soffset, (unsigned)tmp->eoffset); 876 mutex_unlock(&vm->mutex); 877 return -EINVAL; 878 } 879 last_offset = tmp->eoffset; 880 head = &tmp->vm_list; 881 } 882 883 bo_va->soffset = soffset; 884 bo_va->eoffset = eoffset; 885 bo_va->flags = flags; 886 bo_va->valid = false; 887 list_move(&bo_va->vm_list, head); 888 889 mutex_unlock(&vm->mutex); 890 return 0; 891 } 892 893 /** 894 * radeon_vm_map_gart - get the physical address of a gart page 895 * 896 * @rdev: radeon_device pointer 897 * @addr: the unmapped addr 898 * 899 * Look up the physical address of the page that the pte resolves 900 * to (cayman+). 901 * Returns the physical address of the page. 902 */ 903 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 904 { 905 uint64_t result; 906 907 /* page table offset */ 908 result = rdev->gart.pages_addr[addr >> PAGE_SHIFT]; 909 910 /* in case cpu page size != gpu page size*/ 911 result |= addr & (~PAGE_MASK); 912 913 return result; 914 } 915 916 /** 917 * radeon_vm_update_pdes - make sure that page directory is valid 918 * 919 * @rdev: radeon_device pointer 920 * @vm: requested vm 921 * @start: start of GPU address range 922 * @end: end of GPU address range 923 * 924 * Allocates new page tables if necessary 925 * and updates the page directory (cayman+). 926 * Returns 0 for success, error for failure. 927 * 928 * Global and local mutex must be locked! 929 */ 930 static int radeon_vm_update_pdes(struct radeon_device *rdev, 931 struct radeon_vm *vm, 932 uint64_t start, uint64_t end) 933 { 934 static const uint32_t incr = RADEON_VM_PTE_COUNT * 8; 935 936 uint64_t last_pde = ~0, last_pt = ~0; 937 unsigned count = 0; 938 uint64_t pt_idx; 939 int r; 940 941 start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 942 end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 943 944 /* walk over the address space and update the page directory */ 945 for (pt_idx = start; pt_idx <= end; ++pt_idx) { 946 uint64_t pde, pt; 947 948 if (vm->page_tables[pt_idx]) 949 continue; 950 951 retry: 952 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 953 &vm->page_tables[pt_idx], 954 RADEON_VM_PTE_COUNT * 8, 955 RADEON_GPU_PAGE_SIZE, false); 956 957 if (r == -ENOMEM) { 958 r = radeon_vm_evict(rdev, vm); 959 if (r) 960 return r; 961 goto retry; 962 } else if (r) { 963 return r; 964 } 965 966 pde = vm->pd_gpu_addr + pt_idx * 8; 967 968 pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 969 970 if (((last_pde + 8 * count) != pde) || 971 ((last_pt + incr * count) != pt)) { 972 973 if (count) { 974 radeon_asic_vm_set_page(rdev, last_pde, 975 last_pt, count, incr, 976 RADEON_VM_PAGE_VALID); 977 } 978 979 count = 1; 980 last_pde = pde; 981 last_pt = pt; 982 } else { 983 ++count; 984 } 985 } 986 987 if (count) { 988 radeon_asic_vm_set_page(rdev, last_pde, last_pt, count, 989 incr, RADEON_VM_PAGE_VALID); 990 991 } 992 993 return 0; 994 } 995 996 /** 997 * radeon_vm_update_ptes - make sure that page tables are valid 998 * 999 * @rdev: radeon_device pointer 1000 * @vm: requested vm 1001 * @start: start of GPU address range 1002 * @end: end of GPU address range 1003 * @dst: destination address to map to 1004 * @flags: mapping flags 1005 * 1006 * Update the page tables in the range @start - @end (cayman+). 1007 * 1008 * Global and local mutex must be locked! 1009 */ 1010 static void radeon_vm_update_ptes(struct radeon_device *rdev, 1011 struct radeon_vm *vm, 1012 uint64_t start, uint64_t end, 1013 uint64_t dst, uint32_t flags) 1014 { 1015 static const uint64_t mask = RADEON_VM_PTE_COUNT - 1; 1016 1017 uint64_t last_pte = ~0, last_dst = ~0; 1018 unsigned count = 0; 1019 uint64_t addr; 1020 1021 start = start / RADEON_GPU_PAGE_SIZE; 1022 end = end / RADEON_GPU_PAGE_SIZE; 1023 1024 /* walk over the address space and update the page tables */ 1025 for (addr = start; addr < end; ) { 1026 uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE; 1027 unsigned nptes; 1028 uint64_t pte; 1029 1030 if ((addr & ~mask) == (end & ~mask)) 1031 nptes = end - addr; 1032 else 1033 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 1034 1035 pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 1036 pte += (addr & mask) * 8; 1037 1038 if ((last_pte + 8 * count) != pte) { 1039 1040 if (count) { 1041 radeon_asic_vm_set_page(rdev, last_pte, 1042 last_dst, count, 1043 RADEON_GPU_PAGE_SIZE, 1044 flags); 1045 } 1046 1047 count = nptes; 1048 last_pte = pte; 1049 last_dst = dst; 1050 } else { 1051 count += nptes; 1052 } 1053 1054 addr += nptes; 1055 dst += nptes * RADEON_GPU_PAGE_SIZE; 1056 } 1057 1058 if (count) { 1059 radeon_asic_vm_set_page(rdev, last_pte, last_dst, count, 1060 RADEON_GPU_PAGE_SIZE, flags); 1061 } 1062 } 1063 1064 /** 1065 * radeon_vm_bo_update_pte - map a bo into the vm page table 1066 * 1067 * @rdev: radeon_device pointer 1068 * @vm: requested vm 1069 * @bo: radeon buffer object 1070 * @mem: ttm mem 1071 * 1072 * Fill in the page table entries for @bo (cayman+). 1073 * Returns 0 for success, -EINVAL for failure. 1074 * 1075 * Object have to be reserved & global and local mutex must be locked! 1076 */ 1077 int radeon_vm_bo_update_pte(struct radeon_device *rdev, 1078 struct radeon_vm *vm, 1079 struct radeon_bo *bo, 1080 struct ttm_mem_reg *mem) 1081 { 1082 unsigned ridx = rdev->asic->vm.pt_ring_index; 1083 struct radeon_ring *ring = &rdev->ring[ridx]; 1084 struct radeon_semaphore *sem = NULL; 1085 struct radeon_bo_va *bo_va; 1086 unsigned nptes, npdes, ndw; 1087 uint64_t addr; 1088 int r; 1089 1090 /* nothing to do if vm isn't bound */ 1091 if (vm->page_directory == NULL) 1092 return 0; 1093 1094 bo_va = radeon_vm_bo_find(vm, bo); 1095 if (bo_va == NULL) { 1096 dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm); 1097 return -EINVAL; 1098 } 1099 1100 if (!bo_va->soffset) { 1101 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 1102 bo, vm); 1103 return -EINVAL; 1104 } 1105 1106 if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL)) 1107 return 0; 1108 1109 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 1110 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 1111 if (mem) { 1112 addr = mem->start << PAGE_SHIFT; 1113 if (mem->mem_type != TTM_PL_SYSTEM) { 1114 bo_va->flags |= RADEON_VM_PAGE_VALID; 1115 bo_va->valid = true; 1116 } 1117 if (mem->mem_type == TTM_PL_TT) { 1118 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 1119 } else { 1120 addr += rdev->vm_manager.vram_base_offset; 1121 } 1122 } else { 1123 addr = 0; 1124 bo_va->valid = false; 1125 } 1126 1127 if (vm->fence && radeon_fence_signaled(vm->fence)) { 1128 radeon_fence_unref(&vm->fence); 1129 } 1130 1131 if (vm->fence && vm->fence->ring != ridx) { 1132 r = radeon_semaphore_create(rdev, &sem); 1133 if (r) { 1134 return r; 1135 } 1136 } 1137 1138 nptes = radeon_bo_ngpu_pages(bo); 1139 1140 /* assume two extra pdes in case the mapping overlaps the borders */ 1141 npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2; 1142 1143 /* estimate number of dw needed */ 1144 /* semaphore, fence and padding */ 1145 ndw = 32; 1146 1147 if (RADEON_VM_BLOCK_SIZE > 11) 1148 /* reserve space for one header for every 2k dwords */ 1149 ndw += (nptes >> 11) * 4; 1150 else 1151 /* reserve space for one header for 1152 every (1 << BLOCK_SIZE) entries */ 1153 ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4; 1154 1155 /* reserve space for pte addresses */ 1156 ndw += nptes * 2; 1157 1158 /* reserve space for one header for every 2k dwords */ 1159 ndw += (npdes >> 11) * 4; 1160 1161 /* reserve space for pde addresses */ 1162 ndw += npdes * 2; 1163 1164 r = radeon_ring_lock(rdev, ring, ndw); 1165 if (r) { 1166 return r; 1167 } 1168 1169 if (sem && radeon_fence_need_sync(vm->fence, ridx)) { 1170 radeon_semaphore_sync_rings(rdev, sem, vm->fence->ring, ridx); 1171 radeon_fence_note_sync(vm->fence, ridx); 1172 } 1173 1174 r = radeon_vm_update_pdes(rdev, vm, bo_va->soffset, bo_va->eoffset); 1175 if (r) { 1176 radeon_ring_unlock_undo(rdev, ring); 1177 return r; 1178 } 1179 1180 radeon_vm_update_ptes(rdev, vm, bo_va->soffset, bo_va->eoffset, 1181 addr, bo_va->flags); 1182 1183 radeon_fence_unref(&vm->fence); 1184 r = radeon_fence_emit(rdev, &vm->fence, ridx); 1185 if (r) { 1186 radeon_ring_unlock_undo(rdev, ring); 1187 return r; 1188 } 1189 radeon_ring_unlock_commit(rdev, ring); 1190 radeon_semaphore_free(rdev, &sem, vm->fence); 1191 radeon_fence_unref(&vm->last_flush); 1192 1193 return 0; 1194 } 1195 1196 /** 1197 * radeon_vm_bo_rmv - remove a bo to a specific vm 1198 * 1199 * @rdev: radeon_device pointer 1200 * @bo_va: requested bo_va 1201 * 1202 * Remove @bo_va->bo from the requested vm (cayman+). 1203 * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and 1204 * remove the ptes for @bo_va in the page table. 1205 * Returns 0 for success. 1206 * 1207 * Object have to be reserved! 1208 */ 1209 int radeon_vm_bo_rmv(struct radeon_device *rdev, 1210 struct radeon_bo_va *bo_va) 1211 { 1212 int r; 1213 1214 mutex_lock(&rdev->vm_manager.lock); 1215 mutex_lock(&bo_va->vm->mutex); 1216 r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL); 1217 mutex_unlock(&rdev->vm_manager.lock); 1218 list_del(&bo_va->vm_list); 1219 mutex_unlock(&bo_va->vm->mutex); 1220 list_del(&bo_va->bo_list); 1221 1222 kfree(bo_va); 1223 return r; 1224 } 1225 1226 /** 1227 * radeon_vm_bo_invalidate - mark the bo as invalid 1228 * 1229 * @rdev: radeon_device pointer 1230 * @vm: requested vm 1231 * @bo: radeon buffer object 1232 * 1233 * Mark @bo as invalid (cayman+). 1234 */ 1235 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1236 struct radeon_bo *bo) 1237 { 1238 struct radeon_bo_va *bo_va; 1239 1240 list_for_each_entry(bo_va, &bo->va, bo_list) { 1241 bo_va->valid = false; 1242 } 1243 } 1244 1245 /** 1246 * radeon_vm_init - initialize a vm instance 1247 * 1248 * @rdev: radeon_device pointer 1249 * @vm: requested vm 1250 * 1251 * Init @vm fields (cayman+). 1252 */ 1253 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1254 { 1255 vm->id = 0; 1256 vm->fence = NULL; 1257 mutex_init(&vm->mutex); 1258 INIT_LIST_HEAD(&vm->list); 1259 INIT_LIST_HEAD(&vm->va); 1260 } 1261 1262 /** 1263 * radeon_vm_fini - tear down a vm instance 1264 * 1265 * @rdev: radeon_device pointer 1266 * @vm: requested vm 1267 * 1268 * Tear down @vm (cayman+). 1269 * Unbind the VM and remove all bos from the vm bo list 1270 */ 1271 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1272 { 1273 struct radeon_bo_va *bo_va, *tmp; 1274 int r; 1275 1276 mutex_lock(&rdev->vm_manager.lock); 1277 mutex_lock(&vm->mutex); 1278 radeon_vm_free_pt(rdev, vm); 1279 mutex_unlock(&rdev->vm_manager.lock); 1280 1281 if (!list_empty(&vm->va)) { 1282 dev_err(rdev->dev, "still active bo inside vm\n"); 1283 } 1284 list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) { 1285 list_del_init(&bo_va->vm_list); 1286 r = radeon_bo_reserve(bo_va->bo, false); 1287 if (!r) { 1288 list_del_init(&bo_va->bo_list); 1289 radeon_bo_unreserve(bo_va->bo); 1290 kfree(bo_va); 1291 } 1292 } 1293 radeon_fence_unref(&vm->fence); 1294 radeon_fence_unref(&vm->last_flush); 1295 mutex_unlock(&vm->mutex); 1296 } 1297