1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Dave Airlie 30 */ 31 32 #include <linux/atomic.h> 33 #include <linux/debugfs.h> 34 #include <linux/firmware.h> 35 #include <linux/kref.h> 36 #include <linux/sched/signal.h> 37 #include <linux/seq_file.h> 38 #include <linux/slab.h> 39 #include <linux/wait.h> 40 41 #include <drm/drm_device.h> 42 #include <drm/drm_file.h> 43 44 #include "radeon.h" 45 #include "radeon_reg.h" 46 #include "radeon_trace.h" 47 48 /* 49 * Fences mark an event in the GPUs pipeline and are used 50 * for GPU/CPU synchronization. When the fence is written, 51 * it is expected that all buffers associated with that fence 52 * are no longer in use by the associated ring on the GPU and 53 * that the relevant GPU caches have been flushed. Whether 54 * we use a scratch register or memory location depends on the asic 55 * and whether writeback is enabled. 56 */ 57 58 /** 59 * radeon_fence_write - write a fence value 60 * 61 * @rdev: radeon_device pointer 62 * @seq: sequence number to write 63 * @ring: ring index the fence is associated with 64 * 65 * Writes a fence value to memory or a scratch register (all asics). 66 */ 67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring) 68 { 69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 70 71 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 72 if (drv->cpu_addr) 73 *drv->cpu_addr = cpu_to_le32(seq); 74 } else { 75 WREG32(drv->scratch_reg, seq); 76 } 77 } 78 79 /** 80 * radeon_fence_read - read a fence value 81 * 82 * @rdev: radeon_device pointer 83 * @ring: ring index the fence is associated with 84 * 85 * Reads a fence value from memory or a scratch register (all asics). 86 * Returns the value of the fence read from memory or register. 87 */ 88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring) 89 { 90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring]; 91 u32 seq = 0; 92 93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) { 94 if (drv->cpu_addr) 95 seq = le32_to_cpu(*drv->cpu_addr); 96 else 97 seq = lower_32_bits(atomic64_read(&drv->last_seq)); 98 } else { 99 seq = RREG32(drv->scratch_reg); 100 } 101 return seq; 102 } 103 104 /** 105 * radeon_fence_schedule_check - schedule lockup check 106 * 107 * @rdev: radeon_device pointer 108 * @ring: ring index we should work with 109 * 110 * Queues a delayed work item to check for lockups. 111 */ 112 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring) 113 { 114 /* 115 * Do not reset the timer here with mod_delayed_work, 116 * this can livelock in an interaction with TTM delayed destroy. 117 */ 118 queue_delayed_work(system_power_efficient_wq, 119 &rdev->fence_drv[ring].lockup_work, 120 RADEON_FENCE_JIFFIES_TIMEOUT); 121 } 122 123 /** 124 * radeon_fence_emit - emit a fence on the requested ring 125 * 126 * @rdev: radeon_device pointer 127 * @fence: radeon fence object 128 * @ring: ring index the fence is associated with 129 * 130 * Emits a fence command on the requested ring (all asics). 131 * Returns 0 on success, -ENOMEM on failure. 132 */ 133 int radeon_fence_emit(struct radeon_device *rdev, 134 struct radeon_fence **fence, 135 int ring) 136 { 137 u64 seq; 138 139 /* we are protected by the ring emission mutex */ 140 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL); 141 if ((*fence) == NULL) 142 return -ENOMEM; 143 144 (*fence)->rdev = rdev; 145 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring]; 146 (*fence)->ring = ring; 147 (*fence)->is_vm_update = false; 148 dma_fence_init(&(*fence)->base, &radeon_fence_ops, 149 &rdev->fence_queue.lock, 150 rdev->fence_context + ring, 151 seq); 152 radeon_fence_ring_emit(rdev, ring, *fence); 153 trace_radeon_fence_emit(rdev_to_drm(rdev), ring, (*fence)->seq); 154 radeon_fence_schedule_check(rdev, ring); 155 return 0; 156 } 157 158 /* 159 * radeon_fence_check_signaled - callback from fence_queue 160 * 161 * this function is called with fence_queue lock held, which is also used 162 * for the fence locking itself, so unlocked variants are used for 163 * fence_signal, and remove_wait_queue. 164 */ 165 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, 166 unsigned int mode, int flags, void *key) 167 { 168 struct radeon_fence *fence; 169 u64 seq; 170 171 fence = container_of(wait, struct radeon_fence, fence_wake); 172 173 /* 174 * We cannot use radeon_fence_process here because we're already 175 * in the waitqueue, in a call from wake_up_all. 176 */ 177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq); 178 if (seq >= fence->seq) { 179 dma_fence_signal_locked(&fence->base); 180 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring); 181 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake); 182 dma_fence_put(&fence->base); 183 } 184 return 0; 185 } 186 187 /** 188 * radeon_fence_activity - check for fence activity 189 * 190 * @rdev: radeon_device pointer 191 * @ring: ring index the fence is associated with 192 * 193 * Checks the current fence value and calculates the last 194 * signalled fence value. Returns true if activity occured 195 * on the ring, and the fence_queue should be waken up. 196 */ 197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring) 198 { 199 uint64_t seq, last_seq, last_emitted; 200 unsigned int count_loop = 0; 201 bool wake = false; 202 203 /* Note there is a scenario here for an infinite loop but it's 204 * very unlikely to happen. For it to happen, the current polling 205 * process need to be interrupted by another process and another 206 * process needs to update the last_seq btw the atomic read and 207 * xchg of the current process. 208 * 209 * More over for this to go in infinite loop there need to be 210 * continuously new fence signaled ie radeon_fence_read needs 211 * to return a different value each time for both the currently 212 * polling process and the other process that xchg the last_seq 213 * btw atomic read and xchg of the current process. And the 214 * value the other process set as last seq must be higher than 215 * the seq value we just read. Which means that current process 216 * need to be interrupted after radeon_fence_read and before 217 * atomic xchg. 218 * 219 * To be even more safe we count the number of time we loop and 220 * we bail after 10 loop just accepting the fact that we might 221 * have temporarly set the last_seq not to the true real last 222 * seq but to an older one. 223 */ 224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq); 225 do { 226 last_emitted = rdev->fence_drv[ring].sync_seq[ring]; 227 seq = radeon_fence_read(rdev, ring); 228 seq |= last_seq & 0xffffffff00000000LL; 229 if (seq < last_seq) { 230 seq &= 0xffffffff; 231 seq |= last_emitted & 0xffffffff00000000LL; 232 } 233 234 if (seq <= last_seq || seq > last_emitted) 235 break; 236 237 /* If we loop over we don't want to return without 238 * checking if a fence is signaled as it means that the 239 * seq we just read is different from the previous on. 240 */ 241 wake = true; 242 last_seq = seq; 243 if ((count_loop++) > 10) { 244 /* We looped over too many time leave with the 245 * fact that we might have set an older fence 246 * seq then the current real last seq as signaled 247 * by the hw. 248 */ 249 break; 250 } 251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq); 252 253 if (seq < last_emitted) 254 radeon_fence_schedule_check(rdev, ring); 255 256 return wake; 257 } 258 259 /** 260 * radeon_fence_check_lockup - check for hardware lockup 261 * 262 * @work: delayed work item 263 * 264 * Checks for fence activity and if there is none probe 265 * the hardware if a lockup occured. 266 */ 267 static void radeon_fence_check_lockup(struct work_struct *work) 268 { 269 struct radeon_fence_driver *fence_drv; 270 struct radeon_device *rdev; 271 int ring; 272 273 fence_drv = container_of(work, struct radeon_fence_driver, 274 lockup_work.work); 275 rdev = fence_drv->rdev; 276 ring = fence_drv - &rdev->fence_drv[0]; 277 278 if (!down_read_trylock(&rdev->exclusive_lock)) { 279 /* just reschedule the check if a reset is going on */ 280 radeon_fence_schedule_check(rdev, ring); 281 return; 282 } 283 284 if (fence_drv->delayed_irq && rdev->irq.installed) { 285 unsigned long irqflags; 286 287 fence_drv->delayed_irq = false; 288 spin_lock_irqsave(&rdev->irq.lock, irqflags); 289 radeon_irq_set(rdev); 290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags); 291 } 292 293 if (radeon_fence_activity(rdev, ring)) 294 wake_up_all(&rdev->fence_queue); 295 296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) { 297 298 /* good news we believe it's a lockup */ 299 dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n", 300 (uint64_t)atomic64_read(&fence_drv->last_seq), 301 fence_drv->sync_seq[ring], ring); 302 303 /* remember that we need an reset */ 304 rdev->needs_reset = true; 305 wake_up_all(&rdev->fence_queue); 306 } 307 up_read(&rdev->exclusive_lock); 308 } 309 310 /** 311 * radeon_fence_process - process a fence 312 * 313 * @rdev: radeon_device pointer 314 * @ring: ring index the fence is associated with 315 * 316 * Checks the current fence value and wakes the fence queue 317 * if the sequence number has increased (all asics). 318 */ 319 void radeon_fence_process(struct radeon_device *rdev, int ring) 320 { 321 if (radeon_fence_activity(rdev, ring)) 322 wake_up_all(&rdev->fence_queue); 323 } 324 325 /** 326 * radeon_fence_seq_signaled - check if a fence sequence number has signaled 327 * 328 * @rdev: radeon device pointer 329 * @seq: sequence number 330 * @ring: ring index the fence is associated with 331 * 332 * Check if the last signaled fence sequnce number is >= the requested 333 * sequence number (all asics). 334 * Returns true if the fence has signaled (current fence value 335 * is >= requested value) or false if it has not (current fence 336 * value is < the requested value. Helper function for 337 * radeon_fence_signaled(). 338 */ 339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev, 340 u64 seq, unsigned int ring) 341 { 342 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 343 return true; 344 345 /* poll new last sequence at least once */ 346 radeon_fence_process(rdev, ring); 347 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 348 return true; 349 350 return false; 351 } 352 353 static bool radeon_fence_is_signaled(struct dma_fence *f) 354 { 355 struct radeon_fence *fence = to_radeon_fence(f); 356 struct radeon_device *rdev = fence->rdev; 357 unsigned int ring = fence->ring; 358 u64 seq = fence->seq; 359 360 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 361 return true; 362 363 if (down_read_trylock(&rdev->exclusive_lock)) { 364 radeon_fence_process(rdev, ring); 365 up_read(&rdev->exclusive_lock); 366 367 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) 368 return true; 369 } 370 return false; 371 } 372 373 /** 374 * radeon_fence_enable_signaling - enable signalling on fence 375 * @f: fence 376 * 377 * This function is called with fence_queue lock held, and adds a callback 378 * to fence_queue that checks if this fence is signaled, and if so it 379 * signals the fence and removes itself. 380 */ 381 static bool radeon_fence_enable_signaling(struct dma_fence *f) 382 { 383 struct radeon_fence *fence = to_radeon_fence(f); 384 struct radeon_device *rdev = fence->rdev; 385 386 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) 387 return false; 388 389 if (down_read_trylock(&rdev->exclusive_lock)) { 390 radeon_irq_kms_sw_irq_get(rdev, fence->ring); 391 392 if (radeon_fence_activity(rdev, fence->ring)) 393 wake_up_all_locked(&rdev->fence_queue); 394 395 /* did fence get signaled after we enabled the sw irq? */ 396 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) { 397 radeon_irq_kms_sw_irq_put(rdev, fence->ring); 398 up_read(&rdev->exclusive_lock); 399 return false; 400 } 401 402 up_read(&rdev->exclusive_lock); 403 } else { 404 /* we're probably in a lockup, lets not fiddle too much */ 405 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring)) 406 rdev->fence_drv[fence->ring].delayed_irq = true; 407 radeon_fence_schedule_check(rdev, fence->ring); 408 } 409 410 fence->fence_wake.flags = 0; 411 fence->fence_wake.private = NULL; 412 fence->fence_wake.func = radeon_fence_check_signaled; 413 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake); 414 dma_fence_get(f); 415 return true; 416 } 417 418 /** 419 * radeon_fence_signaled - check if a fence has signaled 420 * 421 * @fence: radeon fence object 422 * 423 * Check if the requested fence has signaled (all asics). 424 * Returns true if the fence has signaled or false if it has not. 425 */ 426 bool radeon_fence_signaled(struct radeon_fence *fence) 427 { 428 if (!fence) 429 return true; 430 431 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) { 432 dma_fence_signal(&fence->base); 433 return true; 434 } 435 return false; 436 } 437 438 /** 439 * radeon_fence_any_seq_signaled - check if any sequence number is signaled 440 * 441 * @rdev: radeon device pointer 442 * @seq: sequence numbers 443 * 444 * Check if the last signaled fence sequnce number is >= the requested 445 * sequence number (all asics). 446 * Returns true if any has signaled (current value is >= requested value) 447 * or false if it has not. Helper function for radeon_fence_wait_seq. 448 */ 449 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq) 450 { 451 unsigned int i; 452 453 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 454 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) 455 return true; 456 } 457 return false; 458 } 459 460 /** 461 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers 462 * 463 * @rdev: radeon device pointer 464 * @target_seq: sequence number(s) we want to wait for 465 * @intr: use interruptable sleep 466 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 467 * 468 * Wait for the requested sequence number(s) to be written by any ring 469 * (all asics). Sequnce number array is indexed by ring id. 470 * @intr selects whether to use interruptable (true) or non-interruptable 471 * (false) sleep when waiting for the sequence number. Helper function 472 * for radeon_fence_wait_*(). 473 * Returns remaining time if the sequence number has passed, 0 when 474 * the wait timeout, or an error for all other cases. 475 * -EDEADLK is returned when a GPU lockup has been detected. 476 */ 477 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev, 478 u64 *target_seq, bool intr, 479 long timeout) 480 { 481 long r; 482 int i; 483 484 if (radeon_fence_any_seq_signaled(rdev, target_seq)) 485 return timeout; 486 487 /* enable IRQs and tracing */ 488 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 489 if (!target_seq[i]) 490 continue; 491 492 trace_radeon_fence_wait_begin(rdev_to_drm(rdev), i, target_seq[i]); 493 radeon_irq_kms_sw_irq_get(rdev, i); 494 } 495 496 if (intr) { 497 r = wait_event_interruptible_timeout(rdev->fence_queue, ( 498 radeon_fence_any_seq_signaled(rdev, target_seq) 499 || rdev->needs_reset), timeout); 500 } else { 501 r = wait_event_timeout(rdev->fence_queue, ( 502 radeon_fence_any_seq_signaled(rdev, target_seq) 503 || rdev->needs_reset), timeout); 504 } 505 506 if (rdev->needs_reset) 507 r = -EDEADLK; 508 509 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 510 if (!target_seq[i]) 511 continue; 512 513 radeon_irq_kms_sw_irq_put(rdev, i); 514 trace_radeon_fence_wait_end(rdev_to_drm(rdev), i, target_seq[i]); 515 } 516 517 return r; 518 } 519 520 /** 521 * radeon_fence_wait_timeout - wait for a fence to signal with timeout 522 * 523 * @fence: radeon fence object 524 * @intr: use interruptible sleep 525 * 526 * Wait for the requested fence to signal (all asics). 527 * @intr selects whether to use interruptable (true) or non-interruptable 528 * (false) sleep when waiting for the fence. 529 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait 530 * Returns remaining time if the sequence number has passed, 0 when 531 * the wait timeout, or an error for all other cases. 532 */ 533 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout) 534 { 535 uint64_t seq[RADEON_NUM_RINGS] = {}; 536 long r; 537 538 /* 539 * This function should not be called on !radeon fences. 540 * If this is the case, it would mean this function can 541 * also be called on radeon fences belonging to another card. 542 * exclusive_lock is not held in that case. 543 */ 544 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base))) 545 return dma_fence_wait(&fence->base, intr); 546 547 seq[fence->ring] = fence->seq; 548 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout); 549 if (r <= 0) 550 return r; 551 552 dma_fence_signal(&fence->base); 553 return r; 554 } 555 556 /** 557 * radeon_fence_wait - wait for a fence to signal 558 * 559 * @fence: radeon fence object 560 * @intr: use interruptible sleep 561 * 562 * Wait for the requested fence to signal (all asics). 563 * @intr selects whether to use interruptable (true) or non-interruptable 564 * (false) sleep when waiting for the fence. 565 * Returns 0 if the fence has passed, error for all other cases. 566 */ 567 int radeon_fence_wait(struct radeon_fence *fence, bool intr) 568 { 569 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 570 571 if (r > 0) 572 return 0; 573 else 574 return r; 575 } 576 577 /** 578 * radeon_fence_wait_any - wait for a fence to signal on any ring 579 * 580 * @rdev: radeon device pointer 581 * @fences: radeon fence object(s) 582 * @intr: use interruptable sleep 583 * 584 * Wait for any requested fence to signal (all asics). Fence 585 * array is indexed by ring id. @intr selects whether to use 586 * interruptable (true) or non-interruptable (false) sleep when 587 * waiting for the fences. Used by the suballocator. 588 * Returns 0 if any fence has passed, error for all other cases. 589 */ 590 int radeon_fence_wait_any(struct radeon_device *rdev, 591 struct radeon_fence **fences, 592 bool intr) 593 { 594 uint64_t seq[RADEON_NUM_RINGS]; 595 unsigned int i, num_rings = 0; 596 long r; 597 598 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 599 seq[i] = 0; 600 601 if (!fences[i]) 602 continue; 603 604 seq[i] = fences[i]->seq; 605 ++num_rings; 606 } 607 608 /* nothing to wait for ? */ 609 if (num_rings == 0) 610 return -ENOENT; 611 612 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT); 613 if (r < 0) 614 return r; 615 616 return 0; 617 } 618 619 /** 620 * radeon_fence_wait_next - wait for the next fence to signal 621 * 622 * @rdev: radeon device pointer 623 * @ring: ring index the fence is associated with 624 * 625 * Wait for the next fence on the requested ring to signal (all asics). 626 * Returns 0 if the next fence has passed, error for all other cases. 627 * Caller must hold ring lock. 628 */ 629 int radeon_fence_wait_next(struct radeon_device *rdev, int ring) 630 { 631 uint64_t seq[RADEON_NUM_RINGS] = {}; 632 long r; 633 634 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL; 635 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) { 636 /* nothing to wait for, last_seq is already 637 * the last emited fence 638 */ 639 return -ENOENT; 640 } 641 642 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 643 if (r < 0) 644 return r; 645 646 return 0; 647 } 648 649 /** 650 * radeon_fence_wait_empty - wait for all fences to signal 651 * 652 * @rdev: radeon device pointer 653 * @ring: ring index the fence is associated with 654 * 655 * Wait for all fences on the requested ring to signal (all asics). 656 * Returns 0 if the fences have passed, error for all other cases. 657 * Caller must hold ring lock. 658 */ 659 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring) 660 { 661 uint64_t seq[RADEON_NUM_RINGS] = {}; 662 long r; 663 664 seq[ring] = rdev->fence_drv[ring].sync_seq[ring]; 665 if (!seq[ring]) 666 return 0; 667 668 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT); 669 if (r < 0) { 670 if (r == -EDEADLK) 671 return -EDEADLK; 672 673 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n", 674 ring, r); 675 } 676 return 0; 677 } 678 679 /** 680 * radeon_fence_ref - take a ref on a fence 681 * 682 * @fence: radeon fence object 683 * 684 * Take a reference on a fence (all asics). 685 * Returns the fence. 686 */ 687 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence) 688 { 689 dma_fence_get(&fence->base); 690 return fence; 691 } 692 693 /** 694 * radeon_fence_unref - remove a ref on a fence 695 * 696 * @fence: radeon fence object 697 * 698 * Remove a reference on a fence (all asics). 699 */ 700 void radeon_fence_unref(struct radeon_fence **fence) 701 { 702 struct radeon_fence *tmp = *fence; 703 704 *fence = NULL; 705 if (tmp) 706 dma_fence_put(&tmp->base); 707 } 708 709 /** 710 * radeon_fence_count_emitted - get the count of emitted fences 711 * 712 * @rdev: radeon device pointer 713 * @ring: ring index the fence is associated with 714 * 715 * Get the number of fences emitted on the requested ring (all asics). 716 * Returns the number of emitted fences on the ring. Used by the 717 * dynpm code to ring track activity. 718 */ 719 unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring) 720 { 721 uint64_t emitted; 722 723 /* We are not protected by ring lock when reading the last sequence 724 * but it's ok to report slightly wrong fence count here. 725 */ 726 radeon_fence_process(rdev, ring); 727 emitted = rdev->fence_drv[ring].sync_seq[ring] 728 - atomic64_read(&rdev->fence_drv[ring].last_seq); 729 /* to avoid 32bits warp around */ 730 if (emitted > 0x10000000) 731 emitted = 0x10000000; 732 733 return (unsigned int)emitted; 734 } 735 736 /** 737 * radeon_fence_need_sync - do we need a semaphore 738 * 739 * @fence: radeon fence object 740 * @dst_ring: which ring to check against 741 * 742 * Check if the fence needs to be synced against another ring 743 * (all asics). If so, we need to emit a semaphore. 744 * Returns true if we need to sync with another ring, false if 745 * not. 746 */ 747 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring) 748 { 749 struct radeon_fence_driver *fdrv; 750 751 if (!fence) 752 return false; 753 754 if (fence->ring == dst_ring) 755 return false; 756 757 /* we are protected by the ring mutex */ 758 fdrv = &fence->rdev->fence_drv[dst_ring]; 759 if (fence->seq <= fdrv->sync_seq[fence->ring]) 760 return false; 761 762 return true; 763 } 764 765 /** 766 * radeon_fence_note_sync - record the sync point 767 * 768 * @fence: radeon fence object 769 * @dst_ring: which ring to check against 770 * 771 * Note the sequence number at which point the fence will 772 * be synced with the requested ring (all asics). 773 */ 774 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring) 775 { 776 struct radeon_fence_driver *dst, *src; 777 unsigned int i; 778 779 if (!fence) 780 return; 781 782 if (fence->ring == dst_ring) 783 return; 784 785 /* we are protected by the ring mutex */ 786 src = &fence->rdev->fence_drv[fence->ring]; 787 dst = &fence->rdev->fence_drv[dst_ring]; 788 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 789 if (i == dst_ring) 790 continue; 791 792 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); 793 } 794 } 795 796 /** 797 * radeon_fence_driver_start_ring - make the fence driver 798 * ready for use on the requested ring. 799 * 800 * @rdev: radeon device pointer 801 * @ring: ring index to start the fence driver on 802 * 803 * Make the fence driver ready for processing (all asics). 804 * Not all asics have all rings, so each asic will only 805 * start the fence driver on the rings it has. 806 * Returns 0 for success, errors for failure. 807 */ 808 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring) 809 { 810 uint64_t index; 811 int r; 812 813 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 814 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) { 815 rdev->fence_drv[ring].scratch_reg = 0; 816 if (ring != R600_RING_TYPE_UVD_INDEX) { 817 index = R600_WB_EVENT_OFFSET + ring * 4; 818 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 819 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + 820 index; 821 822 } else { 823 /* put fence directly behind firmware */ 824 index = ALIGN(rdev->uvd_fw->size, 8); 825 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index; 826 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index; 827 } 828 829 } else { 830 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg); 831 if (r) { 832 dev_err(rdev->dev, "fence failed to get scratch register\n"); 833 return r; 834 } 835 index = RADEON_WB_SCRATCH_OFFSET + 836 rdev->fence_drv[ring].scratch_reg - 837 rdev->scratch.reg_base; 838 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4]; 839 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index; 840 } 841 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring); 842 rdev->fence_drv[ring].initialized = true; 843 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n", 844 ring, rdev->fence_drv[ring].gpu_addr); 845 return 0; 846 } 847 848 /** 849 * radeon_fence_driver_init_ring - init the fence driver 850 * for the requested ring. 851 * 852 * @rdev: radeon device pointer 853 * @ring: ring index to start the fence driver on 854 * 855 * Init the fence driver for the requested ring (all asics). 856 * Helper function for radeon_fence_driver_init(). 857 */ 858 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring) 859 { 860 int i; 861 862 rdev->fence_drv[ring].scratch_reg = -1; 863 rdev->fence_drv[ring].cpu_addr = NULL; 864 rdev->fence_drv[ring].gpu_addr = 0; 865 for (i = 0; i < RADEON_NUM_RINGS; ++i) 866 rdev->fence_drv[ring].sync_seq[i] = 0; 867 atomic64_set(&rdev->fence_drv[ring].last_seq, 0); 868 rdev->fence_drv[ring].initialized = false; 869 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work, 870 radeon_fence_check_lockup); 871 rdev->fence_drv[ring].rdev = rdev; 872 } 873 874 /** 875 * radeon_fence_driver_init - init the fence driver 876 * for all possible rings. 877 * 878 * @rdev: radeon device pointer 879 * 880 * Init the fence driver for all possible rings (all asics). 881 * Not all asics have all rings, so each asic will only 882 * start the fence driver on the rings it has using 883 * radeon_fence_driver_start_ring(). 884 */ 885 void radeon_fence_driver_init(struct radeon_device *rdev) 886 { 887 int ring; 888 889 init_waitqueue_head(&rdev->fence_queue); 890 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) 891 radeon_fence_driver_init_ring(rdev, ring); 892 893 radeon_debugfs_fence_init(rdev); 894 } 895 896 /** 897 * radeon_fence_driver_fini - tear down the fence driver 898 * for all possible rings. 899 * 900 * @rdev: radeon device pointer 901 * 902 * Tear down the fence driver for all possible rings (all asics). 903 */ 904 void radeon_fence_driver_fini(struct radeon_device *rdev) 905 { 906 int ring, r; 907 908 mutex_lock(&rdev->ring_lock); 909 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) { 910 if (!rdev->fence_drv[ring].initialized) 911 continue; 912 r = radeon_fence_wait_empty(rdev, ring); 913 if (r) { 914 /* no need to trigger GPU reset as we are unloading */ 915 radeon_fence_driver_force_completion(rdev, ring); 916 } 917 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 918 wake_up_all(&rdev->fence_queue); 919 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg); 920 rdev->fence_drv[ring].initialized = false; 921 } 922 mutex_unlock(&rdev->ring_lock); 923 } 924 925 /** 926 * radeon_fence_driver_force_completion - force all fence waiter to complete 927 * 928 * @rdev: radeon device pointer 929 * @ring: the ring to complete 930 * 931 * In case of GPU reset failure make sure no process keep waiting on fence 932 * that will never complete. 933 */ 934 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring) 935 { 936 if (rdev->fence_drv[ring].initialized) { 937 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring); 938 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work); 939 } 940 } 941 942 943 /* 944 * Fence debugfs 945 */ 946 #if defined(CONFIG_DEBUG_FS) 947 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data) 948 { 949 struct radeon_device *rdev = m->private; 950 int i, j; 951 952 for (i = 0; i < RADEON_NUM_RINGS; ++i) { 953 if (!rdev->fence_drv[i].initialized) 954 continue; 955 956 radeon_fence_process(rdev, i); 957 958 seq_printf(m, "--- ring %d ---\n", i); 959 seq_printf(m, "Last signaled fence 0x%016llx\n", 960 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq)); 961 seq_printf(m, "Last emitted 0x%016llx\n", 962 rdev->fence_drv[i].sync_seq[i]); 963 964 for (j = 0; j < RADEON_NUM_RINGS; ++j) { 965 if (i != j && rdev->fence_drv[j].initialized) 966 seq_printf(m, "Last sync to ring %d 0x%016llx\n", 967 j, rdev->fence_drv[i].sync_seq[j]); 968 } 969 } 970 return 0; 971 } 972 973 /* 974 * radeon_debugfs_gpu_reset - manually trigger a gpu reset 975 * 976 * Manually trigger a gpu reset at the next fence wait. 977 */ 978 static int radeon_debugfs_gpu_reset(void *data, u64 *val) 979 { 980 struct radeon_device *rdev = (struct radeon_device *)data; 981 982 down_read(&rdev->exclusive_lock); 983 *val = rdev->needs_reset; 984 rdev->needs_reset = true; 985 wake_up_all(&rdev->fence_queue); 986 up_read(&rdev->exclusive_lock); 987 988 return 0; 989 } 990 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info); 991 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops, 992 radeon_debugfs_gpu_reset, NULL, "%lld\n"); 993 #endif 994 995 void radeon_debugfs_fence_init(struct radeon_device *rdev) 996 { 997 #if defined(CONFIG_DEBUG_FS) 998 struct dentry *root = rdev_to_drm(rdev)->primary->debugfs_root; 999 1000 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev, 1001 &radeon_debugfs_gpu_reset_fops); 1002 debugfs_create_file("radeon_fence_info", 0444, root, rdev, 1003 &radeon_debugfs_fence_info_fops); 1004 1005 1006 #endif 1007 } 1008 1009 static const char *radeon_fence_get_driver_name(struct dma_fence *fence) 1010 { 1011 return "radeon"; 1012 } 1013 1014 static const char *radeon_fence_get_timeline_name(struct dma_fence *f) 1015 { 1016 struct radeon_fence *fence = to_radeon_fence(f); 1017 1018 switch (fence->ring) { 1019 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx"; 1020 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1"; 1021 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2"; 1022 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma"; 1023 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1"; 1024 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd"; 1025 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1"; 1026 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2"; 1027 default: 1028 WARN_ON_ONCE(1); 1029 return "radeon.unk"; 1030 } 1031 } 1032 1033 static inline bool radeon_test_signaled(struct radeon_fence *fence) 1034 { 1035 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); 1036 } 1037 1038 struct radeon_wait_cb { 1039 struct dma_fence_cb base; 1040 struct task_struct *task; 1041 }; 1042 1043 static void 1044 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1045 { 1046 struct radeon_wait_cb *wait = 1047 container_of(cb, struct radeon_wait_cb, base); 1048 1049 wake_up_process(wait->task); 1050 } 1051 1052 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr, 1053 signed long t) 1054 { 1055 struct radeon_fence *fence = to_radeon_fence(f); 1056 struct radeon_device *rdev = fence->rdev; 1057 struct radeon_wait_cb cb; 1058 1059 cb.task = current; 1060 1061 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb)) 1062 return t; 1063 1064 while (t > 0) { 1065 if (intr) 1066 set_current_state(TASK_INTERRUPTIBLE); 1067 else 1068 set_current_state(TASK_UNINTERRUPTIBLE); 1069 1070 /* 1071 * radeon_test_signaled must be called after 1072 * set_current_state to prevent a race with wake_up_process 1073 */ 1074 if (radeon_test_signaled(fence)) 1075 break; 1076 1077 if (rdev->needs_reset) { 1078 t = -EDEADLK; 1079 break; 1080 } 1081 1082 t = schedule_timeout(t); 1083 1084 if (t > 0 && intr && signal_pending(current)) 1085 t = -ERESTARTSYS; 1086 } 1087 1088 __set_current_state(TASK_RUNNING); 1089 dma_fence_remove_callback(f, &cb.base); 1090 1091 return t; 1092 } 1093 1094 const struct dma_fence_ops radeon_fence_ops = { 1095 .get_driver_name = radeon_fence_get_driver_name, 1096 .get_timeline_name = radeon_fence_get_timeline_name, 1097 .enable_signaling = radeon_fence_enable_signaling, 1098 .signaled = radeon_fence_is_signaled, 1099 .wait = radeon_fence_default_wait, 1100 .release = NULL, 1101 }; 1102