1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <drm/drmP.h> 29 #include <drm/radeon_drm.h> 30 #include "radeon.h" 31 #include "radeon_reg.h" 32 33 /* 34 * GART 35 * The GART (Graphics Aperture Remapping Table) is an aperture 36 * in the GPU's address space. System pages can be mapped into 37 * the aperture and look like contiguous pages from the GPU's 38 * perspective. A page table maps the pages in the aperture 39 * to the actual backing pages in system memory. 40 * 41 * Radeon GPUs support both an internal GART, as described above, 42 * and AGP. AGP works similarly, but the GART table is configured 43 * and maintained by the northbridge rather than the driver. 44 * Radeon hw has a separate AGP aperture that is programmed to 45 * point to the AGP aperture provided by the northbridge and the 46 * requests are passed through to the northbridge aperture. 47 * Both AGP and internal GART can be used at the same time, however 48 * that is not currently supported by the driver. 49 * 50 * This file handles the common internal GART management. 51 */ 52 53 /* 54 * Common GART table functions. 55 */ 56 /** 57 * radeon_gart_table_ram_alloc - allocate system ram for gart page table 58 * 59 * @rdev: radeon_device pointer 60 * 61 * Allocate system memory for GART page table 62 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 63 * gart table to be in system memory. 64 * Returns 0 for success, -ENOMEM for failure. 65 */ 66 int radeon_gart_table_ram_alloc(struct radeon_device *rdev) 67 { 68 void *ptr; 69 70 ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, 71 &rdev->gart.table_addr); 72 if (ptr == NULL) { 73 return -ENOMEM; 74 } 75 #ifdef CONFIG_X86 76 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 77 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 78 set_memory_uc((unsigned long)ptr, 79 rdev->gart.table_size >> PAGE_SHIFT); 80 } 81 #endif 82 rdev->gart.ptr = ptr; 83 memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size); 84 return 0; 85 } 86 87 /** 88 * radeon_gart_table_ram_free - free system ram for gart page table 89 * 90 * @rdev: radeon_device pointer 91 * 92 * Free system memory for GART page table 93 * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the 94 * gart table to be in system memory. 95 */ 96 void radeon_gart_table_ram_free(struct radeon_device *rdev) 97 { 98 if (rdev->gart.ptr == NULL) { 99 return; 100 } 101 #ifdef CONFIG_X86 102 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || 103 rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { 104 set_memory_wb((unsigned long)rdev->gart.ptr, 105 rdev->gart.table_size >> PAGE_SHIFT); 106 } 107 #endif 108 pci_free_consistent(rdev->pdev, rdev->gart.table_size, 109 (void *)rdev->gart.ptr, 110 rdev->gart.table_addr); 111 rdev->gart.ptr = NULL; 112 rdev->gart.table_addr = 0; 113 } 114 115 /** 116 * radeon_gart_table_vram_alloc - allocate vram for gart page table 117 * 118 * @rdev: radeon_device pointer 119 * 120 * Allocate video memory for GART page table 121 * (pcie r4xx, r5xx+). These asics require the 122 * gart table to be in video memory. 123 * Returns 0 for success, error for failure. 124 */ 125 int radeon_gart_table_vram_alloc(struct radeon_device *rdev) 126 { 127 int r; 128 129 if (rdev->gart.robj == NULL) { 130 r = radeon_bo_create(rdev, rdev->gart.table_size, 131 PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 132 NULL, &rdev->gart.robj); 133 if (r) { 134 return r; 135 } 136 } 137 return 0; 138 } 139 140 /** 141 * radeon_gart_table_vram_pin - pin gart page table in vram 142 * 143 * @rdev: radeon_device pointer 144 * 145 * Pin the GART page table in vram so it will not be moved 146 * by the memory manager (pcie r4xx, r5xx+). These asics require the 147 * gart table to be in video memory. 148 * Returns 0 for success, error for failure. 149 */ 150 int radeon_gart_table_vram_pin(struct radeon_device *rdev) 151 { 152 uint64_t gpu_addr; 153 int r; 154 155 r = radeon_bo_reserve(rdev->gart.robj, false); 156 if (unlikely(r != 0)) 157 return r; 158 r = radeon_bo_pin(rdev->gart.robj, 159 RADEON_GEM_DOMAIN_VRAM, &gpu_addr); 160 if (r) { 161 radeon_bo_unreserve(rdev->gart.robj); 162 return r; 163 } 164 r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr); 165 if (r) 166 radeon_bo_unpin(rdev->gart.robj); 167 radeon_bo_unreserve(rdev->gart.robj); 168 rdev->gart.table_addr = gpu_addr; 169 return r; 170 } 171 172 /** 173 * radeon_gart_table_vram_unpin - unpin gart page table in vram 174 * 175 * @rdev: radeon_device pointer 176 * 177 * Unpin the GART page table in vram (pcie r4xx, r5xx+). 178 * These asics require the gart table to be in video memory. 179 */ 180 void radeon_gart_table_vram_unpin(struct radeon_device *rdev) 181 { 182 int r; 183 184 if (rdev->gart.robj == NULL) { 185 return; 186 } 187 r = radeon_bo_reserve(rdev->gart.robj, false); 188 if (likely(r == 0)) { 189 radeon_bo_kunmap(rdev->gart.robj); 190 radeon_bo_unpin(rdev->gart.robj); 191 radeon_bo_unreserve(rdev->gart.robj); 192 rdev->gart.ptr = NULL; 193 } 194 } 195 196 /** 197 * radeon_gart_table_vram_free - free gart page table vram 198 * 199 * @rdev: radeon_device pointer 200 * 201 * Free the video memory used for the GART page table 202 * (pcie r4xx, r5xx+). These asics require the gart table to 203 * be in video memory. 204 */ 205 void radeon_gart_table_vram_free(struct radeon_device *rdev) 206 { 207 if (rdev->gart.robj == NULL) { 208 return; 209 } 210 radeon_gart_table_vram_unpin(rdev); 211 radeon_bo_unref(&rdev->gart.robj); 212 } 213 214 /* 215 * Common gart functions. 216 */ 217 /** 218 * radeon_gart_unbind - unbind pages from the gart page table 219 * 220 * @rdev: radeon_device pointer 221 * @offset: offset into the GPU's gart aperture 222 * @pages: number of pages to unbind 223 * 224 * Unbinds the requested pages from the gart page table and 225 * replaces them with the dummy page (all asics). 226 */ 227 void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, 228 int pages) 229 { 230 unsigned t; 231 unsigned p; 232 int i, j; 233 u64 page_base; 234 235 if (!rdev->gart.ready) { 236 WARN(1, "trying to unbind memory from uninitialized GART !\n"); 237 return; 238 } 239 t = offset / RADEON_GPU_PAGE_SIZE; 240 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 241 for (i = 0; i < pages; i++, p++) { 242 if (rdev->gart.pages[p]) { 243 rdev->gart.pages[p] = NULL; 244 rdev->gart.pages_addr[p] = rdev->dummy_page.addr; 245 page_base = rdev->gart.pages_addr[p]; 246 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 247 if (rdev->gart.ptr) { 248 radeon_gart_set_page(rdev, t, page_base); 249 } 250 page_base += RADEON_GPU_PAGE_SIZE; 251 } 252 } 253 } 254 mb(); 255 radeon_gart_tlb_flush(rdev); 256 } 257 258 /** 259 * radeon_gart_bind - bind pages into the gart page table 260 * 261 * @rdev: radeon_device pointer 262 * @offset: offset into the GPU's gart aperture 263 * @pages: number of pages to bind 264 * @pagelist: pages to bind 265 * @dma_addr: DMA addresses of pages 266 * 267 * Binds the requested pages to the gart page table 268 * (all asics). 269 * Returns 0 for success, -EINVAL for failure. 270 */ 271 int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, 272 int pages, struct page **pagelist, dma_addr_t *dma_addr) 273 { 274 unsigned t; 275 unsigned p; 276 uint64_t page_base; 277 int i, j; 278 279 if (!rdev->gart.ready) { 280 WARN(1, "trying to bind memory to uninitialized GART !\n"); 281 return -EINVAL; 282 } 283 t = offset / RADEON_GPU_PAGE_SIZE; 284 p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); 285 286 for (i = 0; i < pages; i++, p++) { 287 rdev->gart.pages_addr[p] = dma_addr[i]; 288 rdev->gart.pages[p] = pagelist[i]; 289 if (rdev->gart.ptr) { 290 page_base = rdev->gart.pages_addr[p]; 291 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 292 radeon_gart_set_page(rdev, t, page_base); 293 page_base += RADEON_GPU_PAGE_SIZE; 294 } 295 } 296 } 297 mb(); 298 radeon_gart_tlb_flush(rdev); 299 return 0; 300 } 301 302 /** 303 * radeon_gart_restore - bind all pages in the gart page table 304 * 305 * @rdev: radeon_device pointer 306 * 307 * Binds all pages in the gart page table (all asics). 308 * Used to rebuild the gart table on device startup or resume. 309 */ 310 void radeon_gart_restore(struct radeon_device *rdev) 311 { 312 int i, j, t; 313 u64 page_base; 314 315 if (!rdev->gart.ptr) { 316 return; 317 } 318 for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { 319 page_base = rdev->gart.pages_addr[i]; 320 for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { 321 radeon_gart_set_page(rdev, t, page_base); 322 page_base += RADEON_GPU_PAGE_SIZE; 323 } 324 } 325 mb(); 326 radeon_gart_tlb_flush(rdev); 327 } 328 329 /** 330 * radeon_gart_init - init the driver info for managing the gart 331 * 332 * @rdev: radeon_device pointer 333 * 334 * Allocate the dummy page and init the gart driver info (all asics). 335 * Returns 0 for success, error for failure. 336 */ 337 int radeon_gart_init(struct radeon_device *rdev) 338 { 339 int r, i; 340 341 if (rdev->gart.pages) { 342 return 0; 343 } 344 /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ 345 if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { 346 DRM_ERROR("Page size is smaller than GPU page size!\n"); 347 return -EINVAL; 348 } 349 r = radeon_dummy_page_init(rdev); 350 if (r) 351 return r; 352 /* Compute table size */ 353 rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; 354 rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; 355 DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", 356 rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); 357 /* Allocate pages table */ 358 rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages, 359 GFP_KERNEL); 360 if (rdev->gart.pages == NULL) { 361 radeon_gart_fini(rdev); 362 return -ENOMEM; 363 } 364 rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) * 365 rdev->gart.num_cpu_pages, GFP_KERNEL); 366 if (rdev->gart.pages_addr == NULL) { 367 radeon_gart_fini(rdev); 368 return -ENOMEM; 369 } 370 /* set GART entry to point to the dummy page by default */ 371 for (i = 0; i < rdev->gart.num_cpu_pages; i++) { 372 rdev->gart.pages_addr[i] = rdev->dummy_page.addr; 373 } 374 return 0; 375 } 376 377 /** 378 * radeon_gart_fini - tear down the driver info for managing the gart 379 * 380 * @rdev: radeon_device pointer 381 * 382 * Tear down the gart driver info and free the dummy page (all asics). 383 */ 384 void radeon_gart_fini(struct radeon_device *rdev) 385 { 386 if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { 387 /* unbind pages */ 388 radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); 389 } 390 rdev->gart.ready = false; 391 kfree(rdev->gart.pages); 392 kfree(rdev->gart.pages_addr); 393 rdev->gart.pages = NULL; 394 rdev->gart.pages_addr = NULL; 395 396 radeon_dummy_page_fini(rdev); 397 } 398 399 /* 400 * GPUVM 401 * GPUVM is similar to the legacy gart on older asics, however 402 * rather than there being a single global gart table 403 * for the entire GPU, there are multiple VM page tables active 404 * at any given time. The VM page tables can contain a mix 405 * vram pages and system memory pages and system memory pages 406 * can be mapped as snooped (cached system pages) or unsnooped 407 * (uncached system pages). 408 * Each VM has an ID associated with it and there is a page table 409 * associated with each VMID. When execting a command buffer, 410 * the kernel tells the the ring what VMID to use for that command 411 * buffer. VMIDs are allocated dynamically as commands are submitted. 412 * The userspace drivers maintain their own address space and the kernel 413 * sets up their pages tables accordingly when they submit their 414 * command buffers and a VMID is assigned. 415 * Cayman/Trinity support up to 8 active VMs at any given time; 416 * SI supports 16. 417 */ 418 419 /* 420 * vm helpers 421 * 422 * TODO bind a default page at vm initialization for default address 423 */ 424 425 /** 426 * radeon_vm_num_pde - return the number of page directory entries 427 * 428 * @rdev: radeon_device pointer 429 * 430 * Calculate the number of page directory entries (cayman+). 431 */ 432 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) 433 { 434 return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE; 435 } 436 437 /** 438 * radeon_vm_directory_size - returns the size of the page directory in bytes 439 * 440 * @rdev: radeon_device pointer 441 * 442 * Calculate the size of the page directory in bytes (cayman+). 443 */ 444 static unsigned radeon_vm_directory_size(struct radeon_device *rdev) 445 { 446 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); 447 } 448 449 /** 450 * radeon_vm_manager_init - init the vm manager 451 * 452 * @rdev: radeon_device pointer 453 * 454 * Init the vm manager (cayman+). 455 * Returns 0 for success, error for failure. 456 */ 457 int radeon_vm_manager_init(struct radeon_device *rdev) 458 { 459 struct radeon_vm *vm; 460 struct radeon_bo_va *bo_va; 461 int r; 462 unsigned size; 463 464 if (!rdev->vm_manager.enabled) { 465 /* allocate enough for 2 full VM pts */ 466 size = radeon_vm_directory_size(rdev); 467 size += rdev->vm_manager.max_pfn * 8; 468 size *= 2; 469 r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager, 470 RADEON_GPU_PAGE_ALIGN(size), 471 RADEON_GEM_DOMAIN_VRAM); 472 if (r) { 473 dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n", 474 (rdev->vm_manager.max_pfn * 8) >> 10); 475 return r; 476 } 477 478 r = radeon_asic_vm_init(rdev); 479 if (r) 480 return r; 481 482 rdev->vm_manager.enabled = true; 483 484 r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager); 485 if (r) 486 return r; 487 } 488 489 /* restore page table */ 490 list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) { 491 if (vm->page_directory == NULL) 492 continue; 493 494 list_for_each_entry(bo_va, &vm->va, vm_list) { 495 bo_va->valid = false; 496 } 497 } 498 return 0; 499 } 500 501 /** 502 * radeon_vm_free_pt - free the page table for a specific vm 503 * 504 * @rdev: radeon_device pointer 505 * @vm: vm to unbind 506 * 507 * Free the page table of a specific vm (cayman+). 508 * 509 * Global and local mutex must be lock! 510 */ 511 static void radeon_vm_free_pt(struct radeon_device *rdev, 512 struct radeon_vm *vm) 513 { 514 struct radeon_bo_va *bo_va; 515 int i; 516 517 if (!vm->page_directory) 518 return; 519 520 list_del_init(&vm->list); 521 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 522 523 list_for_each_entry(bo_va, &vm->va, vm_list) { 524 bo_va->valid = false; 525 } 526 527 if (vm->page_tables == NULL) 528 return; 529 530 for (i = 0; i < radeon_vm_num_pdes(rdev); i++) 531 radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence); 532 533 kfree(vm->page_tables); 534 } 535 536 /** 537 * radeon_vm_manager_fini - tear down the vm manager 538 * 539 * @rdev: radeon_device pointer 540 * 541 * Tear down the VM manager (cayman+). 542 */ 543 void radeon_vm_manager_fini(struct radeon_device *rdev) 544 { 545 struct radeon_vm *vm, *tmp; 546 int i; 547 548 if (!rdev->vm_manager.enabled) 549 return; 550 551 mutex_lock(&rdev->vm_manager.lock); 552 /* free all allocated page tables */ 553 list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) { 554 mutex_lock(&vm->mutex); 555 radeon_vm_free_pt(rdev, vm); 556 mutex_unlock(&vm->mutex); 557 } 558 for (i = 0; i < RADEON_NUM_VM; ++i) { 559 radeon_fence_unref(&rdev->vm_manager.active[i]); 560 } 561 radeon_asic_vm_fini(rdev); 562 mutex_unlock(&rdev->vm_manager.lock); 563 564 radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager); 565 radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager); 566 rdev->vm_manager.enabled = false; 567 } 568 569 /** 570 * radeon_vm_evict - evict page table to make room for new one 571 * 572 * @rdev: radeon_device pointer 573 * @vm: VM we want to allocate something for 574 * 575 * Evict a VM from the lru, making sure that it isn't @vm. (cayman+). 576 * Returns 0 for success, -ENOMEM for failure. 577 * 578 * Global and local mutex must be locked! 579 */ 580 int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm) 581 { 582 struct radeon_vm *vm_evict; 583 584 if (list_empty(&rdev->vm_manager.lru_vm)) 585 return -ENOMEM; 586 587 vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, 588 struct radeon_vm, list); 589 if (vm_evict == vm) 590 return -ENOMEM; 591 592 mutex_lock(&vm_evict->mutex); 593 radeon_vm_free_pt(rdev, vm_evict); 594 mutex_unlock(&vm_evict->mutex); 595 return 0; 596 } 597 598 /** 599 * radeon_vm_alloc_pt - allocates a page table for a VM 600 * 601 * @rdev: radeon_device pointer 602 * @vm: vm to bind 603 * 604 * Allocate a page table for the requested vm (cayman+). 605 * Returns 0 for success, error for failure. 606 * 607 * Global and local mutex must be locked! 608 */ 609 int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm) 610 { 611 unsigned pd_size, pts_size; 612 u64 *pd_addr; 613 int r; 614 615 if (vm == NULL) { 616 return -EINVAL; 617 } 618 619 if (vm->page_directory != NULL) { 620 return 0; 621 } 622 623 retry: 624 pd_size = RADEON_GPU_PAGE_ALIGN(radeon_vm_directory_size(rdev)); 625 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 626 &vm->page_directory, pd_size, 627 RADEON_GPU_PAGE_SIZE, false); 628 if (r == -ENOMEM) { 629 r = radeon_vm_evict(rdev, vm); 630 if (r) 631 return r; 632 goto retry; 633 634 } else if (r) { 635 return r; 636 } 637 638 vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory); 639 640 /* Initially clear the page directory */ 641 pd_addr = radeon_sa_bo_cpu_addr(vm->page_directory); 642 memset(pd_addr, 0, pd_size); 643 644 pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *); 645 vm->page_tables = kzalloc(pts_size, GFP_KERNEL); 646 647 if (vm->page_tables == NULL) { 648 DRM_ERROR("Cannot allocate memory for page table array\n"); 649 radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); 650 return -ENOMEM; 651 } 652 653 return 0; 654 } 655 656 /** 657 * radeon_vm_add_to_lru - add VMs page table to LRU list 658 * 659 * @rdev: radeon_device pointer 660 * @vm: vm to add to LRU 661 * 662 * Add the allocated page table to the LRU list (cayman+). 663 * 664 * Global mutex must be locked! 665 */ 666 void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm) 667 { 668 list_del_init(&vm->list); 669 list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); 670 } 671 672 /** 673 * radeon_vm_grab_id - allocate the next free VMID 674 * 675 * @rdev: radeon_device pointer 676 * @vm: vm to allocate id for 677 * @ring: ring we want to submit job to 678 * 679 * Allocate an id for the vm (cayman+). 680 * Returns the fence we need to sync to (if any). 681 * 682 * Global and local mutex must be locked! 683 */ 684 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, 685 struct radeon_vm *vm, int ring) 686 { 687 struct radeon_fence *best[RADEON_NUM_RINGS] = {}; 688 unsigned choices[2] = {}; 689 unsigned i; 690 691 /* check if the id is still valid */ 692 if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id]) 693 return NULL; 694 695 /* we definately need to flush */ 696 radeon_fence_unref(&vm->last_flush); 697 698 /* skip over VMID 0, since it is the system VM */ 699 for (i = 1; i < rdev->vm_manager.nvm; ++i) { 700 struct radeon_fence *fence = rdev->vm_manager.active[i]; 701 702 if (fence == NULL) { 703 /* found a free one */ 704 vm->id = i; 705 return NULL; 706 } 707 708 if (radeon_fence_is_earlier(fence, best[fence->ring])) { 709 best[fence->ring] = fence; 710 choices[fence->ring == ring ? 0 : 1] = i; 711 } 712 } 713 714 for (i = 0; i < 2; ++i) { 715 if (choices[i]) { 716 vm->id = choices[i]; 717 return rdev->vm_manager.active[choices[i]]; 718 } 719 } 720 721 /* should never happen */ 722 BUG(); 723 return NULL; 724 } 725 726 /** 727 * radeon_vm_fence - remember fence for vm 728 * 729 * @rdev: radeon_device pointer 730 * @vm: vm we want to fence 731 * @fence: fence to remember 732 * 733 * Fence the vm (cayman+). 734 * Set the fence used to protect page table and id. 735 * 736 * Global and local mutex must be locked! 737 */ 738 void radeon_vm_fence(struct radeon_device *rdev, 739 struct radeon_vm *vm, 740 struct radeon_fence *fence) 741 { 742 radeon_fence_unref(&rdev->vm_manager.active[vm->id]); 743 rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence); 744 745 radeon_fence_unref(&vm->fence); 746 vm->fence = radeon_fence_ref(fence); 747 } 748 749 /** 750 * radeon_vm_bo_find - find the bo_va for a specific vm & bo 751 * 752 * @vm: requested vm 753 * @bo: requested buffer object 754 * 755 * Find @bo inside the requested vm (cayman+). 756 * Search inside the @bos vm list for the requested vm 757 * Returns the found bo_va or NULL if none is found 758 * 759 * Object has to be reserved! 760 */ 761 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, 762 struct radeon_bo *bo) 763 { 764 struct radeon_bo_va *bo_va; 765 766 list_for_each_entry(bo_va, &bo->va, bo_list) { 767 if (bo_va->vm == vm) { 768 return bo_va; 769 } 770 } 771 return NULL; 772 } 773 774 /** 775 * radeon_vm_bo_add - add a bo to a specific vm 776 * 777 * @rdev: radeon_device pointer 778 * @vm: requested vm 779 * @bo: radeon buffer object 780 * 781 * Add @bo into the requested vm (cayman+). 782 * Add @bo to the list of bos associated with the vm 783 * Returns newly added bo_va or NULL for failure 784 * 785 * Object has to be reserved! 786 */ 787 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, 788 struct radeon_vm *vm, 789 struct radeon_bo *bo) 790 { 791 struct radeon_bo_va *bo_va; 792 793 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); 794 if (bo_va == NULL) { 795 return NULL; 796 } 797 bo_va->vm = vm; 798 bo_va->bo = bo; 799 bo_va->soffset = 0; 800 bo_va->eoffset = 0; 801 bo_va->flags = 0; 802 bo_va->valid = false; 803 bo_va->ref_count = 1; 804 INIT_LIST_HEAD(&bo_va->bo_list); 805 INIT_LIST_HEAD(&bo_va->vm_list); 806 807 mutex_lock(&vm->mutex); 808 list_add(&bo_va->vm_list, &vm->va); 809 list_add_tail(&bo_va->bo_list, &bo->va); 810 mutex_unlock(&vm->mutex); 811 812 return bo_va; 813 } 814 815 /** 816 * radeon_vm_bo_set_addr - set bos virtual address inside a vm 817 * 818 * @rdev: radeon_device pointer 819 * @bo_va: bo_va to store the address 820 * @soffset: requested offset of the buffer in the VM address space 821 * @flags: attributes of pages (read/write/valid/etc.) 822 * 823 * Set offset of @bo_va (cayman+). 824 * Validate and set the offset requested within the vm address space. 825 * Returns 0 for success, error for failure. 826 * 827 * Object has to be reserved! 828 */ 829 int radeon_vm_bo_set_addr(struct radeon_device *rdev, 830 struct radeon_bo_va *bo_va, 831 uint64_t soffset, 832 uint32_t flags) 833 { 834 uint64_t size = radeon_bo_size(bo_va->bo); 835 uint64_t eoffset, last_offset = 0; 836 struct radeon_vm *vm = bo_va->vm; 837 struct radeon_bo_va *tmp; 838 struct list_head *head; 839 unsigned last_pfn; 840 841 if (soffset) { 842 /* make sure object fit at this offset */ 843 eoffset = soffset + size; 844 if (soffset >= eoffset) { 845 return -EINVAL; 846 } 847 848 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; 849 if (last_pfn > rdev->vm_manager.max_pfn) { 850 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", 851 last_pfn, rdev->vm_manager.max_pfn); 852 return -EINVAL; 853 } 854 855 } else { 856 eoffset = last_pfn = 0; 857 } 858 859 mutex_lock(&vm->mutex); 860 head = &vm->va; 861 last_offset = 0; 862 list_for_each_entry(tmp, &vm->va, vm_list) { 863 if (bo_va == tmp) { 864 /* skip over currently modified bo */ 865 continue; 866 } 867 868 if (soffset >= last_offset && eoffset <= tmp->soffset) { 869 /* bo can be added before this one */ 870 break; 871 } 872 if (eoffset > tmp->soffset && soffset < tmp->eoffset) { 873 /* bo and tmp overlap, invalid offset */ 874 dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n", 875 bo_va->bo, (unsigned)bo_va->soffset, tmp->bo, 876 (unsigned)tmp->soffset, (unsigned)tmp->eoffset); 877 mutex_unlock(&vm->mutex); 878 return -EINVAL; 879 } 880 last_offset = tmp->eoffset; 881 head = &tmp->vm_list; 882 } 883 884 bo_va->soffset = soffset; 885 bo_va->eoffset = eoffset; 886 bo_va->flags = flags; 887 bo_va->valid = false; 888 list_move(&bo_va->vm_list, head); 889 890 mutex_unlock(&vm->mutex); 891 return 0; 892 } 893 894 /** 895 * radeon_vm_map_gart - get the physical address of a gart page 896 * 897 * @rdev: radeon_device pointer 898 * @addr: the unmapped addr 899 * 900 * Look up the physical address of the page that the pte resolves 901 * to (cayman+). 902 * Returns the physical address of the page. 903 */ 904 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) 905 { 906 uint64_t result; 907 908 /* page table offset */ 909 result = rdev->gart.pages_addr[addr >> PAGE_SHIFT]; 910 911 /* in case cpu page size != gpu page size*/ 912 result |= addr & (~PAGE_MASK); 913 914 return result; 915 } 916 917 /** 918 * radeon_vm_update_pdes - make sure that page directory is valid 919 * 920 * @rdev: radeon_device pointer 921 * @vm: requested vm 922 * @start: start of GPU address range 923 * @end: end of GPU address range 924 * 925 * Allocates new page tables if necessary 926 * and updates the page directory (cayman+). 927 * Returns 0 for success, error for failure. 928 * 929 * Global and local mutex must be locked! 930 */ 931 static int radeon_vm_update_pdes(struct radeon_device *rdev, 932 struct radeon_vm *vm, 933 uint64_t start, uint64_t end) 934 { 935 static const uint32_t incr = RADEON_VM_PTE_COUNT * 8; 936 937 uint64_t last_pde = ~0, last_pt = ~0; 938 unsigned count = 0; 939 uint64_t pt_idx; 940 int r; 941 942 start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 943 end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; 944 945 /* walk over the address space and update the page directory */ 946 for (pt_idx = start; pt_idx <= end; ++pt_idx) { 947 uint64_t pde, pt; 948 949 if (vm->page_tables[pt_idx]) 950 continue; 951 952 retry: 953 r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, 954 &vm->page_tables[pt_idx], 955 RADEON_VM_PTE_COUNT * 8, 956 RADEON_GPU_PAGE_SIZE, false); 957 958 if (r == -ENOMEM) { 959 r = radeon_vm_evict(rdev, vm); 960 if (r) 961 return r; 962 goto retry; 963 } else if (r) { 964 return r; 965 } 966 967 pde = vm->pd_gpu_addr + pt_idx * 8; 968 969 pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 970 971 if (((last_pde + 8 * count) != pde) || 972 ((last_pt + incr * count) != pt)) { 973 974 if (count) { 975 radeon_asic_vm_set_page(rdev, last_pde, 976 last_pt, count, incr, 977 RADEON_VM_PAGE_VALID); 978 } 979 980 count = 1; 981 last_pde = pde; 982 last_pt = pt; 983 } else { 984 ++count; 985 } 986 } 987 988 if (count) { 989 radeon_asic_vm_set_page(rdev, last_pde, last_pt, count, 990 incr, RADEON_VM_PAGE_VALID); 991 992 } 993 994 return 0; 995 } 996 997 /** 998 * radeon_vm_update_ptes - make sure that page tables are valid 999 * 1000 * @rdev: radeon_device pointer 1001 * @vm: requested vm 1002 * @start: start of GPU address range 1003 * @end: end of GPU address range 1004 * @dst: destination address to map to 1005 * @flags: mapping flags 1006 * 1007 * Update the page tables in the range @start - @end (cayman+). 1008 * 1009 * Global and local mutex must be locked! 1010 */ 1011 static void radeon_vm_update_ptes(struct radeon_device *rdev, 1012 struct radeon_vm *vm, 1013 uint64_t start, uint64_t end, 1014 uint64_t dst, uint32_t flags) 1015 { 1016 static const uint64_t mask = RADEON_VM_PTE_COUNT - 1; 1017 1018 uint64_t last_pte = ~0, last_dst = ~0; 1019 unsigned count = 0; 1020 uint64_t addr; 1021 1022 start = start / RADEON_GPU_PAGE_SIZE; 1023 end = end / RADEON_GPU_PAGE_SIZE; 1024 1025 /* walk over the address space and update the page tables */ 1026 for (addr = start; addr < end; ) { 1027 uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE; 1028 unsigned nptes; 1029 uint64_t pte; 1030 1031 if ((addr & ~mask) == (end & ~mask)) 1032 nptes = end - addr; 1033 else 1034 nptes = RADEON_VM_PTE_COUNT - (addr & mask); 1035 1036 pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); 1037 pte += (addr & mask) * 8; 1038 1039 if (((last_pte + 8 * count) != pte) || 1040 ((count + nptes) > 1 << 11)) { 1041 1042 if (count) { 1043 radeon_asic_vm_set_page(rdev, last_pte, 1044 last_dst, count, 1045 RADEON_GPU_PAGE_SIZE, 1046 flags); 1047 } 1048 1049 count = nptes; 1050 last_pte = pte; 1051 last_dst = dst; 1052 } else { 1053 count += nptes; 1054 } 1055 1056 addr += nptes; 1057 dst += nptes * RADEON_GPU_PAGE_SIZE; 1058 } 1059 1060 if (count) { 1061 radeon_asic_vm_set_page(rdev, last_pte, last_dst, count, 1062 RADEON_GPU_PAGE_SIZE, flags); 1063 } 1064 } 1065 1066 /** 1067 * radeon_vm_bo_update_pte - map a bo into the vm page table 1068 * 1069 * @rdev: radeon_device pointer 1070 * @vm: requested vm 1071 * @bo: radeon buffer object 1072 * @mem: ttm mem 1073 * 1074 * Fill in the page table entries for @bo (cayman+). 1075 * Returns 0 for success, -EINVAL for failure. 1076 * 1077 * Object have to be reserved & global and local mutex must be locked! 1078 */ 1079 int radeon_vm_bo_update_pte(struct radeon_device *rdev, 1080 struct radeon_vm *vm, 1081 struct radeon_bo *bo, 1082 struct ttm_mem_reg *mem) 1083 { 1084 unsigned ridx = rdev->asic->vm.pt_ring_index; 1085 struct radeon_ring *ring = &rdev->ring[ridx]; 1086 struct radeon_semaphore *sem = NULL; 1087 struct radeon_bo_va *bo_va; 1088 unsigned nptes, npdes, ndw; 1089 uint64_t addr; 1090 int r; 1091 1092 /* nothing to do if vm isn't bound */ 1093 if (vm->page_directory == NULL) 1094 return 0; 1095 1096 bo_va = radeon_vm_bo_find(vm, bo); 1097 if (bo_va == NULL) { 1098 dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm); 1099 return -EINVAL; 1100 } 1101 1102 if (!bo_va->soffset) { 1103 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", 1104 bo, vm); 1105 return -EINVAL; 1106 } 1107 1108 if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL)) 1109 return 0; 1110 1111 bo_va->flags &= ~RADEON_VM_PAGE_VALID; 1112 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; 1113 if (mem) { 1114 addr = mem->start << PAGE_SHIFT; 1115 if (mem->mem_type != TTM_PL_SYSTEM) { 1116 bo_va->flags |= RADEON_VM_PAGE_VALID; 1117 bo_va->valid = true; 1118 } 1119 if (mem->mem_type == TTM_PL_TT) { 1120 bo_va->flags |= RADEON_VM_PAGE_SYSTEM; 1121 } else { 1122 addr += rdev->vm_manager.vram_base_offset; 1123 } 1124 } else { 1125 addr = 0; 1126 bo_va->valid = false; 1127 } 1128 1129 if (vm->fence && radeon_fence_signaled(vm->fence)) { 1130 radeon_fence_unref(&vm->fence); 1131 } 1132 1133 if (vm->fence && vm->fence->ring != ridx) { 1134 r = radeon_semaphore_create(rdev, &sem); 1135 if (r) { 1136 return r; 1137 } 1138 } 1139 1140 nptes = radeon_bo_ngpu_pages(bo); 1141 1142 /* assume two extra pdes in case the mapping overlaps the borders */ 1143 npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2; 1144 1145 /* estimate number of dw needed */ 1146 /* semaphore, fence and padding */ 1147 ndw = 32; 1148 1149 if (RADEON_VM_BLOCK_SIZE > 11) 1150 /* reserve space for one header for every 2k dwords */ 1151 ndw += (nptes >> 11) * 3; 1152 else 1153 /* reserve space for one header for 1154 every (1 << BLOCK_SIZE) entries */ 1155 ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 3; 1156 1157 /* reserve space for pte addresses */ 1158 ndw += nptes * 2; 1159 1160 /* reserve space for one header for every 2k dwords */ 1161 ndw += (npdes >> 11) * 3; 1162 1163 /* reserve space for pde addresses */ 1164 ndw += npdes * 2; 1165 1166 r = radeon_ring_lock(rdev, ring, ndw); 1167 if (r) { 1168 return r; 1169 } 1170 1171 if (sem && radeon_fence_need_sync(vm->fence, ridx)) { 1172 radeon_semaphore_sync_rings(rdev, sem, vm->fence->ring, ridx); 1173 radeon_fence_note_sync(vm->fence, ridx); 1174 } 1175 1176 r = radeon_vm_update_pdes(rdev, vm, bo_va->soffset, bo_va->eoffset); 1177 if (r) { 1178 radeon_ring_unlock_undo(rdev, ring); 1179 return r; 1180 } 1181 1182 radeon_vm_update_ptes(rdev, vm, bo_va->soffset, bo_va->eoffset, 1183 addr, bo_va->flags); 1184 1185 radeon_fence_unref(&vm->fence); 1186 r = radeon_fence_emit(rdev, &vm->fence, ridx); 1187 if (r) { 1188 radeon_ring_unlock_undo(rdev, ring); 1189 return r; 1190 } 1191 radeon_ring_unlock_commit(rdev, ring); 1192 radeon_semaphore_free(rdev, &sem, vm->fence); 1193 radeon_fence_unref(&vm->last_flush); 1194 1195 return 0; 1196 } 1197 1198 /** 1199 * radeon_vm_bo_rmv - remove a bo to a specific vm 1200 * 1201 * @rdev: radeon_device pointer 1202 * @bo_va: requested bo_va 1203 * 1204 * Remove @bo_va->bo from the requested vm (cayman+). 1205 * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and 1206 * remove the ptes for @bo_va in the page table. 1207 * Returns 0 for success. 1208 * 1209 * Object have to be reserved! 1210 */ 1211 int radeon_vm_bo_rmv(struct radeon_device *rdev, 1212 struct radeon_bo_va *bo_va) 1213 { 1214 int r; 1215 1216 mutex_lock(&rdev->vm_manager.lock); 1217 mutex_lock(&bo_va->vm->mutex); 1218 r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL); 1219 mutex_unlock(&rdev->vm_manager.lock); 1220 list_del(&bo_va->vm_list); 1221 mutex_unlock(&bo_va->vm->mutex); 1222 list_del(&bo_va->bo_list); 1223 1224 kfree(bo_va); 1225 return r; 1226 } 1227 1228 /** 1229 * radeon_vm_bo_invalidate - mark the bo as invalid 1230 * 1231 * @rdev: radeon_device pointer 1232 * @vm: requested vm 1233 * @bo: radeon buffer object 1234 * 1235 * Mark @bo as invalid (cayman+). 1236 */ 1237 void radeon_vm_bo_invalidate(struct radeon_device *rdev, 1238 struct radeon_bo *bo) 1239 { 1240 struct radeon_bo_va *bo_va; 1241 1242 BUG_ON(!atomic_read(&bo->tbo.reserved)); 1243 list_for_each_entry(bo_va, &bo->va, bo_list) { 1244 bo_va->valid = false; 1245 } 1246 } 1247 1248 /** 1249 * radeon_vm_init - initialize a vm instance 1250 * 1251 * @rdev: radeon_device pointer 1252 * @vm: requested vm 1253 * 1254 * Init @vm fields (cayman+). 1255 */ 1256 void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) 1257 { 1258 vm->id = 0; 1259 vm->fence = NULL; 1260 mutex_init(&vm->mutex); 1261 INIT_LIST_HEAD(&vm->list); 1262 INIT_LIST_HEAD(&vm->va); 1263 } 1264 1265 /** 1266 * radeon_vm_fini - tear down a vm instance 1267 * 1268 * @rdev: radeon_device pointer 1269 * @vm: requested vm 1270 * 1271 * Tear down @vm (cayman+). 1272 * Unbind the VM and remove all bos from the vm bo list 1273 */ 1274 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) 1275 { 1276 struct radeon_bo_va *bo_va, *tmp; 1277 int r; 1278 1279 mutex_lock(&rdev->vm_manager.lock); 1280 mutex_lock(&vm->mutex); 1281 radeon_vm_free_pt(rdev, vm); 1282 mutex_unlock(&rdev->vm_manager.lock); 1283 1284 if (!list_empty(&vm->va)) { 1285 dev_err(rdev->dev, "still active bo inside vm\n"); 1286 } 1287 list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) { 1288 list_del_init(&bo_va->vm_list); 1289 r = radeon_bo_reserve(bo_va->bo, false); 1290 if (!r) { 1291 list_del_init(&bo_va->bo_list); 1292 radeon_bo_unreserve(bo_va->bo); 1293 kfree(bo_va); 1294 } 1295 } 1296 radeon_fence_unref(&vm->fence); 1297 radeon_fence_unref(&vm->last_flush); 1298 mutex_unlock(&vm->mutex); 1299 } 1300