xref: /linux/drivers/gpu/drm/radeon/radeon_fence.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 
32 #include <linux/atomic.h>
33 #include <linux/firmware.h>
34 #include <linux/kref.h>
35 #include <linux/sched/signal.h>
36 #include <linux/seq_file.h>
37 #include <linux/slab.h>
38 #include <linux/wait.h>
39 
40 #include <drm/drm_device.h>
41 #include <drm/drm_file.h>
42 
43 #include "radeon.h"
44 #include "radeon_reg.h"
45 #include "radeon_trace.h"
46 
47 /*
48  * Fences mark an event in the GPUs pipeline and are used
49  * for GPU/CPU synchronization.  When the fence is written,
50  * it is expected that all buffers associated with that fence
51  * are no longer in use by the associated ring on the GPU and
52  * that the relevant GPU caches have been flushed.  Whether
53  * we use a scratch register or memory location depends on the asic
54  * and whether writeback is enabled.
55  */
56 
57 /**
58  * radeon_fence_write - write a fence value
59  *
60  * @rdev: radeon_device pointer
61  * @seq: sequence number to write
62  * @ring: ring index the fence is associated with
63  *
64  * Writes a fence value to memory or a scratch register (all asics).
65  */
66 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
67 {
68 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
69 
70 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 		if (drv->cpu_addr)
72 			*drv->cpu_addr = cpu_to_le32(seq);
73 	} else {
74 		WREG32(drv->scratch_reg, seq);
75 	}
76 }
77 
78 /**
79  * radeon_fence_read - read a fence value
80  *
81  * @rdev: radeon_device pointer
82  * @ring: ring index the fence is associated with
83  *
84  * Reads a fence value from memory or a scratch register (all asics).
85  * Returns the value of the fence read from memory or register.
86  */
87 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
88 {
89 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
90 	u32 seq = 0;
91 
92 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
93 		if (drv->cpu_addr)
94 			seq = le32_to_cpu(*drv->cpu_addr);
95 		else
96 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
97 	} else {
98 		seq = RREG32(drv->scratch_reg);
99 	}
100 	return seq;
101 }
102 
103 /**
104  * radeon_fence_schedule_check - schedule lockup check
105  *
106  * @rdev: radeon_device pointer
107  * @ring: ring index we should work with
108  *
109  * Queues a delayed work item to check for lockups.
110  */
111 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
112 {
113 	/*
114 	 * Do not reset the timer here with mod_delayed_work,
115 	 * this can livelock in an interaction with TTM delayed destroy.
116 	 */
117 	queue_delayed_work(system_power_efficient_wq,
118 			   &rdev->fence_drv[ring].lockup_work,
119 			   RADEON_FENCE_JIFFIES_TIMEOUT);
120 }
121 
122 /**
123  * radeon_fence_emit - emit a fence on the requested ring
124  *
125  * @rdev: radeon_device pointer
126  * @fence: radeon fence object
127  * @ring: ring index the fence is associated with
128  *
129  * Emits a fence command on the requested ring (all asics).
130  * Returns 0 on success, -ENOMEM on failure.
131  */
132 int radeon_fence_emit(struct radeon_device *rdev,
133 		      struct radeon_fence **fence,
134 		      int ring)
135 {
136 	u64 seq;
137 
138 	/* we are protected by the ring emission mutex */
139 	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
140 	if ((*fence) == NULL)
141 		return -ENOMEM;
142 
143 	(*fence)->rdev = rdev;
144 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
145 	(*fence)->ring = ring;
146 	(*fence)->is_vm_update = false;
147 	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
148 		       &rdev->fence_queue.lock,
149 		       rdev->fence_context + ring,
150 		       seq);
151 	radeon_fence_ring_emit(rdev, ring, *fence);
152 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
153 	radeon_fence_schedule_check(rdev, ring);
154 	return 0;
155 }
156 
157 /*
158  * radeon_fence_check_signaled - callback from fence_queue
159  *
160  * this function is called with fence_queue lock held, which is also used
161  * for the fence locking itself, so unlocked variants are used for
162  * fence_signal, and remove_wait_queue.
163  */
164 static int radeon_fence_check_signaled(wait_queue_entry_t *wait,
165 				       unsigned int mode, int flags, void *key)
166 {
167 	struct radeon_fence *fence;
168 	u64 seq;
169 
170 	fence = container_of(wait, struct radeon_fence, fence_wake);
171 
172 	/*
173 	 * We cannot use radeon_fence_process here because we're already
174 	 * in the waitqueue, in a call from wake_up_all.
175 	 */
176 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
177 	if (seq >= fence->seq) {
178 		dma_fence_signal_locked(&fence->base);
179 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
180 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
181 		dma_fence_put(&fence->base);
182 	}
183 	return 0;
184 }
185 
186 /**
187  * radeon_fence_activity - check for fence activity
188  *
189  * @rdev: radeon_device pointer
190  * @ring: ring index the fence is associated with
191  *
192  * Checks the current fence value and calculates the last
193  * signalled fence value. Returns true if activity occured
194  * on the ring, and the fence_queue should be waken up.
195  */
196 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
197 {
198 	uint64_t seq, last_seq, last_emitted;
199 	unsigned int count_loop = 0;
200 	bool wake = false;
201 
202 	/* Note there is a scenario here for an infinite loop but it's
203 	 * very unlikely to happen. For it to happen, the current polling
204 	 * process need to be interrupted by another process and another
205 	 * process needs to update the last_seq btw the atomic read and
206 	 * xchg of the current process.
207 	 *
208 	 * More over for this to go in infinite loop there need to be
209 	 * continuously new fence signaled ie radeon_fence_read needs
210 	 * to return a different value each time for both the currently
211 	 * polling process and the other process that xchg the last_seq
212 	 * btw atomic read and xchg of the current process. And the
213 	 * value the other process set as last seq must be higher than
214 	 * the seq value we just read. Which means that current process
215 	 * need to be interrupted after radeon_fence_read and before
216 	 * atomic xchg.
217 	 *
218 	 * To be even more safe we count the number of time we loop and
219 	 * we bail after 10 loop just accepting the fact that we might
220 	 * have temporarly set the last_seq not to the true real last
221 	 * seq but to an older one.
222 	 */
223 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
224 	do {
225 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
226 		seq = radeon_fence_read(rdev, ring);
227 		seq |= last_seq & 0xffffffff00000000LL;
228 		if (seq < last_seq) {
229 			seq &= 0xffffffff;
230 			seq |= last_emitted & 0xffffffff00000000LL;
231 		}
232 
233 		if (seq <= last_seq || seq > last_emitted)
234 			break;
235 
236 		/* If we loop over we don't want to return without
237 		 * checking if a fence is signaled as it means that the
238 		 * seq we just read is different from the previous on.
239 		 */
240 		wake = true;
241 		last_seq = seq;
242 		if ((count_loop++) > 10) {
243 			/* We looped over too many time leave with the
244 			 * fact that we might have set an older fence
245 			 * seq then the current real last seq as signaled
246 			 * by the hw.
247 			 */
248 			break;
249 		}
250 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
251 
252 	if (seq < last_emitted)
253 		radeon_fence_schedule_check(rdev, ring);
254 
255 	return wake;
256 }
257 
258 /**
259  * radeon_fence_check_lockup - check for hardware lockup
260  *
261  * @work: delayed work item
262  *
263  * Checks for fence activity and if there is none probe
264  * the hardware if a lockup occured.
265  */
266 static void radeon_fence_check_lockup(struct work_struct *work)
267 {
268 	struct radeon_fence_driver *fence_drv;
269 	struct radeon_device *rdev;
270 	int ring;
271 
272 	fence_drv = container_of(work, struct radeon_fence_driver,
273 				 lockup_work.work);
274 	rdev = fence_drv->rdev;
275 	ring = fence_drv - &rdev->fence_drv[0];
276 
277 	if (!down_read_trylock(&rdev->exclusive_lock)) {
278 		/* just reschedule the check if a reset is going on */
279 		radeon_fence_schedule_check(rdev, ring);
280 		return;
281 	}
282 
283 	if (fence_drv->delayed_irq && rdev->irq.installed) {
284 		unsigned long irqflags;
285 
286 		fence_drv->delayed_irq = false;
287 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
288 		radeon_irq_set(rdev);
289 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
290 	}
291 
292 	if (radeon_fence_activity(rdev, ring))
293 		wake_up_all(&rdev->fence_queue);
294 
295 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
296 
297 		/* good news we believe it's a lockup */
298 		dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n",
299 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
300 			 fence_drv->sync_seq[ring], ring);
301 
302 		/* remember that we need an reset */
303 		rdev->needs_reset = true;
304 		wake_up_all(&rdev->fence_queue);
305 	}
306 	up_read(&rdev->exclusive_lock);
307 }
308 
309 /**
310  * radeon_fence_process - process a fence
311  *
312  * @rdev: radeon_device pointer
313  * @ring: ring index the fence is associated with
314  *
315  * Checks the current fence value and wakes the fence queue
316  * if the sequence number has increased (all asics).
317  */
318 void radeon_fence_process(struct radeon_device *rdev, int ring)
319 {
320 	if (radeon_fence_activity(rdev, ring))
321 		wake_up_all(&rdev->fence_queue);
322 }
323 
324 /**
325  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
326  *
327  * @rdev: radeon device pointer
328  * @seq: sequence number
329  * @ring: ring index the fence is associated with
330  *
331  * Check if the last signaled fence sequnce number is >= the requested
332  * sequence number (all asics).
333  * Returns true if the fence has signaled (current fence value
334  * is >= requested value) or false if it has not (current fence
335  * value is < the requested value.  Helper function for
336  * radeon_fence_signaled().
337  */
338 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
339 				      u64 seq, unsigned int ring)
340 {
341 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
342 		return true;
343 
344 	/* poll new last sequence at least once */
345 	radeon_fence_process(rdev, ring);
346 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
347 		return true;
348 
349 	return false;
350 }
351 
352 static bool radeon_fence_is_signaled(struct dma_fence *f)
353 {
354 	struct radeon_fence *fence = to_radeon_fence(f);
355 	struct radeon_device *rdev = fence->rdev;
356 	unsigned int ring = fence->ring;
357 	u64 seq = fence->seq;
358 
359 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
360 		return true;
361 
362 	if (down_read_trylock(&rdev->exclusive_lock)) {
363 		radeon_fence_process(rdev, ring);
364 		up_read(&rdev->exclusive_lock);
365 
366 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
367 			return true;
368 	}
369 	return false;
370 }
371 
372 /**
373  * radeon_fence_enable_signaling - enable signalling on fence
374  * @f: fence
375  *
376  * This function is called with fence_queue lock held, and adds a callback
377  * to fence_queue that checks if this fence is signaled, and if so it
378  * signals the fence and removes itself.
379  */
380 static bool radeon_fence_enable_signaling(struct dma_fence *f)
381 {
382 	struct radeon_fence *fence = to_radeon_fence(f);
383 	struct radeon_device *rdev = fence->rdev;
384 
385 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
386 		return false;
387 
388 	if (down_read_trylock(&rdev->exclusive_lock)) {
389 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
390 
391 		if (radeon_fence_activity(rdev, fence->ring))
392 			wake_up_all_locked(&rdev->fence_queue);
393 
394 		/* did fence get signaled after we enabled the sw irq? */
395 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
396 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
397 			up_read(&rdev->exclusive_lock);
398 			return false;
399 		}
400 
401 		up_read(&rdev->exclusive_lock);
402 	} else {
403 		/* we're probably in a lockup, lets not fiddle too much */
404 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
405 			rdev->fence_drv[fence->ring].delayed_irq = true;
406 		radeon_fence_schedule_check(rdev, fence->ring);
407 	}
408 
409 	fence->fence_wake.flags = 0;
410 	fence->fence_wake.private = NULL;
411 	fence->fence_wake.func = radeon_fence_check_signaled;
412 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
413 	dma_fence_get(f);
414 	return true;
415 }
416 
417 /**
418  * radeon_fence_signaled - check if a fence has signaled
419  *
420  * @fence: radeon fence object
421  *
422  * Check if the requested fence has signaled (all asics).
423  * Returns true if the fence has signaled or false if it has not.
424  */
425 bool radeon_fence_signaled(struct radeon_fence *fence)
426 {
427 	if (!fence)
428 		return true;
429 
430 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
431 		dma_fence_signal(&fence->base);
432 		return true;
433 	}
434 	return false;
435 }
436 
437 /**
438  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
439  *
440  * @rdev: radeon device pointer
441  * @seq: sequence numbers
442  *
443  * Check if the last signaled fence sequnce number is >= the requested
444  * sequence number (all asics).
445  * Returns true if any has signaled (current value is >= requested value)
446  * or false if it has not. Helper function for radeon_fence_wait_seq.
447  */
448 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
449 {
450 	unsigned int i;
451 
452 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
453 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
454 			return true;
455 	}
456 	return false;
457 }
458 
459 /**
460  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
461  *
462  * @rdev: radeon device pointer
463  * @target_seq: sequence number(s) we want to wait for
464  * @intr: use interruptable sleep
465  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
466  *
467  * Wait for the requested sequence number(s) to be written by any ring
468  * (all asics).  Sequnce number array is indexed by ring id.
469  * @intr selects whether to use interruptable (true) or non-interruptable
470  * (false) sleep when waiting for the sequence number.  Helper function
471  * for radeon_fence_wait_*().
472  * Returns remaining time if the sequence number has passed, 0 when
473  * the wait timeout, or an error for all other cases.
474  * -EDEADLK is returned when a GPU lockup has been detected.
475  */
476 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
477 					  u64 *target_seq, bool intr,
478 					  long timeout)
479 {
480 	long r;
481 	int i;
482 
483 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
484 		return timeout;
485 
486 	/* enable IRQs and tracing */
487 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
488 		if (!target_seq[i])
489 			continue;
490 
491 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
492 		radeon_irq_kms_sw_irq_get(rdev, i);
493 	}
494 
495 	if (intr) {
496 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
497 			radeon_fence_any_seq_signaled(rdev, target_seq)
498 			 || rdev->needs_reset), timeout);
499 	} else {
500 		r = wait_event_timeout(rdev->fence_queue, (
501 			radeon_fence_any_seq_signaled(rdev, target_seq)
502 			 || rdev->needs_reset), timeout);
503 	}
504 
505 	if (rdev->needs_reset)
506 		r = -EDEADLK;
507 
508 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
509 		if (!target_seq[i])
510 			continue;
511 
512 		radeon_irq_kms_sw_irq_put(rdev, i);
513 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
514 	}
515 
516 	return r;
517 }
518 
519 /**
520  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
521  *
522  * @fence: radeon fence object
523  * @intr: use interruptible sleep
524  *
525  * Wait for the requested fence to signal (all asics).
526  * @intr selects whether to use interruptable (true) or non-interruptable
527  * (false) sleep when waiting for the fence.
528  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
529  * Returns remaining time if the sequence number has passed, 0 when
530  * the wait timeout, or an error for all other cases.
531  */
532 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
533 {
534 	uint64_t seq[RADEON_NUM_RINGS] = {};
535 	long r;
536 
537 	/*
538 	 * This function should not be called on !radeon fences.
539 	 * If this is the case, it would mean this function can
540 	 * also be called on radeon fences belonging to another card.
541 	 * exclusive_lock is not held in that case.
542 	 */
543 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
544 		return dma_fence_wait(&fence->base, intr);
545 
546 	seq[fence->ring] = fence->seq;
547 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
548 	if (r <= 0)
549 		return r;
550 
551 	dma_fence_signal(&fence->base);
552 	return r;
553 }
554 
555 /**
556  * radeon_fence_wait - wait for a fence to signal
557  *
558  * @fence: radeon fence object
559  * @intr: use interruptible sleep
560  *
561  * Wait for the requested fence to signal (all asics).
562  * @intr selects whether to use interruptable (true) or non-interruptable
563  * (false) sleep when waiting for the fence.
564  * Returns 0 if the fence has passed, error for all other cases.
565  */
566 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
567 {
568 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
569 
570 	if (r > 0)
571 		return 0;
572 	else
573 		return r;
574 }
575 
576 /**
577  * radeon_fence_wait_any - wait for a fence to signal on any ring
578  *
579  * @rdev: radeon device pointer
580  * @fences: radeon fence object(s)
581  * @intr: use interruptable sleep
582  *
583  * Wait for any requested fence to signal (all asics).  Fence
584  * array is indexed by ring id.  @intr selects whether to use
585  * interruptable (true) or non-interruptable (false) sleep when
586  * waiting for the fences. Used by the suballocator.
587  * Returns 0 if any fence has passed, error for all other cases.
588  */
589 int radeon_fence_wait_any(struct radeon_device *rdev,
590 			  struct radeon_fence **fences,
591 			  bool intr)
592 {
593 	uint64_t seq[RADEON_NUM_RINGS];
594 	unsigned int i, num_rings = 0;
595 	long r;
596 
597 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
598 		seq[i] = 0;
599 
600 		if (!fences[i])
601 			continue;
602 
603 		seq[i] = fences[i]->seq;
604 		++num_rings;
605 	}
606 
607 	/* nothing to wait for ? */
608 	if (num_rings == 0)
609 		return -ENOENT;
610 
611 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
612 	if (r < 0)
613 		return r;
614 
615 	return 0;
616 }
617 
618 /**
619  * radeon_fence_wait_next - wait for the next fence to signal
620  *
621  * @rdev: radeon device pointer
622  * @ring: ring index the fence is associated with
623  *
624  * Wait for the next fence on the requested ring to signal (all asics).
625  * Returns 0 if the next fence has passed, error for all other cases.
626  * Caller must hold ring lock.
627  */
628 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
629 {
630 	uint64_t seq[RADEON_NUM_RINGS] = {};
631 	long r;
632 
633 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
634 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
635 		/* nothing to wait for, last_seq is already
636 		 * the last emited fence
637 		 */
638 		return -ENOENT;
639 	}
640 
641 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
642 	if (r < 0)
643 		return r;
644 
645 	return 0;
646 }
647 
648 /**
649  * radeon_fence_wait_empty - wait for all fences to signal
650  *
651  * @rdev: radeon device pointer
652  * @ring: ring index the fence is associated with
653  *
654  * Wait for all fences on the requested ring to signal (all asics).
655  * Returns 0 if the fences have passed, error for all other cases.
656  * Caller must hold ring lock.
657  */
658 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
659 {
660 	uint64_t seq[RADEON_NUM_RINGS] = {};
661 	long r;
662 
663 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
664 	if (!seq[ring])
665 		return 0;
666 
667 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
668 	if (r < 0) {
669 		if (r == -EDEADLK)
670 			return -EDEADLK;
671 
672 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
673 			ring, r);
674 	}
675 	return 0;
676 }
677 
678 /**
679  * radeon_fence_ref - take a ref on a fence
680  *
681  * @fence: radeon fence object
682  *
683  * Take a reference on a fence (all asics).
684  * Returns the fence.
685  */
686 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
687 {
688 	dma_fence_get(&fence->base);
689 	return fence;
690 }
691 
692 /**
693  * radeon_fence_unref - remove a ref on a fence
694  *
695  * @fence: radeon fence object
696  *
697  * Remove a reference on a fence (all asics).
698  */
699 void radeon_fence_unref(struct radeon_fence **fence)
700 {
701 	struct radeon_fence *tmp = *fence;
702 
703 	*fence = NULL;
704 	if (tmp)
705 		dma_fence_put(&tmp->base);
706 }
707 
708 /**
709  * radeon_fence_count_emitted - get the count of emitted fences
710  *
711  * @rdev: radeon device pointer
712  * @ring: ring index the fence is associated with
713  *
714  * Get the number of fences emitted on the requested ring (all asics).
715  * Returns the number of emitted fences on the ring.  Used by the
716  * dynpm code to ring track activity.
717  */
718 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
719 {
720 	uint64_t emitted;
721 
722 	/* We are not protected by ring lock when reading the last sequence
723 	 * but it's ok to report slightly wrong fence count here.
724 	 */
725 	radeon_fence_process(rdev, ring);
726 	emitted = rdev->fence_drv[ring].sync_seq[ring]
727 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
728 	/* to avoid 32bits warp around */
729 	if (emitted > 0x10000000)
730 		emitted = 0x10000000;
731 
732 	return (unsigned int)emitted;
733 }
734 
735 /**
736  * radeon_fence_need_sync - do we need a semaphore
737  *
738  * @fence: radeon fence object
739  * @dst_ring: which ring to check against
740  *
741  * Check if the fence needs to be synced against another ring
742  * (all asics).  If so, we need to emit a semaphore.
743  * Returns true if we need to sync with another ring, false if
744  * not.
745  */
746 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
747 {
748 	struct radeon_fence_driver *fdrv;
749 
750 	if (!fence)
751 		return false;
752 
753 	if (fence->ring == dst_ring)
754 		return false;
755 
756 	/* we are protected by the ring mutex */
757 	fdrv = &fence->rdev->fence_drv[dst_ring];
758 	if (fence->seq <= fdrv->sync_seq[fence->ring])
759 		return false;
760 
761 	return true;
762 }
763 
764 /**
765  * radeon_fence_note_sync - record the sync point
766  *
767  * @fence: radeon fence object
768  * @dst_ring: which ring to check against
769  *
770  * Note the sequence number at which point the fence will
771  * be synced with the requested ring (all asics).
772  */
773 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
774 {
775 	struct radeon_fence_driver *dst, *src;
776 	unsigned int i;
777 
778 	if (!fence)
779 		return;
780 
781 	if (fence->ring == dst_ring)
782 		return;
783 
784 	/* we are protected by the ring mutex */
785 	src = &fence->rdev->fence_drv[fence->ring];
786 	dst = &fence->rdev->fence_drv[dst_ring];
787 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
788 		if (i == dst_ring)
789 			continue;
790 
791 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
792 	}
793 }
794 
795 /**
796  * radeon_fence_driver_start_ring - make the fence driver
797  * ready for use on the requested ring.
798  *
799  * @rdev: radeon device pointer
800  * @ring: ring index to start the fence driver on
801  *
802  * Make the fence driver ready for processing (all asics).
803  * Not all asics have all rings, so each asic will only
804  * start the fence driver on the rings it has.
805  * Returns 0 for success, errors for failure.
806  */
807 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
808 {
809 	uint64_t index;
810 	int r;
811 
812 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
813 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
814 		rdev->fence_drv[ring].scratch_reg = 0;
815 		if (ring != R600_RING_TYPE_UVD_INDEX) {
816 			index = R600_WB_EVENT_OFFSET + ring * 4;
817 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
818 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
819 							 index;
820 
821 		} else {
822 			/* put fence directly behind firmware */
823 			index = ALIGN(rdev->uvd_fw->size, 8);
824 			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
825 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
826 		}
827 
828 	} else {
829 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
830 		if (r) {
831 			dev_err(rdev->dev, "fence failed to get scratch register\n");
832 			return r;
833 		}
834 		index = RADEON_WB_SCRATCH_OFFSET +
835 			rdev->fence_drv[ring].scratch_reg -
836 			rdev->scratch.reg_base;
837 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
838 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
839 	}
840 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
841 	rdev->fence_drv[ring].initialized = true;
842 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
843 		 ring, rdev->fence_drv[ring].gpu_addr);
844 	return 0;
845 }
846 
847 /**
848  * radeon_fence_driver_init_ring - init the fence driver
849  * for the requested ring.
850  *
851  * @rdev: radeon device pointer
852  * @ring: ring index to start the fence driver on
853  *
854  * Init the fence driver for the requested ring (all asics).
855  * Helper function for radeon_fence_driver_init().
856  */
857 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
858 {
859 	int i;
860 
861 	rdev->fence_drv[ring].scratch_reg = -1;
862 	rdev->fence_drv[ring].cpu_addr = NULL;
863 	rdev->fence_drv[ring].gpu_addr = 0;
864 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
865 		rdev->fence_drv[ring].sync_seq[i] = 0;
866 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
867 	rdev->fence_drv[ring].initialized = false;
868 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
869 			  radeon_fence_check_lockup);
870 	rdev->fence_drv[ring].rdev = rdev;
871 }
872 
873 /**
874  * radeon_fence_driver_init - init the fence driver
875  * for all possible rings.
876  *
877  * @rdev: radeon device pointer
878  *
879  * Init the fence driver for all possible rings (all asics).
880  * Not all asics have all rings, so each asic will only
881  * start the fence driver on the rings it has using
882  * radeon_fence_driver_start_ring().
883  */
884 void radeon_fence_driver_init(struct radeon_device *rdev)
885 {
886 	int ring;
887 
888 	init_waitqueue_head(&rdev->fence_queue);
889 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++)
890 		radeon_fence_driver_init_ring(rdev, ring);
891 
892 	radeon_debugfs_fence_init(rdev);
893 }
894 
895 /**
896  * radeon_fence_driver_fini - tear down the fence driver
897  * for all possible rings.
898  *
899  * @rdev: radeon device pointer
900  *
901  * Tear down the fence driver for all possible rings (all asics).
902  */
903 void radeon_fence_driver_fini(struct radeon_device *rdev)
904 {
905 	int ring, r;
906 
907 	mutex_lock(&rdev->ring_lock);
908 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
909 		if (!rdev->fence_drv[ring].initialized)
910 			continue;
911 		r = radeon_fence_wait_empty(rdev, ring);
912 		if (r) {
913 			/* no need to trigger GPU reset as we are unloading */
914 			radeon_fence_driver_force_completion(rdev, ring);
915 		}
916 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
917 		wake_up_all(&rdev->fence_queue);
918 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
919 		rdev->fence_drv[ring].initialized = false;
920 	}
921 	mutex_unlock(&rdev->ring_lock);
922 }
923 
924 /**
925  * radeon_fence_driver_force_completion - force all fence waiter to complete
926  *
927  * @rdev: radeon device pointer
928  * @ring: the ring to complete
929  *
930  * In case of GPU reset failure make sure no process keep waiting on fence
931  * that will never complete.
932  */
933 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
934 {
935 	if (rdev->fence_drv[ring].initialized) {
936 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
937 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
938 	}
939 }
940 
941 
942 /*
943  * Fence debugfs
944  */
945 #if defined(CONFIG_DEBUG_FS)
946 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
947 {
948 	struct radeon_device *rdev = m->private;
949 	int i, j;
950 
951 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
952 		if (!rdev->fence_drv[i].initialized)
953 			continue;
954 
955 		radeon_fence_process(rdev, i);
956 
957 		seq_printf(m, "--- ring %d ---\n", i);
958 		seq_printf(m, "Last signaled fence 0x%016llx\n",
959 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
960 		seq_printf(m, "Last emitted        0x%016llx\n",
961 			   rdev->fence_drv[i].sync_seq[i]);
962 
963 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
964 			if (i != j && rdev->fence_drv[j].initialized)
965 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
966 					   j, rdev->fence_drv[i].sync_seq[j]);
967 		}
968 	}
969 	return 0;
970 }
971 
972 /*
973  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
974  *
975  * Manually trigger a gpu reset at the next fence wait.
976  */
977 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
978 {
979 	struct radeon_device *rdev = (struct radeon_device *)data;
980 
981 	down_read(&rdev->exclusive_lock);
982 	*val = rdev->needs_reset;
983 	rdev->needs_reset = true;
984 	wake_up_all(&rdev->fence_queue);
985 	up_read(&rdev->exclusive_lock);
986 
987 	return 0;
988 }
989 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
990 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
991 			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
992 #endif
993 
994 void radeon_debugfs_fence_init(struct radeon_device *rdev)
995 {
996 #if defined(CONFIG_DEBUG_FS)
997 	struct dentry *root = rdev->ddev->primary->debugfs_root;
998 
999 	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1000 			    &radeon_debugfs_gpu_reset_fops);
1001 	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1002 			    &radeon_debugfs_fence_info_fops);
1003 
1004 
1005 #endif
1006 }
1007 
1008 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1009 {
1010 	return "radeon";
1011 }
1012 
1013 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1014 {
1015 	struct radeon_fence *fence = to_radeon_fence(f);
1016 
1017 	switch (fence->ring) {
1018 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1019 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1020 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1021 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1022 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1023 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1024 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1025 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1026 	default:
1027 		WARN_ON_ONCE(1);
1028 		return "radeon.unk";
1029 	}
1030 }
1031 
1032 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1033 {
1034 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1035 }
1036 
1037 struct radeon_wait_cb {
1038 	struct dma_fence_cb base;
1039 	struct task_struct *task;
1040 };
1041 
1042 static void
1043 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1044 {
1045 	struct radeon_wait_cb *wait =
1046 		container_of(cb, struct radeon_wait_cb, base);
1047 
1048 	wake_up_process(wait->task);
1049 }
1050 
1051 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1052 					     signed long t)
1053 {
1054 	struct radeon_fence *fence = to_radeon_fence(f);
1055 	struct radeon_device *rdev = fence->rdev;
1056 	struct radeon_wait_cb cb;
1057 
1058 	cb.task = current;
1059 
1060 	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1061 		return t;
1062 
1063 	while (t > 0) {
1064 		if (intr)
1065 			set_current_state(TASK_INTERRUPTIBLE);
1066 		else
1067 			set_current_state(TASK_UNINTERRUPTIBLE);
1068 
1069 		/*
1070 		 * radeon_test_signaled must be called after
1071 		 * set_current_state to prevent a race with wake_up_process
1072 		 */
1073 		if (radeon_test_signaled(fence))
1074 			break;
1075 
1076 		if (rdev->needs_reset) {
1077 			t = -EDEADLK;
1078 			break;
1079 		}
1080 
1081 		t = schedule_timeout(t);
1082 
1083 		if (t > 0 && intr && signal_pending(current))
1084 			t = -ERESTARTSYS;
1085 	}
1086 
1087 	__set_current_state(TASK_RUNNING);
1088 	dma_fence_remove_callback(f, &cb.base);
1089 
1090 	return t;
1091 }
1092 
1093 const struct dma_fence_ops radeon_fence_ops = {
1094 	.get_driver_name = radeon_fence_get_driver_name,
1095 	.get_timeline_name = radeon_fence_get_timeline_name,
1096 	.enable_signaling = radeon_fence_enable_signaling,
1097 	.signaled = radeon_fence_is_signaled,
1098 	.wait = radeon_fence_default_wait,
1099 	.release = NULL,
1100 };
1101